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ABSTRACT The growing move toward smart factories can leverage industrial big data to enhance
productivity. In particular, research is being conducted on injection molding and utilizing machine learning
techniques to analyze molding process data, discover optimal molding conditions, and predict and improve
product quality. This study aims to identify the key factors influencing the weight defects of injection-
molded products and demonstrate the potential use of the double ensemble technique for better prediction
accuracy of weight defects. We obtain the key factors influencing weight defects prediction, barrel H2
temp real, metering time, and fill time using gain ratio analysis. Subsequently, we develop single models
using machine learning algorithms, including decision tree, random forest, logistic regression, the Bayesian
network, and the artificial neural network. Ensemble models, including bagging and boosting and double
ensemble models are developed to compare their performance with that of single models. The findings
indicate that ensemblemodels outperform the prediction accuracy of the single models. The double ensemble
technique demonstrates the greatest improvements in prediction accuracy over the single models. These
results showcase the potential of applying the double ensemble technique to other injection molding areas
and suggest that adopting this technique will contribute to establishing other smart factories that will enhance
both productivity and cost competitiveness.

INDEX TERMS Double ensemble, ensemble, machine learning, smart factory, injection molding, quality
prediction, prediction accuracy.

I. INTRODUCTION
In recent years, the rise of Industry 4.0 and cyber-physical
systems (CPS) has brought smart manufacturing to the fore-
front and led to transformative changes. Smart manufacturing
utilizes vast amounts of industrial big data to enable flexi-
ble and fully connected factories known as smart factories
[1], [2]. They can leverage continuous data streams in their
operational and production systems. The adoption of tech-
nologies like the Internet of Things (IoT) and CPS has made
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it feasible to implement smart factories, thereby offering
solutions for handling complexity and establishing intelligent
products and production processes [3].

Smart factories are being utilized across various industries
with the aim of enhancing competitiveness by making pro-
duction systems intelligent, reducing production costs, and
improving productivity. For example, by using IoT sensors
to collect and analyze data during the production process,
defects can be minimized, and the efficiency of production
lines can be increased. This allows for the establishment of
a process management system that enables fast and accu-
rate decision-making based on data collected during the

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 113605

https://orcid.org/0009-0000-6356-694X
https://orcid.org/0009-0009-1343-2500
https://orcid.org/0000-0002-4063-6586
https://orcid.org/0000-0003-4184-2397


K. Koo et al.: Double Ensemble Technique for Improving the Weight Defect Prediction

production process. Many industries are moving towards
digitization to ensure product quality and using new tech-
nologies such as machine learning (ML) to model and predict
highly complex and nonlinear events when trainedwith actual
experiences. ML is proving crucial in improving industrial
productivity by utilizing data collected during product man-
ufacturing, saving time, resources, and energy, or reducing
waste to maintain the competitiveness of manufacturing com-
panies [4], [5]. In the field of injection molding, research is
being conducted on the optimization of molding conditions
and the prediction of product quality using ML techniques
based on data from injection molding machines in smart fac-
tories. Research is continuing to improve molding conditions
and predict product quality using ML and manufacturing
condition data from injection molding machines. Injection
molding is a widely used plastic molding technique that
enables rapid mass production by injecting molten plastic
resin into a mold. Typically, the injection molding process
involves six stages: mold clamping, injection, press holding,
plasticization, cooling, and mold opening. Injection molding
is crucial in industries like aerospace, defense, electronics,
and telecommunications [6].

Injection molding involves injecting temperature-sensitive
plastic resin into a mold under both high temperature and
pressure. However, the process is prone to molding defects,
such as incomplete filling, flash, warpage, deformation, and
black spots, during packing and cooling. The quality of
injection-molded products is influenced by various factors.
These include raw materials, the machines, process condi-
tions, mold design, and injection environment, all interact
in complex ways. Traditionally, optimizing these conditions
have relied heavily on the experience of on-site opera-
tors. However, individual judgment and skills have made it
challenging to achieve consistent quality, productivity, and
standardization. Despite the emergence of computer-aided
engineering (CAE) and computer-aided design (CAD) for
numerical analysis and process parameter optimization [7],
[8], [9], relying solely on operator experience in injection
molding still remains an important issue. In the field of
injection molding, product quality is determined by various
conditions, which is why relying solely on the experience
and know-how of on-site operators to input and control injec-
tion molding conditions on injection molding machines for
process optimization has several limitations. It is becoming
increasingly important to utilize ML techniques and big data
analysis based on production data to ensure process optimiza-
tion and quality prediction.

To overcome these challenges and advance the production
methods for injection molding, there is growing recognition
of the significance of employing ML techniques and analyz-
ing big data [10], [11]. ML techniques can identify the key
variables that impact product quality by analyzing molding
process data, including mold conditions, injection molding
conditions, and environmental factors. Further, ML tech-
niques can predict the quality of injection-molded products

by analyzing the data generated throughout the production
process. Previous research in injection molding has often
involved developing single ML models for quality prediction
or process optimization [12], [13], [14], [15], [16], [17], [18],
[19], [20]. However, the current trend is toward utilizing
ensemble model and, combining multiple models to enhance
overall prediction accuracy [21], [22], [23], [24].

