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ABSTRACT Ship Pipe RouteDesign (SPRD) has always been a challenging and critical aspect in the detailed
design for various types of ships. However, existing layout methods are inefficient, existing algorithms lack
consideration for collaborative layouts in practical engineering, true intelligent design has not yet been
achieved, and the issue of collaborative layout of pipes has been insufficiently researched. Based on the
aforementioned research status, this paper proposes a novel collaborative pipe layout method. Firstly, a high-
dimensional vector encoding technique to innovate the underlying mathematical representation of pipes
is proposed, breaking free from traditional constraints. Secondly, a powerful and engineering-applicable
hybrid AA-SPOP algorithm is incorporated, which is based on the heuristic swarm intelligence algorithm
known as Artificial Fish Swarm Algorithm (AFSA), exhibits advantages such as high global optimization
efficiency and strong adaptability. To mitigate potential issues like suboptimal local optimization and high
sensitivity, this paper proposes a parameter adaptive equation and a series of optimization adjustment.
Thirdly, a collaborative pipe layout method that considers support equipment is proposed. This paper
effectively addresses the lack of research in this area by introducing branch pipe collaboration methods and
energy zone guidance methods. Finally, through engineering simulation experiments, the paper demonstrates
the efficiency, feasibility, and cutting-edge nature of the proposed collaborative layout optimization method.

INDEX TERMS Heuristic hybrid algorithm, ship pipe and equipment collaborative layout optimization,
ship pipe route design (SPRD), vector encoding technique.

I. INTRODUCTION
The piping system of ships, resembling a complex orthogonal
spider web, serves as a core system for transporting vari-
ous substances such as water, oil, and natural gas required
for ship operation and living areas. The Ship Pipe Route
Design (SPRD) is crucial for ensuring the safety of the entire
ship, particularly in terms of the coordinated design of the
overall pathway [1]. SPRD is typically carried out during
the detailed design phase of ship construction [2], requiring
a comprehensive consideration of factors such as structural
spatial constraints and system functionality specific to ships
[3]. Over the past few decades, optimizing the layout of ship
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pipe systems has been a significant research topic in the
field of shipbuilding. Despite the continuous iteration and
advancement of numerous optimization methods, human fac-
tors still play a significant role in the process. In recent years,
with the continuous development of computer technology and
increasing concerns about energy efficiency and environmen-
tal impact, the study of piping collaborative layout in ships
has become increasingly important. By implementing ratio-
nal design and optimizing the layout of the piping system, it is
possible to maximize the performance of ships.

A. RECENT RESEARCH
Since the mid-20th century, scholars have conducted exten-
sive research on optimization of ship pipe routing. This
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includes pipe path encoding methods, pipe path optimization
algorithms, and collaborative layout among multiple pipes.

1) RESEARCH ON ENCODING TECHNIQUES AND
OPTIMIZATION ALGORITHMS
Currently, the algorithms involved in pipe layout design
mainly consist of deterministic algorithms, heuristic algo-
rithms, and hybrid or enhanced algorithms. Deterministic
algorithms (such as Dijkstra [4], A ∗ [5], and line search
methods [6]) search for globally optimal pipe paths based on
the properties of the layout. They exhibit high computational
efficiency but lack diversity and innovation. Moreover, they
generally rely on grid spaces, which increase the difficulty
of preprocessing and computational memory requirements.
Heuristic algorithms, in comparison to deterministic algo-
rithms, obtain multiple solutions through random searches
and iterations [7]. These include evolutionary intelligence
algorithms like Genetic Algorithm (GA) [8], Differential
Evolution Algorithm (DE) [9], and swarm intelligence algo-
rithms like Ant Colony Optimization (ACO) [10], Parti-
cle Swarm Optimization (PSO) [11], Whale Optimization
Algorithm [12], among others. However, these algorithms are
sensitive to parameter settings, may converge to local optima,
and have higher requirements for pipe encoding methods.
Hybrid or enhanced algorithms combine the advantages of the
previous two types, such as GA-A∗ [13], MA-NSGA-II [14]
and IDAACO [15]. However, existing research has found that
hybrid algorithms based on traditional grid encodingmethods
may not be well suited for irregular shapes and complex
problems.

In recent years, heuristic swarm intelligence algorithms
have demonstrated significant advantages in pipe layout [16],
particularly the Artificial Fish Swarm Algorithm (AFSA)
[17], which has shown superiority compared to other heuristic
algorithms. Huang et al. [18] successfully applied AFSA to
robot path planning, while Zhang et al. [19] utilized it in
the path planning of Autonomous Surface ships. Practical
applications have shown that AFSA possesses the global
search capability of GA, the fast optimization ability of PSO,
and the adaptability and robustness of ACO.

Currently, the optimization algorithms used for SPRD,
especially heuristic algorithms, typically rely on grid spaces
[20], [21], [22]. This obviously increases the difficulty of lay-
out space preprocessing, consumes significant memory and
time, and cannot be applied to layouts with irregular shapes.
However, most existing pipe encoding methods mainly adopt
grid-based encoding and lack efficient and concise dedicated
pipe layout encoding methods. This limitation hinders the
efficient use of hybrid algorithms in handling complex ship
pipe layouts, as they cannot provide sufficient flexibility and
adaptability. Currently, a considerable number of non-grid
encoding methods have emerged in various fields [23], [24],
[25], [26]. In light of the shortcomings of existing encoding
methods for pipes, this paper pioneers a new and highly

practical encoding approach that overcomes these limitations
and offers enhanced utility.

2) RESEARCH ON COLLABORATIVE LAYOUT OPTIMIZATION
The collaborative layout design of pipes primarily focuses
on the coordinated design of main and side branch pipes,
or the mixed collaboration design of multiple different types
of pipes. In actual ship pipes, over half of the quantity com-
prises branch pipes [27], which interact with and constrain
each other. Currently, optimization methods for branch pipe
layout include the straight branch method [28] and the prob-
lem decomposition method [29]. The main principle is to
decompose the branch pipe system into multiple individual
pipes and further optimize them by setting energy influence
parameters and employing different collaborative algorithms.
However, an analysis reveals that the aforementioned meth-
ods still have some issues, such as dependence on grid-based
spaces and susceptibility to local optima. Therefore, research-
ing a suitable branch collaboration method is crucial for the
layout of mixed pipes.

In ship pipe layout problems, in addition to considering the
collaboration between pipes, it is also important to consider
the collaborative layout between pipes and support equip-
ment. Some researchers have studied this aspect [30], [31],
generally focusing on optimizing support equipment based on
factors such as pipe stress, resistance, and material analysis.
However, there is still a lack of feasible approaches to achieve
the optimal integration of both objectives, and the research is
still inadequate.

B. ARTICLE INNOVATION AND SIGNIFICANCE
This article addresses the bottleneck issues in the field of
SPRD and proposes a novel ship pipe collaborative layout
optimization method. The innovations and improvements of
the proposed method can be summarized in the following
three aspects.

First, in terms of mathematical representation of pipes,
a high-dimensional vector encoding method tailored to pipe
characteristics has been proposed. It breaks away from the
limitations of traditional grid-based encoding approaches.

Second, in terms of optimization algorithms, a hybrid
heuristic swarm intelligence algorithm called AA-SPOP is
introduced based on the vector encoding. This algorithm is
capable of providing more precise and diversified collabora-
tive layout solutions, significantly improving the efficiency
of SPRD and making it more intelligent.

Third, addressing the current research gap in collaborative
layout within the pipe domain, novel collaborative opti-
mization methods are proposed to address the challenges of
mixed-type pipe collaboration and pipe equipment collabora-
tion. These include the vector projection branch method and
the energy-guided optimization method for support equip-
ment. These approaches contribute valuable insights to this
field.
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FIGURE 1. The example of rectangular envelope processing. (a) Before
envelope processing. (b) After envelope processing.

Through these innovative improvements, a new pipe col-
laborative layout mechanism is established, providing a new
perspective for the SPRD and making a novel contribution to
the field of pipe collaborative layout.

II. SPRD FORMULATION
A. MATHEMATICAL ANALYSIS OF LAYOUT SPACE
Pipes are distributed throughout various parts of a ship, partic-
ularly in the cabin of ships. The layout of the pipe systemmust
make efficient use of limited space and be coordinated with
other equipment, compartments, and structures to avoid inter-
ference or conflicts. SPRD primarily involves designing the
entire ship’s piping systemwithin a limited three-dimensional
space, following specific engineering specifications and opti-
mization objectives.

Before designing pipe layouts, it is essential to conduct
research and analysis of the layout space to understand
the locations of pipe interfaces and the layout require-
ments for various areas within cabin. In the layout space,
equipment is generally considered as obstacles or infeasible
areas. To describe the geometric shapes of these obstacles,
a subdivision rectangular enveloping method is used for
approximate modeling. This method is widely applied due to
its simplicity in calculation and high accuracy of represen-
tation [32]. It mainly involves constructing a combination of
rectangular envelopes for different areas of the equipment,
such as the main body area, interface area, and reserved
area. The illustration below (Fig. 1) demonstrates this
concept.

