
Received 15 September 2023, accepted 5 October 2023, date of publication 12 October 2023, date of current version 18 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3324048

A Software Platform for Programmable Linear
Optical Quantum Computer
YONG KWON1 AND BYUNG-SOO CHOI 2, (Member, IEEE)
1Department of Physics, Pukyong National University, Busan 48513, South Korea
2Department of Scientific Computing, Pukyong National University, Busan 48513, South Korea

Corresponding author: Byung-Soo Choi (bschoi@pknu.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korean Government
Ministry of Science and ICT (MSIT) under Grant 2020K1A3A1A78087782, and in part by Pukyong National University
Research Fund in 2022 under Grant 202203540001.

ABSTRACT Optical quantum computers represent qubits as photons created by laser and implement
arbitrary quantum operations through Mach-Zehnder interferometers (MZIs) which is called linear optical
quantum computing (LOQC). Since the number of qubits and quantum system is getting bigger, we need a
scalable and universal quantum computing platform based on LOQC. In this work, we propose a software
framework which can support a universal programming with flexibility of LOQC hardware configuration.
The framework consists of four parts such as decomposer, mapper, controller, and user-interface controller.
As an example, we show a use case of this framework for Bell state generation on Reck et al.’s MZI network.

INDEX TERMS Quantum computer, software, linear optical quantum computing.

I. INTRODUCTION
Quantum computers demand a perfect simulation of quantum
phenomena due to the limitations of classical computers [1].
Although the computers surpass classical ones in solving
calculation problems in a computational aspect [2] and
proclaimed by physical hardware [3], they orient to the
summit of calculation to quantum phenomena that can not be
represented perfectly in classical computers. For instance, the
Google AI team recently announced the discovery of anyonic
properties in a surface code adapting to their superconducting
processor [4].
However, despite the distinguished computing power and

compatibility for representing physical phenomena, quantum
computers do not fully work themselves so traditional com-
puters attaching to the quantum one should be inevitable as an
auxiliary purpose for controlling quantum devices [5]. From
a broad point of view, the devices can be regarded as quantum
hardware which is connected to the PC and controlled by
software. End users make a quantum algorithm code similar
to the general process of coding in classical computers. In the
matter of gate-based quantum computers, their software

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

currently supports quantum gate-level programming and
users should write their program with quantum gate sets [6].
Likewise, an intermediate-level quantum computer requires
software to run various quantum algorithms and to send
information for running quantum chips in their physical
platform.

An optical platform, which represents another physical
system for quantum information processing, has been
attempted to do quantum computing. Traditionally, it has
started to research photons in quantum mechanics as a field
called quantum optics [7], and applying photons to quantum
computing was attempted about three decades ago [8]. In
2015, an attempt to integrate them into one chip was made
that contains beamsplitters and phase shifters [9]. Thus,
attempts to apply quantum computing in the optical system
have been continuing.

Unfortunately, a hierarchical software framework for opti-
cal quantum computing is incompletely defined. Referring
to the result of optical experiments, one-qubit and two-qubit
quantum gates have been implemented at the laboratory
level [10], [11], [12], [13]. Also, the experiment presents
verification results acquired by quantum state tomography
or process tomography, which can be as a performance
evaluation for quantum processors. Still, although these

112682

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-4989-9622
https://orcid.org/0000-0003-0586-090X


Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

references show sufficient evidence to implement optical
quantum computing, the necessary hierarchical structure
from a computer perspective has not yet been established.

Since well-systematic software frameworks already exist
such as QISKIT, we expected that it could be available
to use them directly on photonic hardware. However, the
approach might be inapplicable because physical behavior
in superconducting and photonic processors shows signif-
icant differences. To clarify the argument, we express the
properties of photonic qubits and quantum operations and
address the reason by comparing the characteristics with a
superconducting quantum computer platform. We then pro-
pose a software framework for universal quantum computer
programming on arbitrary linear optical architecture.

The paper is structured as follows: Section II intro-
duces the software platform for superconducting quantum
computers reviewing the implementation of qubits and
operators. We then investigate quantum computing way in
an optical system to find the requirements of building up the
software. We also present related software frameworks for
quantum computing in photonics and review functionalities
and limitations. In Sec. III, we describe linear optical
quantum computing (LOQC) hardware properties extending
to the brief explanations in the previous section. With this
background, we clarify the reason an optical quantum chip
requires its optimized software in Sec. IV. We present and
explain the essential three modules, decomposer, mapper, and
controller, and support our statement by comparing operation
ways of superconducting quantum computing (SCQC) and
LOQC. After that, we describe the overall structure of
the proposed software framework and address specifically
the operation of each module in Sec. V. It presents the
operation of software modules, the necessary module types
for optical computers, the purpose of each module, and the
interconnections between them. In the remaining sections,
we report the reversibility in LOQC and the analysis of
required resources of time and quantity in Sec. VI, and
we describe the software execution with a simple example,
the Bell state algorithm for the sake of understanding the
suggested platform in Sec. VII. Lastly, we conclude our work
and present prospects in Sec. VIII.

II. RELATED WORK
Superconducting-based quantum computers are one of the
rapidly developed platforms in the quantum computers
domain. Qubits are implemented by applying the energy
level difference between two quantum states stemming from
the Hamiltonian of their physical system [14], [15]. The
operation of a quantum gate is manifested by applying a
pulsed signal to the qubits, especially the two-qubit gate is
additionally represented by the cross-resonance effect [16],
[17]. With these physical properties, IBM has developed
an open-source platform called QISKIT that specializes in
superconducting-based quantum computers. This framework
is a tightly organized system for quantum computing.
It makes any user-defined quantum algorithms automatically
executable. Even they recently made it possible to manipulate

FIGURE 1. (a) A quantum circuit representation for arbitrary unitary
operation U. A qubit prepared on the state |ψ0⟩ evolves to state |ψ1⟩ from
the operation U. (b) A single MZI unit. MZI composed two lines and one
plate colored in grey, the former representing waveguides, and the latter
including two beamsplitters and two phase shifters. Beamsplitters
contacting both waveguides and phase shifters located with white boxes
labeled θ and φ.

quantum chips on pulse level for quantum operations by
QISKIT Pulse [18].
In contrast to the superconducting system, optical com-

puting has significantly different characteristics to operate its
hardware for information processing. One of the noteworthy
properties of the system is that photons from a laser
apparatus dynamically move along the optical path, and
optical detectors located at the end of the path collect photons
for measurement. In other words, the qubits can only travel
a finite number of paths, and the length of the path limits
the number of quantum operations. However, a variety of
quantum operations can be easily implemented by adjusting
the angles of phase shifters, which are the linear optical
elements. This hardware properties are explained in more
detail in the next section.

