
IEEE SYSTEMS, MAN AND CYBERNETICS SOCIETY SECTION

Received 9 September 2023, accepted 4 October 2023, date of publication 12 October 2023, date of current version 16 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3324039

A Hierarchical Robot Learning Framework for
Manipulator Reactive Motion Generation via
Multi-Agent Reinforcement Learning and
Riemannian Motion Policies
YULIU WANG 1,2, RYUSUKE SAGAWA 1,2, (Member, IEEE), AND
YUSUKE YOSHIYASU 2, (Member, IEEE)
1Intelligent and Mechanical Interaction Systems Program, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
2Computer Vision Research Team, Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki
305-8560, Japan

Corresponding author: Yuliu Wang (wangyuliu.o@aist.go.jp)

This work was supported by JST SPRING (Japan Since and Technology Agency Support for Pioneering Research Initiated by the Next
Generation), Grant Number JPMJSP2124, JSPS JP22H00545, JP22H05002 (Japan Society for the Promotion of Science) and NEDO
JPNP20006 (New Energy and Industrial Technology Development Organization) in Japan.

ABSTRACT Manipulators motion planning faces new challenges as robots are increasingly used in
dense, cluttered and dynamic environments. The recently proposed technique called Riemannian motion
policies(RMPs) provides an elegant solution with clear mathematical interpretations to such challenging
scenarios. It is based on differential geometry policies that generate reactive motions in dynamic
environments with real-time performance. However, designing and combining RMPs is still a difficult task
involving extensive parameter tuning, and typically seven or more RMPs need to be combined by using
RMPflow to realize motions of a robot manipulator with more than 6 degrees-of-freedoms, where the
RMPs parameters have to be empirically set each time. In this paper, we take a policy to decompose such
complex policies into multiple learning modules based on reinforcement learning. Specifically, we propose
a three-layer robot learning framework that consists of the basic-level, middle-level and top-level layers.
At the basic layer, only two base RMPs i.e. target and collision avoidance are used to output reactive
actions. At the middle-level layer, a hierarchical reinforcement learning approach is used to train an agent
that automatically selects those RMPs and their parameters based on environmental changes and will be
deployed at each joint. At the top-level layer, a multi-agent reinforcement learning approach trains all the
joints with high-level collaborative policies to accomplish actions such as tracking a target and avoiding
obstacles. With simulation experiments, we compare the proposed method with the baseline method and
find that our method effectively produces superior actions and is better at avoiding obstacles, handling
self-collisions, and avoiding singularities in dynamic environments. In addition, the proposed framework
possesses higher training efficiency while leveraging the generalization ability of reinforcement learning to
dynamic environments and improving safety and interpretability.

INDEX TERMS Riemannian motion policies, motion generation, motion planning, robot learning, multi-
agent reinforcement learning, hierarchical reinforcement learning.

I. INTRODUCTION
Motion planning is a fundamental and critical technology
for robots, and it is typically faced with the challenge

The associate editor coordinating the review of this manuscript and

approving it for publication was Laura Celentano .

of balancing efficiency with success rate and safety. This
challenge becomes even more pronounced in non-structured,
dynamically changing environments. In the past, sample-
based methods have been used to generate feasible trajec-
tories and ensure safety [2], [13], and these methods have
been widely applied in stable environments such as factories.

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 126979

https://orcid.org/0000-0001-5037-4324
https://orcid.org/0000-0002-6778-8838
https://orcid.org/0000-0002-0433-9832
https://orcid.org/0000-0002-0915-7181

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

FIGURE 1. We utilize two RMPs as basic-layer actions for output
stability(yellow). At the meta-behavioral layer, we pre-train for agents,
by employ hierarchical structure for real-time RMP selection to ensure
the interpretability of actions (gray). Our system consists of six agents,
each corresponding to a joint of the manipulator. Agent operates under
the framework of multi-agent reinforcement learning with centralized
training and decentralized execution(blue), where the local agent
observes the local state and the central cooperation network considers
the global state and policy. During testing, the agents generates action
outputs based on the observed state.

However, in dynamic environments where information is
not completely known, sampling may fail to cover sudden
situations. In order to adapt to the environment, some
online planning methods perform real-time sampling and
re-planning, as the dimension of robot actions increases,
the computational cost also increases significantly, which
may lead to a delay in control and decreased safety [7].
Furthermore, traditional motion planning methods often rely
on an accurate model of the environment and dynamics,
which may not be feasible in real-world scenarios. These
issues have motivated the development of new approaches
to motion planning that are more adaptable to dynamic and
uncertain environments.

Reactive motion generation is a collision avoidance
algorithm that can quickly respond locally. Among them,
the Riemannian motion policies [25] is impressive, which
considers the task space as a Riemannian manifold, con-
figures the robot as a point on the manifold, and models
it as a second-order dynamical system through differential
equations, where the differential equation is the motion
policy. The policy maps position and velocity to acceleration
and is coupled with the corresponding Riemannian metric,
which can capture the important directions for the policy
in space. This method transforms nonlinear tasks from one
smooth manifold to another in a geometrically consistent
manner, thereby having linear characteristics and allowing
the rapid solution of joint accelerations induced by dynamic
environments that are nonlinear. The Riemannian motion
policy has been successfully applied to many robot tasks.
Riemannian Motion Policies Flow (RMPflow) [34] is a
policy-fusion framework based on differential geometry,
specifically designed to synthesize motion policies within the

TABLE 1. The table shows the difference in the number of policies used
by our method and RMPflow for a 6 degrees of freedom (DoF)
manipulator. For our method, In addition to the two basic RMP, other
policies will be equivalent to the complex collaborative policies
generated by our training framework.

Riemannian Motion Policies framework. Its primary goal is
to address the challenge of combining motion policies from
different paradigms consistently and optimally in robotic
systems. RMPflow leverages differential geometry to ensure
geometrically consistent transformations of RMPs, enabling
the fusion of diverse motion techniques into a unified
and coherent motion policy within the configuration space.
The strengths of RMPflow lie in its ability to provide
a robust framework for integrating motion policies from
different paradigms in a consistent and optimal manner.
By using differential geometry, RMPflow guarantees that the
transformations of RMPs maintain geometric consistency,
enhancing the overall reliability of the combined motion
policies.

However, it should be noted that while the Riemannian
motion policy has shown successful applications in various
Manipulator tasks [32], its design itself is a complex task.
For manipulators, it requires the incorporation of multiple
Riemannian motion policies, including goals, C-space goals,
obstacle avoidance, joint constraints, and more. Additionally,
the need for RMPflow to merge multiple sub-policies
involves significant parameter tuning, which can be time-
consuming and resource-intensive. Careful attention and
effort are necessary to effectively design and tune these
Riemannian motion policies to achieve optimal performance
in different robotic applications. Hence, the rapid design
and deployment of RMPflow for a Manipulators remain
challenging tasks.

Deep learning has indeed shown successful applications in
simplifying parameter design in various domains [36]. As a
result, researchers have been exploring the combination of
Riemannian Motion Policies and deep learning (DL) with
the aim of simplifying the design of RMPs and enhancing
their robustness [35]. However, one of the major challenges
faced in this pursuit, similar to other DL applications, is the
collection of training data [21]. Training deep learning
models typically requires large amounts of data, which may
not always be readily available in the context of RMPs. Some
approaches collect data by mimicking human behavior and
training the model to learn the RMP design [41], [42], but it
is also necessary to learn RMPs separately for different tasks
and combine them with RMPflow, and collecting human
behavior in large quantities can be costly. The scarcity of

126980 VOLUME 11, 2023

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

training data can hinder the integration of DL and RMP,
posing difficulties in achieving the desired simplification
and robustness. Some studies have attempted to combine
Deep Reinforcement Learning (DRL) with RMPflow to
tackle more complex tasks [37], [38]. In these efforts,
RMPs are called modularly within the DRL framework to
accomplish specific tasks. While this approach allows for
the utilization of RMPs in complex scenarios, it does not
fundamentally simplify the design of RMPs, in this context
may be limited to specific task optimization rather than
fundamentally improving the design process.

A. RESEARCH OBJECTIVES AND CONTRIBUTIONS
The principal aim of this study is to utilize the design
process of a comprehensive framework based on RMPs and
DRL to supplant the intricate RMPflow design procedure
with this new approach. Through the integration of deep
reinforcement learning, we achieve a heightened level of
trainability, adaptability, and robustness in the RMP motion
generation framework, thereby enabling it to effectively adapt
to intricate and dynamic environments.

To this end, we propose a three-layer robot learning
framework, shown in FIGURE 1. In this study, we streamline
the set of seven prevalent RMPs to a more concise pair within
the lower layer. Subsequently, by employing hierarchical
reinforcement learning, we achieve real-time pre-training of
a joint by implementing the strategies associated with these
two RMPs. Ultimately, the pre-trained agents are effectively
deployed at each joint, facilitating the training of collabo-
rative strategies through multi-agent reinforcement learning,
thereby enabling the successful execution of intricate tasks.
The correspondence between our framework and RMPflow
can be found in TABLE 1.
With this structural design, we assign complexity to the

layers in order to avoid optimization in the high-dimensional
action space.While retaining the advantages of reinforcement
learning, we are able to simplify the system design and
improve the training speed, while ensuring efficiency and
safety of motion generation.

