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ABSTRACT Industry 4.0 has placed significant emphasis on interconnectivity, digitalization, and
automation. Among the myriad innovative technologies that have surfaced, artificial intelligence (AI) stands
out as especially instrumental in the development of fully autonomous factories. Product quality inspection is
a critical component of industrial manufacturing. An accurate and reliable AI-based Anomaly Detection and
Localization (ADL) system for industrial product quality inspection is essential in real-world manufacturing
factories. Collecting massive anomalous products is difficult because the number of anomalous products
is limited and rare in a realistic manufacturing scenario. Therefore, the paper treats the ADL problem as
a cold-start challenge, training the defects inspection network only using nominal (non-defective) images.
Significantly, the paper aims to bridge the gap between academic research and real-world manufacturing
industry applications. The paper lists issues that current state-of-the-art academic research faces when
applied in real-world manufacturing settings, then a Reliable Anomaly Detection and Localization (RADL)
system is developed to solve the issues. RADL is improved in three aspects. Firstly, the common image
pre-processing method is modified by considering the characteristics of real-world industrial images.
Secondly, a Fake Defect Feature Augmentation (FDFA) strategy to mitigate the scarcity of real-world data.
Thirdly, a Hardness-aware Cross-Entropy loss (HCELoss) is adopted to enhance the stability and reliability
of the system. On the public MVTec AD benchmarks, the proposed RADL outperforms previous methods
with 99.53% in I-AUROC, 97.85% in P-AUROC, and 91.60% in PRO. Furthermore, RADL is evaluated
under industrial manufacturing settings in two real-world datasets collected from industrial production lines.
The experimental results demonstrate the superiority of the proposed strategies in a public dataset and
real-world manufacturing industrial environments.

INDEX TERMS Industry 4.0, anomaly detection, manufacturing industry, system reliability, autonomous
factory.

I. INTRODUCTION
Detecting defects/anomalies play an important role in various
manufacturing industrial production domains for holding
product quality standards [1], such as Semiconductor Man-
ufacturing Processes [2], Electronics Manufacturers [3], and
Automation Manufacturers [4], etc. Vision-based Anomaly
Detection and Localization (ADL) is usually performed at
the final stage of the manufacturing process for inspecting
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product quality and identifying product defects. The quantity
and severity of a defect significantly impact and determine
the price of a product. In traditional and manual inspection
scenarios, workers examine the quality of products one by
one after the product is produced on a production line.
Obviously, relying solely on human inspection becomes
increasingly challenging with the increasing manufacturing
volume and growing demands. Moreover, the subjective
judgments and biases of workers result in inconsistent quality
inspection criteria, which lead to a higher defect escape
rate.
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FIGURE 1. Sample images of public dataset MVTec AD [5] and two real-world manufacturing
industrial datasets.

In the last decade, Artificial Intelligence (AI) and deep
vision detection technology have been rapidly developing
in real-world applications, such as autonomous vehicles [6],
[7], surveillance systems, medical imaging [8], etc. In the
meantime, AI-based or Deep Neural Networks (DNN) also
have been adopted in factories for detecting and identifying
defects (anomalies) of a product because they provide
higher accuracy and faster inspection speed than traditional
inspection methods. AI-based quality inspection system
brings benefits to the manufacturing industry [1], [9], [10].
Firstly, the AI-based inspection system reduces the workload
of workers by automating some manufacturing processes.
Secondly, an AI-based model leads to more accurate defect
inspection accuracy with less inspection time [11], [12],
[13], [14], therefore increasing the overall efficiency of the
manufacturing process for helpingmanufacturersmeet higher
demand. Thirdly, the AI-based inspection system enforces
consistent inspection criteria across the whole production line
to ensure that all products undergo consistent quality. Overall,
the AI-based inspection system helps manufacturers increase
productivity and efficiency in manufacturing processes.

