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ABSTRACT As the intelligent transportation system has been introduced, traffic speed prediction has
become one of the foremost challenging tasks within complex urban road networks. The main idea of this
study is to identify links that have a significant impact on the target link and develop a high-performance
travel speed prediction model using those links. This study proposes the Extreme gradient boosting model
with high importance links (HI-XGB) to predict traffic speed in the urban area. High importance links for
predicting the target link speed are selected using Shapley additive explanations. With the selected input
features, extreme gradient boosting is used to predict traffic speed. The results show that the performance
of the HI-XGB model with one- and 12-time steps ahead achieved 98.5% and 90.7% accuracy, respectively.
Feature analysis and link classification analysis are performed to identify the impact of the spatial character-
istic on predicted speed. Among the eight features, the speed of the target link at t and the speed change of
the target link at t−1 have the most impact on the predicted target link speed. In addition, link classification
analysis is performed to identify the impact of the spatial characteristic of the input feature on predicted
speed. The result indicates that links other than upstream or downstream could have a greater impact on
traffic speed prediction.

INDEX TERMS Traffic speed prediction, urban road network, extreme gradient boosting (XGB), shapley
additive explanations (SHAP), explainable artificial intelligence (XAI).

I. INTRODUCTION
With the introduction of the intelligent transportation sys-
tem (ITS), traffic speed prediction has been regarded as one
of the key challenging tasks in a complex urban road net-
work. Advanced ITS provides an opportunity for accurate
traffic speed prediction by collecting traffic state data. With
the availability of big data, many traffic speed prediction
methods have been developed based on data-driven statis-
tical and machine-learning models. Accurate traffic speed
prediction benefits both road travelers and operators such as
road management agencies. Predicted traffic speed informa-
tion enables travelers to select the best routes and departure
times. For road network operators, predicted traffic speed is
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conducive to efficiently controlling the traffic conditions of
urban road networks.

Traffic speed prediction of urban road networks is usually
more challenging compared to other local regions [1], [2], [3].
For example, urban roads, with their frequent intersections,
mixed road classifications, traffic signals, varying speed lim-
its, and congested traffic patterns influenced by rush hour,
events, and road conditions, pose unique challenges for speed
prediction. Their road design, characterized by shorter seg-
ments, curves, and intersections, further impacts the accuracy
of speed prediction. The presence of multiple access points
like driveways, side streets, and parking lots adds to the vari-
ability in predicting speeds on urban roads. Therefore, previ-
ous studies tried to explore the relationship and correlation
between links including upstream, downstream, and target
links [4], [5], [6], [7]. For example, Dai et al., [4] explored
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spatial and temporal trends between the links to predict short-
term traffic speed. Similarly, Park et al., [6] investigated the
impact of inherent variation and spatio-temporal dependency
on urban road networks. These studies implied that the travel
speed in the urban area varies greatly and the correlation
between the upstream and downstream links and the target
link is not consistent.

There have been noteworthy studies on traffic speed
prediction using data-driven techniques. The prediction
approaches can be divided into three categories, i.e., con-
ventional, parametric, and non-parametric [1]. Conventional
approaches refer to the historical average and are widely
adopted by practical fields such as the transportation indus-
tries. Parametric approaches are also regarded as an impor-
tant solution to traffic speed prediction. Among them,
auto-regressive integrated moving average (ARIMA) and
Kalman filtering are widely used in previous studies [2], [3].

With the rise of deep and machine learning techniques
in recent years, prediction models have evolved to be more
sophisticated and accurate by capturing highly complex data
correlations. For example, Lv et al. [8] developed a pre-
diction model based on a deep belief network considering
the spatio-temporal correlation of traffic dynamics. Similarly,
Yu et al. [9] and Zhang et al. [10] proposed recurrent neural
network (RNN) models to predict traffic states by reflecting
temporal correlation. Zhang et al. [11] and Yu et al. [12] pro-
posed convolutional neural network (CNN) models to predict
traffic states by reflecting latent spatial factors. Long short-
term memory (LSTM) and gated recurrent unit (GRU) were
also used to predict travel time and speed, considering spatio-
temporal characteristics [13], [14], [15], [16]. Moreover,
advanced techniques have been used to predict traffic flow
characteristics, i.e., the multi-task learning, deep multimodal
learning model, attention mechanism, and graph convolution
network [17], [18], [19], [20], [21]. Although these models
showed notable performance, such as high accuracy, model
interpretation remains difficult and is a significant drawback.