Likewise, the physical properties are significantly dif-
ferent, software platform for LOQC has to be configured
to reflect photonic characteristics. Several studies can be
found on the implementation of optical computing. The
reference [19] presents a transpilation pipeline to translate
from QASM to a graph representation related to LOQC.
Another reference [20] is open-source software that supports
the simulation of photonic quantum circuits. From the point
of their features, even though they are grouped into the LOQC
system, they are somewhat different in the manipulation of
the actual hardware. In other words, our topic centers on
the ability to reconfigure photonic quantum chips to perform
various quantum computations. The first case is therefore
irrelevant, while the second case merely helps to illustrate
a linear photonic circuit. The software platform we present
supports the feature, and the structure is presented in Sec. V.

III. LINEAR OPTICAL QUANTUM COMPUTING
HARDWARE
LOQC operates a universal quantum computer that qubits
are considered photons as information carriers, and quantum
operators are implemented to the manipulations of linear
optical elements for processing quantum information [8], [9],
[21], [22]. The linear elements comprise beamsplitters and
phase shifters for processing quantum information. While
beamsplitters and phase shifters are important elements
of LOQC, they alone are unable to present a universal

VOLUME 11, 2023 112683



Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

FIGURE 2. Implementation of one-qubit gates in LOQC. A circuit
representation for each gate equals MZI with a specific phase value.
(a) Hadamard gate (b) Pauli-X gate.

FIGURE 3. Implementation of two-qubit gates in LOQC. (a) Gate
decomposition of CNOT with the combination of Hadamard and
Controlled Z (b) CNOT gate implementation with MZIs. Left and right MZI
along three stacked MZIs equals to Hadamard, and the center part refers
to the CZ gate.

quantum computing. To achieve the computing scheme,
Mach-Zehnder interferometer (MZI), composed of linear
elements, is necessary as demonstrated in Fig. 1. By setting
MZI as a base unit, we define a qubit and logical quantum
gates by adjusting phase values. Consequently, we can
perform complex quantum computations by building a
network of MZIs.

A qubit definition in LOQC is distinct from a quantum
circuit representation. Referring to Fig. 1(a), a quantum state
|ψ0⟩ evolves to |ψ1⟩ from any unitary gate U. It is a known
fact that qubits pass through a single quantumwire. In LOQC,
the qubit is implemented to the light traveling the two pairs
of solid lines called ‘‘waveguides’’, which is located on both
sides of the grey plate. A photon passes through the separate
two waveguides on the state

|ψ0⟩ =

(
w0â†w0

+ w1â†w1

)
|�⟩ (1)

where â†w0 , â
†
w1 are creation operators,w0,w1 are a probability

amplitude of each waveguide which satisfies |w0|
2
+|w1|

2
=

1, and |�⟩ denotes a vacuum state. Thus, a qubit is defined
as light traveling through a pair of waveguides in the state of
|ψ0⟩.

Quantum gates on the linear optical system are imple-
mented with a MZI containing linear optical elements. These
elements are characterized as linear and they can construct
any arbitrary one-qubit unitary operation [8], [22], [23].
Concerning Fig. 1(a), each split beam penetrates the grey
plate. While the beam passes the plate, a unitary operator

U is implemented by adjusting the values θ and φ of the
phase shifter, respectively. The unitary operation matrix for
the structure in Fig. 1 is

U = PφBPθB

=
1
2

(
eiφ 0
0 1

) (
1 i
i 1

) (
eiθ 0
0 1

) (
1 i
i 1

)
= ieiθ/2

(
eiφ sin(θ/2) eiφ cos(θ/2)
cos(θ/2) − sin(θ/2)

)
(2)

where Pφ , Pθ are upper part of phase shiters and B is a
beamsplitter. The matrices of optical elements are

Pφ =
(
eiφ 0
0 1

)
Pθ =

1
2

(
e−iθ/2 0
0 eiθ/2

)
B =

(
1 i
i 1

)
(3)

For example, two single qubit operatorsH ,X in Fig. 2 can be
implemented with phase θ = π/2 , φ = 0 and θ = 0 , φ =
0. Qubits encoded in two waveguides presented in (1) path
through the MZI-adjusted phases and the computations are
performed when each qubit exits the MZI.

Similarly, two-qubit unitary operations such asControlled-
NOT (CNOT) and Controlled-Z (CZ) can be implemented
with MZI as in the case of single operations. However, other
condition is required besides expressing a single operation
as MZI. Two-qubit operators should form a specific network
with MZIs, rather than relying on linear components in MZI
for two-qubit operation [10], [24]. As in the case of a single
operation, we demonstrate a CNOT in Fig. 3 with a typical
circuit expression and a combination of MZIs.

Lastly, measurement in LOQC-based quantum information
processing is accomplished through photon detectors. The
detectors are located at the end of the quantum chip. From
the preceding quantum operations, the different number of
photons from each waveguide is collected at the detector.
Thus, information results from optical measurements can
be interpreted to derive computational results in terms of
quantum measurements.