This study thus further improves the prediction accuracy
of classification models in injection molding by applying
the double ensemble technique that was introduced in our
previous studies [25], [26]. This double ensemble model,
applying the ensemble once more to the ensemble model,
effectively addresses the overfitting problem by leveraging
multiple models that learn from distinct datasets and incor-
porating diverse information and capturing generalizable
characteristics. Although developing and training multiple
models does require additional time, the double ensemble
technique is expected to provide potential advantages for
injection molding, including improved prediction accuracy,
improved generalization, andmore optimized injectionmold-
ing processes.

The research methodology utilized involves identifying
important variables that affect weight defects of products
by analyzing molding process data. ML techniques, such as
decision tree (DT), random forest (RF), logistic regression
(LR), Bayesian network (BN), and artificial neural network
(ANN)-based by multi-layer perceptron (MLP) will also be
used to construct a single model that has optimal predic-
tion accuracy. The performance of this model will then be
compared to an ensemble model that applies bagging and
boosting techniques. Finally, the prediction accuracy of the
double ensemble model, applying both bagging and boost-
ing sequentially, will be evaluated to determine whether it
outperforms the single or ensemble models. By applying the
optimal prediction accuracy derived from these approaches
to the production of injection-molded products, it will be
possible to reduce quality defects and contribute posi-
tively to cost competitiveness through improved productivity.
This study thus addresses two research questions (RQs) as
follows:

• RQ1: How can the significant variables impacting prod-
uct weight quality and the evaluation of their prioritized
order be identified?

• RQ2: Does the double ensemble model provide more
accurate prediction results than the single or ensemble
models?

The study is organized as follows: Section II presents
a literature review on the use of ML in injection mold-
ing and introduces the dataset. Section III outlines the
research methodology, including data preprocessing, model
construction, and performance evaluation. In Section IV, the
prediction accuracy of single, ensemble, and double ensemble
models is compared. Finally, Section V concludes the study
with a summary, implications of the research, its limitations
and new opportunities for future research.
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II. LITERATURE REVIEW
A. ML STUDIES ON INJECTION MOLDING
Predicting the quality of molded products and understanding
the key influencing factors are a significant concern of injec-
tion molding. To address this challenge, extensive research
that utilizes ML techniques for product quality prediction is
being conducted. This effort involves analyzing the process
data collected from equipment to optimize the molding con-
ditions and also predict defects, leading to the development
of smart injection molding methods [10], [11].

The study using the single model related to injection mold-
ing is thus summarized here. Changyu et al. [12] focused on
modeling the complex relationship between process condi-
tions and quality indices of injection-molded parts using the
ANN method. Specifically, the researchers aimed to improve
the quality index associated with volume shrinkage variation
and demonstrate the effectiveness of their approach for opti-
mizing the injection molding process.

Huang et al. [13] proposed a virtual measurement tech-
nique that combined real-time multi-quality prediction neural
networks, autoencoder networks, and multilayer perceptron
networks. This innovative approach enabled a simultaneous
prediction of key characteristics, such as width, weight, and
residual stress distribution, in injection-molded products.

Silva et al. [14] employed ML techniques, specifically
ANN and support vector machine (SVM), to develop an intel-
ligent system for classifying the quality of plastic injection
parts. By employing five process variables, they success-
fully predicted and classified both good and defective parts,
by evaluating the prediction accuracy and comparing the
performance of the two models.

Ke and Huang [15] conducted injection molding experi-
ments on IC trays, identifying four quality indices (holding
pressure index, pressure integral index, residual pressure drop
index, maximum pressure index) that highly correlated with
the system and cavity pressure curves. They then used these
indices as input data and built the MLP neural network model
for various types of ANN, so as to predict the ‘pass’ or ‘fail’
criteria of finished products. The study revealed a strong
correlation between the features extracted from the pressure
curves and part quality.

Parizs et al. [16] conducted a study that compared the
predictive effectiveness of different ML algorithms for the
prediction of quality in porous injection molding. They
utilized pressure-based quality metrics as input data and
compared the prediction accuracy of four classification algo-
rithms: the k-nearest neighborhood (KNN), naive bayes,
linear discriminant analysis, and DT. Of these algorithms,
they demonstrated that the DT algorithm was the most accu-
rate in predicting injection molding quality. However, it was
important to note that classification predictions may also vary
depending on the specific input dataset being used.

Lee et al. [17] focused on injection molding and selected
several input parameters, namely melting temperature, mold
temperature, injection speed, packing pressure, packing time,

and cooling time. They used these parameters to build an
ANN model. The output variables considered were the mass,
diameter, and height of the molded product. They compared
the prediction performance of the ANN model to that of
the linear regression and quadratic polynomial regression
models.

Ozcelik and Erzurumlu [18] proposed an efficient opti-
mization methodology for injection molding by utilizing
ANN in combination with genetic algorithms. Their methods
considered various process condition variables, such as mold
temperature, melt temperature, packing pressure, packing
time, runner type, gate location, and cooling time. They also
performed an analysis of variance (ANOVA) study to analyze
the influence of these particular variables on the warpage of
plastic parts. Their findings revealed that packing pressure,
mold temperature, melt temperature, packing time, and cool-
ing time significantly affected warpage in descending order.