II. RELATED WORK
A. RIEMANNIAN MOTION POLICY AND RMPFLOW
Differential geometry provides a powerful framework for
effectively describing and analyzing the fundamental char-
acteristics of manipulators. Motion generation and control
challenges can be conceptualized as the process of mapping
desired behaviors from the task space T , consisting of one
or multiple smooth manifolds, to the configuration space
C , another smooth manifold. This mapping is represented
by a differential map φ : C → T , known as the task
map. By equipping thesemanifolds with a Riemannianmetric
M , by establish meaningful connections between geometric
properties, such as angles and distances. This allows for
the design of a curve q(t) ∈ C that captures the desired
behavior of the task space T in a concise and elegant manner.

The Riemannian metric facilitates the measurement and
comparison of geometric properties, enabling the definition
of a well-defined trajectory in the configuration space
corresponding to the desired behavior in the task space.

In the context of motion policies, a Riemannian Motion
Policy is a representation of motion defined on a Riemannian
manifold. An RMP [25] is typically expressed as (a,M)m
or (f ,M)m, depending on the specific formulation. In the
canonical form (a,M)m, the RMP is represented by a second-
order dynamical system, denoted as a : x 7→ ẍd ∈ Rm,
that maps the generalized coordinates x and their derivatives
ẋ to desired accelerations ẍ. The Riemannian metric M =

M (x, ẍ) ∈ Rm×m, which varies smoothly with the state (x, ẋ),
governs the weighting of the RMP and can be interpreted as
an inertial matrix. Alternatively, in the natural form (f ,M)m,
the RMP is defined as a mapping from position and velocity
to the desired force, represented by f . The force mapping
f and the acceleration mapping a in the canonical form are
related through f = Ma. The natural form is commonly used
for space transformations.

Within the RMP framework, operators such as push, pull,
and add are provided. The push and pull operators allow
the transformation of an RMP defined in one task space
to another, leveraging the task map φ and its Jacobian J .
On the other hand, the add operator is used to compose RMPs
defined within the same task space into a unified policy.
These operators enhance the versatility and adaptability of
the RMP framework, enabling the manipulation of RMPs to
achieve desired behaviors and tasks.

RMPflow is a computational graph tailored for the auto-
matic generation of motion strategies. At the heart of RMP is
the encapsulation of non-Euclidean behavior as a dynamical
system in an inherently nonlinear task space. As a geometric
framework, RMPflow is proficient at generating multi-task
motion strategies, providing a powerful tool for seamlessly
generating motion strategies for robotic entities and other
autonomous systems. The strength of RMPflow lies in its
inherent adaptability and flexibility, which does not require
the user to design a globally optimal policy, but rather allows
for combining sub-task strategies to solve complex tasks,
such as in cluttered environments.Motion can be decomposed
into proximity and obstacle avoidance.RMPflow enables the
user to design strategies for a wide range of tasks and
environments, but it is worth noting that it needs to be based
on reasonably well-designed localized strategies.

B. HIERARCHICAL REINFORCEMENT LEARNING FOR
ROBOTIC MOTION POLICIES FUSION
Recent studies suggest that deep reinforcement learning
(DRL) [16] has potential for complex problem-solving [26],
like in computer games, Go, and Bridge. Researchers are
exploring RL for manipulator motion planning [9], [18].
By treating the motion planning as aMarkov decision process
(MDP) and maximizing expected rewards, RL helps the
manipulator make decisions based on its state, actions, and

VOLUME 11, 2023 126981

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

environment’s stochastic nature [17], [22], [29]. Despite its
benefits, RL faces challenges in manipulator motion planning
due to high-dimensional state spaces with six or more degrees
of freedom and low sampling efficiency [24].

Finding the optimal policy for manipulator movement
using reinforcement learning proved to be a formidable task
[3]. In earlier attempts, discrete states and action values were
maintained within a Q table, but in the case of redundant
manipulator systems, typically comprising 6 or more degrees
of freedom (DOF), the actions have continuous values,
thereby rendering the system endowed with nearly infinite
states. Hierarchical Reinforcement Learning (HRL) [23] has
emerged as a promising approach to address these challenges
[10]. HRL aims to decompose a complex task into a hierarchy
of sub-tasks, each of which can be learned independently
and then combined to solve the overall task. The main
difference between RL and HRL lies in their underlying
learning frameworks. RL learns a single policy that maps
states to actions, whereas HRL learns a hierarchy of policies
that map states to sub-tasks by decomposing complex tasks
into simpler sub-tasks [30], [33]. RL struggles with scaling
due to the exponential growth of the state and action spaces,
but HRL overcomes this limitation by operating at multiple
levels of abstraction, enabling more efficient learning.
Furthermore, HRL enables transfer learning by reusing
sub-policies, or low-level policies, for different tasks [28].
This transfer of knowledge between sub-tasks can enhance
learning efficiency and generalization capabilities. Another
advantage of HRL is improved exploration. By utilizing high-
level actions, HRL reduces the action space, enabling more
effective exploration of the environment [31]. High-level
actions provide a higher-level control mechanism, guiding the
agent to explore promising regions of the state space. HRL
has the potential to improve the efficiency and effectiveness
of RL, making it a valuable research direction in the field of
robotics.

Robotics extensively employs the practice of abstracting
motion generation problems into multiple decision-making
layers, a well-established approach, particularly for intri-
cate robotic tasks involving extended time horizons. This
hierarchical decision-making paradigm encompasses two
fundamental facets: the utilization of multi-level planners and
the operation within the parameter space of motion policies.
Multi-level planners, exemplified by hierarchical planning
hierarchical RL, generate sub-goals that an underlying
planner or policy must strive to achieve. On the other hand,
methods falling under the latter category focus on the fine-
tuning of constraint functions of dynamic motion primitives
or selecting a policy from a diverse ensemble of experts.
However, this selective behavior becomes problematic in sce-
narios involving unexpected environmental changes, leading
to either sub-optimal performance or a fusion of experts
with complexly encoded behaviors. To counteract these
challenges, we propose that the composition of simple and
stable reactive policies can give rise to intricate reactive
behaviors in robots. This process uses a mixture of high-level

experts, who then proceed to select from a lower-level
repertoire of primitive policies tailored to cater to long-term
robotic tasks.

C. MULTI-AGENT REINFORCEMENT LEARNING
Multi-agent reinforcement learning (MARL) represents a
prominent approach for decomposing intricate action spaces.
Diverging from the hierarchical reinforcement learning
(HRL) paradigm, MARL does not explicitly entail an
evident hierarchical relationship among agents. Instead,
MARL centers its attention on investigating the behavior
of multiple learning agents operating within a mutually
shared environment [12]. MARL incorporates social metrics
to evaluate cooperation, reciprocity, equity, social influence,
and compete among coexisting agents, resulting in complex
group dynamics [19]. MARL draws upon game theory and
multi-agent systems to understand agent interactions and
policies. By combining reward optimization with sociolog-
ical concepts, MARL offers a unique perspective on agent
behaviors and collective performance. MARL’s advantages
include facilitating collaboration among agents, enhancing
robustness and adaptability to changes in the environment
and other agents. It also scales to complex problems [27]
by leveraging collective intelligence and computational
resources.

In robotics, When multiple agents interact with an envi-
ronment concurrently, the entire system assumes the form of
a multi-agent system. Each agent adheres to the objective of
reinforcement learning, namely, maximizing the cumulative
returns attainable. During this process, the global state of
the environment undergoes changes that are contingent upon
the joint actions executed by all agents. Consequently, when
learning agent policies, it becomes imperative to account for
the influence exerted by these joint actions.

Interestingly, some studies have provided some different
perspectives on the fact that a multi-agent system does not
necessarily intuitively exist independently of each other in an
environment. An individual with a continuous structure that
also has multiple moving bodies with independent degrees
of freedom of movement can also be considered an agent
[4]. An individual with multiple such bodies that move in
concert can also be considered a multi-agent system. Such
systems are also found in nature, a clear example being the
cephalopod octopus [39], which has a distributed nervous
system, a central nervous system, and a distributed nervous
system on eight carpal legs, each of which has a certain
degree of autonomy, while the central nervous system is
responsible for handling the coordinated movements between
the carpal legs. Each joint of the manipulator can be
considered an independent agent and a complete manipulator
can be redefined as a multi-agent system, and multi-agent
reinforcement learning can be used to solve the challenge of
motor problems.

