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ABSTRACT Slam (simultaneous localization and mapping) play an important role in the field of artificial
and driverless intelligence. A real-time dynamic visual SLAM algorithm based on an object detection
network is proposed to address the robustness and camera localization accuracy issues caused by dynamic
objects in indoor dynamic scenes. The YOLOv5s model, which has the smallest depth and feature map width
in the YOLOv5 series, is chosen as the object detection network. The backbone network is replaced with the
lightweight ShuffleNetv2 network. Experimental results on the VOC2007 dataset show that the YOLOv5-
LITE model reduces the network parameters by 41.89% and speeds up the runtime by 39.00% compared
to the YOLOv5s model. A motion level division strategy is adopted to provide prior information to the
object detection network. In the tracking thread of the visual SLAM system, a parallel thread combining
the improved object detection network and multi-view geometry is introduced to eliminate dynamic feature
points. The experimental results demonstrate that in dynamic scenes, the proposed algorithm improves the
camera localization accuracy by an average of 85.38% compared to ORB-SLAM2. Finally, experiments in
a real environment are conducted to validate the effectiveness of the algorithm.

INDEX TERMS YOLOv5-LITE, dynamic environment, SLAM, dynamic feature point removal.

I. INTRODUCTION
With the development of science and technology, mobile
robots are applied to various fields, and SLAM systems
play a crucial role in the development and implementation
of robots. The common sensors carried by robots include
cameras, LIDAR, and inertial sensors. Cameras are often used
in simultaneous localization and mapping of robots due to the
large amount of information available and their adaptability
to multiple complex environments. vision SLAM uses the
camera to sense the environment and then uses the picture
data to determine the pose of the camera and the pose of the
robot.

The associate editor coordinating the review of this manuscript and

approving it for publication was Anandakumar Haldorai .

Currently, most visual SLAM algorithms operate based
on static assumptions. For example, ORB-SLAM [1],
ORB-SLAM2 [2], RGB-D SLAM [3], and LSD-SLAM
[4]. These algorithms can achieve satisfactory results in
static environments or environments with a small number
of dynamic objects. However, the performance of the vision
SLAM algorithms degrades significantly when the robot is
operated in an environment with a large number of dynamic
objects. This is a result of the visual characteristics of the
moving objects in the environment, which have an impact on
robot position estimation and significantly lower positioning
accuracy. Usually, there are two basic requirements for
vSLAM: robustness in tracking and real-time performance.
Therefore, how to detect dynamic objects in the filled scene
and reject them while guaranteeing real-time performance is
the main challenge [5].

113952

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0003-1296-9986
https://orcid.org/0000-0001-9975-6462


R. Gao et al.: Real-Time SLAM Based on Dynamic Feature Point Elimination in Dynamic Environment

As deep learning technology has advanced in recent years,
more and more top-notch deep learning algorithms have been
used for visual SLAM [6].

In order to address the issue of dynamic objects in the
environment, a lightweight semantic SLAM system based on
parallel target detection is proposed in this study. The system
is mainly based on the ORBSLAM2 framework under which
target detection threads and multi-view geometry method
threads are added to the original framework. In order to
increase the real-time performance of the target detection
thread and hence the overall system real-time performance,
the lightweight Shufflenetv2 framework is employed in place
of the original skeletal network structure CSPDarknet53.
Compared to YOLOv5s, the proposed algorithm achieves
a 39% improvement in inference speed per frame.In the
multi-view geometry thread, a multi-view geometry approach
is used to eliminate dynamic feature points outside the
target detection frame.The interference of dynamic points
is reduced and the accuracy of the algorithm is increased
to the greatest extent possible by integrating semantic and
multi-view threads.Compared to ORBSLAM2, the proposed
algorithm achieves an average improvement of 85.38 in
Absolute Trajectory Error (ATE) for the four dynamic
sequences. For the three highly dynamic sequences in the
TUM dataset, the proposed algorithm achieves an average
improvement of 54.20% in Absolute Trajectory Error (ATE)
compared to DS-SLAM, indicating an increase in trajectory
accuracy.

The main contributions of this paper are.
1. Propose a new real-time SLAM system based on

ORBSLAM2. Validate the effectiveness of RTD-SLAM
algorithm under tum dynamic data set and laboratory
environment

2. The target detection thread is used as a separate thread to
provide a priori knowledge for a lightweight target detection
network based on object motion hierarchy division to remove
dynamic feature points a priori. The geometry thread is
also introduced to remove dynamic feature points using a
multi-view geometry approach.

3. The original CSPDarkNet-53 network of YOLOv5 is
replaced with a lightweight ShuffleNetv2 network, and other
lightweighting procedures are carried out to decrease the time
overhead of target identification, which in turn enhances the
real-time performance of the entire system.

II. RELATED WORK
Object detection is an important task in the field of computer
vision. The detection algorithms based on deep learning
can be divided into single-stage object detection, multi-stage
object detection and others object detection.

Single stage target detection such as the you only look once
(YOLO) series [7], [8], [9], [10], [11], single-shot multibox
detector (SSD) [12], and RetinaNet [13], which directly
output the location and category of densely bounding boxes
from features in a single-shot way.

