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ABSTRACT The application of multi-echo functional magnetic resonance imaging (fMRI) studies has
considerably increased in the last decade due to superior BOLD sensitivity compared to single-echo
fMRI. Various methods have been developed that combine fMRI data derived at different echo times to
improve data quality. Here, we evaluated five multi-echo combination schemes: ‘optimal combination’ (OC,
T2

∗-weighted), T2
∗-FIT (T2

∗-weighted, calculated per volume), average-weighted (Avg), temporal Signal-
to-Noise Ratio (tSNR) weighted, and temporal Contrast-to-Noise Ratio weighted combination. The effect of
these combinations, with and without additional postprocessing, on the quality of functional resting-state
networks was assessed. Sixteen healthy volunteers were scanned during a 5-minutes resting-state fMRI
session. After network extraction, several quality metrics in the temporal and spatial domain were calculated
for their respective time-series and spatial maps. Our results showed that OC and T2

∗-FIT outperformed
the other methods in both domains. Whereas the OC and T2

∗-FIT time-series were found to be the least
associated with artifacts, OC resulted in the highest quality spatial maps. Furthermore, spatial smoothing,
bandpass filtering and ICA-AROMA merely improved networks derived from the least performing combi-
nations (Avg and tSNR). Because similar network quality was obtained following OC and T2

∗-FIT without
postprocessing, we recommend future studies to implement these combinations without these postprocessing
steps. This minimizes the amount of image modifications and processing, potentially leading to enhanced
BOLD contrast. The results highlight the benefits of T2

∗-weighted multi-echo combinations on resting-state
network quality and raise its potential value in dynamic fMRI analyses or for diagnosis and prognosis
purposes of neuropsychiatric disorders.

INDEX TERMS Multi-echo imaging, resting-state, fMRI, brain networks.

I. INTRODUCTION
Over the last decades, functional magnetic resonance imag-
ing (fMRI) has provided numerous novel insights into brain
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activation patterns of healthy individuals and patients with
neurologic disorders. The application of fMRI has proven to
be useful in research domains such as classification of healthy
versus diseased individuals [1], the prediction of optimal
treatment [2], [3] and the identification of biologically-based
subtypes of neurological disorders [4].
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Brain networks, commonly called resting-state networks
(RSNs), have been widely studied in the healthy popula-
tion and in neurological disorders for these purposes. For
example, the default mode network (DMN), which has been
found to be active during self-reflection and inactive during
attention-demanding tasks [5], can be robustly detected dur-
ing resting-state fMRI and abnormal activity of this network
has been linked with major depressive disorder [6], [7], [8].
Other consistently identified RSNs are the executive con-
trol network (ECN) and the salience network (SN) [6], [8],
[9], [10].
In standard (i.e. single-echo) fMRI, a single slice is

acquired after each radiofrequency (RF) excitation pulse at a
specific echo time (TE) [11]. Despite its non-invasiveness and
high spatial resolution, single-echo fMRI is prone to different
noise sources that can be of physiological, motion, thermal or
hardware-related origin [12]. To increase the sensitivity of the
acquired blood oxygenation level-dependent (BOLD) con-
trast in fMRI and to reduce signal dropout, an MRI technique
called multi-echo (ME-)fMRI has been developed [13], [14].
In ME-fMRI, slices are acquired at different TEs following
each RF-pulse [11]. Signals acquired at shorter TEs have
higher signal intensity than longer TEs [11]. However, the
contrast between gray and white matter (GM;WM) and cere-
bral spinal fluid (CSF) has been shown to be higher at longer
TEs [11]. Thus, by combining the images that are acquired
at different TEs, an optimal balance between signal intensity
and tissue contrast can be obtained, thereby increasing the
sensitivity of the BOLD contrast. Several of such multi-echo
combination methods have been developed. Examples are
the temporal Signal-to-Noise Ratio (tSNR) combination [15]
and a T2

∗-weighted combination (also called ‘optimally com-
bined’, OC) [13], the latter takes into account the variation of
T2∗ – known to be dependent on the brain location and tissue
type [16] – over the brain.
There is a scarcity of studies investigating the effect of

the different ME combination methods on fMRI data [15],
[17], [18], [19]. For example, a previous study compared
the BOLD sensitivity of multi-echo fMRI data after com-
bination of a simple echo summation scheme, a temporal
Contrast-to-Noise Ratio (tCNR) weighted combination or
the OC combination to data acquired by single-echo fMRI
[18]. They found significant sensitivity increases of more
than 7% and 11% for the OC and tCNR-weighted combi-
nation method, respectively. Larger increases were found in
regions with a short or long T2

∗ that are more suscepti-
ble to signal dropout in single-echo fMRI [18]. A different
study assessed the tSNR, functional connectivity and RSN
correlation and size for a single-echo, and OC with or with-
out denoising acquisitions. They found increased values for
all measures in OC compared to a single-echo and in OC
with denoising compared to OC without denoising [19].
Another recent study showed that the T2

∗-weighted and the
tCNR-weighted combination methods increased the tSNR of
resting-state fMRI time-series by more than 30% over the

whole brain compared to single-echo [17]. Controversially,
results from a dual-echo study indicated that there were no
significant sensitivity advantages on a group-level by using
tSNR-weighted or tCNR-weighted multi-echo combination
over simple multi-echo averaging [15].

Thus, whereas the majority of studies in general show
that tCNR and OC increase fMRI data quality compared to
single-echo or multi-echo data combined using simple echo
summation or tSNR weights, there are also discrepant find-
ings. Whether tCNR or T2

∗-weighted combinations should
be used in future studies is still up for debate and remains
a rather arbitrary decision. In addition, the effect that echo
combination schemes and denoising approaches have onRSN
quality has not been studied before. Insights on this topic
could support researchers in making more objective decisions
regarding multi-echo fMRI processing prior to brain network
analyses.