The explainable artificial intelligence (XAI) has emerged
as a solution to overcome this problem. Extreme gradient
boosting (XGB) and Shapley additive explanation (SHAP)
have been used to understand the output of machine learn-
ing models [22], [23]. XGB is one of the notable machine
learning techniques due to its speed and scalability. XGB
efficiently predicts target values by reducing computational
complexity. Several previous studies predicted traffic condi-
tions with the advantages of XGB, i.e., high accuracy and
fast processing time. For example, Dong et al. [24] used
XGB to predict short-term traffic flow and revealed that
XGB showed better performance than other machine learning
models on traffic flow prediction. Similarly, Mei et al. [25]
and Sun et al. [26] predicted short-term traffic flow based on
the XGB model. XGB has also been used to estimate traffic
speed and has been shown to achieve higher performance than
othermodels [27]. Regardingmodel interpretation, SHAP has
been utilized to understand the output of developed models.
Proposed by Lundberg and Lee [28], SHAP was developed

based on game theory and local explanations. Furthermore,
SHAP provides an insightful understanding and nonlinear
joint impact of features on the model output. SHAP values
provide two interpretability aspects, i.e., global and local
interpretability [29], [30]. Global interpretability provides the
positive or negative relationship for each feature with the tar-
get, and local interpretability provides contributions to the
developed model. With the combination of XGB and SHAP
values, it is possible to achieve notable model performance
and understand the impact of inputs on output.

Overall, previous studies have attempted to predict
speeds by exploring relationships and correlations between
upstream, downstream, and target links. These studies have
indicated that travel speeds in urban areas vary significantly,
and the correlations between upstream, downstream, and tar-
get links are not always consistent. However, there were lim-
itations in modeling the complex nonlinear spatio-temporal
correlations of traffic dynamics. While the advancement of
deep learning and machine learning techniques has led to
more sophisticated and accurate prediction models, there
remains a challenge in interpreting these models.

To address the aforementioned challenges in predicting
urban traffic speed, this study aims to incorporate highly
influential links in addition to upstream and downstream links
when predicting traffic speed on urban roads. The main idea
of this study is to identify links that have a significant impact
on the target link and develop a high-performance travel
speed prediction model using those links. Specifically, the
spatiotemporal impact of urban roads is understood from a
network perspective, without being limited to upstream and
downstream considerations. The link speed data is obtained
from Transport Operation & Information Service (TOPIS) in
Seoul. TheXGBwith high importance links (HI-XGB)model
is proposed to predict traffic speed in urban areas. The input
features that impact target link speed are selected based on
the importance of SHAP, and the XGB model is developed to
predict traffic speed. With the results of the HI-XGB model,
feature analysis based on SHAP is performed to identify high
importance links for predicting target link speed.

II. DATA DESCRIPTION
Gangnam district is the most popular area in the city of Seoul,
Korea, and is a modern center, attracting the largest floating
population among the city’s twenty-five districts. Gangnam
district experiences steady traffic congestion due to its geo-
graphical location. Gangnam district is the main gateway
for entering Seoul from the southeastern suburban area, and
thus constant flow of external traffic is present. Additionally,
Gangnam district is densely developed as a commercial and
residential area and suffers from many traffic jams. The road
network in Gangnam district consists of 67 intersections, and
its length stretches to about 203.0 km. The daily average
traffic speed is about 30.1 km/h.