Ardestani et al. [19] analyzed eight process parameters
(flow rate, melt temperature, mold temperature, holding pres-
sure, runner diameter, gate diameter, gate angle, and included
angle) for producing PVC bushings. They employed both the
ANOVA and ANN techniques. The focus of their study was
on predicting and then modeling blush defect areas. Their
findings indicated that flow rate, melt temperature, and runner
diameter had a powerful impact on blush defects during the
production of PVC bushings.

Injection molding also posed a persistent challenge due
to the need to manipulate numerous process parameters in
real-time to ensure control over quality characteristics, meet
process requirements, and achieve cost-effective production.
Ramana [20] addressed this challenge by utilizing data min-
ing models. Techniques, such as naive bayes, DT, ANN,
and polynomial by binomial classification, were employed to
predict product quality and identify the root causes of such
defects as short shots and flashes in injection molding.

Next, the study using the ensemble model along with the
single model is summarized here. Ensemble techniques have
garnered significant attention in the recent research to try
and enhance prediction accuracy. Polenta et al. [21] aimed to
monitor the quality of injection molded products by tracking
the process parameters in plastic injection molding. They
collected data from the production of plastic road lenses and
used them as process parameters to compare the predictive
performance of six classifiers, namely, KNN, DT, RF, gra-
dient boosting tree (GBT), SVM, and MLP. The research
results showed that RF and GBT among the tested classifiers
exhibited higher accuracy in predicting the quality of molded
products, thereby confirming the potential of ML-based tech-
niques. They also suggested that the utility of ensemble
techniques based on bagging and boosting would achieve
better results than single prediction models.

Jung et al. [22] tested and compared the performance of
various ML algorithms for their quality prediction. They
applied eight techniques: LR, SVM, RF, Gradient Boosting,
XGBoost, CatBoost, LightGBM, and autoencoder. Of these,
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TABLE 1. The different ML prediction studies on injection molding.

the autoencoder yielded superior performance by comparing
metrics, such as accuracy, precision, recall, and F1-Score.
Further still, feature importance analysis identified temper-
ature and time as significant factors that were influencing the
quality.

Struchtrupa et al. [23] demonstrated that ensemble models
outperform single models in terms of quality prediction for
injection molding. They evaluated various single models,
such as ANN, SVM, DT, and KNN, and compared them to
ensemble models based on DT and gaussian process regres-
sion (GPR). The research findings highlighted the superior
performance of the ensemble models in predicting quality
compared to the single models. This finding underscored
the effectiveness of ensemble techniques in the context of
predicting of the quality of injection molding.

Ahmed et al. [24] developed prediction models for defor-
mation in PVC parts by using ensemble algorithms, includ-
ing RF and a gradient-boosted regression tree. This study
found that of these two ensemble ML algorithms, the RF
model exhibited more accurate deformation predictions for
injection-molded parts. The study suggested that this model
could be valuable for manufacturing engineers and produc-
tion managers when controlling injection molding process
parameters and minimizing deformation before actual pro-
duction.

Table 1 summarizes the studies in the field of injection
molding that are discussed here.

B. THE INJECTION MOLDING PRODUCT USED IN
THIS STUDY
This study utilized a dataset obtained from Shinsung Delta
Tech (www.gshinsung.com), a mid-sized manufacturing

company located in South Korea. Shinsung Delta Tech spe-
cializes in the production of electronic products, including
wireless vacuum cleaners, robot vacuum cleaners, skincare
devices, and body dryers. They also manufacture key com-
ponents and modules for household electronic products like
washing machines, refrigerators, and air conditioners. Given
their expertise in large-scale injection molding techniques,
they have developed advanced capabilities for producing
plastic parts. The specific focus of this study was on the
production of fans used in the outdoor unit air conditioners,
where weight balance plays a crucial role because fans are
spinning. The researchers collected process data related to the
injection molding of these fans and applied ML techniques
for their analysis. As shown here in Fig. 1, the mold used
for the outdoor air conditioner fan consisted of two cavities,
which enabled the simultaneous production of two products
during the injection molding process. Consequently, separate
datasets were created for each cavity.

Temperature sensors and pressure sensors were installed
in each cavity of the mold to collect data on the respective
influences of each cavity. In addition, the barrel of the injec-
tion molding machine was divided into sections to collect
temperature data as shown in Fig. 2. The barrel is typically
a long cylindrical shape with heating elements and a screw
inside, responsible for heating and melting the plastic raw
material to inject it into the mold. The data collected from the
barrel affects the entiremold, and this was utilized as common
data. The temperature sensors T1, T2, T3, and T7, and the
pressure sensors P1, P2, P3, and P7 exclusively influenced
Cavity1, while the temperature sensors T4, T5, T6, and T8,
and pressure sensors P4, P5, P6, and P8 exclusively influ-
enced Cavity2 as shown in Fig. 1. Temperature data denoted
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FIGURE 1. Locations of sensor in the mold and the fan image.

FIGURE 2. Locations of the temperature measurement for each section of the barrel in the injection molding
machine.

as HEN, HN, H1, H2, H3, and H4 in the barrel, affected both
Cavity1 and Cavity2 in the mold as shown in Fig. 2.