Common Two-stage detector algorithms include RCNN
[14], fastRCNN [15], and fasterRCNN [16]. In the first
stage, the multi-stage detection method uses the region
suggestion algorithm to extract the features of the foreground
region from the preset dense candidate objects. Revert to the
bounding box of the object in the next step. The limitation of
this structure is that it reduces the detection speed.

Other types of object detection algorithms mainly include
Law et al., who proposed CornerNet to locate objects by
finding the upper left corner point and lower right corner
point of the object boundary box, and then classifying
the diagonal points to obtain the category of objects [17].
Liang et al. proposed the DetectFormer algorithm by using
the proposal category and global information from the global
feature extraction encoder (GEE) to assist the ClassDecoder
method, and introduced it to target detection in the field
of automatic driving, thus improving the accuracy of road
target detection [18]. Liang et al. proposed an improved
sparse R-CNN method, which combines coordinate attention
blocks with ResNeSt, and builds a feature pyramid to
modify the backbone network, so that extracted features can
focus on important information, thus improving detection
accuracy [19].

Control strategy and environment modeling for robots
is a topic known as Active Simultaneous Localization and
Mapping (SLAM) [20]. According to the types of sensors
employed, which are classified as LIDAR SLAM [21], Visual
SLAM [22] and Multisensor Fusion SLAM [23], visual
sensors are frequently used in the field of SALM due to
its advantages of gathering a wealth of information and
consuming little power.

Traditional visual SLAM algorithms such as the
semi-direct method [24], direct method [25], and feature
point method [1], [2] are assumed to be used in static
environments, so they are less robust and accurate in dynamic
environments. Among them, SLAM based on feature point
method emerged a number of excellent SLAM systems for
dynamic environment processing. According to the amount
of feature information used for matching, visual features
can be divided into two levels: low-level features such as
pixel patches, points, or lines, and high-level features such as
semantically labeled objects [26]. Low-level features focus
on local details such as textures or the geometric primitives
of objects and scenes. High-level features integrate details
into semantic labels that more closely match the human
understanding of the High-level features integrate details
into semantic labels that more closely match the human
understanding of the world.

The main difficulty of dynamic SLAM research based
on low-level features is to distinguish dynamic feature
points from static feature points, i.e., to perform motion
segmentation. The method often used to perform running
segmentation is the optical flow method [27] (optical flow
method is to detect dynamic objects by first estimating the
camera’s own motion and then based on the optical flow
between the predicted image and the observed image) and
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geometric method [28](setting a threshold with geometric
constraints for static features to detect dynamic features).

Fang et al. [29] use optimum-estimation and uniform
sampling method to detect dynamic objects. but the method is
less accurate and more computationally intensive, especially
when sampling densely in a big image. Zhang et al.
proposed the FlowFusion algorithm [30], which uses depth
and intensity information to estimate the camera’s own
motion from coarse to fine, and then uses this motion to
compute the scene optical flow (themovement of target pixels
in the image due to the movement of objects in the image or
the movement of the camera in two consecutive frames) to
detect dynamic features. The accuracy is improved but the
application scenario of this algorithm is limited because the
optical flow method is sensitive to light.

For geometric methods, the constraints can be obtained
from the polar line equation [31], the inverse projection
rays [32], the camera’s own estimation [33], and the
reprojection errors [34]. First, all features are assumed to
be static.Under this assumption, epipolar lines. 3D landmark
positions (last square solution), camera poses, or projections
can be estimated.Then,the errors between estimates and
measurements can be computed and dynamic features can be
Then, the errors between estimates and measurements can be
computed and dynamic features can be detected according to
a preset threshold.

Since dynamic objects cannot be determined directly
without using semantic information, dynamic objects need
to be detected by successive matching of history frames.
If too many history frames are used it will lead to too
much computation, and if too few history frames are
used it will lead to unrobust results.In order to solve the
problem of unrobustness with too few historical frames,Du
[35]constructed a probabilistic model and used Conditional
random fields (CRFs) [36] with long-term observation to
detect dynamic features. The algorithm is not intuitive due
to the lack of semantic information.

In comparison to low-level features, high-level features
have semantic labels with superior discriminative qualities.
High-level feature representation in image space, target
detection frames and pixel-level masks.

Xiao et al. proposed Dynamic-SLAM algorithm [37],
which uses SSD [12] target detectionmodel to detect dynamic
objects a priori, and proposedMissed detection compensation
algorithm to improve the recall rate. Zhong et al. proposed
a Detect-SLAM [38] algorithm, which classifies feature
points into four categories, high probability stationary,
low-probability stationary, low-probability motion, and high-
probability motion. Using SSD target detection algorithm
a priori for people, dogs, cars, etc. will be considered as
potentially moving and to improve the real-time a method
to propagate dynamic feature probabilities in real time is
proposed.

Both Dynamic-SLAM and Detect-SLAM algorithms use
the target detection frame as a semantic label, but the semantic
information alone cannot remove non-a priori dynamic

objects from the environment. For example, a book held by a
person who is walking around.

Berta et al. proposed the DynaSLAM algorithm [39]
using a multi-view geometry approach that can solve the
problem of the presence of non-a priori dynamic objects in
the environment.The DynaSLAM algorithm supports both
monocular and RGB-D cameras and is processed differently
for different cameras. When using monocular cameras, Mask
R-CNN [40]is used to detect moving objects; when using
RGBD cameras, a combination of multi-view geometry and
Mask R-CNN is used.However, due to the very high time
overhead of the Mask R-CNN algorithm, the algorithm
does not meet the requirements in terms of real-time
performance.