IV. REQUIREMENTS FOR SOFTWARE IMPLEMENTATION
A. SOFTWARE MODULES
The modules of a quantum computing software framework
can be organized in a variety of ways, however we present
them here as three components: decomposer, mapper, and
controller. We describe the role of modules in the following
list.
(a) Decomposer has the ability to transform high-level

quantum computing language into assembly language
for customized hardware [25]. Various users are able to
write a quantum code in their preferred programming
style. Themodule then translates the code into a standard
format to ensure the proper operation of quantum
computers, similar to classical computers receiving a

112684 VOLUME 11, 2023



Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

standard format such as machine language. The module
decomposes quantum circuits by assuming logical
qubits with no constraints on qubit connectivity.

(b) Mapper investigates the optimal layout of qubits and
schedules for quantum gates. In other words, the module
conducts a process that reformulates a decomposed
algorithm suited for a given real quantum processor.
When considered on the qubit level, logical qubits
have to correspond to physical qubits in the quantum
processor. Therefore, qubit mapping on the real quantum
device must be done without losing the functionality of
the logical quantum circuit.

(c) Controller converts the mapping data into signals to be
performed to an actual quantum processor. In addition,
this module operates usually the last operation in the
software platform, it henceforth generates the final data
to be sent to the processor.

B. DIFFERENCES WITH SUPERCONDUCTING QUANTUM
COMPUTER PLATFORM
With the concept of software modules, we introduce the
modules for LOQC by comparing with SCQC. Figure 4
illustrates the physical representations of each quantum
computing platform described by the inputs and outputs of
the modules. We express the differences between SCQC and
LOQC with a few distinct points in each module. Through
this discussion, we justify the necessity of a customized
software platform for LOQC due to the differences in each
physical system. Without loss of generality, we assume the
Bell state generation circuit as an example input to describe
each module.

1) DECOMPOSER
(a) In the first perspective on decomposer, we discuss

in the sight of the structure of a quantum processor.
SCQC decomposer assumes a fully connected graph
of a superconducting processor, when the module sets
the quantum gates to be applied in each qubit. Since
the decomposer does not consider the constraint of gate
applications on logical level, themodule simply assumes
the number of logical qubits required by the imported
circuit and configures the quantum gates according to
the position of the specified qubits. On the other hand,
LOQC decomposer arranges the qubit position and
quantum gates matching the structure of a standard chip.
The qubits are located on fixed points bywaveguides in a
photonic processor, and MZI plates actually implement
quantum gates, not the qubits themselves.

(b) In the second perspective, we observe a set of quantum
gates on two quantum computers. SCQC decomposer
converts large unitary circuits into primitive gates of
their physical system from quantum algorithms as
primary ability [26]. It is effective to represent the
circuit with a minimal set of quantum gates, which
depends on the type of SCQC processor. In other words,
the module in SCQC can change quantum gates that
are applicable in the software, such as Pauli-X, Y, Z,

Rx ,Ry,Rz,H , I , S,T , CNOT and CZ, for example to H,
S, T, CNOT. In contrast to SCQC, LOQC decomposer
has no restriction to the types of quantum gates, since
the MZIs influence the implementation of gates in
photonic processor. As we mentioned in Sec. III, MZI
expressed in (2) can represent different types of quantum
operators, which implies that it does not need to be
decomposed into primitive gates. However, a two-qubit
gate implementation in a photonic processor makes the
issue that the decomposer depends more on physical
hardware such as CNOT referring to Fig. 3(b).

2) MAPPER
(a) We first discuss the labeling qubits for each physical

system. SCQC mapper assigns the output result from
the SCQC decomposer to physical qubits according
to the topology of the quantum chip, and the module
generates a sequence of quantum circuits taking into
account the connectivity between the qubits. In contrast
to an ideal quantum chip, the topology of an actual chip
partially omits connectivity to some qubits. The module
then finds the best layout to compose the shortest
circuit depth. Similarly, LOQCmapper assigns quantum
gates to appropriate MZI locations that match execution
timing in an actual photonic integrated circuit (PIC).
In contrast to SCQC, as we discussed in Sec. III, a qubit
on LOQC is defined by a pair of waveguides, and the
location is already occupied. Regarding the illustration
in Fig. 4, the first and second qubits are defined by two
pairs of waveguides, waveguide 2 and 3, and waveguide
4 and 5, respectively.

(b) Second, from the perspective of gate mapping, SCQC
mapper merely depends on time arranging quantum
gates to selected qubits. Since physical qubits in a
superconducting processor are static, the gates are
directly operated to them matching the time interval
in a SCQC mapping process. However, LOQC mapper
does not only consider time but also spaces regarding a
network of PIC. As opposed to the SCQC case, quantum
gates are operated by MZIs expressed in (2), not by
qubits themselves. According to the qubit position
defined with a pair of waveguides, the MZI implements
all quantum gates, but theMZImay be existed or omitted
relying on the network of PIC. It implies that the LOQC
mapper should take into account the absence of some
MZIs in the PIC and find the exact MZI locations to map
the decomposition result.

3) CONTROLLER
(a) In controller, we focus on a control method for an

actual operation of quantum gates, divided by setting
up control values and running quantum experiment.
In SCQC, quantum operators are implemented by
affecting unique pulse signals to the physical qubits.
It means that SCQC controller prepares the pulses such
as H and CNOT before the processor operates. They
will apply the gates to the qubits in a fixed time period

VOLUME 11, 2023 112685



Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

FIGURE 4. Comparison illustration of software modules between SCQC and LOQC. Each module reflects hardware with different physical
characteristics: qchip topology for SCQC and MZI network for LOQC. For each module, a black thick arrow indicates the result illustration. The
software proceeds following the light grey arrows. To make it easier to understand the difference, the Bell state generation circuit is assumed.

when the quantum computing begins. LOQC controller
applies unique phase values for each gate to MZIs as
a physical object. Unlike the former case, the LOQC
case does not consider the application timing of quantum
gates, since this process is already included in the
mapping step. Therefore, the module prepares phase
values for all gates and locations described in MZIj ,i
where j th step and i th MZI to be applied.