In contrast to single-agent reinforcement learning and
Markov Decision Processes, multi-agent reinforcement

126982 VOLUME 11, 2023

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

learning operates within the framework of a Markov
game. Within this context, the Markov game involves
multiple agents, each independently selecting and executing
actions simultaneously, guided by the current state of the
environment. The joint actions of all agents collectively
influence the state transition and subsequent updates of the
environment. Formally, the MDP game is defined as a tuple
(S,A1 . . .Ai,T ,R1 . . .Ri, γ), wherein S denotes the set of
states, Ai and Ri respectively represent the action set and
reward set pertaining to agent i, and T signifies the transition
probability of the environmental state, alongwith the discount
factor. Accordingly, the expectation of agent i concerning the
cumulative reward obtained through the utilization of policy
π i can be mathematically expressed as follows:

V
i
π i,π−i

:= E

∑
t≥0

γ tRi(st , at , st+1)|ait ∼ π i(·|st), s0 = s

(1)

In the realm of multi-agent reinforcement learning, the
central aim is to reach a state of Nash equilibrium across all
participating agents. This entails that within the cooperative
domain of multiple agents, no individual agent can attain
superior cumulative returns by deviating from its current
policy. It is crucial to emphasize that the Nash equilibrium
does not inherently align with the global optimum, yet it
stands as the most probable outcome and signifies a state that
is prone to convergence during the process of learning.

Multi-agent reinforcement learning encompasses three
types of tasks: adversarial, cooperative, and mixed. In the
majority of multi-robot tasks, cooperation constitutes the
primary task category. From a different perspective, modeling
multi-agent systems based on cooperation for a single
manipulator can simplify the state dimension of the redundant
manipulator. ‘‘Cooperation’’ implies that multiple agents
must collaboratively accomplish a shared task, thereby
rendering the achievement of the goal contingent upon the
collective behavior of the individual agents. If an agent pur-
sues an independent course of action, it becomes challenging
for them to effectively cooperate with other teammates and
collectively achieve high returns. Consequently, the policy
learning of agents must still consider the impact of joint
actions and the influence exerted by other decision-making
agents.

The essence of the matter lies in the collaboration
mechanism, which can manifest in either a decentralized
or centralized manner. Under a decentralized collaboration
mechanism, each agent retains its autonomy in selecting
actions. Although this approach reduces the dimensionality
of the action space, it results in the simultaneous execu-
tion of multiple individual agents. Consequently, as the
number of agents within the environment increases, the
system’s inherent randomness also escalates, giving rise
to safety concerns in manipulator tasks. Conversely, the
centralized collaboration mechanism dictates a uniform
action policy for all agents. This enhances system stability but

curtails the autonomy of each agent, leading to sub-optimal
results.

III. METHODOLOGY
A. OVERVIEW
In this section, we introduce our three-layer training frame-
work. The bottom layer employs RMPs to provide reactive
motor policies for local actions, and we will elaborate on
the specifics of these RMPs. In the middle layer, we employ
hierarchical reinforcement learning combined with RMPs
to enable the simultaneous execution of multiple RMPs
without relying on RMPflow. Finally, at the high level, joint
policies are deployed and multi-agent reinforcement learning
is utilized to coordinate the movements of all joints, enabling
the accomplishment of more complex behaviors.Wewill also
provide the training details of this comprehensive framework.

Starting with the bottom layer, RMPs are utilized to
generate reactive motion policies for local actions. These
policies are designed to enable quick and adaptive responses
to the environment. The details of these RMPs, including
their formulation and implementation, will be presented,
showcasing their effectiveness in providing fine-grained
control and precise motor actions. At the middle layer,
hierarchical reinforcement learning is combined with RMPs
to facilitate the simultaneous execution of multiple RMPs.
This hierarchical approach allows for the coordination and
integration of different RMPs without relying on RMPflow,
resulting in more flexible and scalable control. The training
process and architecture of this hierarchical reinforcement
learning framework will be described in detail, highlighting
how it enables the efficient utilization of RMPs in complex
scenarios. At the high level, policies are deployed for each
joint, and multi-agent reinforcement learning is employed
to control all joints, ensuring coordinated movements
and achieving more sophisticated behaviors. The training
methodology and techniques utilized within this high-level
framework will be presented, demonstrating how multi-
agent reinforcement learning enables joint coordination and
enhances the overall performance of the robotic system.

Our three-layer training framework combines reactive
motion policies through RMPs, hierarchical reinforcement
learning, and multi-agent coordination. Each layer con-
tributes to the overall control and behavior of the robotic
system, allowing for effective and adaptive motion planning
and execution.

B. BASIC MOVEMENT LAYER: RMP DESIGN
In terms of functions, the base movement layer addresses the
dynamics of the local joints of the manipulator, it determines
how much acceleration or force is applied when the robot
moves. In the robot configuration space, we define the joint
angles as q, and hence the joint velocities and accelerations
as: q̇, q̈. Similarly, in the nonlinear task space, we define
the joint positions as x and the velocity and accelerations
as ẋ, ẍ. We formulate a motion policy π : q, q̇ 7→ q̈ as

VOLUME 11, 2023 126983

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

a dynamical system (second-order differential equation) that
maps position and velocity to acceleration. For the nonlinear
task space, we can analogously write π : x, ẋ 7→ ẍ without
loss of generality. The acceleration can be expressed in terms
of direction, and readily in terms of forces or moments as
a general dynamics formulation. As we will demonstrate,
representing the policy in terms of forces or moments is often
more expedient, since it is more natural to define all motion
policies in the task space. The configuration space and task
space are linked by differentiable mappings φ. If we denote
the task map φ as Jacobian.

Jφ ≡
∂φ

∂q
∈ Rk×d (2)

then the task space velocities and accelerations can be
expressed as follows:

ẋ =
d
dt

φ(q) = Jφ q̇

ẍ =
d2

dt2
φ(q) = Jφ q̈ + J̇φ q̇ ≈ Jφ q̈ (3)

The dynamic equation has the following form, which is
derived from a refinement of the Euler-Lagrange equation,
and introduce a velocity term ẋ.

M(x)ẍ + C(x, ẋ)ẋ = −K
(
x − xg

)
− Bẋ (4)

Equation be solved in Riemannian manifold, which
is defined by Riemannian metric M, which defines the
curvature of the space (M can be artificially designed to fit
the specific task), Therefore it is also called inertia matrix. C
is the Coriolis force term, which together with the position x
creates the Coriolis force (the force created by the curvature
of space). K is the stiffness matrix, B is the damping matrix,
and xg is the goal in manifold. Moving through the curvature
of the defined space determines the direction in which
acceleration is most important to the task for efficient motion.

We employ two simple RMPs in this study: the Target RMP
and the Collision Avoidance RMP. The fundamental nature
of these two policies allows for the foundational motion
control of individual joints. The reason we chose these two
RMPs is these are the most fundamental maneuvers and
the most potentially hazardous in a robotic navigation task.
As a basic skill, one should focus on the most important
tasks for quick, reactive movement, leaving other tasks
to higher levels of planning is a better option. We also
hope to minimize the number of RMPs to make the
ensuing hierarchical reinforcement learning easier to train.
By synergistically combining the motions of multiple joints,
intricate and sophisticated motions can be accomplished.
Moreover, the inherent adjustability of these two RMPs and
their independence from robot-specific parameters bestow
them with a considerable degree of flexibility, enhancing
their applicability across diverse robotic systems. These
policies provide the robot with fundamental motion outputs,
enabling it to approach the target position and avoid collision.

Regarding the Target RMP, the following expression governs
its behavior:

ẍ = kp(x0 − x)/(∥x0 − x∥ + ϵ) − kd |ẋ|ẋ (5)

here, kp represents the position gain, −kd |ẋ|ẋ is the damping
RMP, kd signifies the damping gain. Especially, we found that
in the context of tracking a dynamic target, the adoption of
undamped Riemannian Motion Policies will lead to recurring
oscillations in the system’s behavior. Nevertheless, the
incorporation of damped RMPs significantly mitigates this
issue. ϵ controls the length scale that governs the transition
between the constant acceleration region distant from the
target and the linear region near the target. Eachmotion policy
necessitates the application of a distinct Riemannian metric
denoted as M . To acquire a comprehensive understanding
of the derivation of the Riemannian metric, we recommend
consulting the original paper [25]. For the target RMP, the
Riemannian metric is designed as follows:

M = [β(x)b+ (1 − β(x))] [α(x)Mnear + (1 − α(x))Mfar]

(6)

The metric denoted as M , also referred to as the inertia
matrix, resides within the spectrum delineated by the rank-
deficient metric S and the identity matrix I . Specifically, the
metric S exerts a pronounced influence in regions distanced
from the target, The identity matrix I assumes dominance in
close proximity to the target, thereby facilitating expedited
convergence. The blending of these matrices is governed by
a radial basis function, particularly a Gaussian function. This
function gradually transitions from aminimum constant value
in regions distant from the target to a value approximating
1 near the target.

In the aforementioned equations, where,

α(x) = (1 − αmin) exp
(

−||x0 − x||2

2σ 2
a

)
+ αmin

β(x) = exp

(
−

||x0 − x||2

2σ 2
b

)
Mnear = µnearI

Mfar = µfarS =
µfar

||x0 − x||2
(x0 − x)(x0 − x)T (7)

σa is the Length scale of the Gaussian controlling blending
between S and I , σb is the Length scale of the Gaussian
controlling boosting near the target, and the unit is m. The
parameter αmin governs the minimal impact of Mnear on
the overall metric M . Additionally, µnear and µfar serve as
priority weights dictating the significance of the contributions
from Mnear and Mfar to the composite metric M . Meanwhile,
the scaling factor denoted as b exerts influence by regulating
the strengthening intensity in close proximity to the target.