The layout environment and equipment of ships are special,
and certain areas in the layout space often favor or exclude the
placement of pipes. To address this, different energy zones
are defined to guide the desired path of ship pipes, ensuring
that the pipe layout meets safety, operational, and efficiency
requirements. The concept of energy zones is similar to
the rectangular enveloping method, primarily enveloping the
areas around equipment or structures. These energy zones
are virtually defined as square spaces based on pipe design
specifications. Table 1 illustrates themain aspects considered,
including guiding and exclusionary regions, within these
energy zones.

TABLE 1. Energy zone setting specifications.

B. HIGH-DIMENSIONAL VECTOR ENCODING METHOD
FOR SPRD
Currently, the most widely used method for analyzing pipe
layout is the grid-based approach. However, this method
has several limitations, such as limited discrete accuracy,
spatial layout distortion, high time cost, and difficulties in
grid precision division. To address these issues, this paper
proposes a novel pipe encoding technique called Spatial
High-Dimensional Vector Encoding, which is characterized
by its simplicity, universality, flexibility, and continuous
processing. The detailed principles of the high-dimensional
vector encoding are as follows:

1) PREPROCESSING OF LAYOUT SPACE
The grid-based method primarily involves the discretization
of regular spatial structures. It presents challenges in selecting
an appropriate grid precision, requires lengthy preprocess-
ing, and faces difficulties in dealing with irregular shapes in
continuous spaces. Additionally, path optimization can only
occur along grid trajectories. Fig. 2 illustrates a comparison
between the grid-based method and the approach presented
in this paper (taking the xy-plane as an example, with a grid
precision assumed to be 1). In Fig. 2(a) and (b), 1 represents
regular feasible regions, 0 and 2 represent infeasible regions,
and black dots denote the starting and ending points of paths.
Fig. 2(a) depicts a regular rectangular space, but the red path
along the digit 2 is an irregular diagonal path, which does
not conform to the grid-based principle. Fig. 2(b) shows an
irregular elliptical space, where the region marked by 0 is
typically located at the edges or outside of irregular spaces.
As indicated by the red region, the solution accuracy is com-
promised at the spatial edges, preventing accurate arrival at
the target point.

In contrast, the vector-based approach imposes no limi-
tations on the shape of the layout space and is suitable for
irregular spatial shapes such as triangular prisms, trapezoidal

116764 VOLUME 11, 2023



H. Zhang et al.: Collaborative Layout Optimization for Ship Pipes

FIGURE 2. Comparison of path optimization results using different encoding methods. (a) Regular space (grid encoding). (b) Irregular space (grid
encoding). (c) Irregular space (vector encoding) 1. (d) Irregular space 2 (vector encoding).

FIGURE 3. Example of the principle of spatial vector encoding.

prisms, and others. The entire spatial layout is primarily
characterized using multidimensional x, y, and z vectors,
representing the coordinates of pipe path nodes and the posi-
tions and shapes of various spatial components. It avoids the
issue encountered by grid-based methods, where paths must
be optimized along grid trajectories. As shown in Fig. 2(c)
and (d), for two irregular spaces, the xy coordinate vectors
only need to satisfy the prescribed Equation (1), where a, b,
and c are constant parameters. Vector points can be located
anywhere in space and are not constrained by grids. They can
follow diagonal or straight paths and various other trajecto-
ries. Multiple paths can be generated by connecting vector
points. {

y = ax2 + bx + c
y = m+ ax + b

(1)

2) MATHEMATICAL EXPRESSION
To optimize the representation of piping path, and meet
engineering specifications, a novel encoding method for is
proposed, mathematically expressed as shown in Equation
(2). This includes the starting point S, a list of vector pointsV ,
and the endpointE . As per the equation, the high-dimensional
vector list comprises coordinate vectors xi, yi and zi(i = 1,
2, . . . . n), as well as constraint vectors f and l. Coordinate
vectors represent the coordinates of points along the path,

FIGURE 4. Principle of vector initialization. (a) Gaussian distribution.
(b) Random distribution.

where each (xi, yi, zi) forms a three-dimensional coordinate
vector point representing the path nodes. Vectors f and l
control each coordinate vector point, providing auxiliary
guidance for algorithm optimization. It’s important to note
that f and l vectors are not visually represented in space
but actively participate in the calculations among coordinate
vector points, thereby optimizing the path trajectory. The
principles of coordinate vectors and control vectors will be
elaborated upon below.

The initial values of coordinate vector points are systemat-
ically generated based on the shape, range, and the positions
of the pipe’s start and end points within the layout space.
Through analysis and validation, it has been determined that
Gaussian distribution is an effective method for generat-
ing these initial values. Fig. 4 illustrates a comparative test
between the Gaussian distribution method and the conven-
tional random method (with the same start and end points).
By adjusting the mean and standard deviation, the initial
positions of vector points can be controlled within the desired
range effectively. Using this method, a series of coordinate
vector points in three-dimensional space is generated, along
with the initial configuration of paths, as shown in Fig. 3
(the colors are only for distinguishing each path and their
associated coordinate vector points). From the figure, it can
be observed that a series of coordinate vector points are
generated within the square space, along with their initial
movement trends. Initial paths can be generated by con-
necting the vector points, and subsequent optimization of
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FIGURE 5. The example of Cross-Guiding process.

coordinate vector points results in the desired path. This
method, in contrast to grid encoding, is not constrained by
grids or spatial limitations.

Pipe = {S,V ,E} (2a)

V = [(x1, y1, z1, f1, l1) , · · · , (xn, yn, zn, fn, ln)] (2b)

The roles of control vectors f and l differ, with f acting as a
constraining factor and l as a guiding factor. The fundamental
principles underlying these roles are analyzed as follows:

The main role of control vector l is to constrain the move-
ment between individual coordinate vector points. Equation
(3) calculates the Manhattan distance |lnln−1| between con-
necting points, ensuring compliance with the minimum
distance requirement (100mm) as per engineering standards.
Equation (4) enforces the constraint that three adjacent vector
connection points cannot be collinear, with n denoting the
label of each point and m representing the maximum point.
It is important to note that this equation is applicable when
the start and end points are on different planes, effectively
reducing computational complexity.

|lnln−1| = |xn − xn−1| + |yn − yn−1| + |zn − zn−1| (3)

0◦ <

(
180
π

)
cos−1

(
lnln−2
|ln| |ln−2|

)
< 180◦, n = 3, 4 · · ·m

(4)

Another control vector, f , is the Cross-Guidance Vector,
which determines the quality of coordinate vector points
by assessing orthogonal plane obstacles. This control vector
enhances the precision and speed of global optimization. The
approach involves a two-tier cross-guidance range search for
each coordinate vector point along six orthogonal extension
directions: x, -x, y, -y, z, and -z. Using point P2 in the xy-plane
as an example, as illustrated in Fig. 5, there are two levels
of search assessments (highlighted in the gray area). After
the first-tier global assessment, it is evident that direction
AC is unobstructed across the entire global search range,
designating it as the optimal feasible direction, resulting in a
corresponding increase in the overall fitness value by n×H .

Here, n denotes the number of feasible directions, and H
represents the guidance value. Following the second-tier local
assessment within the m×m range (with m set at 10% of the
spatial extent), it was observed that direction D encountered
an obstacle, resulting in a reduction of the overall fitness value
by n × F , where F represents the decay factor. To ensure
both precision and stability in the algorithm, the value of m
adheres to the formula m = m/t , where t denotes the number
of iterations. In this study, values of H and F are chosen to
be around ±100.

C. CONSTRAINTS AND EVALUATION FUNCTION
Pipe layout design for ships should consider the layout
environment and engineering design background, along with
understanding the optimization objectives and constraints of
pipe paths [33]. In order to meet the requirements of different
engineering backgrounds for pipe layout design, a com-
prehensive evaluation should be conducted from multiple
perspectives. The main summary of optimization objectives,
constraints, and the design of evaluation functions in this
study is as follows:

1) OPTIMIZATION OBJECTIVES AND CONSTRAINTS
The optimization objectives for pipe layout are as follows:

(1) Minimize the length of the path.
(2) Minimize the number of elbows in the pipe, while

adhering to the minimum bending requirements.
(3) Optimize the placement of the pipe to comply with

the requirements of the energy zones, ensuring proximity to
bulkheads, equipment, etc., and avoiding restricted areas.

(4) Parallel layout of closely spaced pipes of the same type.
(5) Consider different operational conditions and require-

ments of the ship, such as load and temperature variations,
to ensure safety.

Due to the special layout environment of ship, there are
various constraints on pipe placement, primarily based on
the ship’s structural design, cabin layout, and regulatory
requirements. The specific constraints can be summarized as
follows:

(1) Prohibition of pipe paths through obstacles, such as hull
structure, equipment, existing pipes, and reserved spaces.