(b) We now follow up on the rest part of the execution.When
the SCQC processor starts the quantum experiment,
the initialization to the physical qubits is performed
on t0. Quantum gates then immediately perform on the
allocated physical qubits, which are sequentially applied
at tg,1 to tg,n for n gates. After the time has passed, the
measurement is performed on tn. Similarly, the photonic
experiment begins the photon emission from laser
source immediately at t0. Photon travels in the waveg-
uides penetrating the MZIs in a photonic processor for
photon propagation time tpp, afterwards measurement
results are collected from detectors located on each
waveguide at tn′ . The comparable point is the total
execution time of quantum processor. The duration of
SCQC processor depends on how many quantum gates
are applied in the total time

∑n−1
k=0 |tg,k+1− tg,k |. On the

other hand, LOQC case only relies on the propagation

time tpp. From the perspective of consuming operation
time, we imply t ′n ≤ tn since light travels at the speed of
light.

V. LOQC SOFTWARE PLATFORM
Reflecting on the hardware properties in LOQC and
the three essential modules, we propose the structure of
software platform tailored to the specific requirements of
LOQC-based quantum computing system. In pursuit of a
comprehensive understanding, we follow up the elegantly
illustrated flowchart in Fig. 5 where we commence the overall
structure of the software, which provides a panoramic view
of the operation workflow of the platform in Sec. V-A.
We then explain the detailed description of inputs and
outputs at each module with the figures of data interpretation
in Sec. V-B to V-D.

A. OVERALL STRUCTURE
The steps are composed of user programming that results
from hardware measurement according to the software
workflow shown in Fig. 5. Whenever each step progresses,
a module stores the results as a database, and a user can
obtain customized outputs from the modules. The steps are
explained as follows.

112686 VOLUME 11, 2023



Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

FIGURE 5. Overall software structure and module diagrams of LOQC. Grey boxes mean the main components and cylinders depict the databases
from software output. Each step is alternately connected with modules and databases by solid lines, except for user web control and results from
hardware by double solid lines and dashed lines. The explanations for alphabetical lists (a) to (e) are provided in Sec. V-A.

FIGURE 6. (a) Staggered MZI network by Clements et al.. (b) Triangle MZI
network by Reck et al.

(a) Initially, users input various quantum algorithms which
they wish to employ in this step, such as unitary
matrix decomposition, quantum Fourier transform,
and Grover’s quantum search algorithm. It is impor-
tant to note that users should write their algorithm
code using quantum gate sets, since the software
interpretes the script at the circuit level [6]. Upon
completion of their programming, the software stores
the user program and transmits the data to the
decomposer.

(b) Taking the user-programmed code as input, users run the
LOQC decomposer that outputs the quantum assembly
language (QASM) code and the phases, which are the

standard output at the quantum circuit level and the
main data in the software platform, respectively. By an
additional assumption for its functionality, the module
designates the scheme of Clements et al. [27] as an ideal
PIC that can be illustrated in Fig. 6(a).

(c) LOQCMapper receives the phases from the decomposer
and generates mapping sequences. It considers the real
PIC structure to assign output to the best location, so the
actual PIC structure must be provided as an additional
input.

(d) Controller is the final module employed by users in
the software. It receives the laid-out sequence from the
mapper and processes it into data to be transferred to
the hardware. The module converts the data into an
appropriate format for successful transmission, resulting
in a vector of control values.

(e) The remaining part of the structure explains the execu-
tion of actual hardware. After receiving the converted
data, the hardware set performs the actual experiment.
It consists of a field programmable gate array (FPGA),
application-specific integrated circuits (ASICs), and a
PIC. FPGA andASIC process information applied to the
physical behavior acting on the PIC. PIC uses signals
from these electronic devices to perform quantum
experiments governed by the photonic properties [28],
[29]. After quantum experiments, the hardware provides
experiment results to users and ultimately obtains the
measurement results of LOQC-based quantum com-
puter.

So far, we have shown the software structure for a holistic
view of LOQC-based computer manipulation. In forthcoming
subsections, we explore each module in more depth.

VOLUME 11, 2023 112687



Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

FIGURE 7. Decomposition flow on LOQC. Decomposer loads user program
and ideal PIC structure composed of MZI network in Fig. 6(a). The module
provides the output of QASM and phase information. The interpretation
box shows a pictorial representation of phase data. Steps are divided into
yellow dotted lines and MZIs are numbered in plates. One-qubit gate and
two-qubit gate are colored in purple and green, respectively.

B. DECOMPOSER
Recalling from Sec. IV-B, where we described the functional
differences between two decomposers, the LOQC decom-
poser produces QASM and a sequence of phase values as
results. Since qubits are occupied at the starting point on
PIC and quantum gates are allocated to MZIs in PIC, the
decomposer has to consider a reconfigurable PIC structure
that can represent a set of single and two-qubit gates.
As discussed in the list (b) in Sec. IV, we adapt the Clements
scheme as an ideal PIC depicted in Fig. 6(a). The scheme has
the most densely packed MZI structure so it makes sense for
the decomposer to operate with this network by default.

Reflecting the notable properties, the proposed decom-
poser is summarized on the flowchart in Fig. 7. Workflow of
the decomposer organizes two inputs and outputs centered on
the module. One of the input blocks ‘‘User program’’ denotes
any quantum algorithms that we mentioned in the Sec. IV.
Another one ‘‘Ideal PIC’’ is a necessary assumption for a
decomposition on LOQC. The ‘‘Decomposer’’ interprets a
quantum circuit of a user’s algorithm and transforms proper
MZI phases for each quantum operation. Consequently,
the module returns ‘‘QASM’’ and ‘‘Phase’’ information.
The former is the general language of common quantum
compilers, and the latter gives the result of decomposing
quantum gates in LOQC into minimal units (phases). This
means that the QASM is required to interpret the user data
at the quantum circuit level as a standard format, and the
phase data is actually used by the LOQC software platform
to operate. The data constitutes hierarchical steps, MZI
numbers, and phase information for each MZI. It can be
graphically interpreted as the right box in Fig. 7.