For RMP aimed at collision avoidance, the objective is
to prevent collisions between the joint and the surrounding
obstacles or other joints. To enhance computational effi-
ciency, we approximate the geometric properties of each

126984 VOLUME 11, 2023

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

link using capsules and simplify the problem of link-to-
link collision avoidance by focusing on evading collisions
between the closest points on the capsules, referred to as
witness points. Consequently, only a single collision RMP
is required for each pair of links. We adopt the algorithm
proposed in RMP to determine the position of the witness
points. The collision avoidance RMPs employed in this study
are defined within the one-dimensional Euclidean distance
space, and they are specified by the repulsive acceleration
policy and metric, respectively.

ẍ(x, ẋ) = kp exp
(
−x/lp

)
− kd

σ (ẋ)ẋ
x/ld + ϵd

m(x, ẋ) = σ (ẋ)g(x)
µ

x/lm + ϵm
(8)

where,

σ (ẋ) = 1 −
1

1 + exp (−ẋ/vd)

g(x) =

{
x2/r2 − 2x/r + 1, x ≤ r
0, x > r

(9)

In the aforementioned equations, the variable x denotes the
Euclidean distance between the witness points of the cap-
sules, and ẋ represents the rate of change of x. The parameters
kp
[
m/s2

]
and kd

[
s−1

]
correspond to the repulsion and

damping gains, respectively. The parameter µ determines the
relative priority of the collision RMP in relation to other
RMPs, Here we make µ = 1, because in the next layer,
the weights are distributed end-to-end by RL. r[m] controls
the distance at which the collision RMP is deactivated. The
scaling parameters are denoted as lp[m], lm[m], and vd [m/s].
The parameters ϵm and ϵd serve as offset parameters.

C. META-BEHAVIOR LAYER: HIERARCHICAL
REINFORCEMENT LEARNING METHOD FOR RMP
SELECTION
At this layer we aim to replace the pullback operation [34]
in RMPflow with an end-to-end approach to integrate the
two RMPs, The motion exhibited by a manipulator can
be conceptualized as a system that adheres to the Markov
property, wherein the subsequent state St+1 solely relies on
the current state St , independent of any preceding states.
For the manipulator, MDP can be represented as a tuple
(S,A,P,R, γ). Here, S encompasses the state space of the
manipulator, encompassing essential parameters like joint
rotation angles, Cartesian coordinates of the end effector, and
base position, among others. A denotes the set of possible
manipulator motions, encapsulating the rotational range of
each joint motor. For the purpose of this study, we consider
the discrete RMP option, the sequential execution of two
RMPs denoted a and b. The state transition function P is
established based on the manipulator’s forward kinematics.
Additionally, we define the reward function R to quantify the
desirability of different states, and γ is the discount factor
that plays a vital role in balancing the learning system’s

inclination towards immediate rewards with its exploration
of long-term rewards.

By utilizing reinforcement learning techniques, such an
MDP can determine an optimal policy, denoted as π (a |

s) = p(At = A | St = S), which enables the selection of
actions based on observations to maximize the reward R. The
action-value function Qπ (s, a) is employed to determine the
maximum reward, which can be expressed as follows:

Qπ (s, a) = Eπ

[
∞∑
k=0

γ kRt+k+1 | At = [a, b], St = s

]
(10)

In our system, each agent is modeled using a three-layer
neural network with 128 neurons per layer. The Rectified
Linear Unit (ReLU) activation function is applied to the
first two layers. The network takes the cartesian coordinates
of the joint as input and considers Riemannian Motion
Policies (RMPs) at moment t as fundamental actions output.
Similar to past hierarchical approaches [40], we utilize
the notion of ‘‘options’’ to generalize primitive behaviors
to temporally extended courses of action. An option is
characterized by three key components: a policy π that
maps states S and actions A to probabilities [0, 1], In this
work, we consider Riemannian Motion Policies (RMPs) as
fundamental actions and utilize the notion of ‘‘options’’
to generalize primitive behaviors to temporally extended
courses of action. An option is characterized by three key
components: a policy π that maps states S and actions A to
probabilities [0, 1], a termination condition β that determines
if the option should finish upon transitioning to a new state
s+ ∈ S+, and an initiation set I ⊆ S defining states where
the option can be applied. Concretely, an option ⟨I, π, β⟩

is applicable in state st if and only if st ∈ I. Once
initiated, actions are selected according to π until the option
terminates stochastically based on β. For a Markov option,
the next action at is chosen by sampling the distribution
π (st , ·). The environment transitions to a new state st+1,
where the option either terminates with probability β(st+1)
or continues, prompting the selection of at+1 ∼ π (st+1, ·).
This process persists until termination conditions are satisfied
at some future state st+2, st+3, Upon completion of an
option, the agent can initiate a new option, a termination
condition β that determines if the option should finish upon
transitioning to a new state s+ ∈ S+, and an initiation set
I ⊆ S defining states where the option can be applied.

Through the consideration of a set of options, the initiation
sets inherently establish a collection of available options Os
for each state s ∈ S. Notably, these sets Os bear a striking
resemblance to the sets of available actions, conventionally
denoted as As. To establish a unifying framework for these
two types of sets, it is noteworthy that actions can be regarded
as a specific case of options. Each action a corresponds to
an option that is available whenever a is available (I =

s : a ∈ As), endures for precisely one step (β(s) = 1, ∀s ∈

S), and selects a universally (π (s, a) = 1, ∀s ∈ I).
The agent’s decision-making involves options encompassing

VOLUME 11, 2023 126985

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

single-step and multi-step. Options bear a close resemblance
to actions while accounting for temporal extension via
well-defined termination conditions. This enables exploring
sequences of options similar to sequences of actions.

Allows further analysis. a is initiated first and runs
until termination, then b executes until it terminates or is
skipped if a finishes outside b’s initiation set. Combining
these forms a new composite ab. Composing two Markov
options typically results in a semi-Markov option since the
policy changes before and after a terminate. Composing
semi-Markov options forms another semi-Markov option,
enabling complex multi-step behaviors through hierarchical
composition.

D. COMPLEX POLICY LAYER: MULTI-AGENT
REINFORCEMENT LEARNING FOR COLLABORATIVE
POLICY TRAINING
At this layer, we deploy pre-trained agents to each joint
and use MARL to train these agents. The complex policy
layer can be viewed as the process of solving the inverse
kinematics by modeling the problem as an MDP tuple
(X , 1Q, p,R) and fitting the numerical solution by using
MARL, which X is The state represents the robot end-
effector position and orientation in the task space. 1Q is
the action space is the set of small joint displacements in
the joint space 1Q =

[
1q1, . . . ,1qn

]
where n is number

of joints. p is the state transition function represents the
forward kinematics mapping from joint space to task space
i.e., xt+1 = p (xt , 1qt). The reward function R evaluates the
distance of end-effector from the desired position. π (x) is the
policy determines which joint displacement action to take in
a given state x. The objective is to learn the policy q (x) that
minimizes the cumulative discounted reward and brings the
joint to the target position. The policy essentially learns the
inverse kinematics mapping from task space to joint space.
Here, we use multi-agent reinforcement learning to optimize
the policy.

Within dynamic environments, housing multiple agents,
the policy gradient approach can make the convergence of
the reward function difficult in the face of drastic changes
in the environment. Assuming that the action space of
the manipulator is discrete or 2-dimensional to alleviate
this problem [11], [15]. Nevertheless, this assumption
deviates considerably from the real-world environments in
which the majority of robots operate. One of our previous
studies showed that structured multi-agent systems using
centralized training with decentralized execution(CTDE) are
stably trained in the aforementioned case [43]. Multi-Agent
Proximal Policy Optimization(MAPPO) [14] utilizes the
actor-critic (AC) [6] architecture, the training process of the
MAPPO algorithm entails an iterative approach to optimize
the policies of multiple agents in a CTDE manner. It is
aimed at enhancing multi-agent systems’ performance by
addressing challenges such as non-stationarity and credit
assignment in such settings. TheMAPPO algorithm leverages

the Proximal Policy Optimization (PPO) [5] as its foundation,
incorporating value function estimation and entropy regular-
ization to foster both exploration and exploitation. During
training, each agent observes the global state and interacts
with its environment, generating trajectories then utilized to
update their respective policies. Critically, MAPPO employs
a trust region to ensure stable policy updates, thus preventing
drastic policy deviations that could hinder convergence.

In the context of a scenario involving n agents, the network
parameters of these agents are denoted as θ = θ1, . . . , θn,
and π = π1, . . . , πn represents the policy of each agent. The
policy gradient update for each agent can be formulated as
follows:

∇θiJ (πi)

= Ex,a∼D

[
∇θiπi (ai | oi) ∇aiQ

π
i (x, a1, . . . , aN)

∣∣
ai=πi(oi

)]
(11)

here, D represents the replay buffer containing data of
(x, x ′, a1, . . . , aN , r1, . . . , rN), where oi denotes the observa-
tion of the i-th agent, and x = [o1, o2, . . . , oi] represents the
globally observed state information.