(2) Pipe paths must be perpendicular or parallel to the
cabin spaces and equipment, and each adjacent sub-path must
be either perpendicular or collinear (meeting orthogonality).
Engineers have the flexibility to adjust these factors in prac-
tical engineering.

(3) Adequate safety clearance should be maintained
between the pipe and special equipment, structures, or other
pipes to facilitate operation and maintenance. The distance
between adjacent elbow points should not be less than the
specified length.

Min
x∈D

f (x) = [f1 (x) , f2 (x) , · · · , fk (x)]T (5a)

s.t.

{
gi (x) ≤ 0, i = 1, · · ·m
hj (x) = 0, j = 1, · · · n

(5b)
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2) DESIGN OF THE EVALUATION FUNCTION
The design of the objective evaluation function follows the
mathematical expression commonly used for multi-objective
optimization problems (as given in Equation (5)). It rep-
resents the extreme value objective of a function that is
constrained by multiple inequality or equality variables.
SPRD is a multi-objective optimization problem, considering
the requirements for cost-effectiveness, efficiency, and safety
of the pipe layout. In order to achieve the optimal overall
values for these objectives, a comprehensive and accurate
evaluation function is established as shown in Equation (6),
where a negative sign is introduced to transform the mini-
mization problem into a maximization problem, where W is
a large positive constant.

Fmax (path (v)) = W−(p1 × Orth (v)+ p2 × Obs (v)+ p3
× Lenth (v)+ p4 × Elbow (v)

− p5 × Power (v) −p6× F_L (v)) (6a)

s.t.g (p) = 0, h (p) = 0, v ∈ bound (6b)

The concepts of each sub-objective function are as follows,
the values of p1 to p6 correspond to the weight parameters of
each objective. v denotes the coordinate vector point.

(1) Orth (v) =
∑N

i=1O (vi, vi+1) represents the
non-orthogonality degree between path connection points.

(2) Obs (v) =
∑N

i=1 S (vi, vi+1, obslist) represents the
intersection degree between path connection points and
obstacles or restricted areas.

(3) Lenth (v) =
∑N

i=1 L (vi, vi+1) represents the total
length of the pipe path.

(4) Elbow (v) represents the number of bending points
required for the pipe path.

(5) Power (v) =
∑N

i=1 P (vi, vi+1, powerlist) represents
the length of the path passing through the energy zone indi-
cates its desirability, with larger values being more favorable.
In the function, the negative symbol is used to denote this
guiding value.

(6) F_L (v) =
∑N

i=1 (F (vi, obslist)+ L (vi, vi+1, vi+2))
represents the quality of the position of the path’s vector
points, primarily serving a guiding role to ensure algorithm
efficiency and accuracy.

The multi-objective optimization problem can be trans-
formed into a single-objective optimization problem by
assigning a series of weight coefficients. The weight values
can be adjusted based on the importance of each objective to
generate multiple solutions. Through experimental research
on parameter normalization, it has been found that the pipe
layout achieves optimal results when the weight coefficients
p1-p6 approximate the following proportion: 1: 10: 0.001: 1:
0.5: 0.1.

III. AA-SPOP ALGORITHM
A. AFSA ALGORITHM
The Artificial Fish Swarm Algorithm (AFSA) is a
population-based intelligent optimization algorithm that sim-
ulates the preying andmigration behaviors of fish populations

[14]. It is generally used for problems with a large population
size (or initial vector size) and achieves optimization through
the coordinated behavior of fish. The algorithm involves
four main parameters: perception range (Visual), search step
length (Step), congestion factor (δ ), and number of search
attempts (Try_number). Assuming there are N artificial fish,
each fish’s state can be represented as a vector Xm =

(x1, x2, · · · xn) ,m = 1, 2 · · ·N , where xi (i = 1, 2, · · · , n)
represents each optimization variable of the artificial fish.
An adaptive function Y = f (X) is designed to represent the
food concentration, where Y represents the objective function
value.

TheAFSA algorithm consists of fourmain behaviors (orig-
inal equations can be found in reference [14]):
1) Preying behavior: Search for artificial fish with better

fitness values within the visual range andmove towards them.
2) Swarming behavior: Decide whether to move towards

the center position based on the fitness of neighboring artifi-
cial fish and the richness of food at the center.

3) Following behavior: Adjust one’s own movement direc-
tion based on the optimal solution in the nearby range and
conduct local search.

4) Random behavior: When a better solution cannot be
found within the visual range, randomly move a step length
to increase the diversity of the search process.

B. AA-SPOP ALGORITHM PRINCIPLE
While the AFSA algorithm boasts several advantages, its
application to pipe routing optimization reveals a number
of evident issues, such as susceptibility to local optima,
unstable convergence performance, and sensitivity to param-
eters, among others. In response to these challenges, this
paper introduces performance enhancements, such as adap-
tive parameter strategies and a staged optimization approach,
resulting in the proposed AA-SPOP algorithm. Its workflow
is illustrated in Fig. 8. Detailed descriptions of the enhance-
ments in each part are as follows:

1) DESIGN OF PARAMETER ADAPTATION EQUATIONS
Although the AFSA algorithm converges quickly, it is highly
sensitive to the settings of parameters such as theVisual, Step,
and δ. These parameters constitute the core of the algorithm’s
optimization procedures. Consequently, the algorithm strug-
gles to strike a balance between optimization speed and
precision, leading to susceptibility to local optima, partic-
ularly in later stages, characterized by oscillatory behavior.
As shown in Fig. 6, in the later phases of the algorithm, it may
converge around the global optimal solution, Ideal goal.
However, due to excessively large Step and Visual val-
ues, it may continuously search for suboptimal solution,
Real goal, in the vicinity and fail to find the precise solution.
Therefore, addressing the aforementioned issues, this

paper proposes three adaptive adjustment formulas as fol-
lows. The corresponding decay curves are illustrated in Fig. 7,
where x represents the current iteration count, and y repre-
sents the degree of decay. The parameters Visual, Step, and δ
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FIGURE 6. Optimization process of the AFSA algorithm.

directly influence the algorithm’s convergence performance.
Taking the maximization problem as an example, a larger δ

indicates a smaller allowed crowding degree, which enhances
the ability of artificial fish to escape from local optima but
leads to slower convergence speed. Larger Visual and Step
values can quickly converge to the vicinity of the global
optimum.However, in the later phase, they struggle to achieve
an accurate solution.

k =
(

1
1+ a× (x − b)c

)n

(7a)

y =
1

1+ a× log10
[
1+

( x−b
k

)c] (7b)

To ensure the algorithm’s comprehensive optimization
capabilities throughout the entire iteration cycle, an adap-
tive decay equation (Equation (7) for Visual and Step, and
Equation (8) for δ) is proposed. In Equation (7), parameter
a mainly controls the initial descent rate, while parameter b
represents the initial value for iteration. Parameter c primarily
governs the descent range, and experimental results suggest
Visual is around 3 and Step is around 5. Parameter k controls
the shape of the descent curve, and it has been found that
Visual exhibits optimal performance with the exponent n is
set to 2, while Step achieves optimal results with the expo-
nent n of 3. In Equation (8), the parameter xt represents the
starting generation for decay. Through multiple experimental
analyses, the parameter k controls the decay rate and is set to
approximately 30. The parameter P controls the shape of the
decay curve and is set to around 1. δ0 represents the initial
maximum value, while δe represents the final value.

δt = δe +
δ0 − δe

1+
( x−xt

k

)p (8)

2) PHASED OPTIMIZATION AND PSO OPERATIONS
During the process of optimizing ship pipe routing, the AFSA
algorithm exhibits inconsistency between its early and late
phases, posing challenges in controlling the stability and
robustness of algorithm convergence. To address this issue,
a phased optimization strategy is proposed in this paper based
on the AFSA algorithm, which comprises two tiers of phased

FIGURE 7. The decay curve of the adaptive equations.

operations: global iterations and local behaviors. Further-
more, in the initial phase, the concept of Particle Swarm
Optimization (PSO) is introduced to further enhance the
algorithm’s convergence speed [9]. The specific principles
are explained as follows:

a: PHASED OPTIMIZATION STRATEGY
Phased optimization involves two aspects (Fig. 8). On the one
hand, the entire iterative cycle is divided into two phases.
Through repeated experimental testing, the algorithm typ-
ically converges to the vicinity of the optimal solution at
approximately 0.15×T iterations. Consequently, the division
of early and late phases is determined using 0.15 × T as
the benchmark, where T represents the number of iterations.
The early phase combines adaptations of the PSO algorithm,
while the later phase reverts to the basic equation of the
AFSA algorithm. On the other hand, it divides the swarming
and following behaviors into different phases, with the main
segmentation point set at 40% × N , where N represents the
initial population size.