The government of Seoul has been operating TOPIS since
2004. TOPIS is a transportationmanagement and information
system that monitors and records the overall traffic situation
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in Seoul. TOPIS collects link speeds of the entire road net-
work in Seoul using GPS information of 70,000 taxis. Seoul’s
traffic speed data can be obtained from Open Data Portal
(data.seoul.go.kr) in Seoul, and it includes link speed infor-
mation that is updated every five minutes. The road network
data is obtained from the Open Data Portal (www.data.go.kr),
and it includes node and link data. TOPIS data from 20 week-
days from June 4, 2018, to June 29, 2018, are used as the
dataset, including 731 links in the road network of Gangnam
district.

The data were preprocessed using the link IDs recorded
in the traffic speed data and road network data. Furthermore,
the upstream and downstream of the target link were labeled
based on the starting and ending points of the link. The overall
missing rate is approximately 2%, and these missing values
were interpolated using the moving average technique.

The road network data of Gangnam district and an exam-
ple of traffic speed data are shown in Table 1 and Fig. 1,
respectively.

TABLE 1. Example of traffic speed data.

FIGURE 1. Road network of gangnam district.

III. METHODOLOGY
A. TRAFFIC SPEED PREDICTION MODELING STRATEGY
Accurate traffic speed prediction requires an understanding
of the links that impact highly on the target link speed [3],
[4], [5], [6]. The traffic speed of uninterrupted flow, primarily

on freeways or expressways, changes depending on the time
series trends of the target link and the traffic conditions of
upstream or downstream links [31], [32]. However, the traffic
speed of road networks in urban areas, such as signalized
intersections and mixed road classifications, can be affected
by distant links rather than upstream and downstream links.
This indicates that finding links with a high impact, such
as similar spatiotemporal characteristics, on the target link
is essential for urban traffic speed prediction. Specifically,
links other than upstream or downstream could have a greater
impact on traffic speed prediction. In this regard, this study
proposed a HI-XGB, as shown in Fig. 2.

There are many factors in influence the traffic flow pattern,
for example, link speed, link speed change, day of week,
holiday or not, and weather [33]. Among these factors, link
speed and link speed change are the most representative fac-
tors in traffic characteristic predictions [34]. For an intuitive
implication of spatial impact on target link speed, only two
factors, i.e., link speed and link speed change, were used in
this study.

The conventional approach in the traffic speed prediction
field usually uses upstream and downstream link speed as
input features, as shown in Fig. 2(a). Regarding the temporal
characteristics, the speed of the previous time periods, i.e., t,
t−1, . . . , and t−5, were used to predict traffic speed at t+1.
Five conventional models were compared to validate the
performance of the HI-XGB model.

The framework of the HI-XGB model consisted of two
models, i.e., the feature selection model and the prediction
model, as shown in Fig. 2(b). The feature selectionmodel was
to select the input features that had a high impact on the target
link speed. The feature importance was estimated by SHAP
and used to determine the impact of speed and speed change
on each target link speed. The inputs were set as the speed
and speed change of all links from the previous time periods
(30 minutes), such as t, t−1, . . . , and t−5, to predict traffic
speed at t+1. This is because the transition between the free
flow state (80th percentile of traffic speed) and congestion
(20th percentile of traffic speed) is 28.3 minutes on average.
Based on the results of the feature selection model, six fea-
tures scored high importance, i.e., three speed features and
three speed change features, were selected as input features
for the prediction model. With the selected input features, the
XGB model was developed to predict the traffic speed of the
target link. With the proposed model, the traffic speeds of
the road network of Gangnam district were predicted, and the
performance of each model was compared to select the best
model. Additionally, the impact of spatio-temporal factors on
the predicted output was interpreted using the SHAP value.

B. EXTREME GRADIENT BOOSTING
XGB is an ensemble machine-learning method using a
sequence of decision trees. It has three main advantages,
i.e., predictive accuracy, fast computation, and interpretabil-
ity [28], [29], [30]. The idea of XGB is to correct the
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FIGURE 2. Concept of prediction model: (a) Conventional model with upstream and downstream links; (b) HI-XGB model.

performance of prior models by adding trees to the ensemble.
Thus, XGB continuously adds trees and splits features to
learn an improved function to fit the last predicted residuals.