C. MAPPER
LOQC mapper finds the best layout to execute the algorithm
written by users, also allocating the phase-level decomposed
data as close to the starting point as possible for optimization.

FIGURE 8. Mapper flow on LOQC. Phase results from decomposer and
real PIC provide inputs to the mapper. The module creates a mapping
sequence as a result, which can be interpreted as shown in the right box.
As in the case of the decomposer, steps are divided into yellow dotted
lines and MZIs are numbered in plates. One-qubit gate and two-qubit
gate are colored in purple and green, respectively.

The module effectively assigns the phase information to the
proper location of the MZIs according to a network of PIC.
As we mentioned in Sec. IV-A, the actual PIC structure
must be provided as the additional input of the mapper to
fulfill its role. Various MZI networks can configure different
PICs, in which one of the proposed structures by Reck et al.
[30] formulates a triangular shape depicted in Fig. 6(b). This
module provides and stores the mapping sequence.

Figure 8 illustrates the flowchart of the mapper. Mapper
operates with ‘‘Phase’’ data received from the decomposer
and physical structure of ‘‘Real PIC’’. Since the positions
of MZIs are physically fixed, applying quantum gates is
strictly time-dependent. Once the module maps phases into
optimized locations of the MZI network, it provides the
‘‘mapping sequence’’ as a result. The sequence indexes every
MZI location according to the waveguide and time steps for
satisfying the constraint. On the right box of the mapping
sequence, we graphically illustrate the mapping result on real
PIC. For example, to runCNOT gate on a real PIC, themapper
should place the gate in the center of the quantum chip.

D. CONTROLLER
The last module of the LOQC platform, the controller,
translates the mapping sequence generated by the LOQC
mapper into a vector of control values. Since the quantum
algorithms written by users have to be run by a photonic
processor, PC should reformat the data into a suitable form,
which is then delivered to electronic devices that assist in the
operation of a PIC. Here, we examine the necessary condition
of controlled hardware to transform the data into the exact
form. In our design, the auxiliary electronics FPGA andASIC
are positioned on the top of the quantum processor PIC for
operation purposes, as illustrated in Fig. 5. The FPGA can
receive the data in the form of a bytearray, which is then
processed by a customized ASIC designed specifically for the
PIC. Phase values are directly controlled by ASICs tailored

112688 VOLUME 11, 2023



Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

FIGURE 9. Controller flow on LOQC. Mapping sequence from mapper,
address table given by hardware environment, and pre-written data
conversion table act as inputs. Three dashed line boxes are subsets of the
controller, each operation is controlled by this module. In the step of
vector conversion, the output is a vector, which is represented by the
interpretation box on the right. The colored MZIs in the box separate the
sectors of the ASICs.

for the PIC, which operates as a quantum gate. Therefore, the
controller has to satisfy the two necessities (a) to convert to
an appropriate data format, and (b) to know addresses which
the contact points of ASIC are connected to the MZI. For the
former one, we need to prepare the table for data conversion to
transmit into the form of bytearray. The latter one is necessary
to have the address table between each MZI and each pin
header that connects to it since the pin header of the ASIC
connects to one of the MZIs in the PIC.

Figure 9 shows the input/output flow to satisfy the require-
ments for the controller. The module processes the received
data ‘‘Mapping sequence’’ from the result of the mapper.
Also, ‘‘Address table’’ of MZIs and ASICs and ‘‘Data table’’
of phases and bitstream behave as additional data for the
module. In the case of the latter, since the phase data should
be converted to convey the values of ASIC, the values must
be normalized and discretized into bits. Once the controller
satisfies the previous requirements and operates, it stores the
‘‘Vector’’ data as output and prepares them for sending to
the FPGA. The box on the right in Fig. 9 represents the data
allocation to the chip. The elements grouped into one vector
are physically allocated to the colored sectors that identify the
four ASICs used.

The remaining part describes how the data generated by
the software flows to the hardware. Specifically, we focus
on the role of hardware rather than the operation based on
the exact components of the hardware. The rest of the part
works as follows. Figure 10 shows the interconnectedness
of user data workflow and hardware. After the controller
sends the successfully converted data in the vector form,
the ‘‘Program’’ in FPGA first is set up for preprocessing,
which receives the data and sends the address related to the

FIGURE 10. Hardware data flow in LOQC. The flow consists of the user
sending data to the hardware and receiving data back. The LOQC FPGA
contains two states, each communicating with the rest of the hardware.
The module between the user and the controller is omitted.

numbering of the ASICs and each pin header. This process
occurs in the ‘‘Initialize MZI’’. If the process is successfully
completed and an ack is sent by the ASIC, the ‘‘Program’’
commands ‘‘Run’’ which is now prepared for operation and
the state executes the data to the remaining hardware. When
the data arrives at PIC, the quantum experiment for the data
begins and photons are collected by detectors. The result is
passed to the FPGA, which processes the data into qubit state
counts and sends them to the controller. Finally, the controller
returns the values to the users and the one cycle of quantum
computation is complete.

VI. CORRECTNESS AND PERFORMANCE
A. CHECKING REVERSIBILITY
Unlike classical computers, quantum computers possess the
reversibility of operations, which follows the unitarity in
quantum regime [31]. LOQC platform must also satisfy the
reversible operations by quantum gates, as the PIC reproduces
quantum computations by the movement of photons along
light paths. Proposed software framework prepares the
conjugate transpose matrix for each unitary gate and the
user can confirm the reversibility by applying the inverse
operation to their quantum algorithm at the user programming
stage.