Hence, in the current paper, the effect of different echo
combinations, with or without additional postprocessing,
on resting-state networks is evaluated. In our approach, five
different echo combination methods will be applied to multi-
echo resting-state fMRI data: Average (Avg), tSNR, tCNR,
OC and T2

∗-FIT (T2
∗-weighted, weights calculated per vol-

ume) echo combination. The temporal and spatial quality
measures between resting-state networks resulting from the
different echo combinations will be compared between each
other and between the second echo (SE) reference. Based
on previous work we expect enhanced temporal and spatial
quality of RSNs for the tCNR, OC and T2

∗-FIT combina-
tion compared to the SE and Avg reference. Additionally,
we hypothesize that the T2

∗-weighted combinations (OC and
T2

∗-FIT) improve the temporal or spatial properties of the
RSNs compared to the other multi-echo methods as a result
of the echo weight optimization based on the T2

∗ estimation
per voxel.

The contributions of this study are as follows. First, our
study sheds light on the currently unknown effects of dif-
ferent echo combination methods on RSNs. This is essential
because future ME studies could benefit from improved brain
network maps and time-series. Second, based on our analysis
regarding the effect of several pre-processing methods on
RSNs, other researchers might opt to adjust their fMRI pro-
cessing pipeline to further optimize the quality of networks.
Consequently, the reliability of results from studies that
assess the functioning of the brain enhances. Ultimately, this
contributes to the understanding of brain disorders and devel-
opment of more objective diagnosis and prognosis thereof.

II. MATERIALS AND METHODS
The following subsections describe the main steps
from the acquisition of theMRI data up until the evaluation of
the consistency metrics between different echo combination
methods. Fig. 1 shows a schematic of these analysis steps
required to obtain the final results.
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FIGURE 1. Schematic of the required analysis steps to obtain the consistency metrics between resting-state networks. 1) The raw data
are the multi-echo data, i.e. three time-series acquired at different echo times. 2) Pre-processing steps are applied. 3) The three
time-series are combined using the different combination methods, resulting in a single combined time-series. For the single-echo
reference, the second echo time-series is taken. 4) Group independent component analysis (ICA) results in groupwise spatial maps
and time-series. 5) Individual spatial maps and time-series are obtained from dual regression. 6) The resting-state networks of all
subjects and combination methods are evaluated for temporal and spatial differences.

A. PARTICIPANTS
Sixteen healthy subjects participated in this research and all
of them gave informed consent. None of the subjects had a
medical history of neurologic or psychiatric disorders and
they were between 20-65 years old (age = 43.4 ± 12.7 years
old, 11 females and 5 males). The study was approved by
the Academic Center for Epilepsy Kempenhaeghe (Heeze,
the Netherlands) based on METC approval N16.098.

B. DATA ACQUISITION
Scanning was performed on a Philips Achieva MRI scan-
ner (3 Tesla). At first, a T1-weighted anatomical scan was
recorded using a 3D spoiled gradient-echo sequence (repeti-
tion time (TR) = 8.3 ms, TE = 3.5 ms) resulting in a matrix
size of 240 × 240 x 180 with isotropic voxels of 1 mm.
ME (3 echoes) images (300 volumes per echo) were acquired
using a gradient-echo EPI sequence (TR = 2000 ms, TE =

12 ms, echo spacing = 23 ms, flip angle = 90◦, acquisition
bandwidth = 4298 Hz/pixel). In total, 26 slices with a slice
thickness of 4.5 mm (no gap) were obtained with an in-plane
resolution of 3.5 mm x 3.5 mm and a final in-plane resolution
of 3.5 mm x 3.5 mm. A SENSE acceleration factor of 2.7 was
applied in the read-out direction.

C. IMAGE PRE-PROCESSING
The fMRI images were slice timing corrected using the
Statistical Parametric Mapping (SPM) toolbox, version
12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12) [20],
implemented in MATLAB version R2019a (MathWorks).
The toolbox MCFLIRT from the FMRIB Software Library
(FSL) 6 package was used to estimate the realignment
parameters of the volumes to the reference image [21]. The
reference imagewas chosen to be the first image of the second
echo due to its echo time being closer to the brain’s average
T2∗ time. The estimated realignment parameters resulting
from echo 2 were applied to echo 1 and 3 using FSL’s
FLIRT. After these minimal processing steps, the echoes
were combined using the different combination schemes as
described in the next subsection ‘D. Multi-echo combination
methods’ in a custom MATLAB script (MATLAB version
R2019a, MathWorks). Subsequently, the T1-weighted image
was coregistered to the functional reference image using
a 6 degrees-of-freedom transformation, estimated based on
normalized mutual information. The T1-weighted images
were then intensity non-uniformity corrected and segmented
into CSF, WM and GM, followed by normalization of the
coregistered anatomical and functional images to MNI space
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by applying a 12 degrees-of-freedom transformation using
SPM12.

In standard research practice, additional denoising meth-
ods such as bandpass filtering or smoothing are applied
to further clean the BOLD signal. However, it has been
shown before that these steps may not be necessary or can
even decrease effect sizes following ME combination and
cleaning [22]. To date, the effect of additional denoising
on the quality of resting-state networks is still unknown.
Therefore, the temporal and spatial quality measures of the
resting-state networks were assessed for the following three
cases:

1. No additional denoising.
2. Minimal smoothing with a Gaussian filter with a full

width at half maximum of 5 mm [23] and bandpass filtering
between 0.05 and 0.2 Hz. Conservative smoothing and band-
pass filtering were applied to ensure these postprocessing
steps did not completely obscure the effect of ME combina-
tion. The bandpass cutoff frequencies were chosen to remove
the most common fMRI artifacts: the 0.2 – 0.25 Hz range
is linked with contamination of respiratory signals while the
0 - 0.05 Hz is frequently obscured by scanner drift
(0 – 0.01 Hz) and respiration-induced CO2 fluctuations
(0 – 0.05 Hz) [12].