In this study, XGB is used to predict the traffic speed
of an urban road network. The pre-processed dataset with
4,210,560 samples (731 links × 288 time steps × 20 days)
includes independent variables xi and dependent variables yi
(D = {(xi, yi)} , |D| = 4, 210, 560). Each xi has m features
of traffic speed (m = 1, 2, . . . , 8), and these features have
corresponding dependent variables (xi ∈ Rm, yi ∈ R). The
tree ensemble model predicts the target value (ŷi) using K
additive functions, as shown in Equation (1):

ŷ = φ (xi) =

K∑
k=1

fk (xi) ,F

=
{
f (x) = wq(x)

}
,
(
q : Rm

→T ,w ∈ RT
)

(1)

where ŷi are the target values, yi are the dependent variables
such as the traffic speed of the target link at the next time
step, xi are the independent variables, m are the features
(m = from 1 to 8 in order of highest importance), q is a tree
structure,w is the weight of leaf node,K is the number of tree
functions, F is the space of trees, and fk is an independent
tree structure with leaf scores.

The objective function consists of the loss function and
regularization term. The loss function measures how well
the model fits the data, and the regularization term con-
trols the complexity of the model to prevent overfitting. The
objective is to minimize L (φ), and the formulation is shown
in Equation (2):

L (φ) =

∑
i

l
(
yi, ŷi

)
+

∑
k

�(fk ) (2)

where � is a regularization term of the model complexity,
and l is a loss function.

The regularization term includes two penalty terms, i.e.,
the penalty for the number of trees and the penalty for the leaf
weights. The penalty terms are determined by optimizing the
objective function using gradient descent and second-order
Taylor approximation. The� is calculated as in Equation (3):

� (fk) = γT +
1
2
λ ∥wi∥2 (3)

where γ is a parameter that controls the minimum loss reduc-
tion required to make a further partition on a leaf node, T is
the number of trees, λ is a parameter that controls the L2
regularization on the leaf weights, and wi is the score of the
leaf i.
The leaf weights are the values assigned to the terminal

nodes of each tree, which represent the predicted output for
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the samples that fall into that leaf. The optimal weights are
calculated by minimizing a loss function that measures the
difference between the true and predicted outputs, as well
as a regularization term that penalizes the complexity of
the model. The weight calculations for the leaf nodes using
gradients and Hessians contribute to the overall model’s per-
formance by finding the best-split points and leaf values
that minimize the objective function. This way, XGB learns
a more accurate and robust model that generalizes well to
data. The optimal weight w∗

i of the leaf, j is calculated as in
Equation 4, and the corresponding optimal value is estimated
by Equations (5) to (7):

w∗
i = −

∑
i∈Ij ∂ŷt−1 l(yi, ŷt−1)∑

i∈Ij ∂
2
ŷt−1 l

(
yi, ŷt−1

)
+ λ

(4)

gi = ∂ŷ(t−1) l
(
yi, ŷt−1

)
(5)

hi = ∂2ŷ(t−1) l
(
yi, ŷt−1

)
(6)

L̃t (q) = −
1
2

T∑
j=1

(∑
i∈Ij gi

)2
∑

i∈Ij hi + λ
+ γT (7)

Normally, it is difficult to enumerate all possible tree struc-
tures q. Therefore, a greedy algorithm, which extends a single
leaf to many branches iteratively, is used to calculate the
optimal value. This algorithm is usually employed to evaluate
spilled candidates. The formulation of the greedy algorithm
is shown in Equation (8):

Ls = −
1
2

[ (∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−

(∑
i∈I gi

)2∑
i∈I hi + λ

]
− γ (8)

where I = IL∪IR, IL is the instance set of left nodes after the
split and IR is the instance set of right nodes after the split.