An intuitive deep-learning method for defect detection
and quality inspection is the classification of defective or
non-defective using supervised binary classification net-
works [15], [16], [17] and the detection of the defective
region. However, unlike the general object learning cases,
industrial defect inspection is particularly difficult. Chal-
lenges of manufacturing industrial product defect inspection
are summarized as follows:

1) The imbalance between non-defective (nominal) and
defective (anomalous) data samples [10], [18], [19].
In real-world manufacturing industrial cases, anomaly
data is difficult to collect because most production lines
are faultless. Therefore, the number of nominal samples
is usually the majority, while the number of anomaly
samples is rare relatively.

2) The defect types are diverse. The defect can vary from
subtle texture changes such as thin scratches to larger
structural defects.

Directly adopting general deep learning methods for inspect-
ing industrial product defects cannot achieve satisfactory
performance.

To address the above imbalance and diversity problems
of defects in industrial product inspection, current studies
primarily focus on Unsupervised Anomaly Detection [11],
[12], [13] that only uses nominal (non-defective) data as the
training set. These methods can be considered as a subset of
One-Class Classification (OCC) problems [20].

Nowadays, anomaly detection and localization meth-
ods are categorized into reconstruction-based methods,
embedding-based methods, and synthesizing-based methods.
The key idea of reconstruction-based methods is that only
nominal images can be reconstructed and anomalous can
not be reconstructed. Therefore, the reconstructed error
can serve as an anomaly score to distinguish nominal
and anomalous images. Commonly used anomaly detection
Autoencoder [5], [21] and Generative Adversarial Networks
(GAN) [22], are often employed for image reconstruction.
The reconstruction-based methods are interpretable but
unstable in performance in hard anomalous images [23],
[24]. The fundamental concept of embedding-based methods
involves utilizing pre-trained Deep Neural Networks (DNNs)
[25] to generate representative embedding features and
subsequently distinguish anomalies based on the distance
between nominal and anomalous embeddings. Previously,
embedding-based methods excelled in anomaly detection
but struggled to accurately locate the anomalous regions.
The proposals of PaDim [11] and PatchCore [12] have
enabled embedding-based methods to achieve state-of-the-
art performance, combining both anomaly detection and
localization. The synthesizing-based methods attempt to
generate fake anomalous images using nominal images.
CutPaste [26] generates fake anomalies by cutting a nominal
image patch and randomly pasting it onto another nominal
image. Synthesizing-based methods face a limitation in
accurately depicting real anomalies, because the appearance
of real defects is diverse and unpredictable. Therefore,
generating synthetic anomalies from nominal images can
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never fully represent the complexity of real anomalies.
Moreover, recent research by OpenGAN [27] suggests that
generating synthesized features, rather than synthesized
images, leads to better model performance. This approach
is advantageous because it: 1) eliminates potential noise
when extracting features from synthesized images and 2)
reduces themodel’s capacity by synthesizing in feature space.
Similarly, to tackle the challenges posed by synthesized
images, SimpleNet [13] proposed synthesizing anomalies in
the feature space rather than on images.

Previous studies [12], [13], [14], [26] have achieved sig-
nificant results on MVTec Anomaly Detection (MVTec AD)
benchmark [5], which is a widely used anomaly detection
public dataset covering various industrial object categories.
But they [11], [12], [13] have given less consideration to
the accuracy gap between public datasets [5] and real-world
manufacturing industrial applications. To design an ADL
model for real-world manufacturing industries, our study
follows the approach of previous methods in two key aspects.
(1) We address the ADL as the cold start challenge by
training the network exclusively with non-defective images.
Specifically, during the training step, only non-defective data
is used. During the inference step, both non-defective and
defective data are incorporated. (2) Our study leverages the
strengths of both synthesizing-based and embedding-based
methods. Furthermore, our study improves upon the previous
methods in three aspects.