Unfortunately, actual operation with hardware has not yet
been tested, we can only investigate the reversibility program
at the decomposition process. For an arbitrary single qubit
operation, we have to check the reversibility ABB† A† = I
with the operator

A =
(
a00 a01
a10 a11

)
A† =

(
a∗00 a∗10
a∗01 a∗11

)
(4)

B =
(
b00 b01
b10 b11

)
B† =

(
b∗00 b∗10
b∗01 b∗11

)
(5)

VOLUME 11, 2023 112689



Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

by constructing the reversible checking circuit. In LOQC,
we combine the operators with the MZI unitary matrix in (2)
for applying to MZIs in PIC. The example pseudocode for
checking reversibility can be written in Algorithm 1.

Algorithm 1 Checking Reversibility
initialize libraries
n← 2
for i = 1, . . . , n do
initialize qri
initialize cri
align qr on z-axis

end for
perform A to qr0
perform B to qr0
perform B† to qr0
perform A† to qr0
for i = 1, . . . , n do
Measure qri
Store qri to cri

end for

B. MAPPING COMPLEXITY
Whenever the LOQC software proceeds a computing process,
it takes a certain amount of time to execute a user program
within each module. In particular, the LOQC mapper has the
highest time complexity among the software modules, since
its main role - finding the suitable layout to the processor
architecture. Therefore, we need to calculate the number of
resources for minimal quantum operation at first and then
analyze how long the mapping spends time.

We simply investigate how LOQC requires the computing
resources on qubits and quantum gates. Let us define
the notations nlc,Q , nlc,1q , nlc,2q as the number of qubits,
one-qubit gates, and two-qubit gates on logical circuit
representation. A direct correlation between these logical
elements and the resource consumption on waveguides and
quantum gates emerges:

nw = 2nlc,Q n1Q = nlc,1q
nCZ = 3nlc,2q nCNOT = 3nlc,2q + 2nlc,1q (6)

Hence, the minimal number of MZIs required per quantum
gate is nMZI = nlc,1q + 3nlc,2q or 3nlc,2q + 3nlc,1q.
Assume that the worst scenario occurs on a mapping

process, and all quantum gates from a decomposed result can
be mapped into the Clements structure in Fig. 6(a). Let us
call d as the circuit depth in LOQC. The mapper swipes all
possible MZIs to be applied for nlc,Q qubits until the end
of d . This empirical insight allows us to estimate the time
complexity of the photonic processor as O

(
n2lc,Q d

)
.

VII. USE CASE
We introduce a simulation of the Bell state generation
algorithm on LOQC as a use case. Bell-state generation
algorithm represents an elementary algorithm that anyone

can clearly understand quantum phenomena. It could easily
accept how our proposed quantum computing on optical
system works.

Before demonstrating the Bell-state generation in the
proposed software for LOQC, we describe the algorithm
mathematically. A generalized equation of Bell-states is

|β(x, y)⟩ =
|0, y⟩ + (−1)x |1, ȳ⟩

√
2

(7)

where ȳ is the negation of y as described in [32]. This
algorithm has four basis constituted in superposition com-
binations of qubit eigenvector sets {|00⟩ , |01⟩ , |10⟩ , |11⟩}.
We only take one of the basis sets

|β(0, 0)⟩ =
1
√
2
(|00⟩ + |11⟩) (8)

constructing for the simplified circuit. This state requires
only two quantum gates, Hadamard and CNOT. Explicitly,
the Hadamard gate transforms |0⟩ into a superposition of
(|0⟩+ |1⟩)/

√
2. The CNOT operation on the superposed state

yields |β(0, 0)⟩.
We present the simplified algorithm for the Bell state

generation. At first, the algorithm can be depicted as a
quantum circuit on the user program box in Fig. 7. The
algorithm requires a combination of quantum operators
H and CNOT , n, qr , and cr as a number of qubits,
quantum registers, and classical registers. Lastly, to receive
the result of Bell measurement, we callMeasure for quantum
measurement and Store to save information to classical
registers. Hence, demonstration of the algorithm for the Bell-
state generation is represented in Algorithm 2.

Algorithm 2 Bell State Generation
initialize libraries
n← 2
for i = 1, . . . , n do
initialize qri
initialize cri
align qr on z-axis

end for
perform H to qr0
perform CNOT to qr0 and qr1
for i = 1, . . . , n do
Measure qri
Store qri to cri

end for

When the user finishes writing the quantum algorithm, the
program is ready to perform the decomposer. The output of
module provides QASM and phases, and phase data can be
listed hierarchically as mentioned in Sec. V-B.

{ "step1": {
"MZI1": [0, π],
"MZI2": [π, π]},

"step2": {
"MZI1": [π, π],

112690 VOLUME 11, 2023



Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

"MZI2": [π, π],
"MZI3": [π, π]},

"step3": {
"MZI1": [π, π],
"MZI2": [0, π]},

"step4": {
"MZI1": [π, π],
"MZI2": [π, π],
"MZI3": [π, π]},

"step5": {
"MZI1": [π, π],
"MZI2": [0, π]}}

The phase values θ and φ are evaluated as the unitary
matrix in (2). This data shows that H is contained in ‘‘step1,’’
‘‘step3,’’ and ‘‘step5,’’ and CZ is configured in ‘‘step4.’’ H
in ‘‘step3’’ and ‘‘step5’’ is the decomposition result because
of CNOT implementation in the MZI network as depicted in
Fig. 3. The other steps are represented in the Identity gate.
With this decomposer data, the mapper conducts its role as
explained in Sec. V-C and depicted in Fig. 8.

{ "step1": {
"MZI1": [π, π]},

"step2": {
"MZI1": [π, π],
"MZI2": [π, π]},

"step3": {
"MZI1": [0, π],
"MZI2": [0, π]},

"step4": {
"MZI1": [π, π],
"MZI2": [π, π],
"MZI3": [π, π]},

"step5": {
"MZI1": [π, π],
"MZI2": [0, π]},

"step6": {
"MZI1": [π, π],
"MZI2": [π, π]},

"step7": {
"MZI1": [π, π]}}

The result data has the same form as the decomposer
output. However, this result gives the mapped data according
to the MZI network depicted in Fig. 6(b), which shows a
different number of namespace MZIs under steps. It can be
interpreted as shown in the interpretation box in Fig. 8. H and
CNOT are allocated in the purple and light green plates,
respectively. The controller imports the mapper output,
an address table, and a bitstream data conversion table
explained in Sec. V-D. The output data consists of two levels,
ASIC and pin header.