3. Smoothing as described above, followed by automated
ICA-based cleaning using ICA-based Automatic Removal
Of Motion Artifacts (ICA-AROMA) [24] to reduce motion
artifacts. Subsequently, the time-series were bandpass filtered
as described above. This order of denoising steps was recom-
mended in ICA-AROMA’s manual.

D. MULTI-ECHO COMBINATION METHODS
For each described case, the separate echo images were com-
bined according to five different combination schemes below.
In addition we used the Avg and SE as reference.

1) OPTIMALLY COMBINED (T2
∗-WEIGHTED)

The OC combination method was developed by Posse et al.
[13] and is the combination scheme implemented in the ME
denoising method ME-ICA by Kundu et al. [25]. The OC
algorithm optimizes contrast by estimation of T2∗ for each
voxel [13], leading to reduction of susceptibility artifacts and
thermal noise [26]. The weights for echo combination are
calculated as follows:

wn,OC =
TEn·e

−TEn
T2

∗∑3
i=1 TEi·e

−TEi
T2

∗

(1)

where TE is the echo time and T2∗ is the estimated T2∗ from
each voxel, and the indices n and i relate to the echo number.
After calculating the weights for all three echo images, the
combined fMRI time-series of each voxel can be calculated
by taking the weighted average using the optimally combined
weights.

2) T2
∗- FIT (T2

∗-WEIGHTED
The weights of the T2

∗-FIT method as described by Heu-
nis et al. [17] are also calculated from Equation 1. The
T2∗ values and weights, however, are estimated per volume
instead of over the whole time-series, i.e. not only each echo
will have a different weight but also each volume.

3) tSNR-WEIGHTED
In the tSNR-weighted echo combination method, first the
tSNR of every voxel’s time-series of each echo image is
calculated. The tSNR is defined as the mean time-series
divided by its standard deviation. Subsequently, the following
equation can be used to calculate the weight,wn, tSNR, of the
image with echo n [15]:

wn,tSNR =
tSNRn∑3
i=1 tSNRi

(2)

where tSNRn is the temporal signal-to-noise ratio of the
image with echo n, and i the echo index used to sum over all
three echo images. After calculating the weights for all three
echo images, the combined fMRI time-series of each voxel
can be calculated by taking the weighted average using the
tSNR-based weights.

4) tCNR-WEIGHTED
The tCNR-weighted echo combination approach, introduced
by Poser et al. [18], combines the TE and tSNR values for
each echo image reflecting the temporal contrast-to-noise
ratio of the images. The advantage of this method is that it
does not make any assumptions about the signal and noise
because it is measured from the data while it simultane-
ously incorporates the echo time simultaneously. The tCNR
weights are calculated as follows:

wn,tCNR =
tSNRn·TEn∑3
i=1 tSNRi·TEi

(3)

Again, the weighted average is calculated to retrieve the
final tCNR-weighted combined fMRI image.

5) AVERAGE REFERENCE
To compare the RSNs of ME combinations to a simple
multi-echo reference, the average of the three echoes was
calculated, i.e. three echo weights equal to one third.

6) SECOND ECHO REFERENCE
The RSNs that are extracted from the ME combined scans
are compared to those derived from the SE, i.e. single-echo,
fMRI images. The TE of the SE images is equal to 35 ms.

E. NETWORK EXTRACTION AND SELECTION
RSNs were extracted by group-level ICA implemented
from the Group independent component analysis (ICA) of
fMRI Toolbox (GIFT, http://mialab.mrn.org/software/gift)
[27]. ICA is a widely applied method for blind source sep-
aration [28]. By assuming that the data consist of linear
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mixtures of unknown independent variables and by maximiz-
ing their non-Gaussianity, ICA facilitates the identification
of statistically independent components [29]. In fMRI, these
components are referred to as the RSNs. In group ICA, first
the subjects’ fMRI dimensionality was reduced based on a
two-stage principal component analysis, followed by extrac-
tion of independent components (fast ICA algorithm). The
number of components was set to 30 in order to obtain iso-
lated RSNs with minimal contamination from other networks
or subdivision into smaller components [30]. This resulted in
a spatial map (of z-scores) and time-series for each individual
component.

RSNs were identified using a goodness-of-fit approach
with the RSN atlas from Smith et al. as [31]. From this
atlas, a mask image of each RSN was compared to each of
the 30 components. For each component, the network that
scored the highest on this goodness-of-fit score was selected.
Subsequently, a visual inspection was performed to check
the quality of the match. Ultimately, the following eight
RSNs were identified: the default mode network (DMN),
right and left frontal parietal network (rFPN/lFPN), lateral
and medial visual network (latVN/medVN), somatosensory
network (SMN), auditory network (AN) and cerebellar net-
work (CN). Fig. 2 shows the identified general resting-state
networks [31].

FIGURE 2. Identified resting-state networks. Eight common resting-state
networks were identified from the fMRI data following independent
component analysis. Abbreviations: DMN = default mode network,
rFPN/lFPN = right/left frontoparietal network, lat/medVN =

lateral/medial visual network, SMN = sensorimotor network, AN =

auditory network, CN = cerebellar network.

F. QUALITY MEASURES
Multiple measures were calculated to compare the properties
of the RSNs derived from the combinationmethods described
above. These measures provide insights into the quality of the
spatial, i.e. related to the RSNmaps, and temporal, i.e. related
to the RSN time-series, domain.