III. RESEARCH METHODOLOGY
A. RESEARCH DIRECTION
This study aims to develop predictive models for weight
defects in injection-molded products and then assess their
performance. The research process follows a systematic flow,
including data collection, preprocessing, selection of the
influential variables, constructing and evaluating the predic-
tive model, and evaluating the ensemble and double ensemble
algorithms as shown in Fig. 3.

First, we collected data specifically related to the injection
molding conditions used in producing fans for an outdoor
air conditioner. That dataset is comprised of information on
the injection molding conditions employed for these fans.
While the target weight range for the product is 1,260g±25,
we narrowed theweight predictionmanagement range for any
defect prediction to 1,260g±20.

Second, the mold for the product consisted of two cav-
ity structures, allowing for the simultaneous production of
two items. The cavities may have subtle differences in
structure and shape and different influential variables. There-
fore, we differentiated the mold into Cavity1 and Cavity2.

To address the issue of data imbalance for each cavity,
we utilized the synthetic minority oversampling technique
(SMOTE) as an oversampling technique to balance the data.

Third, through feature selection, we identified the impor-
tant variables that affect each cavity into two types: common
variables and individual variables. We analyzed the gain ratio
for each cavity and listed the variables in their order of
importance. For the data analysis, we used the data mining
tool Weka version 3.8.6.

Fourth, to derive the optimal variable conditions for each
model, we utilized the backward elimination method in con-
junction with five different single prediction models. Starting
with the least influential variables, we compared the accuracy
of our performance prediction using a 10-fold cross validation
mode and amodewhere 66% of the data were used as training
data; the remaining 34% was randomly allocated as test data
(split 66%).

Fifth, the characteristics of a classification model are deter-
mined by the nature of the data. The methods for building
classification models are categorized as parametric or non-
parametric methods. Since it is not known which approach
performs best on the data in this study, we selected the most
commonly used algorithms from each approach. As a result,
this study built five single models: DT, RF, LR, BN, and
ANN (MLP).
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FIGURE 3. The research framework for single and double ensemble model.

Finally, we applied ensemble techniques, such as bagging,
boosting, and double ensemble, including bagging-boosting
and boosting-bagging, to the single optimal model that was
derived earlier. The purpose and goal together were to evalu-
ate whether these ensemble and double ensemble techniques
improved the performance of the predictivemodel when com-
pared to the single model.

B. DATA GATHERING & THE PREPROCESSING STEPS
The dataset for this study was collected during the mass
production verification of a newly manufactured fan mold
for the outdoor unit of an air conditioner. The data collection
period ran from January 11, 2022 to April 19, 2022. The data
consisted of two sets: Cavity1 and Cavity2. Fig. 4 shows the
distribution of the weight data collected by each cavity.
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TABLE 2. Data balancing results for equalization using SMOTE.

FIGURE 4. The distribution of the weight data for each cavity.

Cavity1 data were comprised 1,562 instances of good prod-
ucts and 1,222 instances of defective products, thus a total
of 2,784 instances. Cavity2 data included 2,426 instances of
good products and 94 instances of defective products, thus
totaling 2,520 instances. Notably, Cavity2 exhibited a signif-
icantly lower defect rate, likely due to the higher precision of
the mold and resulting in weights closer to the target value.
Data imbalance occurs when there is a substantial difference
in the number of observations between different categories,
as observed in Cavity2. This circumstance can lead to biased
prediction models that perform well on one side, but struggle
on the other side.

To address this issue, sampling techniques can be
employed to adjust the data and mitigate data imbalance. One
such technique is under-sampling, which involves reducing
the number of data points in the majority class to match the
number of data points in the minority class. Under-sampling
offers the advantage of faster computation time by retaining
only meaningful data for training and analysis. However,
it can also result in information loss and decreased classifi-
cation accuracy due to data removal.

In contrast, oversampling is a method that increases the
number of samples in the minority class to balance with
the majority class and thus address the data imbalance by
augmenting the representation of the minority class. Among
the different oversampling techniques, SMOTE is commonly
used. SMOTE selects random data points from the minority
class and generates synthetic data by randomly selecting
one of its k-nearest neighbors based on a defined k-value,
using a synthetic formula. Oversampling techniques like
SMOTE will help prevent data loss and often result in higher
classification accuracy than under-sampling. However, these
techniques may increase the computation time due to the
larger volume of total data. In this study, SMOTE was

specifically applied as an oversampling technique to address
the data imbalance observed in Cavity2, thereby ensuring
a balanced representation of the different categories in this
dataset.

After applying the SMOTE oversampling technique, the
dataset was rebalanced for Cavity1 and Cavity2. Cavity1,
which initially had 1,562 instances of good products and
1,222 instances of defective products, now consisted of
3,124 instances. This rebalanced dataset included an equal
number of 1,562 instances for both good and defective prod-
ucts. Similarly, Cavity2, which initially had 2,426 instances
of good products and 94 instances of defective products,
now comprised 4,852 instances. The rebalanced dataset for
Cavity2 included an equal number of 2,426 instances for both
good products and defective products. The impact of using
SMOTE oversampling to balance the data can be observed in
Table 2 here, which presents the results of this equalization
process.