Yu proposed the DS-SLAM algorithm [41]to filter out the
dynamic part of the scene using a combination of the semantic
segmentation network SegNet [42] and a move consistency
checking method. ORB feature points are first extracted, and
then the movement consistency of these points is checked
and potential dynamic feature points are recorded. Semantic
segmentation and feature point extraction and dynamic point
detection are performed in parallel, and the number of
dynamic points falling within the boundary of this object is
detected if the object present is classified as a moveable class.
If this number exceeds a certain value, all points within the
boundary of this object are considered as dynamic points,
and then all points of this object are considered as outlier
points. If no movable object is detected, the pose estimation is
performed directly, otherwise, the outer points are filtered and
then the pose estimation is performed. The SegNet algorithm
used in this scheme has a lower time overhead than the
Mask R-CNN used in DynaSlAM, but because the polar line
constrained method does not find all the outlier points, this
method fails when the object moves along the polar line
direction, resulting in a loss of accuracy.

III. SYSTEM DESCRIPTION
On the basis of ORB-SLAM2, the system proposed in this
paper is enhanced. Figure 1 depicts the block diagram of
the algorithm’s overall structure in this study. The target
detection thread and the multi-view geometry thread have
been added to the upgraded framework. First, the camera
collects the image data. Then, the data is passed to the
tracking thread for pre-processing, and the lightweight
YOLOv5-LITE algorithm identifies all the a priori dynamic
objects, while the dynamic feature points in the image are
discriminated and removed using the multi-view geometry
thread. Second, the recognition results of the YOLOv5-LITE
algorithm are combined with the motion state information
discriminated based on the multi-view geometry dynamic
objects and used to extract regions of dynamic objects.
Finally, the feature points of dynamic object regions are
removed and the image frames with only static features are
input to the subsequent tracking thread and map construction
thread to improve the robustness and accuracy when using
low-performance devices to execute the SLAM system.
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FIGURE 1. Algorithm structure diagram of RTD-SLAM. OLC: Object motion
level classification. Object motion classification provides prior knowledge
for target detection algorithm. Potential dynamic objects are detected
using YOLOv5-Lite, and the detection information is transmitted to the
multi-view geometry thread through shared memory, where dynamic
feature points are eliminated. The tracking thread receives points for
static features.

A. MULTI-VIEW GEOMETRY
The multi-view geometry method is a geometric model that
describes how different images and objects from the same
scene are projected onto one another from various angles.

Multi-view geometry detects dynamic points by removing
feature points with large errors based on the positional
constraints of the images between multiple frames. The
projection points x ′ from the previous keyframe to the
current keyframe are computed for each keypoint x, and their
projection depth dproj, while the corresponding 3D point x
is generated. The angle xXx ′ formed by the keypoint x,x ′

3D point X is computed, denoted as v. If v is greater than
a certain threshold value then the point is considered as
possibly blocked and it is not processed.In this paper, we set
the threshold v as 30 degrees. We observed that, in the
TUMdataset, for parallax angles greater than 30degrees static
objects were considered as dynamic due to their viewpoint
difference. x ′ corresponds to a depth value of d ′, within the
error allowed, it is compared with dproj, and the point x ′

is also considered to correspond to a dynamic object if it
exceeds a certain threshold.The depth value dproj is obtained
by projecting the keypoint x from the image coordinate
system to the camera coordinate system and calculating its
depth value in the camera coordinate system. The projected
depth is used to detect the positional changes of objects
between different frames. For static objects, their projected
depth is typically relatively stable because their positional
changes across multiple frames are small. On the other hand,
for dynamic objects, their projected depth may undergo
significant variations due to their different positions and

FIGURE 2. Schematic diagram of the process of multi-view geometry to
discriminate dynamic feature points. Keypoint x from the Key Frame(KF)
is projected into the Current Frame(CF) using its depth and camera
pose,resulting in point x ′ with depthd ′ . The projected depth dproj is the
computed.

FIGURE 3. Schematic diagram of the movement level classification
strategy.

motion states across frames. By comparing the projected
depths of keypoints, it is possible to determine whether a
point corresponds to a dynamic object. 1D = dproj − d ′,
and if 1D exceeds a threshold τd ,it is also considered that
x ′ corresponds to a moving object. In this paper, τd is set
as 0.4m.To set the threshold τd , we manually tagged the
dynamic objects of 30 images within the TUM dataset, and
evaluated both the precision and recall of our method for
different thresholds τd . By maximizing the expression 0.7
× Precision + 0.3 × Recall, we concluded that τd = 0.4 m
is a reasonable choice. The process of determining dynamic
points by multi-view geometry is shown in Figure 2.

B. OBJECT MOTION LEVEL CLASSIFICATION
The classification of the objects into three categories-high
probability dynamic objects, medium probability dynamic
objects, and low probability dynamic objects (static)-is the
technique used in this research.

High probability dynamic objects are mainly people and
animals. In typical scenarios, people and animals are in
motion.

Medium probability dynamic objects are mainly chairs,
books, keyboards and mice, which are easily moved.