1) TEMPORAL MEASURES
The first temporal measure that is implemented is the Pearson
correlation of RSN time-series with derived artifact-related

regressors (from here on called artifact correlation), which
was implemented to assess the networks’ extent of temporal
confounders such as motion, cardiac and respiratory compo-
nents. The absolute value of the correlation was calculated
to take into account negative and positive correlations. Two
motion regressors were derived: framewise displacement
(FD) and the derivative of root mean square variance over
voxels (DVARS). FD is an indicator of the head movement
between subsequent volumes [32] and was calculated from
the realignment parameters derived during the realignment
step. DVARS reflects the signal intensity changes between
subsequent volumes [32]. From the WM and CSF separately,
the first five principal components were extracted as imple-
mented in CompCor [33]. Signals from these regions are
often assumed to be of non-neural origin, mostly cardiac-
or respiratory-related [33]. DVARS and the WM and CSF
components were derived from the echo 1 scans as these
time-series are not yet ME combined and have the high-
est signal intensity and therefore assumingly highest artifact
content.

The second metric that is calculated is the dynamic range
(DR) [12], [34]. This feature has been used before to classify
independent components as either BOLD or non-BOLD and
to estimate the noise contribution in RSNs [34], [35]. Compo-
nents with higher DR have been associated with true BOLD
signals and those with lower DR as noise.

The third temporal metric is the low to high frequency
power ratio (LHFpow) reflecting the ratio of lower to
higher frequencies of which the latter is more often linked
to artifact-related power [34]. Similar to DR, components
with higher values of LHFpow are associated with RSNs
whereas lower ones are more likely to be noise [34].
The DR and LHFpow were both extracted by the GIFT
toolbox.

2) SPATIAL MEASURES
The first spatial consistency metric is the Pearson correlation
between the identified RSN spatial maps and corresponding
RSN spatial maps from the Smith et al. atlas [31] and is
referred to as atlas correlation. The second metric is the
spatial extent, i.e. the total number of ‘active’ voxels. The
number of ‘active’ voxels is defined as the amount of voxels
that exceeds a z-score of 3 [36]. In addition, the maximum
z-score for each network is obtained and referred to as spatial
stability [36]. Furthermore, to assess the overall strength of
the RSN and ability of group ICA to extract true RSN com-
ponents, the mean z-score is calculated. The spatial extent,
spatial stability and mean z-score are calculated for each
component after masking each RSN with the corresponding
binary RSN of the Smith et al. atlas to avoid the influence
of strong noise-related voxels on these metrics [31]. Finally,
in order to estimate the ratio between noise and true neuronal
signals within each component, the percentage of significant
voxels within the CSF and WM to the total number of voxels
of that RSN is calculated, referred to as percentage voxels in
CSF & WM.
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3) STATISTICAL ANALYSIS
Distributions of spatial and temporal measures are statisti-
cally compared between each combination method and the
reference methods (SE and Avg ME combination) using
paired t-tests after testing for normality with the Shapiro-Wilk
test [37]. p-values (α level = 5%, 1% and 0.1%) are cor-
rected for multiple comparisons using the Holm-Bonferroni
procedure [38]. Denoising improvements are compared for
each method with respect to the mean improvement of all
combinationmethods by one-sample t-tests. This is donewith
the aim to evaluate whether and which combination methods
benefited significantly more or less from denoising compared
to the others. Again, Holm-Bonferroni correction is applied
to correct for the numbers of statistical tests. For all t-tests
we also ran separate permutation tests to evaluate the validity
of the paired t-tests. Permutation tests can be more accurate
because there are no distributional assumptions that have to
be met and they are an exact approximation of the type I error
[39], [40]. We ran a paired sample permutation test based on
a t-statistic [41] using a Matlab package [42] and corrected
p-values again with Holm-Bonferroni testing. The following
settings were used: number of permutations = 5000, tail =

two-tailed test and α = 0.05. Finally, the observed effect
sizes and power for the temporal and spatial measures are
calculated and a sensitivity analysis is conducted to identify
the smallest detectable effect size with the current study
design using the G∗ Power 3 software package [43].

III. RESULTS
The performance for the combination methods with or with-
out additional denoising is described below. The section
is divided into the temporal and spatial domains of the
resting-state networks and also a section exploring the
network-specific performance. Subsequently, the effect of
denoising on the network quality was assessed. The results
for the sensitivity analysis for the current study design can be
found in Fig. S1. We do not report the permutation test results
as the p-values were either highly similar or slightly lower
than the paired t-tests, supporting the validity of the latter.

A. TEMPORAL PERFORMANCE
The temporal measures for each combination method are
shown in Fig. 3. Improvements in temporal measures versus
the reference methods can be found in Fig. S2.

Overall, the time-series of the RSNs from the OC and T2
∗-

FIT methods obtained the highest temporal quality measures.
Whereas the DR and LHFpow were the highest for T2

∗-
FIT (not significant and pcorr < 0.001 compared to SE),
they also correlated significantly less with the artifact-related
time-series compared to Avg (pcorr < 0.001). OC resulted
in significant improvement compared to Avg in all tem-
poral measures (artifact correlation pcorr < 0.01, DR pcorr
< 0.05 and LTHpow pcorr < 0.05). The overall temporal
mean observed effect sizes and power ranged from 0.141 to
0.278 and 18.4 to 54.8%, respectively, see Table S1.

FIGURE 3. A summary of the temporal measures for each multi-echo
combination method. T2*-FIT showed the highest performance
considering all measures. Compared to the other methods, the
correlation with artifactual time-series decreased, whereas the dynamic
range and low-to-high frequency power increased the most. The mean ±

95% confidence interval is shown. Statistical significance between the
distributions of all combination methods and the second echo or average
multi-echo combination were made. Holm-Bonferroni corrected p-values
< 0.05, 0.01 and 0.001 are indicated with *, ** and ***, respectively.
Abbreviations: tSNR = temporal signal-to-noise ratio, tCNR = temporal
contrast-to-noise ratio, LTH = low-to-high, ME = multi-echo.