Firstly, the paper modifies the commonly used prepro-
cessing strategy of state-of-the-art methods [11], [12], [13].
Sample images from public dataset [5] and real-world
datasets are shown in Fig. 1. The real-world datasets are
collected directly from industrial production lines. For the
public dataset, it is common to observe that 1) Objects
are positioned in the center of the image, 2) images have
a fixed size, resolution, and square aspect ratio, and 3)
backgrounds are clear and have a consistent appearance.
On the contrary, real-world datasets might not possess
the above characteristics. We consider that the commonly
used preprocessing strategy, including resizing and center
cropping, poses a potential risk by neglecting defects located
in the edge regions as shown in Fig. 2 (b). Neglecting those
defects results in the model’s inability to fully manifest its
inherent performance in real-world industrial applications.
Therefore, we suggest using padding instead of center
cropping to preserve the network’s applicability in real-world
industrial environments.

Secondly, the paper proposes a Fake Defect Feature
Augmentation (FDFA) method used in the fake feature flow,
to mitigate the weakness of a Data Augmentation (DA)
strategy that cannot be used in a true feature flow [12],
[13]. Examples of non-defect and defect images are shown
in Fig. 1. The defect from one product can vary from
subtle texture change as Fig. 1. (1)(c) to larger structural
defects as Fig. 1. (1)(e). A data augmentation strategy [28]
provides an effective solution in the data space for addressing
the challenge of limited industrial data by increasing data

FIGURE 2. Example of (a) pre-processing strategy in previous studies and
(b) pre-processing strategy in this paper on real-world datasets. Blue
dash boxes: the center crop region. Red dash boxes: defect regions.

quantity. However, the application of data augmentation
strategies faces difficulties in the context of ADL. There
are two primary reasons. Firstly, only non-defective data is
trained in OCC manner but augmenting non-defective data
may not yield significant benefits due to its sufficiency.
Secondly, ADL needs prior knowledge for class-retaining
augmentations [12], [13]. GraphCore [14] demonstrates the
efficacy of rotation as an augmentation technique. However,
GraphCore also points out that there will be more complex
and realistic industrial anomaly image datasets that cannot be
adequately addressed by rotation. Therefore, this paper aims
to augment fake feature flow (defect) rather than real feature
flow (non-defect).

Dataset augmentation can be performed in image space
and feature space [29]. Recent studies [13], [27], [29],
[30] claimed that performing in feature space is better
than in image space in model accuracy, robustness, and
generalization. Devries and Taylor [29] demonstrated that
augmenting feature space improves the performance of
supervised learning algorithms. Verma et al., [30] found
that augmenting feature space improves generalization and
robustness in deep neural networks. OpenGAN [27] further
proposed to generate fake features instead of fake images
to achieve better performance in open-set recognition tasks.
Similarly, our baseline method SimpleNet [13] applied this
method in the ADL task by adding noise into a non-defect
feature to generate a fake defect feature. Following the above
ideas, this paper proposed FDFA which adds noise in feature
space and then augments the noise by randomly picking its
standard derivation σ̃ .
Thirdly, this study proposed to employ a Hardness-aware

Cross-entropy Loss (HCELoss), which demonstrates superior
performance in terms of both accuracy and stability. Previous
works used cross-entropy loss [14] or L1 loss [11], [12],
[13] in industrial anomaly detection. The cross-entropy
loss remains stable but fails to achieve higher accuracy
compared to the L1 loss. Conversely, the L1 loss achieves
better accuracy but exhibits instability. Detailed experimental
results and discussion are presented in Fig. 4 and Sec. V.A.
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FIGURE 3. The illustration of the proposed Reliable Anomaly Detection and Localization (RADL) network. A backbone
network extracts feature maps. An Augmented Anomalous Feature Generator (FDFA) generates fake defect features.
A discriminator with HCELoss is trained to distinguish non-defect features and fake defect features. The FDFA will not
be used in the test step.