Low-probability dynamic objects are mainly objects that
have a high probability of not being moved, such as TVs and
refrigerators. As shown in Figure 3.

For low dynamic objects we consider it to be stationary,
so as to ensure the accuracy while eliminating the multi-view
geometry judgment process and reducing the time overhead.
Feature points are only eliminated if they are in the high
dynamic object box and not in the low dynamic object
box.
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FIGURE 4. Improved YOLOv5-LITE network structure diagram. Three
feature layers are extracted from the YOLOv5-Lite backbone network,
ShuffNetv2, for object detection.

C. OBJECT DETECTION ALGORITHM
YOLOV5 [7] uses CSPDarknet53 to extract features, but
the model is computationally complex and requires a lot of
memory space, which is not favorable for deployment in
scenarios with high real-time requirements.

In this study, a YOLOv5-based lightweight network is
proposed to construct a YOLOv5-LITE lightweight network
model by replacing the CSPDarknet53with the ShuffleNetV2
architecture as a feature extraction network based on
the traditional YOLOv5 model.ShuffleNetV2 [43]inherits
both the ShuffleNet [44] group convolution and channel
rearrangement, and follows the four guidelines for design-
ing lightweight networks. ShuffleNetV2 outperforms other
models in terms of speed and accuracy under the same
circumstances.

YOLOv5-Lite network model, as shown in Figure 4. The
improvements are shown as follows:

1. Replacement of the backbone network. The lightweight
ShuffleNetV2 architecture is replaced with the YOLOv5
original CSPDarkNet-53 network to reduce the network
parameters.

2. In the PANet structure, depth-separable convolution is
used instead of downsampling to improve the accuracy of
model detection.

The SLAM system based on YOLOv5-LITE proposed
in this paper has the advantages of less time consuming
and low performance requirement of the device, and the
application scenario is more extensive. It can be mounted on
unmanned vehicles and other applications with high real-time
requirements and low device performance requirements,
while the former semantic SLAM system can only be applied
to high-performance devices and the real-time performance
is not good enough.

D. DYNAMIC FEATURE POINT REJECTION BASED ON
MULTI-VIEW GEOMETRY
Using object detection algorithms, most objects with prior
information can be detected. But there are some objects in
the environment that can’t be detected based on a priori
information like the book that someone is carrying, the chair

that someone is moving, etc. The methods adopted in this
paper are as follows:

The dynamic feature points in the target detection frame
are marked as dynamic feature points, and the multi-view
geometrymethod is used for secondary verification. For areas
where the target detection box has no feature points, such as
the person in the back, we do nothing.

The coordinates of corner points in the upper left corner
and lower right corner of bounding box can be obtained by
object detection algorithm.

The feature points located in the target detection frame are
judged by the multi-view geometry method. If the multi-view
geometry method is judged as dynamic feature points, that is,
dynamic feature points. If the multi-view geometry method
determines that the feature point is static, it is static feature
point.

The prediction frame generated by theYOLOv5-Lite target
detection network after inference on the image consists of the
position parameters x, y, w and h. x and y are the relative
values of the center of the prediction frame to the original
image, respectively, and w and h denote the relative values of
the length and width of the prediction frame to the original
image.

As shown in Figure 5, taking the prediction frame A as an
example, this paper firstly converts its position parameters x,
y, w and h into the coordinates of the top left and bottom right
vertices of the prediction frame under the original image,
which are set as (XA1,YA1), (XA2,YA2) respectively (in the
original image, the top left vertex is the coordinate origin, set
to the right as the positive direction of X -axis, and set to the
bottom as the positive direction of Y -axis).In Figure 5, the
black points are static feature points and the green points are
dynamic feature points.

The formula in Eq (1) and Eq(2) is used to translate
the target detection network’s output parameters into the
coordinates of the target detection frame underneath the
original image. 

(XA1 + XA2)
2l

= x

(XA2 − XA1)
l

= w
(1)


(YA1 + YA2)

2d
= y

(YA2 − YA1)
d

= h
(2)

where, d is the height of the original image,l is the width of
the original image.

The ORB feature points contained in the prediction box
are all undetermined dynamic feature points based on prior
knowledge judgment, and all the feature points outside the
prediction box are static feature points. First, assume that the
set of all feature points isP = {pi}ni=1, the set of undetermined
dynamic feature points isR = {ri}ni=1, the set of static feature
points is S = {si}ni=1,P = R

⋃
S. All the feature points in

the set R will participate in the screening of dynamic feature
points,and the coordinate information (x, y) of each feature
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FIGURE 5. Distribution schematic diagram of feature points. A multi-view
geometry thread is used to identify and eliminate the dynamic feature
points. As shown in the figure, the green points are dynamic feature
points and will be removed. The black points are static feature points that
will be retained.

(
XA1, YA1

)
and

(
XA2, YA2

)
is calculated according to the

target detection box angular point coordinates.

point is calculated due to the front-end of the ORBSLAM2
system.

The experimental results are shown in Figure 6, not only
the person detected in front of the picture. And the books
in its hands and the chairs influenced by people were also
detected as dynamic. If only deep learning methods are used,
this results in dynamic feature points being detected as static.
It can be observed from Figure xx that the real dynamic
feature points are completely filtered out, and only the static
feature points are retained.