To evaluate which nuisance regressors (motion, CSF or
WM) were reduced most optimally, the correlation with
separate regressors was analyzed. Regarding the motion
regressors FD and DVARS, the highest performance was
achieved for the tCNR combination (mean r = 8.82 ∗ 10−2),
see Fig. S3. For the tissue regressors, the T2

∗-FIT combina-
tion correlated the least (r = 1.18 ∗ 10−1).

B. SPATIAL PERFORMANCE
The performance of the combination methods in the spa-
tial domain is shown in Fig. 4. OC combination scored
significantly higher on minimal three out of the five spa-
tial measures compared to both reference methods, namely
the atlas correlation (pcorr < 0.001 vs SE and Avg), spatial
extent (pcorr < 0.01 vs SE and pcorr < 0.001 vs Avg) and
mean z-score (pcorr < 0.001 vs SE and Avg). Furthermore,
compared to Avg, the spatial stability (pcorr < 0.001) and
percent voxels in CSF & WM (pcorr < 0.05) improved sig-
nificantly. T2

∗-FIT and tCNR also significantly enhanced the
spatial quality, with tCNR obtaining the highest spatial sta-
bility and T2

∗-FIT the lowest percent voxels in CSF & WM.
Overall spatial mean observed effect sizes and power ranged
from 0.211 to 0.483 and 35.2 to 95.0%, respectively, see
Table S1.

Concluding, OC performed the most optimal. Whereas
OC was ranked first on three spatial measures (significantly
improved on three spatial measures compared to SE and on
all measures compared to Avg), the spatial performance of
T2

∗-FIT and tCNR followed.

VOLUME 11, 2023 114541



J. Pilmeyer et al.: Spatial and Temporal Quality of Brain Networks

FIGURE 4. A summary of the spatial measures for each multi-echo combination method. Optimal combination performed significantly
better than the second echo and average combination on minimal three out of five measures. Moreover, tCNR resulted in the highest
spatial stability and T2*-FIT in the lowest percent voxels in the CSF & WM. The mean ± 95% confidence interval is shown. Statistical
significance between the distributions of all combination methods and the second echo or average multi-echo combination were made.
The mean ± 95% confidence interval is shown. Statistical significance between the distributions of all combination methods and the
second echo or average multi-echo combination were made. Holm-Bonferroni corrected p-values < 0.05, 0.01 and 0.001 are indicated with
*, ** and ***, respectively. Abbreviations: tSNR = temporal signal-to-noise ratio, tCNR = temporal contrast-to-noise ratio, CSF = cerebral
spinal fluid, WM = white matter, ME = multi-echo.

C. NETWORK-SPECIFIC PERFORMANCE
The improvement of RSN quality resulting from different
ME combination methods was assessed at different brain
locations: anterior (DMN, lFPN and rFPN), central (SMN
and AN) and posterior (CN, medVN and latVN). Fig. 5
displays the improvements of overall RSN quality in these
brain areas with regards to the reference methods. Fig. S2
separates the overall quality into temporal and spatial mea-
sures. In accordance with previous results, the overall RSN
quality improved the most in T2

∗-FIT, followed by OC and
tCNR.

As expected, the anterior networks gained the most in
overall quality for the T2

∗-FIT and OC combination. This
gain is illustrated best in the spatial domain where both
methods improve in quality almost 10% and 30% compared
to SE and Avg combination, respectively. The Avg and tSNR
combination showed lower performance. For example, the
coverage of the lateral prefrontal cortex of the rFPN in the
Avg combination was found to beminimal (see Fig. 6), poten-
tially explaining the lower spatial extent and atlas correlation.
The tCNR also improved the anterior networks except for
the DMN. The spatial map of this network showed that the
medial prefrontal cortex region that belongs to the DMN was
extended more superior, up until the supplementary motor
area, which is not part of the DMN. Compared to SE, the
spatial metrics of the anterior networks were less explicitly
improved for the OC and T2

∗-FIT combination (9% and
10% on average, respectively). Interestingly, the ventrome-
dial prefrontal cortex region in the DMN was smaller for SE
and located more distant from the tissue-air boundaries, see
Fig. 6.

FIGURE 5. Overall quality improvement of anterior, posterior and central
brain networks compared to networks from the second echo and average
multi-echo combination. Improvements of overall (calculated over the
spatial and temporal domain) quality measures of anterior (default mode
network, left and right frontoparietal network), posterior (cerebellar
network, primary and lateral visual network) and central (sensorimotor
network and auditory network) networks are shown, as compared to
networks from the second echo (A) and average multi-echo combination
(B) references. Note that for the calculations of improvement in artifact
correlation and percent voxels in CSF and WM, the sign of change was
inverted (as lower artifact correlation and lower percent voxels in CSF
and WM correspond to more improvement). Abbreviations: RSN =

resting-state network, tSNR = temporal signal-to-noise ratio, tCNR =

temporal contrast-to-noise ratio, ME = multi-echo.