A detailed analysis of the mold structures was also con-
ducted to account for the variability in the independent
variables influencing the target variable (weight) between
Cavity1 and Cavity2. This analysis identified a total of
51 independent variables, comprised of 26 common vari-
ables and 25 individual variables. These variables are listed
in Table 3 below and provide a comprehensive overview
of the independent variables for both Cavity1 and Cavity2.
In this study, all independent variables are numerical and
the dependent variable is nominal. The dependent variable
is distinguished well from the defective by whether or not
it meets the weight management range 1,260g±20. There
are two groups of variables: those generated based on a
time-series, and those generated simultaneously. The temper-
ature values (T1 ∼ T8) and the pressure values (P1 ∼ P8)
in the mold shown in Fig. 1 are collected simultaneously.
The temperature values of the mold hot runner system
(H/R1 ∼ H/R21) are also collected simultaneously. Fig. 2
shows that temperature data such as barrel H4, H3, H2,
H1, HN, and HEN are collected sequentially. Therefore,
variables are categorized based on the timing of their gen-
eration, including both time-series data and data generated
simultaneously.

C. FEATURE SELECTION
We evaluated the importance of variables using two com-
mon methods gain ratio and correlation as shown in Table 4
and Table 5. The evaluation results, when normalized using
min-max normalization and visualized in Fig. 5 and Fig. 6,
show some differences in importance rankings depending on
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TABLE 3. The variables for Cavity1 and Cavity2.

the evaluation method. We conducted preliminary tests by
applying the priority rankings obtained from each method
to evaluate the model’s performance. The results shown in
Table 6 indicated that gain ratio somewhat outperformed the
other. Therefore, in this study, we intend to use gain ratio to
evaluate variable importance.

A backward elimination process was employed to identify
the combination of variables that produced the highest accu-
racy for the prediction models. In order to find the optimal
combination of variables, this process involved sequentially
removing variables with the least influence on the prediction
models based on the low gain ratio values for each vari-
able in each cavity. The GainRatioAttributeEval provided by
Weka was used to evaluate the accuracy of the prediction
models, as variables were eliminated. Thus, 51 variables
were evaluated for each cavity, and their removal was carried
out in descending order of gain ratio values. This process,
which is known as variable selection using backward elimi-
nation, aimed to exclude the variables with minimal impact
on the prediction models while still searching for the optimal
combination. The performance evaluation results for each
prediction model, as variables were eliminated, can be found
in Table 4. By analyzing the independent variables influ-
encing the target variable (weight) based on their gain ratio

values, we could address RQ1.Variables with relatively larger
gain ratio values had a greater impact on the target variable.
From Table 4, it is evident that among the top 10 impor-
tant variables for each cavity were 8 common variables for
Cavity1 and 7 common variables for Cavity2. This notation
indicates that common variables have a larger influence than
individual variables do.

Further, among the common variables for Cavity1 and
Cavity2, 3 variables stood out as having a high impact on
weight: barrel H2 temp real (C4), metering time (C10),
and fill time (C8). However, the individual variables were
excluded from the analysis, as they only affected their respec-
tive cavity. It is important to note, and yet, that there may be
other variables with significant impacts on weight during the
injection molding process, and further, that the importance
of variables can vary depending on the mold or the product.
However, based on the dataset used in this study, the above
three common variables were identified as the key factors that
significantly influence the weight of the fan for the outdoor
air conditioner unit.

D. A PREDICTION MODEL & EVALUATION
Using the preprocessed dataset, we conducted a weight
defect prediction for injection molded products using five

113612 VOLUME 11, 2023



K. Koo et al.: Double Ensemble Technique for Improving the Weight Defect Prediction

TABLE 4. The ranking of variables importance with gain ratio.
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TABLE 5. The ranking of variables importance with correlation.
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FIGURE 5. Min-max normalization of gain ratio vs. correlation (Cavity1).

FIGURE 6. Min-max normalization of gain ratio vs. correlation (Cavity2).

TABLE 6. The prediction results for the single model with gain ratio vs. correlation (10-fold cross validation).

single models: DT, RF, LR, BN, and ANN (MLP) algo-
rithms for each cavity. We applied the variable combination
for every single model that yielded the highest prediction
accuracy. We then compared the performance of ensem-
ble techniques (bagging, boosting) and double ensemble

techniques (bagging-boosting, boosting-bagging) to assess
the improvement in prediction accuracy. Ensemble tech-
niques involve combining multiple single models to aggre-
gate their results and make predictions and achieve a model
that surpasses the performance of a single model in terms
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of accuracy and generalization. Ensemble techniques have
shown a consistent tendency to improve prediction accuracy.
Bagging and boosting are thus widely used as ensemble
techniques.

Bagging, short for bootstrap aggregating, is a technique
that enhances the predictive performance of a model by cre-
ating multiple single learning models via repeated random
sampling using replacement, known as bootstrap sampling,
from the training data. The results of these single models
are then combined to generate the final prediction. As the
sampling is done using replacement, some data points may
be selected multiple times, while others may not be selected
at all. In bagging, the final prediction is typically determined
using majority voting based on the results of the single
learning models. Boosting is a technique similar to bagging,
but with its own distinct characteristics. It assigns higher
weights to misclassified single learningmodels and combines
them using weighted averaging to produce the final result.
This process differs from bagging, where equal probabilities
are assigned to the predictions of single learning models.
Boosting thus sequentially increases the probability of select-
ing misclassified samples in subsequent sampling processes
by assigning them higher weights. Therefore, in this study,
we employed the Ada boosting technique.