C. HYPERPARAMETER TUNING FOR XGB
In this study, 85% of the dataset, selected randomly, was used
as the training set, and the remaining 15%was used as the test
set to validate model performance. Eight hyperparameters
were tuned tomaximizemodel performance. Hyperparameter
tuning of XGB is requisite to prevent the overfitting problem
and to minimize the complexity of the model. Optimal hyper-
parameters were selected by performing a 10-fold cross-
validation. The number of iterations refers to the maximum
number of boosting iterations. The learning rate is the scale
of the weights of each tree, and it makes a robust model
by changing the impact of each tree [23]. The max_depth
parameter is the maximum depth of the trees. The subsample
and colsample_bytree are tuned to prevent the overfitting
problem of the model. The subsample parameter is the ratio
of selected random observations for training instances. The
colsample_bytree parameter stands for the ratio of columns
when building each tree. Alpha and lambda stand for L1 and
L2 regulation terms on the weights, respectively. Gamma is

the minimum loss reduction required to make an additional
partition on a leaf node. The hyperparameters of XGB in
this study were selected as 2000 for the number of iterations,
0.1 for learning rate, 16 for max_depth, 0.8 for subsam-
ple, 0.9 for colsample_bytree, 0.3 for an alpha, and 0.3 for
lambda.

Additionally, the robustness of the model performance
was evaluated based on the toy networks with 8000 links
using optimal hyperparameters. The results showed that the
performance of the model remained robust, as the features
with high importance were consistently selected for each of
the 8000 links.

D. SHAPLEY ADDITIVE EXPLANATIONS FOR MODEL
INTERPRETATION
SHAP is used to interpret the impact of input features on
the model output. Specifically, SHAP presents the order of
feature importance and relative importance of input features.
SHAP repeatedly asks about the impact of the feature on
each predicted value, and the SHAP value is estimated as
the answer. The SHAP was used to identify the impact of
individualized features on model output, and the results were
illustrated using the SHAP summary plot function. The for-
mulation of the SHAP is shown in Equation (9). For the linear
function, g

(
z′
)
is defined by the additive feature function

shown in Equation (10):

θi =

∑
S⊆N {i}

|S| ! (n− |S| − 1)!
n!

[v (S ∪ {i}) − v(S)] (9)

g
(
z′
)

= f (hx
(
z′
)
) (10)

where z′ is the simplified input vector, hx is a function from
the simplified to the original input.

IV. APPLICATION
A. RESULTS OF THE HI-XGB MODEL FOR TRAFFIC
SPEED PREDICTION
The performance of the HI-XGB model was evaluated by
comparing five naïve models, i.e., ARIMA, SVM, LSTM,
GRU, and XGB. Three performance measures, i.e., mean
absolute percentage error (MAPE), root mean square error
(RMSE), and mean absolute error (MAE), were used to eval-
uate the performance of the prediction models [12]. These
measures are well-known metrics for evaluating the differ-
ence between the precision of a prediction and its bias.
The formulations of MAPE, RMSE, and MAE are shown
in Equations (11)-(13):

MAPE =
100
n

√∑
n

|µt+1 − µ̃t+1|

µt+1
(11)

RMSE =

√∑
n(µt+1 − µ̃t+1)2

n
(12)

MAE =
1
n

∑
n
|µt+1 − µ̃t+1| (13)
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where n is the number of predicted traffic speeds, µt+1 is the
actual traffic speed at time t+1, and µ̃t+1 is the traffic speed
at time t + 1.

The training was done with 85% of the dataset, and the
remaining 15% was used to test data. Train and test data were
randomly selected. The train data comprised 3,578,976 of
4,210,560 link speeds, and the test data included 631,584. The
link traffic speeds of the road network of Gangnam district
were predicted by the six prediction models with 1-, 6-, 12-,
and 24-time steps, i.e., conventional ARIMA, SVM, LSTM,
GRU, XGB, and proposed HI-XGB models. The results of
the traffic speed prediction by the proposed XGB model are
shown in Table 2 and Fig. 3.

TABLE 2. Results of traffic speed prediction with XGB.