IV. EXPERIMENT AND ANALYSIS
A. YOLOv5-LITE EXPERIMENT
In order to verify the performance of the YOLOv5-Lite
target detection network, the training hyperparameters are
set as follows: The initial learning rate is set to 0.01, the
adam optimizer is used, the optimizer’s momentum is set to
0.937, the weight’s attenuation is set to 0.0005, the batch-size
is set to 16, the training is 300 rounds, and the bounding
box regression loss Lbox’s hyperparameter is set to 0.05.
The hyperparameter of target object loss Lobj is set to 0.7,
the hyperparameter of classification loss Lcls is set to 0.3,
and the threshold of iou is set to 0.2. The data set used
is VOC2007, which contains 20 kinds of pictures, such as
people, cats, tv, etc.

The performance test results of YOLOv5-Lite and
YOLOv5s improved after training are shown in Table 1.
As can be seen from Table x, the network parameters of
YOLOv5-Lite are reduced by 77.82% and the running speed
is accelerated by 39% compared with YOLOv5s. In terms
of accuracy, Shuffnetv2 network has the advantages of
small model and fast speed, but the detection performance
is insufficient, so the improved target detection network
decreases by 4.63% compared with YOLOv5s, sacrificing
part of accuracy and improving the operating speed of the
system.The experimental results are shown in Figure 7.

TABLE 1. Performance test comparison between YOLOv5-Lite and
YOLOv5.

B. DATASET
The TUM RGB-D dataset consists of 39 sequences recorded
in different indoor scenes using Microsoft Kinect sensors and
contains data for Testing and Debugging, Handheld SLAM,
Robot SLAM, Structure vs. Texture, Dynamic Objects, 3D
Object Reconstruction, Validation Files, Calibration Files,
and several task-specific datasets, each of which has contains
multiple data that can be used for performance testing of
multiple tasks. These four highly dynamic datasets record two
people walking through an office scene.

Dynamic Objects dataset contains 3 sequences, where
fr1, fr2 are static scene datasets and fr3 are dynamic scene
datasets. In this paper, we use four highly dynamic datasets
under fr3 sequence, namely fr3_w_xyz, fr3_w_static,
fr3_w_rpy, fr3_w_halfsphere. where ‘‘w’’ represents the state
of the environment in which people are walking, xyz, rpy,
halfsphere and static corresponds to the way the camera
moves.

C. EXPERIMENTAL ENVIRONMENT
To reduce the influence of hardware devices, all experiments
in this paper are conducted in a desktop computer environ-
ment with RTX2070 GPU and 16GB RAM, Intel i7 CPU in
hardware and ubuntu18.04 in software system.

D. EXPERIMENTAL RESULTS
To compare the performance of the RTD-SLAM system pro-
posed in this paper with the original ORB-SLAM2 system,
we conduct experiments on the above dynamic dataset.To
evaluate the robustness and accuracy of the RTD-SLAM
system in a highly dynamic environment, and to objectively
measure the performance of our SLAM system, we use the
absolute trajectory error ATE for global consistency and the
relative attitude error RPE for rotational drift for all-round
evaluation. The evaluation metrics are root mean square error
(RMSE) and standard deviation (S.D.), with RMSE reflecting
the accuracy of the system and SD reflecting the robustness
of the system.

The experimental results obtained using ORBSLAM2,
DS-SLAM and the algorithm in this paper are shown in
Tables 2-4 for four highly dynamic datasets under the TUM
dataset, respectively.

Figure 8(a) shows the absolute trajectory error plot
of ORBSLAM2 algorithm under fr3_w_xyz sequence,
and Figure 8(b) shows the absolute trajectory error plot
of RTD-SLAM algorithm proposed in this paper under
fr3_w_xyz sequence.

The black curve in Fig. 8 indicates the ground truth, the
blue curve indicates the estimated value of the algorithm, the
red part indicates the absolute error between the estimated
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FIGURE 6. Experimental process diagram under TUM data set.

FIGURE 7. YOLOv5-Lite training results on VOC2007 data set.

FIGURE 8. ATE comparison under fr3_w_xyz sequence.

FIGURE 9. RPE comparison under fr3_w_xyz sequence.

value and the true value, and the smaller the red area indicates
the smaller the error.

From Figure 8, it can be seen that the red area of
the RTD-SLAM algorithm proposed in this paper is much
smaller than the red area of the ORBSLAM2 algorithm,
which intuitively shows that the ATE of RTD-SLAM is
smaller than that of ORBSLAM2.

Figure 9(a) shows the relative positional error plot of
ORBSLAM2, and Figure 9(b) shows the relative positional
error error plot of the RTD-SLAM algorithm proposed in

FIGURE 10. Comparison of 3D thermal map in fr3_w_rpy sequence.

FIGURE 11. Comparison of 3D thermal map in fr3_w_halfsphere
sequence.

FIGURE 12. Comparison of 3D thermal map in fr3_w_rpy sequence.

this paper. It can be seen from Fig. 9 that the second half
of the curve in the figure the RTD-SLAM proposed in this
paper obviously has less fluctuation and smaller RPE than
the ORBSLAM2 algorithm.