Finally, we applied the selected variable combinations
from every single model to implement the double ensem-
ble technique. We compared two approaches for predictive
accuracy, the sequentially using of bagging-boosting and
sequentially using boosting-bagging. These double ensemble
techniques were employed to enhance the accuracy of weight
defect predictions in injection molded products based on the
selected variables, ultimately improving the overall perfor-
mance of the prediction models.

IV. EXPERIMENTAL RESULTS OF PREDICTION MODEL
In this study, we focused on the dataset that represented the
injection molding conditions for the outdoor unit fans of
an air conditioner. The data were divided into Cavity1 and
Cavity2. To predict weight defects, we utilized the widely
used data mining tool, Weka version 3.8.6, which offers a
range of algorithms for analysis and modeling. Specifically,
we applied five single models: the DT, RF, LR, BN, and ANN
(MLP) algorithms. Further, we sought to enhance the predic-
tion performance by employing ensemble models. Ensemble
models combine the predictions of multiple single models
to produce a final prediction that is often more accurate and
more robust. In this study, we thus evaluated the performance
of ensemble models using bagging and boosting techniques.

Additionally, we explored the potential of double ensemble
modeling, which combines bagging and boosting sequen-
tially. By leveraging the strengths of both techniques, the
double ensemble model aimed to improve the accuracy
of weight defect prediction still further. Overall, the study
employed various models and techniques, including the sin-
gle models: DT, RF, LR, BN, and ANN (MLP), ensemble
models (bagging and boosting), and the double ensemble

models (which combined bagging and boosting). The objec-
tive was to evaluate and compare all their effectiveness in
predictingweight defects in injectionmolded fans for outdoor
units of an air conditioner. In this study, parameter settings for
each model were configured using the features provided by
Weka, and experiments were conducted as shown in Table 7.
Specifically, ANN employed the most commonly used MLP.
It consisted of one hidden layer with 27 neurons, configured
using the predefined variable ‘a’, and the sigmoid function
was used as the activation function.

A. THE SINGLE MODEL
1) CAVITY1 DATA ANALYSIS
For Cavity1 dataset, we performed a classification prediction
evaluation using 51 variables, with weight defect as the target
variable. This evaluation process involved training themodels
using the training data and conducting iterative training using
a 10-fold cross validation. Each of the five single models:
DT, RF, LR, BN, and ANN (MLP) was evaluated based
on its accuracy using the confusion matrix. To improve the
accuracy of the single models, we sequentially eliminated
any variables with low gain ratios from the 51 variables.
This process aimed to find the combination of variables that
yielded the highest prediction accuracy for each model. The
accuracy results obtained for each single model were as fol-
lows: DT 91.58%; RF 93.82%; LR 88.12%; BN 87.16%; and
ANN (MLP) 91.54%. Among these models, RF achieved the
highest prediction accuracy at 93.82%. During the variable
elimination process, we identified the important variables that
significantly impact the prediction accuracy of each model.
The selected important variables for these models were 7,
36, 45, 7, and 37, respectively. The specific prediction results
for each model are noted in Table 8. The comparison results
of confusion matrix and correct classification rate (CCR)
are shown in Table 9. Also, CCR means accuracy here. The
optimal combination of variables obtained through a back-
ward elimination process using the gain ratio is depicted in
Fig. 7. These results clearly demonstrate the effectiveness of
eachmodel in accurately predicting weight defects in Cavity1
dataset. The selected variables were also crucial in improving
the model’s performance by providing valuable insights into
the factors that were influencing weight defects in injection
molded products.

2) CAVITY2 DATA ANALYSIS
For Cavity2 dataset, we performed a classification prediction
evaluation using the same 51 variables with weight defect as
the target variable and following the same procedure as for
Cavity1. The models were trained using the training data and
evaluated via 10-fold cross validation. The accuracy results
obtained for each single model were as follows: DT 96.21%;
RF 97.98%; LR 86.95%; BN 97.71%; and ANN (MLP)
94.91%. For these models, RF achieved the highest predic-
tion accuracy at 97.98%. Similar to Cavity1, we conducted
the variable elimination process to identify the important
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TABLE 7. The parameter settings in Weka.

variables that significantly impact the prediction accuracy of
each model. The selected important variables for these mod-
els were 7, 27, 41, 13, and 50, respectively. These variables
were crucial in improving the model’s performance when
predicting weight defects in Cavity2 dataset. The prediction
results for each model can be seen in Table 8, which show-
cases the performance of the single models. Additionally, the
optimal combination of the variables obtained via the back-
ward elimination process using the gain ratio are depicted
in Fig. 8.

These results highlight the effectiveness of the RF model
in accurately predicting weight defects in Cavity2 dataset.
The selected variables also provide valuable insights into
the factors that influence weight defects in injection-molded
products, thereby contributing to the overall understanding of
that manufacturing process.