In the early phases of iteration, the swarming behavior
can be divided into two phases. In the first phase (adjacent
individual less than 40% × N ), due to low crowding and
low food concentration, an adjustment is made by increasing
δ× Y , which corresponds to increasing the crowding restric-
tion. This adjustment is implemented to prevent individual
frommoving towards suboptimal positions. The second phase
indicates a higher crowding degree, suggesting proximity to
the optimal position. Here, δ remains constant, and normal
swarming behavior is conducted. However, as individuals are
now clustered around the optimal solution, a reduction in
movement speed of approximately 10% is implemented to
ensure algorithm stability.

The following behavior has a greater impact on the
algorithm’s convergence. Therefore, in the phases of the early
iterations, δ needs to be reduced and crowding restrictions
increased, allowing movement only towards highly promis-
ing individual. The moving speed in the second phase should
be significantly reduced to effectively avoid being trapped
in local optima due to continuous following of suboptimal
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individual. In the phases of the later iterations, δ is slightly
increased to ensure convergence performance and escape
from local optima to search for the precise optimal solution.

b: OVERVIEW OF PSO ALGORITHM OPERATIONS
According to Fig. 8, in order to provide effective guidance
in the early phases, the PSO algorithm is introduced by
incorporating individual best positions (pbest) and global
best position (gbest) parameters. The four behavior equations
of the fish swarm algorithm are modified to better guide the
search towards the global optimum. In the later iterations, the
original operations of the AFSA algorithm are used to ensure
stability. Additionally, a global guidance operation similar to
PSO algorithm is incorporated after the completion of each
major step in the algorithm. The specific modified equations
are shown in Equations (9) to (13), at the bottom of the
page, where c1 and c2 represent local and global parameters,
respectively. Randn and RandStep denote random numbers
and random step lengths, respectively. Xc and Xmax respec-
tively represent the central value and maximum value of the
neighboring population region, denotes the maximum value
in the surrounding search, with nf representing the number
of surrounding individuals. F is the global decay factor, W
denotes the inertia weight of the PSO algorithm, t and T
represent the current and maximum iteration counts, respec-
tively. Tag refers to the best solution found.

3) STABILITY OPTIMIZATION OPERATION
Although corresponding improvement strategies have been
implemented for both early and late phases of the algorithm,

it is undeniable that unstable results may still occur under
certain special or occasional circumstances. To enhance the
algorithm’s robustness and optimization precision, several
optimization operations are proposed, outlined as follows:

a: RANDOM ELIMINATION OPERATION
As depicted in Fig. 8, the elimination strategy is carried
out after each individual completes the primary algorith-
mic operations. This operation primarily aims to reduce the
algorithm’s variability. It involves sorting and comparing all
artificial fish based on their fitness values (Yi) and eliminating
the least performing individuals, with vacant positions being
replenished in a manner akin to mutation. After experimental
validation and analysis, the following two strategies were
identified for different phases of iteration:

Xnew = n1 × Xbest1 + n2 × (Xbest2 − Xbest3) (14a)

n1 + n2 ≤ 1, n1 ≥ n2 (14b)

Elimination Strategy 1: Taking the elimination of one indi-
vidual as an example, the three individuals with the highest
fitness values are selected, and a new individual is generated
using the following Equation (14).

Xnew = mutation
(
Xfill, pmutation, sigma

)
(15a)

sigma = s× (boundmax − boundmin) (15b)

0.15 ≤ pmutation ≤ 0.2 (15c)

Elimination Strategy 2: This approach mainly utilizes Gaus-
sian mutation, as shown in Equation (15).

Different elimination operations are employed in different
phases. Strategy 1 generates filling individuals based on the

1) PSO_Prey behavior:

X1/next =

X1 + c1 × Randn× Step×
X2 − X1
∥X2 − X1∥

+ F × c2 × Randn× (gbest − X1) ,Y1 < Y2

X1 + c1 × Randn× RandStep+ F × c2 × Randn× (gbest − X1) ,Y1 ≥ Y2
(9)

2) PSO_Swarm behavior:

Xi/next =


Xi + c1 × Randn× Step×

Xc − Xi
∥Xc − Xi∥

+ F × c2 × Randn× (gbest − Xi) ,

Yc/nf > δYi
PSO_ Pr ey (Xi) ,Yc/nf ≤ δYi

(10)

3) PSO_Follow behavior:

Xi/next =


Xi + c1 × Randn× Step×

Xmax − Xi
∥Xmax − Xi∥

+ F × c2 × Randn× (gbest − Xi) ,

Ymax/nf > δYi
PSO_ Pr ey (Xi) ,Ymax/nf ≤ δYi

(11)

4) PSO_Random behavior:

Xi/next = Xi + c1 × Randn× RandStep+ F × c2 × Randn× (gbest − Xi) (12)

5) PSO Global Guidance Behavior:W = Wmax − (Wmax −Wmin)×
t
T

Xi/next = Xi +W × Randn× Step× (pbest − Xi)+ F × c2 × Randn× (Tag− Xi)
(13)
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FIGURE 8. Flowchart of the AA-SPOP algorithm.

best fitness value, ensuring algorithm stability and acceler-
ating convergence speed. Strategy 2 increases the mutation
rate to introduce more randomness, aiming to escape local
optima. In Strategy 1, Xbest1, Xbest2, and Xbest3 represent the
information of the top three path individuals in the popula-
tion, ordered by their fitness values Ybest1 > Ybest2 > Ybest3,
where n1 and n2 represent mutation parameters. In Strategy
2, the function mutation is used to implement mutation elim-
ination. Xfill represents randomly selected individuals from
the remaining population after elimination, which are used
for filling. pmutation represents the mutation rate, sigma
represents the Gaussian variable, s represents the Gaussian
parameter, and bound represents the range of values for
individuals.

b: CROSSOVER AND MUTATION ADJUSTMENT OPERATION
The crossover and mutation adjustment operations are widely
applied in the early and late phases of algorithm iteration, trig-
gered based on predefined thresholds. These operations are
activated when the Tag remains unchanged for a consecutive
duration, aiming to break free from local optima. After exper-
imental analysis, to enhance the precision and robustness, and

adaptability of the algorithm, the threshold for determining
the early and late stages was set at 4 iterations and 8 iterations,
respectively. The following provides a detailed description:

Xnew = cross (Xbest ,Xbest1, pcross) (16a)

0.6 ≤ pcross ≤ 0.9 (16b)

2 ≤ num_cross ≤ 5 (16c)

For the crossover adjustment operation, a tournament
method is used to select the best individuals for crossover,
and a single-point crossover is applied based on the Equation
(16). cross represents the function for performing crossover
operations, with parameters including the best individuals
of the entire population (Xbest ), the best individuals selected
by the tournament method (Xbest1), and the crossover rate
(pcross). The parameter num_cross denotes the number of
individuals involved in the crossover operation. In the early
phase, in order to accelerate convergence speed, the param-
eter pcross is increased and the parameter num_cross is
decreased. In the late phase, to ensure algorithm stability and
accuracy, the parameter pcross is reduced and the parameter
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num_cross is increased.

Xnew = mutation (Xm, pmutation, sigma) (17a)

sigma = m× (boundmax − boundmin) (17b)

0.1 ≤ pmutation ≤ 0.25 (17c)

2 ≤ num_mutation ≤ 8 (17d)

For the mutation adjustment operation, Gaussian mutation
is applied in both the early and later phases of iteration.
It involves selecting relatively superior individuals using
the tournament method and is based on the Equation (17).
mutation represents the function that implements the muta-
tion operation. It takes several parameters, including the
best-mutated individual selected through tournament method
selection (Xm), the mutation rate (pmutation), and the Gaus-
sian variable (sigma). Here, m represents the Gaussian
parameter, and num_mutation denotes the number of indi-
viduals undergoing the mutation operation. In contrast to
elimination mutation, both the individuals and mutation rate
differ, and both sigma and pmutation should be reduced.
Additionally, similar to the crossover operation, the values of
pmutation, sigma, and num_mutation are smaller in the early
phase compared to the later phase

IV. PIPE COLLABORATIVE LAYOUT METHOD
The layout of ship piping systems primarily involves coor-
dinating multiple pipes and their arrangement with other
equipment and structures. Current research predominantly
focuses on layout for individual pipe, with limited considera-
tion for their collaborative. This paper introduces three novel
methods for the collaborative arrangement of the entire piping
system, as detailed below:

A. OPTIMIZATION METHOD FOR SINGLE PIPE LAYOUT
The optimization of ship pipe layout primarily focuses on the
path optimization of single pipes within the entire piping sys-
tem layout. It demands a high level of precision and stability
from the optimization algorithm, as the layout significantly
impacts the overall effectiveness of the piping system. The
workflow for single-pipe layout is illustrated in Fig. 10, with
the primary generation principles for pipe paths referenc-
ing Fig. 3. Each path is formed by connecting coordinate
vector points, optimizing the path based on objectives and
constraints. This layout method initially involves determining
the relative positions of the starting and ending interface
points to establish the number of coordinate vector points
(path elbows). It primarily falls into three main scenarios,
as illustrated in Table 2.
As shown in Table 2 and Fig. 9, within the three-dimensional

cabin space, the positions of the start and end points can be
categorized into three main scenarios based on coordinate
analysis: collinear, coplanar, and non-coplanar. Each of these
scenarios corresponds to different requirements for coordi-
nate vector points. According to real-time inquiries from
naval engineers, in actual engineering design, the number of
pipe elbows (coordinate vector points) is generally no more

TABLE 2. Initial conditions of single pipe routing.

than three [34], and fewer elbows are preferred. Therefore, the
algorithm sets different initial coding vector quantities cor-
responding to different situations, aiming to achieve targeted
optimization. Building upon the aforementioned initialization
process, the optimized single-pipe layout method is further
implemented, as illustrated in Fig. 10. Tag, t and T have been
previously explained. ct is the optimum value calculator to
determine if the algorithm is trapped in a local optimum,
while BestIndex represents the best path information. The
process primarily comprises three stages as follows:

1) The first phase is the foundation of the single pipe
layout, which involves the initialization of the algorithm. This
phase includes the generation of the initial population, deter-
mination of the number of coordinate vector points, setting
layout space parameters, and configuring various algorithmic
parameters, and so on.