More specifically, the L1 loss causes unpredicted large fluc-
tuations in three evaluation metrics and loss value. It is time-
wasting to evaluate and compare model performance in every
training epoch to select the optimal model. Moreover, there
is no labeled ground-truth annotated products in real-world
factory environments for calculating the model’s accuracy.
Therefore, the existing anomaly detection methods are not
suitable and applicable in real-world industrial manufacturing
applications. A stable loss function is necessary for building
a reliable ADL application. To bridge the gap between
academic research and real-world industrial manufacturing,
HCELoss is utilized in this paper and demonstrates its impor-
tance in real-world applications. The results demonstrate the
high accuracy achieved by our proposed HCELoss in the
public dataset MVTec AD, and its necessity in real-world
industrial applications.

The architecture of the proposed unsupervised anomaly
detection and localization methods RADL is illustrated
in Fig. 3. Non-defect (nominal) images are pre-processed
and then fed into an ImageNet [25] pre-trained backbone
network to extract their true features. Augmented fake
defect (anomaly) features are generated by adding augmented
Gaussian noise N with a random standard deviation σ̃ to
true non-defect (nominal) features. A discriminator is used
to find defect images by training with both true non-defect
and fake defect features. The FDFA is only used in training
and is removed in inference.

The contributions of this work are fivefold,

1) To better align with real-world manufacturing envi-
ronments, this paper has refined the commonly used
preprocessing strategy.

2) To enhance the generalization capabilities of the
proposed RADL, this paper introduces the Fake Defect
Feature Augmentation (FDFA) strategy.

3) To enhance the stability of RADL in real-world
industrial environments, this paper introduces the
Hardness-aware Cross-Entropy Loss (HCELoss).

4) Demonstrating superior results, the RADL achieved
99.53% in I-AUROC(%), 97.85% in P-AUROC(%),

and 91.60% in PRO(%) on the public dataset MVTec
AD benchmarks.

5) Pushing academic research closer to real-world man-
ufacturing industry applications, the paper evaluates
RADL’s efficacy in real-world manufacturing sce-
narios using two real-world datasets collected from
production lines.

The remainder of this paper is organized as follows. The
whole architecture of the proposed RADL is introduced in
Section II. Section III introduces the details of the experiment
setting, including datasets, evaluationmetrics, and implemen-
tation details. Section IV reports the experimental results
on the public MVTec AD benchmarks and two real-world
industrial manufacturing datasets. Section V concludes the
work.

II. METHOD
The architecture of Reliable Anomaly Detection and Local-
ization (RADL) is shown in Fig. 3. Nominal images are
pre-processed and processed by the backbone network to
extract features. FDFA generates augmented fake defect
features by adding augmented Gaussian noise to non-defect
(nominal) features. The Discriminator is used to distinguish
defects.

A. IMAGE PREPROCESSING
As shown in Figure 2(a), previous studies [12], [13] achieved
enhanced model performance on the public dataset [5]
by utilizing center cropping, effectively eliminating the
surrounding background. The success of center cropping on
public datasets MVTec AD [5] can be attributed to the fixed
and square shape of the images, as well as the positioning of
target objects at the center of these images.

However, there are images in real-world scenarios that
are varied and non-square in shape, and the target object
is not necessarily located at the center of the images. As a
consequence, the prior preprocessing strategy causes the
model to neglect defects located in the edge regions in
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real-world inspection applications. The example is illustrated
in Fig. 2(a).

To accommodate real-world manufacturing environments,
we suggest using padding instead of performing center crop-
ping, as shown in Fig. 2(b). By padding the resized images,
the complete image can be retained while still achieving
a consistent input size required for subsequent processing
steps. This modification ensures that the preprocessing
strategy remains compatible with real-world manufacturing
environments and preserves the integrity of the data for accu-
rate defect inspection. The visualization results presented in
Fig. 6 illustrate that the location of anomaly regions can be
detected accurately with our proposed preprocessing strategy
on real-world manufacturing industrial datasets.