B. THE DOUBLE ENSEMBLE MODEL
1) CAVITY1 DATA ANALYSIS
In the case of Cavity1, we applied the important variable
combinations derived from every single model to the ensem-
ble models using the bagging and boosting technique. The
predictive results obtained through a 10-fold cross validation
for the bagging ensemble were as follows: DT 91.84%; RF
93.50%; LR 88.19%; BN 87.64%; and ANN (MLP) 92.67%.
Similarly, the predictive results for the boosting ensemble
were as follows: DT 91.17%; RF 93.60%; LR 88.12%; BN
89.69%; and ANN (MLP) 91.58%. Although there were
slight variations in their predictive accuracy compared to the
single models, overall, there were no significant changes in
performance when using the ensemble techniques.

However, when applying the double ensemble technique
to the order of bagging-boosting, the predictive results for
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TABLE 8. The prediction results for the single model (10-fold cross validation).

TABLE 9. The confusion matrix and CCR (10-fold cross validation).

FIGURE 7. The backward elimination of variables based on the gain ratio for Cavity1 (10-fold cross validation).

the 10-fold cross validation were as follows: DT 92.25%;
RF 93.25%; LR 88.09%; BN 90.46%; and ANN (MLP)
92.83%. On the other hand, when applying that technique
to the order of boosting-bagging, the predictive results were:
DT 91.17%; RF 92.83%; LR 88.12%; BN 89.24%; and
ANN (MLP) 91.74%. Thus, applying the double ensem-
ble technique showed an increase in accuracy of +0.67%p,
−0.57%p, +0.00%p, +3.30%p, and +1.29%p, respectively,
compared to the single models. Particularly, the accuracy
of BN and ANN (MLP) improved significantly. Further
still, the average predictive accuracy of the double ensem-
ble model was 91.38% for bagging-boosting and 90.62%
for boosting-bagging, an improvement of +0.94%p and
+0.18%p, respectively, compared to the average predictive
accuracy of the singlemodels (90.44%), as shown in Table 10.

These results clearly indicate that the double ensem-
ble technique, especially when using the bagging-boosting
order, can improve the predictive accuracy of weight defect
prediction in the Cavity1 dataset. They also highlight the
advantage of combining different ensemble techniques to
further enhance the performance of the single models.

2) CAVITY2 DATA ANALYSIS
For Cavity2, we applied the important variable combinations
derived from every one of the single models to the ensemble
models using bagging and boosting techniques. The predic-
tive results obtained through 10-fold cross validation for the
bagging ensemble were as follows: DT 96.46%; RF 97.47%;
LR 87.10%; BN 97.71%; and ANN (MLP) 95.42%. Simi-
larly, the predictive results for the boosting ensemble were:
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FIGURE 8. The backward elimination of variables based on the gain ratio for Cavity2 (10-fold cross validation).

TABLE 10. The prediction results for the ensemble and the double ensemble model for Cavity1 (10-fold cross validation).

TABLE 11. The prediction results for the ensemble and the double ensemble model for Cavity2 (10-fold cross validation).

TABLE 12. The prediction results for the single model (Split 66%).

DT 96.66%; RF 97.51%; LR 86.95%; BN 97.67%; and ANN
(MLP) 94.91%. Similar to Cavity1, there were slight varia-
tions in predictive accuracy compared to the single models,
but overall, there were no significant changes in performance
when the ensemble techniques were used.

However, when applying the double ensemble technique
to the order of bagging-boosting, the predictive results in
10-fold cross validation were: DT 97.34%; RF 97.05%; LR
87.02%; BN 98.10%; and ANN (MLP) 95.65%. On the other

hand, when applying that same validation to the order of
boosting-bagging, the predictive results were DT 97.16%;
RF 97.82%; LR 87.10%; BN 97.55%; and ANN (MLP)
96.89%. The results from applying the double ensemble
technique showed an increase in accuracy of +1.13%p;
−0.16%p; +0.15%p; +0.39%p; and +1.98%p, respectively,
compared to the single models. The accuracy of DT and
ANN (MLP) showed notable improvement. Further still, the
average predictive accuracy for the double ensemble model
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TABLE 13. The prediction results for the ensemble and the double ensemble model for Cavity1 (Split 66%).

TABLE 14. The prediction results for the ensemble and the double ensemble model for Cavity2 (Split 66%).

TABLE 15. The prediction results for the DNN (Cavity1 & Cavity2).

was 95.03% for bagging-boosting and 95.30% for boosting-
bagging, which indicated an improvement of +0.28%p and
+0.55%p, respectively, compared to the average predic-
tive accuracy of the single models (94.75%), as shown in
Table 11. These results suggest that the double ensemble
technique, especially when using the boosting-bagging order,
can improve the predictive accuracy of weight defect predic-
tion in Cavity2 dataset. It also emphasizes the advantage of
combining different ensemble techniques to further enhance
the performance of the single models.