Figure 10-13 shows the comparison of the absolute
trajectory error thermal map between ORBSLAM2 and
the algorithm in this paper under the above four dynamic
sequences. The black line represents the ground truth, and the
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FIGURE 13. Comparison of 3D thermal map in fr3_w_halfsphere
sequence.

TABLE 2. Results of metrics absolute trajectory error (ATE) (unit:m).

color curve represents the estimated value of the algorithm.
The more blue the color, the smaller the error of the point,
and the more red the color, the larger the error of the point.
Figure 10-13 intuitively shows that ORBSLAM2 will deviate
seriously from the real trajectory under the dynamic data set,
and the algorithm in this paper is far better than ORBSLAM2
algorithm.

Table2 shows the ATE comparison of ORBSLAM2,
RTD-SLAM and DS-SLAM algorithms proposed in this
paper under four dynamic sequences.

In the ‘‘Fr3_w_xyz’’ sequence, Ours method performs
exceptionally well. It exhibits high localization accuracy
with very low root mean square error (RMSE) and standard
deviation (S.D.) of 0.0199 and 0.0093, respectively.

The RMSE of the proposed algorithm is improved by
97.35% compared to ORB-SLAM2 and by 19.4% compared
to DS-SLAM.

This indicates that Ours provides highly accurate localiza-
tion with minimal variation in error when there are position
changes in the dataset.

However, in the ‘‘Fr3_w_static’’ sequence, the perfor-
mance of Ours method slightly decreases. The RMSE is
0.1207, and the S.D. is 0.0020.

Comparatively, our method performs less effectively in
handling localization tasks in static scenes.

The RMSE of the proposed algorithm is improved by
69.05% compared to ORB-SLAM2 and reduced by 93.28%
compared to DS-SLAM.

In the ‘‘Fr3_w_rpy’’ sequence, Ours method achieves
excellent performance with an RMSE of 0.1667 and S.D.
of 0.0298. This indicates that Ours method exhibits high
precision in handling pose changes in localization tasks and
demonstrates relative stability in error variation.

The RMSE of the proposed algorithm is improved by
80.05% compared to ORB-SLAM2 and by 62.47% compared
to DS-SLAM.

In the ‘‘Fr3_w_half’’ sequence, Ours method continues to
perform well with an RMSE of 0.0278 and S.D. of 0.0244.
This implies that Ours method maintains high precision in
handling localization tasks with partial scene changes and
effectively mitigates errors caused by scene variations.

The RMSE of the proposed algorithm is improved by
94.28% compared to ORB-SLAM2 and by 8.25% compared
to DS-SLAM. In conclusion, Ours method demonstrates
outstanding performance in localization tasks involving
position changes, pose changes, and partial scene changes in
the dataset.However, in the case of localization tasks in static
scenes, the performance of our method, Ours, is relatively
poor. This issue may be attributed to the fact that in static
scene localization tasks, a significant number of feature
points are filtered out, resulting in a decrease in localization
accuracy.

TABLE 3. Results of metric translational drift (RPE) (unit:m).

Table3 shows the METRIC TRANSLATIONAL DRIFT
(RPE) comparison of ORBSLAM2, RTD-SLAM and
DS-SLAM algorithms proposed in this paper under four
dynamic sequences.

In the xyz sequence, the algorithm proposed in this article
achieves an RMSE and S.D. of 0.0120 and 0.0071, respec-
tively. Compared to the ORBSLAM2 algorithm, it shows an
improvement of 97.10% and 97.35%, respectively. Compared
to the DS-SLAM algorithm, it shows an improvement of
63.96% and 69.00%, respectively.

In the static sequence, the algorithm proposed in this article
achieves an RMSE and S.D. of 0.0192 and 0.0133, respec-
tively. Compared to the ORBSLAM2 algorithm, it shows an
improvement of 91.12% and 93.22%, respectively. Compared
to the DS-SLAM algorithm, it shows a decrease of 88.24%
and 177.10%.

In the rpy sequence, the algorithm proposed in this article
achieves an RMSE and S.D. of 0.0192 and 0.0133, respec-
tively. Compared to the ORBSLAM2 algorithm, it shows an
improvement of 95.48% and 95.80%, respectively. Compared
to the DS-SLAM algorithm, it shows an improvement of
87.23% and 88.61%, respectively.

In the half sequence, the algorithm proposed in this article
achieves an RMSE and S.D. of 0.0148 and 0.0090, respec-
tively. Compared to the ORBSLAM2 algorithm, it shows an
improvement of 95.83% and 96.80%, respectively. Compared
to the DS-SLAM algorithm, it shows an improvement of
50.17% and 40.79%, respectively.

Overall, Ours method demonstrates good performance
in terms of localization accuracy across different datasets,
particularly in datasets with varying positions. However, its
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TABLE 4. Results of metric rotational drift (RPE) (unit:deg/s).

performance is relatively poorer when it comes to handling
static scenes.

Table4 shows the METRIC TRANSLATIONAL DRIFT
(RPE) comparison of ORBSLAM2, RTD-SLAM and
DS-SLAM algorithms proposed in this paper under four
dynamic sequences.

In the xyz sequence, the algorithm proposed in this article
achieves an RMSE and S.D. of 0.3889 and 0.2709, respec-
tively. Compared to the ORBSLAM2 algorithm, it shows an
improvement of 95.00% and 94.57%, respectively. Compared
to the DS-SLAM algorithm, it shows an improvement of
52.95% and 53.50%, respectively.