For the central (SMN and AN) networks, the difference
in performance of the OC and T2

∗-FIT versus the reference
methods was also substantially larger (on average enhanced
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FIGURE 6. Spatial group maps of three resting-state networks. The upper image shows the right frontoparietal
network for the Avg, OC and T2*-FIT combination. For the Avg combination, the coverage of the lateral
prefrontal cortex is minimal (brown arrows) and no activation can be seen in the left hemisphere (brown
circle). The middle image shows the default mode network for the SE, Avg and tCNR combination. The
activation coverage of the brain in the ventromedial prefrontal cortex is relatively small (red arrows) and more
distant from tissue-air boundaries for SE. The tCNR combination (yellow arrows) shows limited posterior
cingulate cortex activation. Moreover, the anterior activation is shifted towards the supplementary motor area
instead of where it is expected to be (medial prefrontal cortex) according to resting-state network atlases. The
lower image shows the somatosensory network for SE, OC and T2*-FIT. The SE network shows small coverage
ventrally along the cortex as opposed to OC (blue arrows), and especially T2*-FIT (pink arrows). Abbreviations:
SE = second echo, Avg = average, tCNR = temporal contrast-to-noise ratio, OC = optimally combined, rFPN =

right frontoparietal network, DMN = default mode network, SMN = sensorimotor network.

by 28% and 26% for OC and 17% and 13% for T2
∗-FIT, for

SE and Avg, respectively). The SMN improved most. The
spatial map for the SEmethod showed that the coverage of the
SMNwas restricted to the superior part of the cortex whereas
for the other methods the regions extended also towards the
ventral directions along the cortex. The improvement for the
posterior networks (CN, medVN, latVN) was less prominent
(compared to Avg) or almost nihil (compared to SE).

In the temporal domain, the T2
∗-FIT, tCNR andOC combi-

nations also improved the quality of the time-series compared
to either the SE or the Avg combination, see Fig. S2. Over
all measures and networks, the time-series of the T2

∗-FIT
method gained the most quality, with an increase of 13%
and 25% over the SE and Avg combination, respectively.
The largest improvements were observed in the anterior and
central brain networks.

D. THE EFFECT OF ADDITIONAL DENOISING
As can be observed from Fig. 7, two combination methods
benefited significantly more from smoothing and bandpass
filtering in the spatial domain: Avg and tSNR (both pcorr <

0.001 compared to the mean improvement). Another remark-
able finding is the fact that smoothing and bandpass filtering
decreased the quality of the RSN maps of the other methods
(pcorr < 0.001, < 0.01 and < 0.001 for SE, tCNR and T2

∗-
FIT, respectively). Other noteworthy effects were a general
(i.e. for all combination methods) increasing trend in spatial

extent and decreasing trend in spatial stability. These are
likely caused by the smoothing procedure, which could have
spread activation patterns and faded activation peaks. More-
over, the percentage of voxels in the CSF and WM was
slightly lower for most methods, probably a result of the
bandpass filter removing non-BOLD signals in CSF andWM.

Additional ICA-AROMA had only slight effects on the
spatial quality. The spatial quality of the tSNR combination
decreased whereas the performance of tCNR ‘recovered’.

In the temporal domain, several general trends could be
observed for both case 2 and 3. The nuisance correlation
decreased by almost 70% for all combination methods, see
Fig. S4. This could have been caused by the bandpass filter,
potentially removing coherent patterns of artifacts. Because
the signal was filtered with a bandpass filter, the dynamic
range dropped by about 20 percent for all combination meth-
ods. Finally, the LTHpow also dropped by about 40-60%,
likely caused by the bandpass filter removing relatively more
low frequency power. The differences of decrease in spec-
tral measures and artifact correlation between combination
methods, however, was minimal. Nevertheless, a subtle but
similar pattern as before was observed for case 2: tSNR
benefited the most from smoothing and bandpass filtering
(relatively most improvement in DR and LHFpow (pcorr <

0.01). Application of additional ICA-AROMA only slightly
improved the quality of the RSN time-series formostmethods
in the spectral domain when compared to no denoising.
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FIGURE 7. The effect of two additional denoising methods on spatial and
spectral quality. The upper images show spatial measures changes for
each combination method when A) smoothing and bandpass filtering and
B) additional ICA-AROMA are applied. The lower images show the
spectral measures (dynamic range and low-to-high frequency power)
changes when C) smoothing and bandpass filtering and D) additional
ICA-AROMA are applied. Statistical testing was performed to test which
combination methods improved more than the mean improvement.
Holm-Bonferroni corrected p-values < 0.01 and 0.001 are indicated with
** and ***, respectively. The gray line indicates the average improvement.
Abbreviations: tSNR = temporal signal-to-noise ratio, tCNR = temporal
contrast-to-noise ratio, ME = multi-echo.

IV. DISCUSSION
In this paper we evaluated the quality of the spatial and
temporal properties of RSNs between different multi-echo
combination methods. Overall, it was shown that the OC
and T2

∗-FIT combination outperformed the other methods.
The OC and T2

∗-FIT combination resulted in the highest
quality network time-series. TheOC combination allowed the
extraction of the highest quality spatial maps, followed by
T2

∗-FIT and tCNR. Compared to SE or the Avg multi-echo
combination references, most improvement was observed
in the anterior and central networks. Moreover, the effect
of denoising on the resting-state networks was assessed.
The least performing methods, i.e. the Avg and tSNR
combination, benefited the most from additional bandpass
filtering and smoothing. These results highlight the strength
of T2

∗-weighted combination schemes. For T2
∗-FIT, OC and

tCNR, minimal preprocessing is sufficient to extract robust
resting-state networks whereas other methods require addi-
tional bandpass filtering and smoothing to obtain comparable
network quality.

Compared to OC and tCNR, the T2
∗-FIT time-series

correlated less with artifact-related time-series and showed
lower artifact-related power characteristics. Potentially, the
temporally-dependent nature of the T2

∗-FIT algorithm, i.e.
the estimation of T2∗ per volume, could be inherent to this
difference in performance. For example, at time points in
which noise is more abundant, e.g. during inhalation or head
movement, the estimation of T2∗ for that voxel may be altered

as a result of the decrease in TE-dependence of the measured
signal. Consequently, with T2

∗-FIT, more optimal weights
can be assigned to the voxel at that time point. For accu-
rate separation of BOLD and non-BOLD components using
ICA, this T2

∗-based time-varying nature of combining ME
data could be fundamental. Note that these results should be
interpreted with caution as the effect sizes were just above
(d = 0.278) what is considered a low effect size [44].
OC outperformed the other methods on spatial quality,

followed by T2
∗-FIT and tCNR. The increased RSN robust-

ness for OC could be caused by the decreased sensitivity
to outliers by the estimation of T2

∗ over multiple volumes.
On the contrary, the OC and tCNR spatial maps contained
more voxels within the CSF. The small increase in extent of
both OC and tCNR comes at the cost of a percentual increase
of non-neural voxels within the spatial maps. Thus, spatial
maps derived by T2

∗-FIT showed to be still of high quality
with minimal overlap of the CSF and WM. Confirmatory,
the lower percentage of CSF and WM voxels in the T2

∗-FIT
networks is also reflected by the temporal measures which
indicate less contamination by artifacts (increase in DR and
LHFpow and decrease in artifact correlation).