The action-value function is updated using the following
equation:

L(θi) = Ex,a,r,x ′

[
Qπ
i (x, a1, . . . , aN) − y2

]
(12)

where y is defined as:

y = ri + γQπ ′

i (x ′, a1′, . . . , aN ′)|a′
j=π ′

j (oj)
(13)

In this setup, the critic network leverages global infor-
mation for learning, while the actor-network relies solely
on local observation information. The cooperative policy
framework facilitates agents in perceiving the state of other
agents as an integral part of the environmental state, rather
than treating them as distinct entities. By incorporating this
state information, agents are empowered to update their
own policies through the critic. In the context where full
awareness of all agents’ actions is present, and despite
the persistent implementation of continuous policy updates,
the environment itself remains stable and unchanged. Such
a condition duly fulfills the requisite for policy gradient
updates, thereby facilitating the generation of continuous
actions. This approach facilitates achieving more accurate
positioning in manipulator tasks and allows for motion
planning in a 3D environment.
Through the training process, MAPPO can assign impor-

tanceweights to each agent and efficiently learn decentralized
policies that lead to effective coordination and cooperation
among agents. We found this mechanism reflects a formal
consistency with the priority coefficients of the inertia
matrixM in the Riemannian motion policy. While RMPflow
achieves policy synthesis by employing pullback operations
along with priority coefficients, our approach enables end-
to-end policy generation at the local agent level and

126986 VOLUME 11, 2023

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

subsequently integrates these policies into a multi-agent
collaborative policy through the use of CTDE methods.

E. REWARD FUNCTION
In the field of reinforcement learning and robotics, a com-
mon approach involves developing a comprehensive reward
function that incorporates expert knowledge. This iterative
process requires continuous interaction with the environment
to finely tune parameters, ultimately leading to the achieve-
ment of an optimal reward function. Conversely, a simplistic
sparse reward function relies on a straightforward sensor-
based evaluation of task completion. However, utilizing
such a reward function exposes the agent to uniformly
negative rewards until a successful outcome is achieved,
hindering the acquisition of valuable information necessary
for policy improvement. To address this limitation, our study
adopts a sparse reward function and introduces a long-
term reward mechanism within the framework of multi-
agent collaborative training. This approach effectively strikes
a balance between considering short-term and long-term
rewards. The design of the reward function consists of three
distinct components:

r(s, a) = (δ1R1 + δ2R2 + . . . + δ6R6 + γRd + Rt) − φ

(14)

In this equation, The total reward is composed of
contributions from Local and global rewards, each of the
6 joints, denoted asR1 toR6, based onwhether the joints reach
their target positions. These goals are specified sequentially
from the bottom joint up, with each joint’s target determined
by the motion output of the agent for the joint below. The
weights δ1 to δ6 represent the relative importance of each
joint’s motion to the overall movement of the manipulator,
this weight is not necessary, and it is helpful to improve
training efficiency.

The distance reward Rd represents the reward obtained
by the agent as the end effector approaches the target.
Specifically, for each reduction of 0.1cm in the Euclidean
distance to the target, the agent receives a reward of 1.
This is a hyper-parameter tuning based on experience,
in highly dynamic environments with larger 1cm or greater
accuracy ranges, reward acquisition can be easy, but results
in larger errors. Using lower accuracy would make reward
accumulation slow for training. This design can encourage
agents to pursue higher tracking accuracy.

The time reward Rt accounts for the reward obtained upon
completing an action within a specified timeframe. If the
current cycle time is shorter than the previous cycle time,
the agent is rewarded with a value of 25. On the other
hand, the punishment term φ is associated with collisions
with obstacles. In the event of a manipulator collision, the
agent incurs a penalty of 75. We set the penalty score
very high because we hope that the agent can regard
obstacle avoidance as the main task, and the architecture of

TABLE 2. One of the agents’ environment domain randomization
parameters.

multi-agent cooperation can also avoid reward attenuation,
which leads the agent to give up the tracking task.

It’s worth noting that, within the multi-agent environ-
ment, the term ‘‘obstacles’’ encompasses not solely the
conventional narrow definition but extends to encompass
all other agents present. This comprehensive approach
offers the distinct advantage of effectively addressing the
potential occurrence of self-collision scenarios involving the
manipulator. The discount factor γ is set to 0.99 to encourage
exploration and balance the trade-off between short-term and
long-term considerations.

F. DOMAIN RANDOMIZATION
To enable agents to exhibit robustness to changes in the
environment and generalize smoothly to the real world,
we employ Domain Randomization to mitigate the reality gap
issue in Reinforcement Learning, which is a widely used and
proven method for solving Sim2Real problem [45]. Specif-
ically, we train the agent in a simulated environment with
randomized parameters designed to cover the distribution of
environments that may be encountered in the real world.

To promote generalization of motion generation in highly
dynamic environments, we introduce randomization of the
position and motion parameters of obstacles and tracked
targets. Moreover, to enable generalization across a wider
range of manipulator models, we also randomize the physical
parameters of the manipulator itself. Since the minimal
control unit of our agent is a two-link model, randomization
of these parameters does not dramatically alter the redundant
action space, facilitating relatively straightforward training.
The collective parameter settings can be referred to the
TABLE 2.

The physical parameter ranges were selected with ref-
erence to the technical manuals of a variety of popular
manipulators, view to cover mainstream situations. It is worth
noting that the randomization parameter of joint positions
and joint velocities is only used for pre-training, and the
deployment is limited according to the parameters provided

VOLUME 11, 2023 126987

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

by the model. The randomization of the link length parameter
allows combining manipulators of different sizes in a multi-
agent environment, whichmakes the policy robust to different
models of manipulators.

IV. EXPERIMENT
Through the proposed framework, we simplify the design
process of Riemannian motion policy, but the effect of this
method still needs to be verified. The experimental part aims
to verify the following three questions:

(1) Whether our framework allows local joints and global
manipulators to effectively cope with dynamic tracking and
obstacle avoidance tasks and is generalized?

(2) How harsh environment can the reaction movement
generated by our method cope with?

(3) Can our approach improve the training efficiency when
using reinforcement learning algorithms for manipulator
tasks?

We use 6 common official URDF manipulator model for
conducting simulation experiments in our study, the model
is dynamically corrected. Each joint in this model is capable
of receiving control signals independently. The detection of
obstacles comes from the simulator, a collision detection
mesh around the robot model with a warning distance of
15cm for collisions. To assess the efficacy of the proposed
approach, we conducted three distinct experiments. Firstly,
we implemented the suggested framework to pre-train an
agent within a single joint environment. This experiment
allowed us to examine the benefits offered by the proposed
method in terms of training speed, while also evaluating
its effectiveness in accomplishing a task involving dynamic
target tracking and obstacle avoidance. Following the pre-
training phase, we deployed the agent to each joint of
the robot and trained it using Multi-agent Reinforcement
Learning in a collaborative task scenario. Subsequently,
we evaluated the agent’s performance in the tracking-obstacle
avoidance task within an environment containing multiple
obstacles. Lastly, we aimed to assess the reactive action
capabilities of the proposed method by examining the success
rate of the task under varying obstacle speeds in dynamic
obstacle environments.

To facilitate our Training and simulation, we utilized
Omniverse Isaac Gym [8], an advanced tensor-based sim-
ulator specifically developed by Nvidia, different from the
traditional RL simulation environment [20]. The utilization
of Omniverse Isaac Gym offers the distinct advantage of
seamlessly converting arrays into tensors through a tensor
wrapper. This feature expedites the process of reinforcement
learning training by allowing the execution of numerous
parallel environments on a single GPU.

A. PRE-TRAINING RESULTS ON THE META-BEHAVIORAL
LAYER
In the test environment of the meta-behavioral layer, a sce-
nario comprising a simplified manipulator with a two-link
mechanism, a moving target ball (colored red), an obstacle

FIGURE 2. The figures show the results of pre-training an agent in a
tracking-obstacle avoidance task, (a) using hierarchical reinforcement
learning combined with RMP (HRL-RMPs), and (b) using standardized
reinforcement learning only. After the same training time, HRL-RMPs can
stably track the target (red dots) while avoiding obstacles in the path
(squares), while RL can also avoid squares though, with a large error from
tracking the target.

strategically positioned along the trajectory of the target
ball, and importantly, the target ball itself lacked a collision
volume. In each experiment, the target ball exhibited uniform
linear motion in a random direction. The objective entailed
the manipulator’s end effector accurately tracking the target
ball’s position while actively avoiding any encountered
obstacles within the tracking path. The agent’s awareness of
the obstacle locations was limited, as we solely relied on a
collision detection network integrated into the manipulator
model. This setup resulted in unexpected collision scenarios
during the tracking process, necessitating the algorithm
to promptly react and adapt to circumvent the obstacles
effectively.

In our experiments, we employed two reinforcement learn-
ing algorithms, namely Proximal Policy Optimization (PPO)
and a hierarchical structure-based algorithm that combines
Reinforcement Learning with Riemannian Motion Policies
(HRL-RMPs). The task setting chosen for evaluation was
not particularly challenging for contemporary deep reinforce-
ment learning algorithms. Notably, with sufficient training,
PPO demonstrated relatively satisfactory performance in
achieving desirable results. However, when considering the
outcomes observed within a limited number of training
iterations, our proposed algorithm showcased several distinct
advantages.