In the static sequence, the algorithm proposed in this article
achieves an RMSE and S.D. of 0.1857 and 0.0949, respec-
tively. Compared to the ORBSLAM2 algorithm, it shows an
improvement of 95.23% and 97.30%, respectively. Compared
to the DS-SLAM algorithm, it shows an improvement of
30.97% and 19.71%, respectively.

In the rpy sequence, the algorithm proposed in this article
achieves an RMSE and S.D. of 0.5597 and 0.3752, respec-
tively. Compared to the ORBSLAM2 algorithm, it shows an
improvement of 93.07% and 93.69%, respectively. Compared
to the DS-SLAM algorithm, it shows an improvement of
81.37% and 83.73%, respectively.

In the half sequence, the algorithm proposed in this article
achieves an RMSE and S.D. of 0.4177 and 0.2362, respec-
tively. Compared to the ORBSLAM2 algorithm, it shows an
improvement of 94.33% and 95.90%, respectively. Compared
to the DS-SLAM algorithm, it shows an improvement
of48.70% and 42.40%, respectively.

Based on the comprehensive analysis, Ours method
exhibits lower RMSE and S.D. on all datasets compared
to ORB-SLAM2 and DS-SLAM methods, indicating better
performance in measuring rotational drift. These results
suggest that Ours method showcases superior accuracy and
stability across different datasets.

In summary, the algorithm proposed in this paper
achieves good performance in the four sequences. In the
static sequence, it outperforms the traditional ORBSLAM2
algorithm in terms of accuracy but still falls behind
DS-SLAM. This could be attributed to the fact that
DS-SLAM incorporates semantic segmentation as a prior
detection, which provides an advantage.

E. TIME CONSUMPTION EVALUATION
In real life the goodness of an algorithm cannot be considered
only in terms of accuracy, but also in terms of real time.
The time consumption of semantic SLAM system is mainly

TABLE 5. Total time consumption under the TUM dataset.

FIGURE 14. YASKAWA MOTOMAN ROBOT.

in Semantic Thread and Tracking Thread. In order to verify
the real-time performance of the algorithm in this paper, this
paper compares these two aspects with DS-SALM algorithm
respectively, and the results are shown in Table 5.
In the xyz, static, rpy, and half sequences, the total running

times of our algorithm are 37.34s, 31.63s, 38.40s, and
45.02s, respectively. These results meet the requirements for
real-time operation.

Compared to the DS-SLAM algorithm, our algorithm
shows a reduction in total processing time by 14.02s, 12.63s,
15.65s, and 18.38s in the xyz, static, rpy, and half sequences,
respectively.

V. EXPERIMENTS IN A REAL-WORLD LABORATORY
ENVIRONMENT
A. DATASET PRODUCTION
The Lenovo Legion R9000K 2021H laptop was used as
the data set acquisition platform, and the Astro Pro camera
was attached to the YASKAWAMOTOMAN ROBOT model
TKPE-MH0005S-A00 with an external device as the data set
acquisition tool to control the robot in space for pan, pitch,
yaw, and roll operations. pitch, yaw and roll operations in
space.

The dataset was divided into two groups. The first
group, named ‘‘single-person,’’ consisted of an environment
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FIGURE 15. Experimental process diagram.

FIGURE 16. Comparison of 3D heat map in case one.

FIGURE 17. Comparison of 3D heat map in case two.

where only one experimenter walked. The second group,
named ‘‘two-person,’’ involved an environment where two
experimenters walked simultaneously. Each group gathered
2000 photos. The dataset production equipment is shown in
Figure 14.

B. EXPERIMENTAL RESULTS
The ORBSLAM algorithm and the algorithm from this paper
are used in a comparison experiment, and the experimental
process diagram is shown in Figure 15. The experiment
demonstrates how effectively the algorithm in this paper
removes the dynamic feature points.

As can be seen from the comparison of 3D thermal
map in Figure 16, ORBSLAM2 algorithm deviates seriously
from the real movement trajectory. Although some parts of
RTD-SLAM have large errors, the overall effect is still good.

TABLE 6. Results of metrics absolute trajectory error (ATE) (unit:mm).

TABLE 7. Results of metric translational drift (RPE) (unit:mm).

It can be seen that RTD-SLAM algorithm is more accurate
and robust in this case.

As can be seen from the comparison of 3D thermal diagram
in Figure 17, ORBSLAM2 algorithm has red line segment,
indicating that the trajectory error is large. The overall level of
RTD-SLAM is consistent with the real trajectory, and there is
no large error part. It can be seen that RTD-SLAM algorithm
has better accuracy and robustness in case two.

According to the comparison between FIG. 16 and
Figure 17, ORBSLAM2 algorithm accuracy in case 2 is
actually better than that in case 1. By analyzing the reasons,
it can be seen that the camera motion trajectory in case 2 is
stable and relatively short, resulting in not obvious dynamic
characteristics.

Based on the TABLE 6. data it can be seen that on
two sequences (single-person and two-person), our algorithm
achieves an improvement in ATE compared to ORB-SLAM2.