The T2
∗-FIT and, especially, OC spatial maps benefited

the most from ME, i.e. in comparison to SE, in the anterior
networks. One possible explanation is that ME combinations
diminish dropout of signals that are prone to susceptibility-
related artifacts. Limbic and anterior areas are often affected
by signal loss as their T2∗ values are reduced from the
adjacency to tissue-air boundaries [45], [46]. Indeed, visual
inspection indicated that the ventromedial prefrontal cortex
cluster of the DMN covered less brain volume closer to
the tissue-air boundaries for SE. This difference was subtle
compared to T2

∗-FIT but more pronounced compared to OC.
Another reason could be the fact that the BOLD sensitivity,
as observed in the spatial maps, is closer to optimal for T2

∗-
FIT or OC due to its voxel-specific T2∗ estimation. It is
known that maximum BOLD sensitivity can be reached if
the TE approximates T2∗ [11], [47]. The per-voxel estimates
of the weights (and thus tuning of the combined echoes
and TEs) based on the T2

∗-FIT and OC formula take this
approximation into account and could underlie the improved
spatial quality. Previous research has already shown that T2∗

is dependent on the location in the brain [16]. In line with this,
OC and T2

∗-FIT improved anterior spatial network quality
the most out of all methods compared to Avg, suggesting it
could be caused by the optimized echo weights and contrast.
Thus, the results provide evidence for both, the minimiza-
tion of signal dropout and the increase in BOLD sensitivity,
mostly reflected in the anterior brain area.

The lower tSNR quality metrics might be a result of the
way the tSNR-weighting scheme allocates higher weights
to earlier echoes. Signal decay increases with TE, i.e.
early echoes have significantly higher signal amplitude. The
‘noise’, or standard deviation of the signal σ , consists of the
BOLD fluctuations and non-BOLD noise (including physi-
ological artifacts and thermal ‘white’ noise). The σ differs
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only minimally between echoes compared to the mean of
S, making the S/σ weight calculation primarily dependent
on the signal S. This causes the combined echo time-series
to be heavily weighted towards the early echoes. More-
over, in resting-state fMRI, the BOLD fluctuations are the
signals of interest. As the BOLD fluctuations are included
in the ‘noise’ σ , i.e. the standard deviation of the signal,
in the tSNR formula, echoes with higher fluctuations in
BOLD-related signals are penalized. Future studies might
opt to recast the formula, e.g. by separating the BOLD
fluctuations from the non-BOLD noise by filtering or by
substituting the noise components with percent explained
variance in the data by nuisance regressors [48]. By using
the BOLD fluctuations as signal S and non-BOLD noise as
noise σ , the weight calculation takes into account the higher
BOLD contrast in the longer TE images. Likewise, in the
tCNR-weighted combination, the added TE-factor takes into
account the superior BOLD contrast of the longer echoes. The
tCNR-weighted combination thus calculates weights that are
balanced between signal intensity and BOLD contrast. As our
results indicate, networks extracted from tCNR have superior
spatial quality compared to tSNR but still lower than the T2

∗-
weighted methods (OC and T2∗-FIT). Moreover, temporal
quality metrics (dynamic range and low-to-high frequency
power) suggest that the networks from the tSNR combination
demonstrate less RSN-related power. This could be a result of
the decreased BOLD sensitivity since echoes with a longer
TE are weighted less.

Bandpass filtering and smoothing improved the network
quality of the Avg and tSNR combinations. Interestingly,
these methods showed the lowest performance before addi-
tional cleaning. Potentially, these combinations were less
efficient at reducing physiological and motion artifacts. The
lower performance in the temporal domain supports this
hypothesis. For the Avg combination, the artifact correlation
revealed the largest abundance of motion, WM and CSF
sources in the time-series. tSNR scored the lowest on spec-
tral quality. The fact that the tSNR-combined time-series
had the lowest DR and LHFpow of all methods suggests
a larger abundance of non-BOLD high-frequency signals.
The 0.2 – 0.25 Hz frequency range is associated with con-
tamination of respiratory signals [12]. Bandpass filtering
could have reduced the impact of artifact-related signals in
the time-series of the Avg- and tSNR-combined networks.
Accordingly, the DR and LHFpow of the tSNR-combined
time-series relatively improved the most in DR and LHFpow
compared to the other methods. More structural removal of
these artifacts, e.g. by RETROICOR [49] or ME-ICA [25],
[26], or simulations could aid in the process of identifying
the origin of this power reduction.

Remarkably, the spatial quality of T2
∗-FIT, tCNR and

OC decreased following bandpass filtering and smoothing.
Potentially, smoothing decreased the higher BOLD contrast
for these combinations. Smoothing usually reduces the ran-
domly distributed noise [11]. However, smoothing of data

with minimal artifacts could reduce the BOLD contrast
instead. Moreover, it has already been shown before that
smoothing can diminish or abolish ME-based denoising ben-
efits in task-based fMRI [22]. Alternatively, the lowpass
cutoff frequency of the bandpass filter at 0.05 Hz could have
removed relevant BOLD signals. There is evidence of slow
oscillatory (0.01 – 0.05 Hz) signals of neural origin [50], [51],
locatedmore significantly in the frontal, parietal and occipital
cortices. If artifact-related signals in that frequency range
obscured true BOLD signals in the other methods, it could
have enhanced performance.