2) The second phase primarily involves the crucial deter-
mination and constraints of the single-pipe layout. This
includes assessing the number of iterations, dividing the pre-
and post-iteration phases, and triggering the decision for
cross-mutation adjustment operations.

3) The third phase focuses on the algorithm’s core
execution for the single-pipe layout, which means the imple-
mentation of the AA-SPOP algorithm logic. Note that the ct
and Tag, BestIndex are updated after the algorithm execution
is completed, and finally the optimal path information is
obtained.

B. OPTIMIZATION METHOD FOR BRANCH PIPE
COLLABORATIVE LAYOUT
Branch pipes account for more than half of the entire ship’s
piping system design, and it directly impacts the opera-
tional efficiency of various systems within the engine room.
As shown in Fig. 11 (a), each branch pipe has a starting
point (S) and multiple branch endpoints (T). These branching
points are typically selected from the main pipe path, which
is usually predetermined by engineers or chosen based on
criteria such as maximum diameter and maximum distance
(As illustrated by side pipe1 in the figure). The collaborative
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FIGURE 9. The example of single pipe routing.

arrangement of branch pipes requires considerations of
branch point locations, individual path characteristics, and
overall overlapping degree [20]. It is advisable to prioritize
the placement of main conduits when designing branch pipes
[35]. Currently, many commonly applied approaches treat the
branch pipe problem as a ‘‘one-to-many’’ problem, where
multiple individual pipes guide each other for placement.
However, this approach exhibits poor stability and is sus-
ceptible to mutual interference and other issues. Fig. 11(b)
and (c) illustrate typical layout problems stemming from this
approach. Fig. 11(b) emphasizes the layout of each single
pipe to an extent that compromises overall collaborative.
In contrast, Fig. 11(c) overly prioritizes overall overlap. This
paper introduces a novel approach to collaborative branch
pipe layout. This method aims to significantly enhance the
efficiency of branch pipe layout, ultimately achieving the
ideal collaborative layout depicted in Fig. 11(c).

1) SELECTION METHOD OF VECTOR PROJECTION FOR
BRANCHING POINTS
In the layout of branch pipes, the fitness function formula
takes into account the calculation of branching points (similar
to the starting points of single pipes), resulting in a change in
the dimensionality of the vectors. The mathematical expres-
sion of multidimensional vectors for branch pipes and the
evaluation objective function are shown in Equation (18).
In this equation, B represents the branching point, initially
located on the main pipe path for ease of optimization, later
to be decomposed into three-dimensional coordinate points.
n0- nm are weight parameters, and the evaluation function for
branch pipes consists of evaluation criteria for the main pipe
as well as each branch side pipe. At this point, the number of
coordinate vector points also becomes the sum of coordinate
vector points for the main pipe and branch side pipes.

P = {B, x1, y1, z1, f1, l1, · · · , xn, yn, zn, fn, ln,E}

(18a)

Fbranch = n0 × Fmain + (n1 × F1 + · · · + nm × Fm) (18b)

Finding branching points is of paramount importance in
ship branch pipe layout. To address current challenges, this

FIGURE 10. Single-pipe layout optimization process.

paper introduces the Branch Vector Projection Optimization
Rule. It considers multiple scenarios for locating branch-
ing points to achieve the optimal layout for branch pipes,
as depicted in Fig. 13. The specific steps of this method are
detailed as follows:

Step 1: Using vector projection, identify the initial optimal
branching point on the main pipe path. Fig. 12 and Algorithm
1 illustrate this method. Each branching point projects vectors
onto segments of the main pipe and already placed pipes to
determine the locations of their orthogonal points. Fig. 13
shows a layout model with three branching points, P1, P2, and
P3. By calculating vector ratios for each segment of the main
pipe (in black) and existing pipes (in yellow), it’s determined
whether intersection points exist within the path. Ultimately,
P1 obtains orthogonal projection points T1, T2, and T3, P2
obtains points T5 and T3, while P3 lacks any projection points
along the path.

Step 2: Assess the presence of obstructions between pro-
jections and use the square-crossing method to add extension
points. The principle of this method is illustrated in Fig. 14,
where a virtual square frame is created with two points
as diagonals to detect obstruction scenarios, thereby deter-
mining the need for extension points. As shown in the
Fig. 14, there are no obstructions between the two squares
at branching endpoint P1. However, obstructions are present
between the squares at branching endpoint P2. Consequently,
extension points are selected along the edges of the obstruc-
tions between the squares to bypass obstacles. This process

116772 VOLUME 11, 2023



H. Zhang et al.: Collaborative Layout Optimization for Ship Pipes

FIGURE 11. Principles analysis of collaborative layout for branch pipes. (a) Schematic diagram of branch pipes principle. (b) Layout result 1 with
traditional methods. (c) Layout result 2 with traditional methods. (d) Ideal layout result.

Algorithm 1 Vector Projection Function
Input: Line_segment (Main pipe segmented path)
Point (Branch endpoint)
Output: Intersection_ p (Initial optimal branch point)
1 P1 (x1, y1, z1), P2 (x2, y2, z2)← line_segment
2 (p_x, p_y, p_z)← Point
3 Compute the direction vector of the segmented path
4 l_v = (x2 − x1, y2 − y1, z2 − z1)
5 Calculate vector PP1
6 PP1← (Point, P1)
7 PP1← p_x − x1, p_y− y1, p_z− z1
8 Calculate projection parameter T
9 T ← Num/Den← dot(PP1,D)/dot(D,D)
10 Num = PP1[0]× l_v[0]+PP1[1]× l_v[1]+PP1[2]

×l_v[2]
11 Den = l_v[0]× l_v[0]+ l_v[1]× l_v[1]+ l_v[2]

×l_v[2]
12 Check for intersection between the point and the path
13 if (Den == 0):
14 Return None
15 elif (Num! = 0 and 0 ≤ T ≤ 1 ):
16 Calculate the coordinates of the intersection point

intersection_p (xt , yt , zt)
17 xt ← x1 + T × l_v[0]
18 yt ← y1 + T × l_v[1]
19 zt ← z1 + T × l_v[2]
20 Return intersection_p
21 else:
22 Return None
23 end if

ultimately yields extension points T4, T6, T7, T8, and T9 (as
depicted in Fig 14).

Step 3: After calculating the projection and extension
points for each branching endpoint, to prevent situations
where no suitable branching point is available (e.g., branch-
ing endpoint P3 in Fig. 13), consider the existing pipe elbows
as potential branching points. Specifically, select the nearest
elbow point as the branching point based on the principle of
proximity (e.g., point c3 in Fig. 13).

W_Value = v1 × Distance_v+ v2 × Obstacle_v

FIGURE 12. Vector projection method example.

+ v3 × Power_v+ v4 × Elbow_v (19a)

Distance_v = |xi − xi+1| + |yi − yi+1| + |zi − zi+1| (19b)

Obstacle_v = o1 × num_obs+ o2 × s_edge (19c)

Power_v = w1 × overlap_part (19d)

Elbow_v = b1 × num_obs (19e)

Step 4: Evaluate the optimal branching point. Through
calculations involving projection intersection points, exten-
sion points, and elbow points, a list containing all potential
branching points is generated. To assess the quality of each
point, a branching point evaluation formula, as shown in
Equation (19), is designed, taking into account factors such
as distance, the number of elbows, energy zones, and obstruc-
tion indicators. In Equation (19), Distance_v evaluates the
distance value,Obstacle_v evaluates the obstruction situation
in the square crossing lines, num_obs evaluates the number
of obstructing obstacles, s_edge evaluates the shortest edge
length of the obstacles, v1-v4, o1, o2, w1, and b1 are the
corresponding weighting parameters. Power_v evaluates the
degree of passage through an energy zone, and Elbow_v eval-
uates the number of elbow points considering the obstruction
range of obstacles.