In the single-person sequence, our method reduces the
RMSE (root mean square error) by 57.15% and the S.D.
(standard deviation) by 70.00% relative to ORB-SLAM2.
In the two-person sequence, our method reduces the RMSE
by 82.65% and S.D. by 66.67% relative to ORB-SLAM2.
This means that our method has higher accuracy and
stability in camera pose and depth estimation than
ORB-SLAM2.

These results indicate that the algorithm in this paper
performs better in terms of ATE, i.e., the difference between
the estimated results and the true values is smaller.
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TABLE 8. Results of metric rotational drift (RPE) (unit:deg/s).

TABLE 9. Comparison of overall time overhead on custom dataset.

Based on the data in Table 7, we can see that on two
sequences (single-person and two-person), our algorithm
achieves an improvement in Translational Drift (TD)
compared to ORB-SLAM2.

In the singal-person sequence, our method reduces the
mean translational drift (RMSE) by 25.00% and the standard
deviation of translational drift (S.D.) by 33.33% with respect
to ORB-SLAM2. In the two-person sequence, our method
reduces the mean translational drift by 50.00% and the
standard deviation of translational drift by 50.00% relative
to ORB-SLAM2. This indicates that our method is more
accurate than ORB-SLAM2 in camera motion estimation
with reduced translational drift errors.

These results indicate that our method performs better in
terms of translational drift, i.e., the camera motion estimation
is more accurate and the translational drift error is smaller.

Based on the data in Table 8, it can be seen that on
two sequences (single-person and two-person), our method
achieves a significant improvement in Rotational Drift
(RMSE) compared to ORB-SLAM2.

In single-player sequences, our algorithm reduced the
mean rotational drift (RMSE) by 61.98% and the standard
deviation of rotational drift (sd) by 66.13% relative to
ORB-SLAM2. In the Two-peoples sequence, compared
to ORB-SLAM2, our algorithm reduces the mean value
of rotational drift by 90.10% and increases the standard
deviation of rotational drift by 4.43%. This shows that
our method is more accurate than ORB-SLAM2 in camera
rotation estimation, with less rotation-drift error, but with
reduced stability in two-person sequences

These results indicate that our method performs better in
terms of rotational drift, i.e., more accurate camera rotation
estimation and less rotational drift error.

C. TIME CONSUMPTION EVALUATION
To comprehensively analyze and compare the performance of
the algorithms, this study compared the average processing
time in two scenarios (single-person and two-person).

According to Table 9, it can be observed that ORBSLAM2
has an average processing time of 66.43 seconds in the
single-person scenario, while the proposed method has an
average processing time of 86.80 seconds. In the two-person

scenario, ORBSLAM2 has an average processing time of
66.39 seconds, whereas the proposed method has an average
processing time of 90.43 seconds.

According to the data in Table 9, it can be observed that the
proposed algorithm in this study has a higher time overhead
compared to ORBSLAM.

VI. CONCLUSION
This paper proposes the RTD-SLAM system, which aug-
ments the original ORBSLAM2 with target detection threads
and multi-view geometry threads, in order to increase
the accuracy of the SLAM system in a dynamic envi-
ronment. First, a priori dynamic information is obtained
by a lightweight target detection thread. The multi-view
geometry thread is then used to find the dynamic feature
points in the scene. Finally, experiments are carried out
using four dynamic sequences under the TUM dataset to
verify the performance of this algorithm, and the results
show that the trajectory accuracy is significantly increased.
In order to verify the real-time performance of the proposed
algorithm, the time consuming of running TUM four dynamic
sequences was calculated in this paper. Finally, accuracy
and time-consuming experiments were conducted on the
self-made dataset.

First, in order to verify the performance of the
YOLOv5-Lite algorithm proposed in this paper, VOC2007
data set was used to train 300 rounds of experiments.
The experimental results indicate that the proposed target
detection algorithm in this paper has a smaller parameter
size and faster inference speed.Compared to YOLOv5s, the
inference speed is improved by 39%.

In order to validate the feasibility of the algorithm,
this paper conducted multiple experiments using the pub-
licly available TUM dataset and a self-made dataset. The
experimental results demonstrate a significant improvement
in accuracy of the proposed algorithm compared to the
ORBSLAM2 algorithm.

In the sequences xyz, static, rpy, and half, the trajectory
accuracy of the proposed algorithm in this paper is improved
by 97.35%, 69.05%, 80.05%, and 94.28% respectively, com-
pared to ORBSLAM2. Compared with the mature DS-SLAM
algorithm, the average total time consuming of the proposed
algorithm under four dynamic sequences was reduced by
28.44% compared with DS-SLAM. The proposed algorithm
meets the standard of real-time operation, indicating that it
is capable of running in real-time without significant delays
or latency. This implies that the algorithm can process and
analyze data in a timely manner, making it suitable for
real-time applications or systems where immediate responses
are required.

In the self-made dataset, in the single-person and two-
person sequences, the trajectory accuracy of the proposed
algorithm in this paper is improved by 50.15% and 82.65%
respectively, compared to ORBSLAM2.

Although the algorithm in this paper has made some
progress in accuracy and real-time performance, especially
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in real-time performance, we still need to continuously
improve the algorithm. In the future, the method of reduc-
ing the target detection area can be adopted to further
improve the accuracy and real-time performance of the
system.
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