In this section, we present the results of a representative
experiment, showcasing the remarkable performance of our
method in highly stable tracking trajectories with minimal
errors, even after a relatively short training period. On the

126988 VOLUME 11, 2023

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

TABLE 3. Obstacle avoidance success rate and tracking errors of
pre-training environment.

FIGURE 3. With the help of our learning framework, The training speed of
the multi-agent policy is much faster than that of the single-agent policy.
The main reason for the difference in reported scores stems from the
success rate of the tasks. Our method was able to complete the task in
more situations, which in turn allowed us to earn more points, while
other methods failed in some of the more difficult situations resulting in
the reward not being able to improve further.

other hand, the PPO algorithm is still in its initial training
stages, and the observed motion reflects its early learning
attempts to approach and track the target position, which
falls short of the desired accuracy. In terms of obstacle
avoidance, our method swiftly navigates around obstacles,
resulting in only a slight deviation from the original path,
after which it promptly resumes tracking the target trajectory.
In contrast, the PPO algorithm also learns an obstacle
avoidance policy but tends to take unnecessarily longer
and less efficient avoidance paths. The outcomes of this
experiment emphasize a significant improvement in both the
efficiency and effectiveness of training through our approach,
results are shown in FIGURE 2. We also compared the
effect of different training steps on success rate and tracking
accuracy. The data show that our method achieves a high
success rate and high tracking accuracy with less training.
Detailed results can be found in TABLE 4.

Following a brief comparison of the two algorithms,
it becomes evident that RMP provides exceptional reactive
motion capabilities within the underlying actions, effec-
tively equipping the agent with valuable prior knowledge.
Consequently, the agent’s actions can be trained without
starting from scratch, leading to notable improvements in
both movement quality and training speed. Moreover, the
hierarchical structure of our approach contributes to a more
manageable and efficient action space, particularly when

FIGURE 4. This image shows our approach to allow the manipulator to
avoid dynamic obstacles from all directions and tests the motion of the
agent on different joints. The red arrows in the figure mark the direction
of the obstacle movement, while the next image shows the successful
obstacle avoidance action.

compared to the direct control of joint torque. Collectively,
these findings validate our hypothesis that combining hier-
archical RL with RMP yields superior movement quality
and accelerated training speed, thus providing preliminary
evidence supporting the effectiveness of our approach. It is
worth noting that pre-training is crucial to our method. Pre-
training either way helps the results, but not doing it can make
subsequent training of complex strategies extremely unstable.
This difference will be shown in detail in the next experiment.

B. REACHING AND OBSTACLE AVOIDANCE
After successfully completing the pre-training and experi-
ments involving a single intelligent body, we proceeded to
investigate more complex policies. Specifically, we deployed
the pre-trained agents to each joint of a high-dimensional
manipulator with 7 DoF, forming a multi-agent collaborative
system. This system was then trained using MAPPO. The
experiment setup encompasses a dynamic environment: a full
manipulator, a mobile target, and an obstacle. The initial
motion direction of the obstacle is deliberately randomized
to introduce variability. The primary objective for the
manipulator is to effectively track the dynamic target while
successfully avoiding collision with the obstacle. To enhance
the robustness of the system, both the moving target and the
obstacle possess randomly generated initial states within their
respective domains.

We conduct a comparative analysis of the training speeds
between four approaches: Proximal Policy Optimization
(PPO), Multi-Agent Reinforcement Learning (MARL-PPO)
with PPO pre-training, and MARL with Riemannian Motion
Policies pre-training(MARL-RMP), and MARL without
pre-training. The findings unequivocally demonstrate the
superior efficiency of our proposed method. Specifically,
when utilizing the MARL training framework with PPO,
necessitates 2.5 times more training steps in comparison
to our method. Moreover, the PPO algorithm exhibits a
requirement of 4.5 times more training steps when compared
to our approach. Notably, our method attains the highest

VOLUME 11, 2023 126989

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

FIGURE 5. The images show the effect of MARL-RMP on a variety of manipulators to test robustness. The manipulator needs to approach the target
(red) and avoid moving obstacles (blue). Each set of images contains two, the left side shows the initial pose and the yellow arrow indicates the
direction of movement of the obstacle. The right side shows the critical 2 frames during the movement of the obstacle and the manipulator, with the
semi-transparent part earlier and the opaque one later.

final payoff scores, affirming its enhanced performance.
In contrast, MARL without pre-training fails to produce
stable training results, which is reflected in the non-
convergence of the reward function. The reason for this is
that using MARL directly in this task makes the exploration
space very large, and we use a sparse reward function, which
makes training difficult, this also proves the necessity of the
pre-training step. Comprehensive results are visually depicted
in FIGURE 3 for reference.

During testing, the environment comprised a manipulator,
surrounded by four obstacles represented by red, green,
yellow, and blue cubes. Additionally, a target cube, colored
gray, moved in a uniform linear motion. This task required
the manipulator to accurately track the moving target while
simultaneously avoiding the dynamically moving obstacles.
The increased dimensionality of both the obstacles and the
manipulator movements introduced an additional layer of
complexity to the task. It is worth mentioning that we allow
artificially set the trajectory of the obstacle movement. This
deliberate arrangement aimed to test the local motion policies
of each joint within the manipulator.

In our study, we present several scenarios where obstacles
introduce interference during the motion of the manipulator.
These scenarios encompass various challenging situations,
such as obstacles approaching the joints of the manipulator,
obstacles traversing the working area, repeated interference
with the tracking path, and the presence of multiple
obstacles surrounding the manipulator. The experimental
results highlight the efficiency and intelligence exhibited by
our approach. Specifically, each joint of the manipulator

effectively avoids obstacles approaching frommultiple direc-
tions, demonstrating a robust obstacle avoidance capability.
When an obstacle crosses the working area, the multi-agent
collaboration policy enables the entire manipulator to avoid
collisions and maintain a safe posture. In instances where
obstacles interfere with the tracking path, our policy leverages
the knowledge acquired during pre-training, allowing the
manipulator to take a smaller additional path to bypass the
obstacle while seamlessly continuing to track the target,
results are shown in FIGURE 4.

Moreover, in scenarios involving multiple surrounding
obstacles, which can potentially result in unsolvable motion
paths, distinguishes itself from single-agent reinforcement
learning methods. Instead of persistently attempting to nav-
igate through the obstacles, which may lead to unnecessary
jolts and dangerous movements, our policy learns to pause
the motion and wait for the environment to change, exhibiting
a more cautious and adaptive behavior. These experimental
findings demonstrate the effectiveness of our approach in
handling a wide range of obstacle interference scenarios,
showcasing efficient and intelligent motion planning and
execution.

To evaluate the robustness of our method to variations in
manipulator models, we leverage domain randomization to
enable adaptation to differing physical parameters, including
form factor differences. We selected 6 diverse manipulator
models in widespread use across scenarios. Readers are
advised to consult the technical manuals of the individual
manipulators for detailed physical parameters. Mimicking
the previous experimental setup, the manipulator must still

126990 VOLUME 11, 2023

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

approach a target, while an obstacle crosses the working
area from the front, interfering with multi-joint motion.
The manipulator must avoid the obstacle while maintaining
target tracking. As depicted in FIGURE 5, the results
demonstrate the capability of our method to generalize
effectively across manipulator models. Besides, our method
possesses advantages in applying the randomization of the
connecting rod length parameter. Variation in robot size
changes the environment drastically, leading to a larger state
space where DRL suffers from the catastrophic forgetting
problem. However, in the MARL framework, modeling
multi-agent systems based on cooperation can simplify the
state dimension of the redundant manipulator, the local state
change of each agent remains within acceptable limits and
use centralized training to maintain collaboration. Therefore,
catastrophic forgetting does not occur when applying link
length randomization. This is the reason why our method in
Figure 3 has significant advantages.
In addition to our proposed approach, we conducted a

comparative analysis involving traditional motion planning
using the Rapidly-Exploring Random Tree (RRT) method
[1], a single-agent reinforcement learning algorithm (PPO)
[5], and RMP flow in the presence of dynamic obstacles
that approach the manipulator and traverse its working
area. Results indicate that the RRT algorithm struggles
to effectively cope with the highly dynamic environment
presented in our experiments. Similarly, the single-agent
reinforcement learning algorithm, PPO, encounters difficul-
ties in certain cases. The direct control of high-dimensional
movements by the agent, coupled with the random nature
of neural network outputs, leads to instances where the
agent outputs excessive torque. This excessive torque can
result in damage to the manipulator. Regarding RMP flow,
while the algorithm successfully avoids the obstacles, it does
not converge back to a stable state and, instead, falls
into a singular pose. results are shown in FIGURE 6.
Quantitative analyses will be performed together with the
next experiments. These comparative findings highlight the
advantages of our proposed approach, which demonstrates
efficient and intelligent motion planning and execution in
the presence of dynamic obstacles, overcoming limitations
observed in traditional motion planning methods, single-
agent reinforcement learning algorithms, and RMPflow.