Among the six prediction models, the HI-XGB model
showed the highest performance in all time steps. Specif-
ically, the results of MAPEs for the HI-XGB model with
1-, 6-, 12-, and 24-time steps ahead were estimated to be
0.015, 0.074, 0.083, and 0.093, respectively. The results of
MAPEs for the conventional ARIMA, SVM, LSTM, GRU,
and XGB models with a one-time step ahead were estimated
to be 0.106, 0.089, 0.056, 0.057, and 0.045, respectively.
Interestingly, the HI-XGB model shows particularly robust
performance in long-term prediction, i.e., 12-time steps ahead
and 24-time steps ahead. For example, the error of the conven-
tional ARIMA model was increased by about 0.05 when the
time step was increased from 12 to 24. However, the error of
the HI-XGB model was increased by about 0.01 in the same
condition. Among the conventional models, it showed high
performance in the order of the conventional XGB model
and LSTMmodel. These results implied that the XGB model

FIGURE 3. Result of traffic speed prediction: (a) Conventional XGB model
with upstream and downstream links; (b) HI-XGB model with important
features.

could show better performance than LSTM, which is a type
of time-series model, in an urban area.

Since the road network showed interrupted flow charac-
teristics due to signalized intersections, the effect of tem-
poral characteristics on traffic speed was smaller than that
of networks with an uninterrupted flow, such as highways.
Similarly, the effect of spatial characteristics on traffic speed
was also small in urban areas. In general, it is known that an
upstream link and a downstream link have a large impact on
the target link. However, in urban areas, the effect was small
due to the intermittent flow characteristics. These results
suggest that the effect of spatially or temporally distant links
could be greater than that of upstream or downstream links on
the target link.

Overall, the accuracy of the HI-XGB model with a 1-time
step ahead showed the highest performance with a MAPE
of 0.015. Since the characteristics of the upstream link, down-
stream link, and right-before time zone had little effect on the
target link in the urban area, it was crucial to find the link and
time that affected the target link.

B. FEATURE ANALYSIS
The importance scores, such as SHAP values of eight fea-
tures of the HI-XGB model, were summarized in Fig. 4.

113222 VOLUME 11, 2023



E. H. Lee: Traffic Speed Prediction of Urban Road Network Based on High Importance Links

The features were ordered by their importance in predicting
traffic speed. The SHAP value implied the impact of the input
feature on the output. It was interpreted that the larger the
SHAP value, the greater the impact. The average SHAP value
of target link speed at t, target link speed change at t−1,
1st high important link speed, 1st high important link speed
change, 2nd high important link speed, 3rd high important link
speed, 2nd high important link speed change, and 3rd high
important link speed change were estimated to be 8.54, 3.41,
0.04, 0.02, 0.01, 0.01, 0.01, 0.01, on average, respectively.

The SHAP values of target link speed at t and target link
speed change at t−1 significantly impacted the predicted
speed, such as target link speed at t+1. These results implied
that the traffic speed of the target link at the previous time
step has a significant impact on speed prediction.

Regarding the impact of excluding target links on predicted
speed, six features had a significant impact on the predicted
traffic speed. All six features had a positive correlation with
the predicted speed, such as target link speed at t+1. Specifi-
cally, the predicted speed of the target link increased as the
three important link speeds increased. Also, the predicted
speed of the target link has increased as the three important
link speed changes increased. These results indicated that
the speed and speed change of links with similar spatiotem-
poral characteristics to the target link speed was reasonably
selected, even if they were not close in time or near distance.

FIGURE 4. Results of SHAP values for eight input features.

C. FEATURE DEPENDENCY ANALYSIS
The results of feature dependency analysis were performed to
identify the impact of speeds and speed changes on the output
of the HI-XGB, as shown in Fig. 5.
The impact of selected link speed which has high impor-

tance on predicted speed and relationships between selected
links, is shown in Fig. 5(a). The results showed that the three
important link speeds, i.e., link speeds with high importance
scores (1st to 3rd), had a positive correlation with each other.
The SHAP value of the most important link speed increased
when the 2nd and 3rd important link speeds decreased. These
results indicated that the high importance score from SHAP
was estimated as link speed had similar spatio-temporal
characteristics to the predicted speed.