Step 5: Obtain the Optimal Branching Point. Following
the branch optimization method described above, the selected
optimal points are T2, T7, and c3. One of the resulting best
layout configurations is illustrated in Fig. 15 below, repre-
senting the optimal path.

2) COLLABORATIVE LAYOUT PROCESS OF BRANCH PIPES
The concept of cooperative evolution is generally aimed
at achieving multiple mutually beneficial objectives. After
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FIGURE 13. The example for selecting the vector projection of branch points. (a) Simple projection layout. (b) Complex projection layout.

FIGURE 14. The example of square crossing for determining expansion
points.

the crucial step of branch point identification, the algorithm
presented in this paper integrates the principles of coopera-
tive evolution [29] to propose a branch pipe layout method
(Fig. 16). The specific steps are as follows:

Step 1: Initialization. Initialize the initial population of the
main and branch pipes, layout parameters, algorithm parame-
ters, and the initial required vector connection points for each
pipe.

Step 2: Check if the iteration count t meets the stopping
criteria. If it does, output the optimal fitness valueWhole_Tag
and obtain the optimal path information for the entire pipe.
Otherwise, proceed to Step 3.

Step 3: Execute the operations corresponding to the early
and late stages of the AA-SPOP algorithm based on the
current iteration phase (as shown in Fig. 8).
Step 4: Determine the positions and optimization sequence

of the main and branch pipes. Start by laying out the main
pipe, and once the main pipe path is established, the place-
ment order of branch pipes is determined based on the
principle of prioritizing shorter distances between the main
pipe’s start and end points and the branch endpoints. Update
the Tag, path, energy zone, and obstacle information promptly
after each pipe is laid out.

Step 5: Sequentially optimize each branch pipe. Begin
by determining the coordinates of the branch starting

FIGURE 15. One of the optimal collaborative layout schemes.

point C using the branch point optimization method
based on the main_path. Then, execute the algorithmic
operations. After completing the layout of each branch
pipe, update siden_Tag, siden_path, obstacle, and energy
zone information. The completed branch pipes are des-
ignated as obstacles (to prevent subsequent pipes from
crossing) and surrounded by an additional energy zone
layer. This is primarily to guide the layout of subsequent
pipes.

Whole_Tag = w0 × mian_Tag+ w1 × side1_Tag

+ · · · + wn × siden_Tag (20)

Step 6: After completing optimization for all pipes in this
iteration, the overall optimal fitness value Whole_Tag and
optimal path information are updated according to Equation
(20), where main_Tag and siden_Tag represent the optimal
fitness values for the main pipe and branch pipes, respec-
tively. By adjusting the weight parameters w1-wn for each
pipe, the layout priority and importance of each pipe can be
controlled.

Step 7: The obstacles and energy zone information is reset
to its initial state. Execute the next iteration, make t = t +
1 and return to Step 2.
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FIGURE 16. Process of the collaborative layout optimization method for branch pipes.

C. OPTIMIZATION METHOD FOR PIPE AND SUPPORT
EQUIPMENT COLLABORATIVE LAYOUT
Currently, research on the SPRD problem predominantly
focuses on pipe layout, with insufficient consideration for
other factors within the cabin. Achieving collaborative
between pipes and equipment is a critical challenge that needs
to be addressed. pipe and equipment collaborative optimiza-
tion refers to the optimization of the layout of pipes and
support equipment (including fixed pipe clamps and hangers)
to ensure ship safety, pipe system efficiency, and stability.
According to regulatory requirements, support equipment
should be installed based on the pipe system’s needs for
clamps, brackets, overall layout requirements, and the ship’s
structural design. Moreover, it must be installed on reliable
structures, with efforts made to maintain parallel alignment
between supports and the pipe system [36]. The primary
function is to withstand pipe pressure and displacement.

This paper, based on engineering practical cases and design
standards, presents an energy-based guiding collaborative
layout method as follows:

Step 1: Initialize parameters for each component.
Step 2: Check if iteration count t satisfies the termina-tion

criteria. If it does, output the optimal Tag, the overall optimal
path information, and equipment positions. Otherwise, pro-
ceed to Step 3.

Step 3: Definition of the energy guidance range in cabin
spaces. The arrangement of support equipment should be
based on the ship’s cabin structure and operational require-
ments. Prior to the layout of pipes, it is necessary to initialize
and determine the initial requirements and quantities of sup-
port equipment for each pipe, establish an appropriate range
for the placement of support equipment, and delineate the
energy-guided area. As shown in Fig. 17(a), the shaded area
represents the energy-guided region, with varying degrees
of guidance in different areas. It primarily signifies suitable
installation zones, providing guidance for pipe layout. The
energy values can be adjusted according to specific require-
ments.

Step 4: Determination of the energy guidance range along
the pipe path. To achieve optimal collaborative in both
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FIGURE 17. Principle of collaborative layout of pipe and equipment. (a) Energy guidance principles for equipment. (b) Energy guidance principles
for pipes.

FIGURE 18. Pipe and equipment collaborative layout example.

FIGURE 19. Support equipment layout. (a) Shared support bracket
scenario. (b) Non-shared support bracket scenario.

aspects, the pipes themselves have corresponding energy
zones. In practical engineering, the best layout range is typi-
cally defined based on factors such as cargo properties, path
length, and stress [37], [38], [39]. In this paper, we prioritize
length and divide different layout ranges based on the selec-
tion of ideal sub-paths. Each range corresponds to a different
energy value, and during each iteration, a random position
is selected and evaluated to choose the optimal location.
As shown in Fig. 17(b), the selected ideal sub-path is between
B2 and T, where different levels of positive energy values
guide the layout. The remaining two segments represent
non-ideal layout sub-paths, assigned negative energy values
to repel them. Additionally, compliance with the requirement

of a minimum bending distance of no less than 100 mm is
considered in accordance with regulations.

Step 5: Commence the Collaborative Layout Process.
1) First, determine the layout priority and the required

number of suitable support equipment for each pipe based on
the diameter and engineering requirements. Then, divide the
energy guidance areas for both aspects.

2) Continuously update the energy and obstruction areas
after completing the layout for each pipe to facilitate the
layout of the remaining pipes. For instance, in Fig. 18, the
secondary pipe should be placed close to the main pipe layout
to allow for the generation of shared hanger and compliance
with parallelism requirements. Note that support points p1
and p2 should be spaced less than 300mm apart to meet the
requirements of shared structure. Additionally, in practical
pipe layouts, different layouts are implemented based on
engineering requirements. Fig. 19 illustrates the actual layout
scenarios after envelope processing. Fig. 19(a) represents a
situation with shared supports but an increase in elbows,
while Fig. 19(b) depicts a scenario with no shared supports
but a reduction in elbows and path length. This algorithm can
achieve both solutions by balancing the weight values of each
objective.

Fmax (path (v)) = W − (p1× Orth (v)+ p2× Obs (v)+ p3

× Lenth (v)+ p4× Elbow (v)

− p5× Power (v)− p6× F_L (v)

− P7 ×Bracket (v)) (21a)

s.t.g (p) = 0, h (p) = 0, v ∈ bound (21b)

3) Commence the iterative process of the algorithm.
It’s important to note that the evaluation function for the
collaborative layout of pipes and equipment has some vari-
ations, as indicated in Equation (21). Bracket (v) represents
the energy value of the equipment, denoting the degree
of collaboration between the path and the support equip-
ment. Bracket (v) =

∑N
i BR (vi, vi+1, bralist), The weight

parameter for Bracket(v) is denoted as p7. In the model
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depicted in Fig. 17(a), it’s assumed that two support equip-
ments to be arranged initially on different paths. Based on
the energy guidance method described above and the opti-
mization of the algorithm, an ideal result can be achieved: the
equipment positions are located in the region with the highest
level of gray shading. Additionally, four optimal paths are
obtained, namely 1-3, 2-3, 1-4, and 2-4.

Step 6: After completing the optimization of all pipes and
support equipment, output the evaluation value Whole_Tag
for the optimal collaborative layout of pipes and support
equipment, along with the corresponding scheme informa-
tion. Engineers can further adjust the layout based on their
specific requirements.

Step 7: Reset obstacle and energy zone information to their
initial states. Execute the next iteration, make t = t + 1 and
return to Step 2.