C. REACTIVE MOTION
To further evaluate the reactive motion capabilities of our
proposed method, we conducted additional experiments
in dynamic environments. In these experiments, the envi-
ronment consisted of a manipulator tasked with tracking
a moving target (gray cube). We introduced a line of
dynamic obstacles that repeatedly crossed the working
area of the manipulator at varying speeds, enabling us to
measure the success rate of the manipulator’s ability to
avoid these obstacles. In another experiment, we scattered
multiple obstacles randomly throughout the environment,

FIGURE 6. The figures show some typical failures of RMPflow, RRT, and
PPO when an obstacle crosses the working area of the manipulator (in
the direction of the red arrow), Figure (a) shows that RMPflow most
certainly avoids the obstacle but the manipulator fails to return to its
normal attitude. Figure (b) shows that when the obstacle is already close
to the manipulator but the RRT does not make an evasive maneuver.
Figure (c) shows that the reinforcement learning algorithm PPO enters
into a singular pose and fails to recover when avoiding an obstacle.

TABLE 4. Comparative simulation experiments for multi-obstacles
avoidance tasks with different velocity.

with lateral and vertical obstacles placed at random distances
ranging from 20cm to 50cm. The objective here was for
the manipulator to swiftly adapt its pose to avoid these
haphazardly placed obstacles.

These experiments allowed us to assess the reactive
motion capabilities of our proposed method in response
to dynamic obstacles. By measuring the success rate of
obstacle avoidance in the first experiment and observing
the manipulator’s ability to quickly adjust its pose in the
presence of random obstacles in the second experiment,
we aimed to validate the effectiveness of our approach in
reacting and responding to unforeseen challenges in dynamic
environments.

In the comparison of PPO, MARL, and RMPflow in the
conducted tests, several observations weremade. Firstly, PPO
demonstrated limitations in effectively responding to obstacle
avoidance when the speed of the dynamic obstacles exceeded
a certain threshold (greater than 1). This indicated a challenge
in adapting to high-speed environments. On the other hand,
RMPflow exhibited an effective obstacle avoidance policy
across all tested speeds. However, its success rate noticeably
decreased at higher speeds, indicating limitations inmaintain-
ing a high success rate under extreme dynamic conditions.
In contrast, our proposed method demonstrated a relatively
stable performance across different obstacle speeds. The
success rate did not decrease significantly as compared to
RMPflow, even at higher speeds. Our method maintained a
high success rate even in a high-speed environment with a
speed of 2.8. More results of obstacle avoidance tests with
obstacles of different speeds can be found in TABLE 4.
For the experiment involving avoiding cluttered objects,

our method showcased greater stability in producing fast

VOLUME 11, 2023 126991

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

FIGURE 7. In the experiment, a sequence of obstacles is arranged linearly, traversing the operational region of the manipulator joint in alignment with
the indicated red arrow. Upon encountering the manipulator, a colliding obstacle halts its motion, becoming stationary at the point of impact, while
non-colliding obstacles continue their movement unhindered. The first line, utilizing our proposed method, showcases obstacles passing through the
manipulator’s working area while maintaining their original relative positions, indicative of a collision-free scenario. In contrast, the second line using
RMPflow had a collision and the location of the collision is highlighted in red.

FIGURE 8. End-effectors often perform tasks in cluttered and dynamic environments, which this test simulates. End-effector is tracking the target (red
cube), multiple obstacles passing through the End-effector working area, which also means that the position of the obstacles changes frequently and
our reactive policy can be good at avoiding collisions and keep tracking the target. We show a typical failure situation in the second row. The baseline
approach tries to avoid obstacles but ends up in a singularity that cannot be recovered.

responses. Conversely, RMPflow gradually struggled to
adapt, leading to an inability to converge to a stable pose.

These comparative results highlight the advantages of our
proposed method in terms of maintaining stability and high

126992 VOLUME 11, 2023

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

success rates in dynamic environments, especially at higher
speeds, as well as its ability to respond quickly to challenging
scenarios such as avoiding cluttered objects. For a typical
result, refer to FIGURE 7 and FIGURE 8.

V. CONCLUSION
Our research focuses on the development and evaluation of a
hierarchical RL and Multi-agent RL approach in conjunction
with Reactive Motion Planning (RMP) for robotic motion
planning and control, at the same time, we have greatly sim-
plified the design of RMPs system. Through a comprehensive
set of experiments and comparisons with traditional motion
planning methods, single-agent RL algorithms, and RMP
flow, we have demonstrated the effectiveness and advantages
of our proposed approach across various dimensions. Our
method showcases efficient and intelligent motion planning
and execution capabilities, enabling precise target tracking
and obstacle avoidance in both single-agent and multi-agent
scenarios. Our approach yields stable tracking trajectories
with minimal errors, facilitating swift and adaptive obstacle
avoidance even in complex environments with dynamic
obstacles and cluttered surroundings. Notably, our research
emphasizes the superior training efficiency exhibited by
our approach. This can be attributed to the hierarchical
structure of our RL framework and the incorporation of
RMP, which provides prior knowledge and simplifies the
action space. In summary, our research presents a robust and
efficient framework for reactive motion planning and control.
It underscores the potential of hierarchical RL in combination
with RMP to enhance both movement quality and training
speed in robotic systems.

This research still has some limitations, we only explored
the effect of the framework on manipulators, but should also
have the ability to be applied to more types of robots, such
as quadrupedal or humanoid robots, which are composed of
joints and linkages, but the case of more nonlinear motion
needs to be considered. We expect to validate more robotic
platforms. In addition, while the reactive motion planning
approach proposed in this work shows promise in simulation,
several challenges remain in translating these results into
real-world robotic systems [45]. First, reliable sensing of
complex, dynamic environments is an open research problem,
and the accuracy and responsiveness requiredmay necessitate
sophisticated multi-modal sensor systems. Occlusion effects
pose additional difficulties as robots operate near obstacles
or humans. Furthermore, while domain randomization helps
account for physics discrepancies between simulation and
reality, fully closing the ‘‘reality gap’’ requires physical
validation not yet conducted here. We also need to add more
safety policies to the RL training process to ensure that it
does not pose a danger to the manipulator and personnel in
real experiments [46]. Thus, future work should focus on
perception system design and experimental deployment of
the planning framework on physical manipulators. Through
iterative research on perception, control, and planning,

we aim to improve the method’s applicability to real-world
tasks.

REFERENCES
[1] D. Kalashnikov, A. Irpan, and P. Pastor, ‘‘Scalable deep reinforcement

learning for vision-based robotic manipulation,’’ in Proc. Conf. Robot
Learn., Oct. 2018, pp. 651–673.

[2] J. J. Kuffner and S. M. LaValle, ‘‘RRT-connect: An efficient approach to
single-query path planning,’’ in Proc. ICRA Millennium Conf. IEEE Int.
Conf. Robot. Automat. Symposia, Apr. 2000, pp. 995–1001.

[3] D. Nguyen-Tuong and J. Peters, ‘‘Model learning for robot control: A
survey,’’ Cognit. Process., vol. 12, no. 4, pp. 319–340, Nov. 2011.

[4] L. Busoniu, B. De Schutter, and R. Babuska, ‘‘Decentralized reinforcement
learning control of a robotic manipulator,’’ in Proc. 9th Int. Conf. Control,
Autom., Robot. Vis., 2006, pp. 1–6.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[6] J. Peters and S. Schaal, ‘‘Natural actor-critic,’’ Neurocomputing, vol. 71,
nos. 7–9, pp. 1180–1190, Mar. 2008.

[7] V. Kumar, D. Hoeller, B. Sundaralingam, J. Tremblay, and S. Birchfield,
‘‘Joint space control via deep reinforcement learning,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Sep. 2021, pp. 3619–3626.

[8] J. Liang, V. Makoviychuk, and A. Handa, ‘‘GPU-accelerated robotic
simulation for distributed reinforcement learning,’’ in Proc. Conf. Robot
Learn., Oct. 2018, pp. 270–282.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

[10] S. Li, J. K. Gupta, P. Morales, R. Allen, and M. J. Kochenderfer, ‘‘Deep
implicit coordination graphs for multi-agent reinforcement learning,’’
2020, arXiv:2006.11438.

[11] Y. Ansari, E. Falotico, Y. Mollard, B. Busch, M. Cianchetti, and C. Laschi,
‘‘A multiagent reinforcement learning approach for inverse kinematics of
high dimensional manipulators with precision positioning,’’ in Proc. 6th
IEEE Int. Conf. Biomed. Robot. Biomechatronics (BioRob), Jun. 2016,
pp. 457–463.

[12] B. Lucian, R. Babuska, and B. D. Schutter, ‘‘Multi-agent reinforcement
learning: A survey,’’ in Proc. 9th Int. Conf. Control, Autom., Robot. Vis.,
Dec. 2006, pp. 1–6.

[13] D. M. Stocco, ‘‘A star search: Implications in controlling Steroidogene-
sis1,’’ Biol. Reproduction, vol. 56, no. 2, pp. 328–336, Feb. 1997.

[14] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, ‘‘The
surprising effectiveness of PPO in cooperative, multi-agent games,’’ 2021,
arXiv:2103.01955.