The impacts of target link speed at t, target link
speed change at t−1, and important link speed are shown
in Fig. 5(b). The results showed that the SHAP value of the
target link speed at t decreased when the target link speed
changed at t−1, and the important link speed decreased.
Specifically, SHAP values of target link speed at t were
decreased from 30 to 0 when speed changes were −20 to 0.
Then, SHAP values of target link speed at t were slightly
increased from 0 to 5 when speed changes were 0 to 20.
Regarding the important link speed, the SHAP value of the
target link speed at t decreased linearly.

Overall, target link speed at t, target link speed change
at t−1, and important link had a significant impact on pre-
dicted speed. The selected link speed features had a positively
correlated impact, and the selected speed change had a greater
impact on the prediction speed as the value decreased.

FIGURE 5. Result of SHAP dependency analysis: (a) Impact of three
important link speeds on model output, (b) Impact of target link speed,
link speed change, and important link speed on model output.

D. SPATIAL CLASSIFICATION OF IMPORTANT LINK
The spatial classification analysis was performed to iden-
tify the impact of the link speed and speed change on the
target link from a spatial perspective. The road network of
Gangnam district was classified into two groups based on
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the SHAP value. Group 1 was defined as the set of links
that were most impacted by links other than up/downstream
(NUD) links. Group 2 was defined as the set of links that
weremost impacted by upstream and downstream (UD) links.
Specifically, if the NUD link had the highest SHAP value the
target link was classified into Group 1 and if the UD link
had the highest SHAP value the target link was classified
into Group 2. The impact of the input link speed and speed
change on the predicted target link speed is shown in Fig. 6
and Table 3.

FIGURE 6. Impact of the input link speed and speed change on the
predicted target link speed: (a) speed feature; (b) Speed change feature.

Regarding the speed feature, the numbers of links in
Groups 1 and 2 were 425 and 306, respectively. The road
links in Groups 1 and 2 were mostly collectors and arterials,
respectively. The average speeds of Groups 1 and 2 were
28.56 and 34.41, respectively. SHAP values of Groups 1 and 2
showed 0.24 and 0.36. These results indicated that more
NUD links impacted the target link than UD links. Also, the
collector link was more affected by the NUD links than the
UD links. Regarding the speed change feature, the numbers
of links in Groups 1 and 2 were 304 and 427, respectively.

The road links in Groups 1 and 2 are mostly located in the
downtown and uptown areas, respectively. SHAP values of
Groups 1 and 2 showed 0.23 and 0.34. These results indicated
that the speed change of UD links impacts more than that of
NUD links.

TABLE 3. Impact of the input link speed and speed change on the
predicted target link speed.

Overall, the road network in Gangnam was affected by
a large number of NUD links, but it was greatly affected
by the UD links. In terms of speed change, links in the
downtown area were heavily impacted by NUD links, and
links in the uptown area, which is relatively less congested,
were impacted by UD links.

Fig. 7. shows the time-series pattern of speeds and speed
changes of the target link, NUD link, and UD link from 8:00
to 24:00. The traffic speed in the downtown area is shown
in Fig. 7(a). The speed of the NUD link showed a pattern
more similar to the target link speed than the downstream
link. Specifically, both the target link and NUD link speeds
showed a tendency to peak high from 12:00 to 16:00 and low
from 16:00 to 20:00. However, the downstream link displayed
an opposite trend, with the speed peaking low from 12:00 to
16:00 and high from 16:00 to 20:00.

The traffic speed in the uptown area is shown in Fig. 7(b).
The speed of the UD links showed a pattern more similar
to the target link speed than the NUD link. Specifically, the
speeds of the target link and UD links showed a tendency
towards free flow speed from 16:00 to 20:00, while the NUD
linkwas congested. Similarly, the speeds of the target link and
UD links showed a tendency towards free flow speed from
21:00 to 24:00, but the NUD link showed a low peak.