V. SIMULATION VALIDATION AND ANALYSIS
A. CASE 1: VALIDATION OF ENCODING TECHNOLOGY
AND ALGORITHM PERFORMANCE
To validate the efficiency and adaptability of the proposed
vector-based encoding scheme and AA-SPOP algorithm in
pipe layout applications, this section adopts the layout model
from reference [40]. Under the same pipe layout problem
and environmental conditions as detailed in the reference,
we conduct comparisons with six different types of algo-
rithms from the literature and the previous AFSA algorithm,
including comparisons with various encoding methods. The
primary objective of this layout model is to evaluate the
performance of algorithms in the context of single-pipe layout
problems. The tested algorithms from the literature include
GA, PSO, FA (Firefly Algorithm), DE, CS (Cuckoo Search)
and DDCES (collaborative Differential Cuckoo Search).
To ensure the fairness of the comparative tests, this paper
maintains consistency with the literature regarding the layout
environment, algorithm parameters, and other layout condi-
tions. Some of the algorithms employ a grid-based encoding
method (indicated with a ‘‘G’’ suffix), with grid partitioning
precision based on pipe diameter.

The layout model for this case, as shown in Fig. 20, is a
cubic space with diagonal vertex coordinates at (0, 0, 0) and
(50, 50, 50). It’s worth noting that the space simulates various
types of ship cabin spaces for different scenarios. Within this
space, there are 7 obstacles (representing ship equipment)
in the form of envelope bodies, with their diagonal vertices
located at the following coordinates: [{(21, 0, 0), (30, 5,
4)}O1, {(6, 0, 0), (16, 5, 50)}O2, {(42, 10, 0), (50, 18, 12)}O3,
{(20, 42, 0), (30, 50, 50)}O4, {(42, 26, 0), (50, 42, 12)}O5,
{(0, 15, 0), (9, 32, 20)}O6, {(14, 14, 0), (34, 35, 21)}O7]. The
coordinates of the starting interface and target interface for
the single-pipe design to be optimized are (0, 0, 0) and (50,
50, 50), respectively.

In Case 1, the parameters for the evaluation function of the
pipe layout are uniformly set as follows:W : 100; The weight-
ing parameters p1 to p6 are set in the following proportions:
1: 1: 0.001: 0.001: 0: 0.001. The detailed parameter settings

FIGURE 20. Layout space of Case 1.

TABLE 3. Parameter settings for the 8 algorithms in Case 1.

for each algorithm are shown in Table 3, with the param-
eters of the original AFSA algorithm kept consistent with
the AA-SPOP algorithm. Through verification and analysis
of the literature algorithms, these parameters setting primar-
ily based on the magnitude of population changes or step
lengths during each iteration operation, which can be calcu-
lated based on the algorithm’s operation formulas. Parameters
are a significant component of these formulas (in the pipe
layout problem, a change of around 10% of the maximum
model space edge length is optimal), and under these param-
eters, they all remained in their optimal state. In addition,
the initial population size is set to 50. The Case 1 were
conducted on a Windows 11 operating system using Python
3.9, running on a 12th Gen Intel(R) Core (TM) i7-12700H
processor.

After conducting 30 individual tests for each of the 8 algo-
rithms, the final test results are compared, as shown in Fig. 21
and Table 4. Upon observation, it is evident that, firstly,
my computational results are in close agreement with those
in the literature (with minor differences due to variations
in equipment and methodologies), which adds credibility to
this experimental outcome. Secondly, algorithms based on
vector encoding perform significantly better than grid-based
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FIGURE 21. Performance comparison of the 8 algorithms. (a) The best results (vector encoding). (b) The worst results (vector encoding). (c) The best
results (grid encoding). (d) Optimal layout for each algorithm (vector encoding). (e) Optimal layout for each algorithm (grid encoding) (f) Calculation
results for each algorithm consist of 30 sets of tests.

approaches. Among the four grid-based encoding algorithms,
they exhibit strong stability but suffer from slow convergence,
extended computation time, and reduced precision. Among
the six vector encoding algorithms, FA and CS exhibit higher
computational accuracy but poorer stability (large standard
deviation). The PSO algorithm shows good performance with
random initial solutions but lacks stability and is prone to
local optima. The hybrid algorithms DDCES and AFSA per-
form well in all aspects, but their convergence efficiency can
be further improved.

In comparison, the AA-SPOP algorithm demonstrates
strong characteristics in terms of computational accuracy,
stability, robustness and efficiency. In all cases, it consistently
obtained the global optimal solution and converged within
approximately 20 generations. Fig. 21(d) illustrates the opti-
mization performance of different algorithms for pipe layout
when theweight parameter p5 for the energy zone is increased
to 0.001 (with energy zones distributed around the equipment
and on the surface of the six faces). The pipe layout based on
the AA-SPOP algorithm closely aligns with the energy zone,
while maintaining minimal elbow count and path length.
Fig. 21(d) depicts the layout results after 100 iterations
using the grid-based encoding algorithm, which exhibits
subpar layout effectiveness. In conclusion, the proposed
algorithm and encoding approach demonstrate a degree of
feasibility.

B. CASE 2: VERIFICATION AND ANALYSIS OF BRANCH
PIPE COLLABORATIVE LAYOUT METHOD
Case 1 demonstrated the superiority of the proposed
algorithm and the spatial vector encoding method. Case 2
presents a typical model for branch pipe layout space [41]
(Applicable to all types of ships), as shown in Fig. 22. The
effectiveness of the proposed branch pipe collaborative lay-
out method has been validated through a comparison with
the layout methods and algorithm performance described
in reference [41]. The layout space of this case study is a
cube with dimensions approximately 40 in length, width, and
height, consisting of six obstacles (ship equipment) with their
respective diagonal vertex coordinates as follows: [{(6, 12,
1), (24, 16, 40)}O1, {(32, 12, 1), (40, 16, 40)}O2, {(1, 26,
1), (8, 30, 40)}O3, {(16, 26, 1), (34, 30, 40)}O4, {(1, 1, 12),
(24, 40, 16)}O5, {(16, 1, 26), (40, 40, 30)}O6]. There are four
interfaces with the following coordinates in this case: (20, 40,
20), (20, 1, 1), (1, 40, 40), and (40, 20, 30).

The branch pipe layout belongs to the typical one-to-
many problem. The approach outlined in reference [41],
which is commonly employed, decomposes the branch pipe
layout problem into individual pipe optimization problems
with different populations and integrates the ecological
concept of collaborative evolution. In this model, the prob-
lem is initialized with a common starting point and three
branch endpoints. In contrast, the collaborative layoutmethod
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TABLE 4. Comparison of test results for different algorithms in Case 1.

presented in this paper, as described in Section IV, selects the
two interfaces furthest apart as the starting and ending points
for the main pipe, which in this case are (20, 1, 1) and (1, 40,
40), while the other two branch endpoints are (40, 20, 30) and
(20, 40, 20).

In order to validate the feasibility of co-evolutionary
method proposed in this paper, we compared it not only with
themethods in the literature but alsowith the high-performing
algorithms (including DDECS and AFSA) and encoding
methods used in Case 1. In this context, the suffix ‘‘T’’
in the algorithm names indicates the adoption of traditional
methods, while ‘‘G’’ signifies the use of grid-based encoding.
The algorithm parameters were kept consistent with those in
Case 1, with a limit of 100 iterations. The population size for
each pipe is set to 50. Regarding the overall fitness evalua-
tion, the fitness values for the main pipe and side pipes are
weighted in a ratio of 0.65:0.35. The value of C for each pipe
is 225, and the weighting parameters for the evaluation func-
tion, p1 to p6, are set in the following proportions: 1: 10: 1: 1:
0.01: 0.01. To facilitate better comparison with the literature,
the maximization problem is transformed into a minimization
problem by adjusting the signs of the final fitness values. Both
co-evolutionary methods do not consider the order of branch
pipe layout. Each algorithm was run 30 times, and the best
layout results were compared, as shown in Fig. 23. Fig. 23 (a)
represents themodel space after grid-based processing, where
the grid precision is based on the pipe diameter. Algorithm
performance comparisons are presented in Fig. 24, and the
layout results are detailed in Table 5 (layout results limited to
100 iterations).

According to the test results, the co-evolutionary lay-
out method proposed in this paper demonstrates significant
advantages across various evaluation criteria. Specifically,
in terms of layout methods, there is not a significant dif-
ference in algorithm performance, but the pipe co-evolution
degree is higher when employing the layout method proposed
in this paper, exceeding 20%. In terms of encoding methods,
the algorithms using the encoding method proposed in this
paper exhibit faster optimization rates and higher precision.
These results can be referenced through the testing outcomes
of two different encoding methods of the DDECS and AA-
SPOP algorithms. In terms of algorithm performance, based

FIGURE 22. Layout space of Case 2.

on the evaluation criteria, AA-SPOP>DDECS>AFSA, but
the AA-SPOP algorithm also has certain drawbacks, as it
is relatively less time-efficient compared to the DDECS
algorithm. Nevertheless, this time efficiency metric is not
highly critical in the context of pipe layout. In conclusion,
the co-evolutionary layout method proposed in this paper is
highly efficient and practical.