{ "a1": {
"h1": [255, 255],
"h2": [0, 255],
"h3": [255, 255],

},

"a2": {
"h1": [255, 255],
"h2": [255, 255],
"h3": [255, 255],
"h4": [255, 255]},

"a3": {
"h1": [255, 255],
"h2": [0, 255],
"h3": [255, 255]},

"a4": {
"h1": [255, 255],
"h2": [255, 255],
"h3": [255, 255]}}

This output assumes four ASICs and the required quantity
of pin headers according to the number of MZIs. The result
divides four sectors, graphically shown in the interpretation
box in Fig. 9. The figure depicts MZI plates with different
colors, green, blue, yellow, and red corresponding to
sectors 1, 2, 3 and 4, respectively. And the phase value of each
pin header is normalized for sending as a bitstream, where the
maximum value is set to 511, corresponding to the maximum
angle 2π .

VIII. CONCLUSION AND DISCUSSION
Throughout this work, we propose a software framework for
making universal programmable LOQC. To run any LOQC
hardware, our framework has four components from the user-
level to the device-level control. An example use of this
framework has been shown for the Bell state generation
circuit.

Since this is just beginning, we have lots of future work as
follows. First, we will test the software framework under the
real device. During this time, we will confirm the interface of
each module and their interoperability. After that, we will add
another capability such as quantum verification. Quantum
hardware verification can be done by using the programming
as a systematic way, but we want to make a separate
module which is dedicated to quantum characterization by
using quantum state tomography and process tomography
methods. In addition, we need to consider the analysis of
energy consumption and fault-tolerance property of LOQC
hardware. Finally, we should optimize each module to speed
up and migrate to the hardware module in order to reduce the
user-level feedback time.

ACKNOWLEDGMENT
The authors would like to thank Dongmin Kim (Pukyong
National University) for assistance on the mapper and
the controller. They also like to thank Martino Bernard
and Alessandro Tontini (Fondazione Bruno Kessler) for
helpful discussions on photonic hardware. They also like to
thank Alessio Baldazzi (University of Trento) for theoretical
background explanations of LOQC.

REFERENCES
[1] R. P. Feynman, ‘‘Simulating physics with computers,’’ Int. J. Theor. Phys.,

vol. 21, nos. 6–7, pp. 467–488, Jun. 1982.

VOLUME 11, 2023 112691



Y. Kwon, B.-S. Choi: Software Platform for Programmable Linear Optical Quantum Computer

[2] D. Deutsch and R. Jozsa, ‘‘Rapid solution of problems by quantum
computation,’’ Proc. Roy. Soc. London A, Math. Phys. Sci., vol. 439,
no. 1907, pp. 553–558, Dec. 1992.

[3] F. Arute et al., ‘‘Quantum supremacy using a programmable superconduct-
ing processor,’’ Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019.

[4] Google Quantum AI, ‘‘Non-Abelian braiding of graph vertices in a
superconducting processor,’’ Nature, vol. 618, no. 7964, pp. 264–269,
May 2023.

[5] Quantum Computing: Progress and Prospects, E. Grumbling and
M. Horowitz, Eds., Nat. Academies Sci., Eng., Med., Washington, DC,
USA, 2019.

[6] R. LaRose, ‘‘Overview and comparison of gate level quantum software
platforms,’’ Quantum, vol. 3, p. 130, Mar. 2019.

[7] C. C. Gerry and P. L. Knight, Introductory Quantum Optics. Cambridge,
U.K.: Cambridge Univ. Press, 2005.

[8] C. Adami and N. J. Cerf, ‘‘Quantum computation with linear optics,’’
in Quantum Computing and Quantum Communications (Lecture Notes
in Computer Science), vol. 1509. Cham, Switzerland: Springer, 1999,
pp. 391–401.

[9] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell,
J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh,
G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto,
J. L. O’Brien, and A. Laing, ‘‘Universal linear optics,’’ Science, vol. 349,
pp. 711–716, Aug. 2015.

[10] J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning,
‘‘Demonstration of an all-optical quantum controlled-NOT gate,’’ Nature,
vol. 426, no. 6964, pp. 264–267, Nov. 2003.

[11] X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling,
G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien,
M. G. Thompson, and J. C. F. Matthews, ‘‘Large-scale silicon quantum
photonics implementing arbitrary two-qubit processing,’’ Nature Photon.,
vol. 12, no. 9, pp. 534–539, Sep. 2018.

[12] Q. Zhang, M. Li, Y. Chen, X. Ren, R. Osellame, Q. Gong, and Y. Li,
‘‘Femtosecond laser direct writing of an integrated path-encoded CNOT
quantum gate,’’ Opt. Mater. Exp., vol. 9, no. 5, pp. 2318–2326, 2019.

[13] Y. Li, L. Wan, H. Zhang, H. Zhu, Y. Shi, L. K. Chin, X. Zhou, L. C. Kwek,
and A. Q. Liu, ‘‘Quantum Fredkin and Toffoli gates on a versatile
programmable silicon photonic chip,’’ npj Quantum Inf., vol. 8, no. 1,
pp. 1–7, Sep. 2022.

[14] J. Q. You, J. S. Tsai, and F. Nori, ‘‘Scalable quantum computing with
Josephson charge qubits,’’ Phys. Rev. Lett., vol. 89, no. 19, Oct. 2002,
Art. no. 197902.

[15] C. Rigetti and M. Devoret, ‘‘Fully microwave-tunable universal gates
in superconducting qubits with linear couplings and fixed transition
frequencies,’’ Phys. Rev. B, Condens. Matter, vol. 81, no. 13, Apr. 2010,
Art. no. 134507.