B. BACKBONE
In the training phase, given an input image x, the pre-trained
backbone network B(·) extracts features from different k
layers. The classification networkWideResnet50 [15] is used
here as the backbone model. The feature map from level
k ∈ K is denoted as fk ∈ RHk ,Wk ,Ck , where Hk , Wk , and
Ck are the height, width, and channel size of the feature map
fk .
Following CutPaste [26] and PatchCore [12], an image is

cut into p×p patches then using its patch features to represent
the whole image. For an fk at location (h,w), its feature map
with patch size p ∈ P is defined as,

f p+k = {(a, b)|a ∈ [h− ⌊p/2⌋] . . . , [h+ ⌊p/2⌋],

b ∈ [w− ⌊p/2⌋] . . . , [w+ ⌊p/2⌋]}, (1)

The second and third intermediate layers (k = {2, 3}) of
the backbone are aggregated to generate non-defect features
using an average pooling operator as,

f p+ = AvgPooling(f pk=2,Resize(f
p
k=3)), (2)

where Resize(·) is an interpolation operator to enlarge size of
f pk=3 to the same size with f pk=2.

C. FAKE FEATURE FLOW
The solution of RADL is to exploit real non-defective
samples and synthetic defective samples to train the Discrim-
inator D(·). The fake feature flow generates and augments
synthetic defective features as shown in Fig. 3.

1) FAKE DEFECT FEATURE GENERATION
As mentioned in [12] and [13], data augmentation is not easy
to apply in the true flow because the prior knowledge about
class-retaining augmentations is not provided in MVTec AD
[5]. Therefore, our study focuses on the fake feature flow.

Moreover, previous research proves that generating syn-
thetic defect features is more efficient than generating
synthetic defect images [13], [27]. Following the above ideas,
our study adds noise into the feature space of non-defect
samples to synthesize defect features.

Liu et al. [13] element-wise added a Random Gaussian
Noise N (µ, σ 2) with fixed mean µ and standard deviation
σ on non-defect features f p+ as follows,

f p− = f p+ +N (µ, σ 2), (3)

where f p− is the synthesized fake defect features correspond-
ing to real non-defect features f p+. All these three features
f p−, f p+ andN are 1536-dimensional vectors. The choice of
1536 as the dimension for the final layer of feature fusion is
manually determined. µ = 0 and σ = 0.015 are pre-defined
and proven that can achieve the best performance in their
research [13].

2) FAKE DEFECT FEATURE AUGMENTATION (FDFA)
As mentioned in Sec. I, the defect from one product can vary
from subtle texture change to larger structural defects. The
naive N cannot represent diverse defects. In other words,
the naive N is too easy for Discriminator D(·) to synthesize
generalized features of defects. Our study tries to simulate
diverse defects by introducing more varied noise.

Based on the above ideas, we propose a Fake Defect
Feature Augmentation (FDFA) method, which is performed
in the fake feature flow to augment fake features. To validate
our insight, we have adapted SimpleNet [13] as the baseline
method for our model.

Intuitively, we extended this idea to feature-based data
augmentation. The augmented and synthesized fake defect
feature is generated by adding an augmented Gaussian Noise
N (µ, σ̃ 2) on non-defect features f p+, where σ̃ represents
a random standard deviation value in range [σlow, σhigh] as
follows,

f̃ p− = f p+ +N (µ, σ̃ 2), (4)

where f̃ p− is the augmented synthesized fake defect features
corresponding to real non-defect features f p+. With the help
of σ̃ , this study diverse and varied synthesized fake defect
features are generated.

D. DISCRIMINATOR WITH HARDNESS-AWARE
CROSS-ENTROPY LOSS (HCELoss)
RADL trains a discriminator to recognize the non-defect
and defect images using the real non-defect features
and fake defect features. The discriminator enforces the
real non-defect features f p+ −→ 1 and fake defect
features f p− −→ 0.