Additional ICA-AROMA did not improve the networks’
spatial and spectral quality for any of theME combinations in
comparison to merely bandpass filtering and smoothing. Yet,
there are other ICA-based methods for cleaning the BOLD
signal which not have been evaluated here. For example,
Tedana [52], a software package that classifies ICA com-
ponents as BOLD or non-BOLD based on TE dependence
regresses out the latter components from the signal to reduce
the amount of non-neural contributions. Another common
method is ICA-FIX [53], which calculates temporal and
spatial measures of the components and classifies them as
BOLD and non-BOLD after model training on a by FSL-
or user-provided dataset with manually provided labels. The
evaluation of the effect of Tedana and ICA-FIX was, how-
ever, not performed in this study because Tedana requires
multi-echo data and we aimed to also compare the results
to SE. ICA-FIX requires the need of a trained dataset and
the provided pre-trained dataset has shown inaccurate compo-
nent classification results and loss of signal [54]. Therefore,
we studied the effect of ICA-AROMA, a flexible, easily
implemented and well-validated denoising algorithm which
has shown to preserve the signal of interest [24], to lead
to robust RSN reproducibility while removing noise [54],
[55] and increase tSNR [55]. Future studies are required to
evaluate whether other ICA-based cleaning methods could
lead to further improvements in RSN network quality.

One of the limitations of this study is the small sample size.
However, because samples are compared between ME com-
bined datasets from the same participant, i.e. a within-subject
design, statistical power increases [56], [57]. The sensitivity
analysis showed that true effects of small to medium effect
sizes (0.375) could still be detected in this study design with
a power of 80%. Observed effect sizes ranged from low to
high [44], with the mean effect size of spatial measures being
close to medium. The magnitude of the effect sizes for the
temporal measures, however, was in the range of what is con-
sidered a low effect size [44]. Therefore, a study with more
participants is required to confirm these findings. Besides
that, more females were scanned than males (approximately
a ratio of 2:1). There is evidence of sex differences in RSN
connectivity [58], [59]. For example, with increasing age, the
central autonomic network has been shown to be function-
ally altered in females compared to males, reflecting altered
autonomic regulation [59]. Another study demonstrated that
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the most important contributors to gender prediction based on
functional connectivity were connections within the DMN,
FPN and SMN [58]. Nonetheless, we analyzed the effects of
ME combinations within a participant, thereby reducing the
bias of each comparison. Yet, we cannot rule out the existence
of a sex∗ME combination interaction effect.

In summary, the T2
∗-weighted combinations allowed the

extraction of robust and denoised functional maps and
time-series of RSNs. Spatial and temporal measures indi-
cated an enhanced performance compared to the reference
methods. Moreover, additional denoising, such as spatial
smoothing, bandpass filtering and ICA-AROMA, may be
unnecessary for the T2

∗-weighted combinations. Conse-
quently, the functional maps remain as intact as possible,
whereas smoothing could decrease the BOLD contrast and
bandpass filtering could remove low oscillatory neural sig-
nals of interest. Studies related to the investigation of the
temporal aspects of RSNs might opt to combine ME-fMRI
data using the T2

∗-based algorithms. An example of such
a study could be the evaluation of RSNs using the wavelet
coherence analysis in which phase shifts are a key factor [60].
Artifacts, such as the respiratory artifacts, that are left in the
RSN time-series could bias these analyses significantly as
these are often emerging as repeating temporal patterns. T2

∗-
weighted combinations could decrease the noise correlation
and cause a relative power reduction in the high frequency
ranges of this physiological confounder. Finally, as bandpass
filtering may not be required, potential ultra-low oscillations
of neural origin will be left in the BOLD signal.

V. CONCLUSION
The application of multi-echo fMRI in future studies is
warranted thanks to its significant increase in BOLD sen-
sitivity when compared to conventional single-echo fMRI.
Here, we evaluated the effect of different echo combination
methods on the quality of resting-state networks. It was
found that the OC and T2

∗-FIT combinations performed
better than the second echo and simple multi-echo average
weighting scheme. Analyses of network time-series demon-
strated that the OC and T2

∗-FIT combination reduced the
artifact-related signals most adequately. The OC method
demonstrated the most optimal spatial quality measures.
Nonetheless, the T2

∗-FIT functional maps still achieved
robust and consistently high scores on spatial quality, includ-
ing the lowest percentage of voxels overlapping with CSF and
WMregions. The anterior networks gained themost in overall
quality for the T2

∗-weighted echo combinations, potentially
reflecting the reduced signal loss in regions that are prone
to susceptibility artifacts. Furthermore, additional postpro-
cessing methods to clean the BOLD signal, specifically
spatial smoothing, bandpass filtering and ICA-AROMA,
were unnecessary for OC and T2

∗-FIT. These T2
∗-weighted

combination methods resulted in similar network quality
as networks that were derived following other multi-echo
combinations and postprocessing steps. Therefore, we rec-
ommend future resting-state network studies to apply the OC

and T2
∗-FIT combination without these additional denoising

steps. Minimizing the amount of filtering and rescaling of
the fMRI images could be beneficial as the original BOLD
contrast remains largely untouched. Limitations of the current
study include the relatively high repetition time and low sam-
ple size. Future studies could examine the effect of T2

∗-based
combinations on dynamic network interactions or assess its
value in diagnosis or prognosis in populations of specific
neuropsychiatric disorders for which fMRI data are still sub-
stantially affected by physiological or motion artifacts.
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