These results imply that the speed patterns of the target link
can be more similar, even if the links are not physically con-
nected to the target link. This similarity is particularly notice-
able in road networks in the downtown area with numerous
signals and frequent congestion. On the other hand, road
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FIGURE 7. Time-series pattern of traffic speed: (a) Downtown area, (b) Uptown area.

networks within uptown speed patterns of target links can be
more similar to UD links than NUD links. This is because the
roads in uptown are less crowded, have fewer traffic signals,
and havemore arterial routes compared to downtown. Among
the UD links, the pattern was more similar to downstream
links than to upstream links. This is because the traffic flow of
the target link is significantly influenced by the downstream
area, for example, signal crossings, sudden accidents, or bad
weather [15].

Overall, the findings suggest that road conditions in urban
areas such as Gangnam district are shaped not solely by fac-
tors related to upstream or downstream links but also by other
factors, i.e., frequent intersections, diverse road categories,
traffic signals, varying speed limits, rush hours, events, and
overall road conditions.

V. CONCLUSION
With the introduction of ITS, traffic speed prediction is a
key challenge in a complex urban road network. develop a
high-performance travel speed prediction model using those
links. To improvemodel performance and interpret the impact
of input features on target links, the HI-XGB model was
developed in this study. The proposed model framework was
classified into two stages, i.e., the feature selection model and
the prediction model. Specifically, the high-importance links
that impact target link speed are selected based on SHAP,
and XGB is used to predict traffic speed using selected high-
importance links as inputs. In addition, the impact of high-
importance links’ speeds on target link speeds was explored
with the Shapley score. Traffic speed data for five weekdays
from June 4, 2018, to June 8, 2018, was used as the dataset,
including 731 links of the road network of Gangnam district.
The model was trained with 85% of the dataset, selected
randomly, and tested with the remaining 15%. The HI-XGB
model was proposed to accurately predict traffic speed and
to understand the impact of spatio-temporal features on pre-
dicted speed in an urban area. The results showed that the
HI-XGB model with a time step ahead achieved the highest
performance with a MAPE of 0.015.

Feature analysis was performed based on the importance
score estimated from the SHAP analysis. Among the eight
features of the HI-XGB model, target link speeds at t , and
target link speed change at t-1 significantly impacted the
predicted speed. Also, the six remaining features, such as
selected features based on high importance scores, had a sig-
nificant impact on predicted speed. Specifically, the selected
important link speed impacted on predicted speed, and the
selected important speed change had a greater impact on the
prediction speed as the value decreased. Spatial classification
analysis was also performed to identify the spatial impact on
predicted speed. The results indicated that the road network in
Gangnam was affected by a large number of links that were
not up/downstream links, but it was greatly affected by the
up/downstream links. This result implies that the speed and
speed change patterns could be more similar even if the links
were not physically connected to the target link, i.e., upstream
or downstream link.

The noteworthy performance of the HI-XGB model sup-
ported its ability to predict complex urban road network
speeds. SHAP provided an insightful understanding of the
predicted speed. Specifically, SHAP evaluated feature impor-
tance and nonlinear joint impacts of features and was used
for the feature selection and model interpretation. Interesting
information came from this study, such as the spatio-temporal
impact on target link speed in the urban area, which has
not been established by other machine learning techniques.
The results indicate that roads in complex urban areas such
as Gangnam district are influenced not only by upstream or
downstream factors but also by frequent intersections, mixed
road classifications, traffic signals, various speed limits, com-
muting hours, events, and road conditions. From an urban
traffic management perspective, it also suggests that roads
need to be classified with spatio-temporal characteristics,
i.e., UD or NUD links, to improve road performance.

Although the proposed HI-XGB showed notable perfor-
mance and interpretability in predicting link speeds, there
are still opportunities to improve the performance of the
prediction model. It would be desirable to consider other
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factors in the prediction model, i.e., yearly traffic pattern,
seasonal traffic pattern, the day of the week, and weather
conditions. Moreover, it is beneficial to subdivide and include
road conditions such as geometric structure, environment,
and surrounding land use in the model to improve under-
standing of the classified UD and NUD in this study. The
insights found in this study could be applicable to other
advanced prediction techniques and other urban areas with
similar traffic characteristics.
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