[15] A. Perrusquía, W. Yu, and X. Li, ‘‘Redundant robot control using multi
agent reinforcement learning,’’ in Proc. IEEE 16th Int. Conf. Autom. Sci.
Eng. (CASE), Aug. 2020, pp. 1650–1655.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[17] V. Pong, S. Gu, M. Dalal, and S. Levine, ‘‘Temporal difference models:
Model-free deep RL for model-based control,’’ 2018, arXiv:1802.09081.

[18] D. Han, B. Mulyana, V. Stankovic, and S. Cheng, ‘‘A survey on deep
reinforcement learning algorithms for robotic manipulation,’’ Sensors,
vol. 23, no. 7, p. 3762, Apr. 2023.

[19] R. Lowe, Y. Wu, Aviv Tamar, J. Harb, P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. 31st Int. Conf. Neural Inf. Process. Syst., Dec. 2017, p. 6382 6393.

[20] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

[21] M. Mukadam, ‘‘Riemannian motion policy fusion through learnable
Lyapunov function reshaping,’’ in Proc. Conf. Robot Learn., 2020,
pp. 204–219.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602.

[23] M. Botvinick and A. Weinstein, ‘‘Model-based hierarchical reinforcement
learning and human action control,’’ Phil. Trans. Roy. Soc. B, Biol. Sci.,
vol. 369, no. 1655, Nov. 2014, Art. no. 20130480.

[24] S. Gu, E. Holly, T. Lillicrap, and S. Levine, ‘‘Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 3389–3396.

VOLUME 11, 2023 126993

Y. Wang et al.: Hierarchical Robot Learning Framework for Manipulator Reactive Motion Generation

[25] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, ‘‘Riemannian
motion policies,’’ 2018, arXiv:1801.02854.

[26] F.-Y.Wang, J. J. Zhang, X. Zheng, X.Wang, Y. Yuan, X. Dai, J. Zhang, and
L. Yang, ‘‘Where does AlphaGo go: From church-turing thesis to AlphaGo
thesis and beyond,’’ IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 113–120,
Apr. 2016.

[27] K. Arulkumaran, A. Cully, and J. Togelius, ‘‘AlphaStar: An evolutionary
computation perspective,’’ in Proc. Genetic Evol. Comput. Conf. Compan-
ion, Jul. 2019, pp. 314–315.

[28] H. Cuayhuitl, S. Renals, O. Lemon, and H. Shimodaira, ‘‘Hierarchical
reinforcement learning for spoken dialogue systems,’’ in Proc. 41st Annu.
Meeting Assoc. Comput. Linguistics, 2009, pp. 395–429.

[29] S. Levine, C. Finn, T. Darrell, and P. Abbeel, ‘‘End-to-end training of deep
visuomotor policies,’’ J. Mach. Learn. Res., vol. 17, no. 1, pp. 1334–1373,
2016.

[30] T. G. Dietterich, ‘‘Hierarchical reinforcement learning with the MAXQ
value function decomposition,’’ J. Artif. Intell. Res., vol. 13, pp. 227–303,
Nov. 2000.

[31] B. Beyret, A. Shafti, and A. A. Faisal, ‘‘Dot-to-dot: Explainable
hierarchical reinforcement learning for robotic manipulation,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 5014–5019.

[32] K. Hansel, J. Urain, J. Peters, and G. Chalvatzaki, ‘‘Hierarchical policy
blending as inference for reactive robot control,’’ in Proc. IEEE Int. Conf.
Robot. Automat. (ICRA), London, U.K., 2023, pp. 10181–10188, doi:
10.1109/ICRA48891.2023.10161374.

[33] M. Botvinick, S. Niv, and A. G. Barto, ‘‘Hierarchically organized behavior
and its neural foundations: A reinforcement learning perspective,’’ Trends
Cognit. Sci., vol. 12, no. 10, pp. 442–447, Oct. 2008.

[34] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots,
and N. Ratliff, ‘‘RMPflow: A geometric framework for generation of
multitask motion policies,’’ IEEE Trans. Autom. Sci. Eng., vol. 18, no. 3,
pp. 968–987, Jul. 2021.

[35] A. Li, C.-A. Cheng, M. Asif Rana, M. Xie, K. Van Wyk, N. Ratliff,
and B. Boots, ‘‘RMP2: A structured composable policy class for robot
learning,’’ 2021, arXiv:2103.05922.

[36] M. Shahrabi and M. Adibi, ‘‘A reinforcement learning approach to
parameter estimation in dynamic job shop scheduling,’’ in Proc. IEEE Int.
Conf. Autom. Comput. (ICAC), Sep. 2017, pp. 1–6.

[37] E. Aljalbout, J. Chen, K. Ritt, M. Ulmer, and S. Haddadin, ‘‘Learning
vision-based reactive policies for obstacle avoidance,’’ in Proc. Conf.
Robot Learn., Oct. 2021, pp. 2040–2054.

[38] M. Mattamala, N. Chebrolu, and M. Fallon, ‘‘An efficient locally reactive
controller for safe navigation in visual teach and repeat missions,’’ IEEE
Robot. Autom. Lett., vol. 7, no. 2, pp. 2353–2360, Apr. 2022.

[39] T. Shomrat, A. L. Turchetti-Maia, N. Stern-Mentch, J. A. Basil, and
B. Hochner, ‘‘The vertical lobe of cephalopods: An attractive brain
structure for understanding the evolution of advanced learning andmemory
systems,’’ J. Comparative Physiol. A, vol. 201, pp. 947–956, Jun. 2015.

[40] T. Li, K. Srinivasan, M. Q. Meng, W. Yuan, and J. Bohg, ‘‘Learning
hierarchical control for robust in-hand manipulation,’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2020, pp. 8855–8862.

[41] M. A. Rana, A. Li, D. Fox, S. Chernova, B. Boots, and N. Ratliff, ‘‘Towards
coordinated robot motions: End-to-end learning of motion policies on
transform trees,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Sep. 2021, pp. 7792–7799.

[42] R. Rana, Y. Li, A. Gupta, D. Fox, and L. Pinto, ‘‘Learning reactive motion
policies in multiple task spaces from human demonstrations,’’ in Proc.
Conf. Robot Learn., 2020, pp. 1457–1468.

[43] Y. Wang and R. Sagawa, ‘‘Manipulator motion planning via centralized
training and decentralized execution multi-agent reinforcement learning,’’
in Proc. Int. Conf. Adv. Robot. Mechatronics (ICARM), Jul. 2022,
pp. 812–817.

[44] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, and J. Peters, ‘‘Robot
learning from randomized simulations: A review,’’ Frontiers Robot. AI,
vol. 9, Apr. 2022, Art. no. 799893.

[45] A. Bonci, P. D. Cen Cheng, M. Indri, G. Nabissi, and F. Sibona, ‘‘Human-
robot perception in industrial environments: A survey,’’ Sensors, vol. 21,
no. 5, p. 1571, Feb. 2021.

[46] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, and
A. Knoll, ‘‘A review of safe reinforcement learning: Methods, theory and
applications,’’ 2022, arXiv:2205.10330.

YULIU WANG received the B.S. degree from
the Wuhan Institute of Technology, in 2015, and
the M.S. degree from the University of Tsukuba,
in 2021, where he is currently pursuing the
Ph.D. degree with the Joint Graduate School of
Intelligent and Mechanical Interaction Systems.
He was a Senior Technical Specialist with the
Ongoing Reliability Testing Laboratory, Mobile
Business Unit, Lenovo Group. He is a Research
Assistant with the Computer Vision Research

Group, Artificial Intelligence Research Center (AIRC-CVRT), National
Institute of Advanced Industrial Science and Technology (AIST), Japan. His
current research interests include robot motion planning, robot learning, and
deep reinforcement learning.

RYUSUKE SAGAWA (Member, IEEE) received
the B.E. degree in information science from
Kyoto University, in 1998, and the M.E. degree
in information engineering and the Ph.D. degree
in information and communication engineering
from The University of Tokyo, in 2000 and
2003, respectively. He was an Assistant Professor
with the Institute of Scientific and Industrial
Research, Osaka University, and moved to AIST,
in 2010. He is currently an Associate Professor

with the Cooperative Graduate School, Tokyo University of Agriculture and
Technology, and the University of Tsukuba. He is also a Leader with the
Computer Vision Research Team, Artificial Intelligence Research Center,
National Institute of Advanced Industrial Science and Technology (AIST),
Japan. His current research interests include computer vision, computer
graphics, robotics, and human modeling (mainly geometrical modeling and
visualization).

YUSUKE YOSHIYASU (Member, IEEE) received
the Ph.D. degree from Keio University, Japan.
He was a Visiting Scholar with the Leonidas
Guibas Laboratory, Computer Science Depart-
ment, Stanford University, from 2015 to 2016.
He is currently a Senior Research Scientist with the
National Institute of Advanced Industrial Science
and Technology (AIST), Japan. He is a member of
the Computer Vision Research Team, AI Research
Center. He is an Adjunct Member of CNRS-AIST

Joint Robotics Laboratory (JRL). His current research interests include shape
analysis, computer vision, robot vision, and machine learning.

126994 VOLUME 11, 2023

http://dx.doi.org/10.1109/ICRA48891.2023.10161374