C. CASE 3: VERIFICATION AND ANALYSIS OF
COLLABORATIVE LAYOUT METHOD FOR VARIOUS PIPE
AND SUPPORT EQUIPMENT
Cases 1 and 2 have demonstrated the effectiveness of the
algorithm, encoding method, and branch collaborative layout
method. Case 3 is primarily aimed at verifying the engineer-
ing practicality of the proposed AA-SPOP algorithm and the
collaborative layout optimizationmethod for mixed pipes and
support equipment. It is based on the pipe layout of an actual
nuclear-powered ship, representing a complex large-scale
layout model compared to the previous two cases, as shown in
Fig. 25. The actual layout space has dimensions of 6000mm
(length) × 8000mm (width) × 5000mm (height). Fig. 25(a)
and Fig. 25(b) present the actual engineering drawings, with
annotations for some pipes and support equipment, while
Fig. 25(c) shows the processed equipment envelope model.
In the figures, represents the pipe label, E represents the
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FIGURE 23. Comparison results of the collaborative layout. (a) Grid-based representation. (b) AA-SPOP algorithm. (c) AA-SPOP(T) algorithm.
(d) AA-SPOP(G) algorithm. (e) AFSA algorithm. (f) DDECS algorithm. (g) DDECS(G) algorithm. (h) Literature algorithm.

FIGURE 24. Comparison of the performance between these algorithms. (a) The performance of branch pipe in this paper’s algorithm. (b) Comparison
of the overall performance with literature algorithm. (c) Comparison of the complete test results of the algorithms.

equipment label, and S-E represents the support equipment
label. Detailed information on the original layout of each pipe
can be found in Table 6. Due to the confidentiality of certain
equipment and penetrations involved in pipe connections,
detailed disclosure of equipment information is avoided, con-
sidering the specific nature of nuclear-powered ship.

In the complex and extensive space of Case 3, to com-
prehensively validate the effectiveness of our approach,
we conducted comparisons not only with the original
engineering design but also with the high-performing
DDECS algorithm and the AA-SPOP algorithm under
grid encoding. The algorithm parameters were set consis-
tent with the previous two cases, with grid partitioning
precision based on pipe diameter. Evaluation functions
followed

Equation (21). The initial C values for both the main pipe
and branch pipes are set to 1500 (considering the large layout
space). The main-branch ratio for the branch collaborative
layout method is set to 0.65:0.35. The weight parameters
of the fitness function, p1 to p7, are set in the following
proportions: 1:10:0.001:0.01:0.001:0.1:0.1. The population
size is set to 50, and the number of iterations was set
to 200. When arranging the pipes, they are sorted based
on their diameter, with priority given to pipes with larger
diameters.

Case 3 represents a typical large-scale layout scenario
found in real nuclear-powered ships. Its primary purpose is
to provide a comparative validation of this paper’s coop-
erative layout methodology, encoding approach, algorithm
performance, and engineering practicality. The test results
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TABLE 5. Comparison of test results for different algorithms in Case 2.

TABLE 6. Layout information for Case 3.

confirm the threefold application value of the proposed novel
cooperative layout optimization method:

Firstly, the optimization method can provide superior
engineering alternative layout schemes. The original engi-
neering scheme takes into account factors such as stress on
nuclear-powered ship pipes and fluid properties, and provides
a suboptimal collaborative layout scheme for equipment and
pipes. However, upon observation, it was noted that the

original scheme excessively emphasized factors such as par-
allelism between pipes and clamp positions, while neglecting
other engineering evaluation factors such as path length and
the number of elbows.

Therefore, considering various collaborative factors com-
prehensively, 30 sets of optimization tests were conducted
for both the AA-SPOP algorithm and the excellent DDECS
algorithm in this case. The final optimal pipe and equipment
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FIGURE 25. Layout space of project Case 3. (a) Original Illustration of pipe and equipment. (b) Original Illustration of support equipment (c) After
envelope processing.

FIGURE 26. Comparison of co-layout results for multi-pipe and equipment (best result). (a) Results of DDECS algorithm. (b) Results of AA-SPOP(G)
algorithm. (c) Results of AA-SPOP algorithm. (d) Overall convergence status (DDECS). (e) Overall convergence status (AA-SPOP(G)). (f) Overall
convergence status (AA-SPOP).

collaborative layout schemes for each algorithm, as well as
algorithm performance, are illustrated in Fig. 26. Table 7
presents a comparison of the data between the new and orig-
inal layout schemes, where L_v represents the overall path
length, E_v represents the number of elbows, P_v represents
the parallelism degree of each pipe, P_v_r represents the
percentage of parallel length, and B_C represents the degree
of change in equipment positions, with 0 indicating that
the equipment layout complies with the original engineering

plan. If any equipment does not meet the requirements, it is
assigned a value of -50.

Based on the comprehensive results, the performance com-
parison of the algorithms in a large environmental space
is as follows: AA-SPOP > DDECS > AA-SPOP(G). Both
DDECS and AA-SPOP(G) algorithms exhibit superior lay-
out results compared to the original engineering plan in
terms of pipe length and the number of bends. However,
they demonstrate reduced parallel collaboration among pipes,
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TABLE 7. Comparison of pipe and support equipment collaborative
layout results.

and the collaborative effects among equipment are relatively
suboptimal. In contrast, the AA-SPOP algorithm excels
in all aspects of pipe layout, and its collaborative results
meet engineering standards. Therefore, this paper’s method,
while meeting the engineering requirements of the original
plan, yields superior overall layout results, reaffirming the
efficiency of the new collaborative method and encoding
approach.

Secondly, this optimization method has practical value
in engineering practice as it can reproduce the original

FIGURE 27. Other effects of collaborative approaches (a) Reproducing
the original engineering design. (b) Different schemes similar to the
original project. (c) Results of hybrid pipe co-layout 1. (d) Results of
hybrid pipe co-layout 2.

engineering design and achieve the same layout results. Based
on the layout scheme provided in Fig. 25, the collaborative
layout optimization method proposed in this paper can be
applied to obtain two representative layout results, as shown
in Fig. 27. One of them reproduces the original engineering
layout as shown in Fig. 27(a), while the other represents
a different optimized solution after further optimization as
shown in Fig. 27(b). This once again validates the engineering
applicability of the proposed collaborative method.

Thirdly, the optimization method exhibits flexibility and
diversity in the layout of mixed pipes. Pipe layout holds
priority and serves as the foundation for global collaborative
optimization. By employing the evaluation Equation (6) and
the proposed pipe collaborative optimization method in this
study, 30 tests were conducted on Case 3 (Considering only
the pipe). By adjusting the different weight parameters in
the algorithm, two relatively optimal layout schemes were
obtained, as shown in Fig. 27. Fig. 27(c) primarily prioritizes
the parallelism between pipes, while Fig. 27(d) prioritizes the
overall path length and the number of elbows in the pipes.
By increasing the weight parameter p5 to a proportion of
0.01 and decreasing p3 to a proportion of 0.0005 and p4 to
a proportion of 0.005, the layout scheme in Fig. 27(c) is
obtained. By increasing the weight parameter p3 to 0.01 and
p4 to 0.1, while keeping the others unchanged, the layout
scheme in Fig. 27(d) is obtained. The significant differences
between these two schemes are clearly visible from the anno-
tated circles in the figures, especially for pipes P1 − 1, P2,
P4, P5, P8, P9, and P9− 1.
In summary, the collaborative layout method proposed

in this paper exhibits strong engineering applicability and
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flexibility. In practical scenarios, this method can provide
different layout schemes to achieve multiple objectives or
emphasize specific goals. Engineers can select the most suit-
able scheme based on the requirements of the ship.

VI. CONCLUSION
1) Addressing the limitations of traditional grid-based encod-
ing, this paper introduces a flexible high-dimensional vector
encoding technique, tailored to the context of ship pipe lay-
out, making significant contributions at the foundational level
of the pipe domain.

2) To tackle efficiency, stability, and economic issues
within SPRD, a highly versatile heuristic hybrid algorithm,
AA-SPOP, is proposed. This algorithm exhibits strong global
optimization capabilities and speed. Test results demonstrate
the algorithm’s high practical value.

3) Addressing the current research gap in pipe collabora-
tive layout, a novel branch pipe layout method is proposed.
This method avoids the collaborative deficiencies of tra-
ditional approaches, achieving a ‘‘win-win’’ arrangement
among pipes and paving the way for new research directions.

4) To address the research gap regarding the coordinated
layout of pipes and support equipment within ship compart-
ments, this paper, presents a new approach to collaborative
layout through mutual guidance of energy zones. Practical
ship engineering cases confirm its feasibility and practicality,
providing significant reference value for future research in the
field of pipe coordination.

In conclusion, this paper has contributed significantly to
the fundamental aspects of pipe design, algorithm develop-
ment, and the collaborative domain, offering novel insights
for SPRD. Notably, addressing collaboration issues aligns
with the current research mainstream. Future research direc-
tions are expected to focus on comprehensive collaborative
layouts within ship cabin. Furthermore, there is a need for
the development of intelligent ship pipe layout software with
practical engineering value.
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