Based on these research findings, we obtained the answer
to RQ2. In both Cavity1 and Cavity2, the RF algorithm
demonstrated the highest accuracy among the single models.
Additionally, for the other four ML techniques (DT, LR,
BN, and ANN (MLP)), the double ensemble model showed

higher predictive accuracy when compared to the single
models. In Cavity1, there was a maximum improvement of
+3.30%p, and in Cavity2, there was a maximum improve-
ment of +1.98%p. On average, there was an improvement
of +0.94%p and +0.55%p, respectively. However, it is also
interesting to note that applying the double ensemble tech-
nique actually resulted in a decrease in accuracy when for the
RF technique. This result can be attributed to the fact that the
RF algorithm already incorporates ensemble characteristics
through a DT ensemble, making the application of the double
ensemble technique less effective at improving accuracy.

C. AN ADDITIONAL EXPERIMENTS
Following the same approach, we performed additional
experiments on Cavity1 and Cavity2 datasets by randomly
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dividing them into training data (66%) and test data (34%).
In additional experiments, we aimed to investigate the impact
of different approaches for classifying the dataset into train-
ing data and testing data on the prediction accuracy of various
models. The results exhibited a consistent pattern, with the
double ensemblemodel consistently outperforming the single
models for predictive accuracy. These findings are supported
by the data presented in Table 12 to Table 14 here. These
additional experiments also provide robust evidence that sup-
ports the conclusion that the double ensemble model offers
superior predictive performance over the single models. This
knowledge can helpfully inform future research and practical
applications on weight defect prediction for injection mold-
ing processes.

In addition, we performed experiments on the Cavity1
and Cavity2 datasets using the state-of-the-art deep neural
network (DNN) algorithm. We set the number of hidden
layers to 4, the number of nodes in each hidden layer to 512,
and the probability of drop-out to 0.5. Then we initialized the
weights using ‘glorot-uniform’, and used ‘relu’ as an activa-
tion function. We experimented with adjusting the learning
rate to 0.001, 0.0001, the batch size to 32, 64 and the number
of epochs to 500, 1,000, 1,500 to find a model with better
performance. As a result, the best performance was achieved
with a batch size of 32 and 1,500 epochs in both Cavity1 and
Cavity2 datasets, reaching 92.57%, and 96.30%, respectively,
as shown in Table 15. However, double ensemble-based ANN
(MLP) showed slightly higher prediction performance like
Cavity1 92.83%, Cavity2 96.89%, in 10-fold cross validation,
Cavity1 92.66%, Cavity2 97.52% in split 66%. The results
show that the double ensemble model performs better than
the DNN on this dataset.

V. CONCLUSION
This study sought to enhance the prediction performance
of weight defects in injection-molded products using ML
models. We constructed single models by applying various
algorithms, including DT, RF, LR, BN, and ANN (MLP).
Additionally, we evaluated prediction accuracy by using
ensemble techniques, specifically bagging and boosting, after
determining the optimal combinations of these variables
in the single models. Finally, we compared the prediction
accuracy between the double ensemble model, created by
combining bagging and boosting in different orders and the
single models. The results consistently demonstrated that the
double ensemble model outperformed the single models for
prediction accuracy. For the analysis of Cavity1 data, the
double ensemble model based on BN and ANN (MLP) was
used and exhibited improved prediction accuracy compared
to the singlemodels using BN andANN (MLP). Similarly, for
the Cavity2 data analysis, the double ensemble model based
on DT and ANN (MLP) demonstrated enhanced prediction
effectiveness when compared to the single models using DT
and ANN (MLP). Moreover, when comparing the average
prediction accuracy for these models, the double ensemble

model consistently achieved higher accuracy than did the
single models.

These research findings also revealed the importance of
specific variables in influencing the weight of injection-
molded products. Through the evaluation of the gain ratio,
barrel H2 temp real, metering time, and fill time were identi-
fied as three significant variables. It was also observed that by
managing the weight below the control target value of 1,260g
(with the average weight of Cavity1 products being 1,276g),
a material saving effect of 1.2% (16g) can be achieved. This
result emphasizes the practical significance of identifying
key variables that can impact product weight in injection
molding. By effectively managing the product weight to meet
or stay below the control target valuematerial savings, quality
improvement, and productivity enhancement are benefits that
can be realized. Another key finding of the research is the
effectiveness of the double ensemble model in improving
prediction accuracy in the field of injection molding. How-
ever, it is also important to note that the applicability of the
double ensemble technique may vary depending on the spe-
cific problem at hand. It is thus crucial to carefully select the
most suitable technique and adjust it accordingly whenever
developing prediction models.

Based on our research findings, it was determined that
adopting the double ensemble model in the field of injec-
tion molding can improve the prediction accuracy of product
weight and enhance the prediction accuracy of various
aspects related to quality. This approach enables the early
detection of defects based on production data-driven equip-
ment operation, thereby preventing continuous defects and
reducing the cost of quality failures and deriving optimal
production conditions to ultimately establish a smart factory
with better cost competitiveness and improvements in pro-
ductivity. This particular approach thus goes beyond having
to rely solely on the expertise of field workers.

In this study, we have collected data focusing on tempera-
ture and pressure. More various injection conditions have to
be considered for prediction accuracy. In our future research,
we plan to enhance this prediction accuracy by considering
additional variables, such as melt index, hopper temperature,
and injection speed. Additionally, we will explore optimizing
the parameters in the double ensemble model to construct
a more refined prediction model. Through these endeav-
ors, we hope to achieve even higher prediction accuracy
and thereby improve the overall effectiveness of our new
approaches.
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