[16] J. M. Chow, L. DiCarlo, J. M. Gambetta, F. Motzoi, L. Frunzio,
S. M. Girvin, and R. J. Schoelkopf, ‘‘Optimized driving of superconduct-
ing artificial atoms for improved single-qubit gates,’’ Phys. Rev. A, Gen.
Phys., vol. 82, no. 4, Oct. 2010, Art. no. 040305.

[17] J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti, B. R. Johnson,
J. A. Smolin, J. R. Rozen, G. A. Keefe,M. B. Rothwell,M. B. Ketchen, and
M. Steffen, ‘‘Simple all-microwave entangling gate for fixed-frequency
superconducting qubits,’’ Phys. Rev. Lett., vol. 107, no. 8, Aug. 2011,
Art. no. 080502.

[18] T. Alexander, N. Kanazawa, D. J. Egger, L. Capelluto, C. J. Wood,
A. Javadi-Abhari, and D. C.McKay, ‘‘Qiskit pulse: Programming quantum
computers through the cloud with pulses,’’ Quantum Sci. Technol., vol. 5,
no. 4, Aug. 2020, Art. no. 044006.

[19] F. Zilk, K. Staudacher, T. Guggemos, K. Fürlinger, D. Kranzlmüller, and
P. Walther, ‘‘A compiler for universal photonic quantum computers,’’ in
Proc. IEEE/ACM 3rd Int. Workshop Quantum Comput. Softw. (QCS),
Nov. 2022, pp. 57–67.

[20] N. Heurtel, A. Fyrillas, G. D. Gliniasty, R. Le Bihan, S. Malherbe,
M. Pailhas, E. Bertasi, B. Bourdoncle, P.-E. Emeriau, R.Mezher, L. Music,
N. Belabas, B. Valiron, P. Senellart, S. Mansfield, and J. Senellart,
‘‘Perceval: A software platform for discrete variable photonic quantum
computing,’’ Quantum, vol. 7, p. 931, Feb. 2023.

[21] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and
G. J. Milburn, ‘‘Linear optical quantum computing with photonic qubits,’’
Rev. Modern Phys., vol. 79, no. 1, pp. 135–174, Jan. 2007.

[22] E. Knill, R. Laflamme, and G. J. Milburn, ‘‘A scheme for efficient quantum
computation with linear optics,’’ Nature, vol. 409, no. 6816, pp. 46–52,
Jan. 2001.

[23] N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg,
T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and
D. Englund, ‘‘Linear programmable nanophotonic processors,’’ Optica,
vol. 5, no. 12, pp. 1623–1631, Dec. 2018.

[24] M. Patel, J. B. Altepeter, M. A. Hall, M. Medic, and P. Kumar,
‘‘Experimental characterization of a telecommunications-band quantum
controlled-not gate,’’ IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 6,
pp. 1685–1693, Nov. 2009.

[25] M. Maronese, L. Moro, L. Rocutto, and E. Prati, ‘‘Quantum compiling,’’
inQuantumComputing Environments. Cham, Switzerland: Springer, 2022,
pp. 39–74.

[26] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, ‘‘Elementary gates
for quantum computation,’’ Phys. Rev. A, Gen. Phys., vol. 52, no. 5,
pp. 3457–3467, Nov. 1995.

[27] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and
I. A. Walmsley, ‘‘Optimal design for universal multiport interferometers,’’
Optica, vol. 3, no. 12, pp. 1460–1465, 2016.

[28] L. Gemma, M. Bernard, and D. Brunelli, ‘‘An optical tool to optimize the
output of a photonic integrated chip architecture,’’ IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 12, no. 3, pp. 694–702, Sep. 2022.

[29] M. Bernard, M. Ghulinyan, and F. Acerbi, ‘‘Photonic circuits monolith-
ically integrated with silicon photodiodes,’’ in Proc. Italian Conf. Opt.
Photon. (ICOP), Jun. 2022, pp. 1–5.

[30] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, ‘‘Experimental
realization of any discrete unitary operator,’’ Phys. Rev. Lett., vol. 73, no. 1,
pp. 58–61, Jul. 1994.

[31] C. Liu, ‘‘Reverse checking of quantum algorithm execution,’’ IEEEAccess,
vol. 8, pp. 228702–228710, 2020.

[32] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, 10th ed. Cambridge, U.K.: Cambridge Univ. Press, 2010.

YONG KWON received the B.S. degree in
physics from Pukyong National University, Busan,
Republic of Korea, in 2022, where he is currently
pursing the M.S. degree in physics through the
integrated M.S. program.

From 2020 to 2022, he started a research on
quantum information with the Statistical Physics
Laboratory, Pukyong National University. During
the period, he studied in mutual information and
quantum concurrence and published one article

on Journal of Statistical Mechanics: Theory and Experiment. Since 2022,
he has been studying a research on quantum computing with the Quantum
Computationl Science Laboratory, Pukyong National University.

BYUNG-SOO CHOI (Member, IEEE) received
the B.S. degree in computer engineering from
Chungnam National University, South Korea,
in 1996, and the M.S. and Ph.D. degrees in infor-
mation and communication from the Gwangju
Institute of Science and Technology (GIST),
South Korea, in 1998 and 2004, respectively.
From 2004 to 2006, he was a Postdoctoral
Researcher with the University of York, U.K.,
where he was involved in quantum algorithms.

From 2011 to 2013, he was a Research Scientist with Duke University,
USA, where he was involved in fault-tolerant quantum computation.
From 2013 to 2015, he was a Researcher with The University of
Tokyo, Japan, where he was involved in quantum-dot qubit device.
From 2015 to 2022, he was a Principal Researcher with the Electronics and
Telecommunications Research Institute (ETRI), where he was involved in
quantum computing research and development. Since 2022, he has been an
Assistant Professor with the Department of Scientific Computing, Pukyong
National University. His research interest includes all areas of quantum
computing from device implementation to quantum algorithms.

112692 VOLUME 11, 2023