As mentioned in Sec. I, the cross-entropy loss is stable but
cannot achieve better accuracy than L1 loss. On the contrary,
the L1 loss is able to achieve good accuracy but is unstable
during the whole training procedure. This study employs a
Hardness-aware Cross-entropy Loss (HCELoss) to achieve
good performance in terms of both accuracy and stability.

The research [31] demonstrated that temperature value in
contrastive loss plays a role in controlling the strength of
penalties on the hard samples. The hardness-aware property is
also observed in softmax-based loss functions. Therefore, our
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idea is to add the hardness-aware property to the commonly
used softmax-based binary cross-entropy loss by adding the
temperature value τ .
Hence, the loss of non-defect features f p+ is computed as,

loss+ = −[y+ ∗ log(f p+/τ ) + (1 − y+) ∗ log(1 − f p+/τ )],

(5)

The loss of defect features f p− is computed as,

loss− = −[y− ∗ log(f p−/τ ) + (1 − y−) ∗ log(1 − f p−/τ )],

(6)

where y+ = 1 denotes the labels for real non-defect sample,
and y− = 0 denotes the labels of the synthesized fake defect
features.

The total loss for non-defect images and defect features is
computed as,

HCEloss = loss+ + loss− (7)

III. EXPERIMENTAL SETUP
A. DATASET
To perform comprehensive studies and evaluate the proposed
RADL in real-world manufacturing industrial applications,
we employ three datasets in total, including one public dataset
MVTec-AD and two real-world manufacturing industrial
datasets.

1) ONE PUBLIC DATASET MVTec-AD
The MVTec-AD dataset [5] contains image classes that are
typically found in an industrial setting. It contains 5 classes
belonging to textures (Carpet, Grid, Leather, Tile, and Wood)
and 10 classes belonging to objects (Bottle, Cable, Capsule,
Hazelnut, Metal, Nut, Pill, Screw, Toothbrush, Transistor,
and Zipper). Example images are illustrated in Fig. 1(a).
MVTec-AD contains 3629 training images and 467 normal
images and 1258 abnormal images in the test set. Following
previous works, the training set only consists of an amount of
nominal (no defect) images. Nominal images are treated as
positive data. The trained model is tested on both normal and
abnormal images of the same class, where abnormal images
are treated as negative data.

2) TWO REAL-WORLD MANUFACTURING INDUSTRIAL
DATASETS
a: THE HEAT STAKING POINTS (HSP) DATASET
The HSP [4] contains door trim images. The training set
contains 200 nominal heat staking point images. The test set
contains 50 nominal and 50 anomaly images. Examples of
non-defect (nominal) and defect (anomaly) heat staking point
images are shown in Fig.1(4). In HSP, target objects are not
always located at the center of images.

b: THE REAL-WORLD SMALL-PART (SP) DATASET
The training set contains 200 small-part images. The test set
contains 50 nominal and 50 anomaly images. The original

resolution of each image is different, ranging from 658 ×

457 to 673 × 468. Examples of non-defect (nominal) and
defect (anomaly) small-part images are shown in Fig. 1(5).
The SP dataset is used to evaluate the RADL performance in
tiny defect detection and localization.

B. EVALUATION METRICS
1) I-AUROC(%)
Image-level anomaly detection performance, which is com-
puted via the standard Area Under the Receiver Operator
Curve (AUROC) to measure the classification performance
of good samples and anomalies.

2) P-AUROC(%)
pixel-wise anomaly segmentation performance, which is
computed via AUROC to measure the segmentation and
localization performance of good samples and anomalies.

3) PRO(%)
Pre-Region Overlap (PRO) is a region-level metric, which
is more capable than I-AUROC and P-AUROC in assessing
the ability of fine-grained anomaly detection. The PRO score
takes into account the overlap and recovery of connected
anomaly components to better account for varying anomaly
sizes.

C. IMPLEMENTATION DETAILS
The ImageNet pre-trained Wide-Resnet50 [15] is used as the
backbone, and the second and third intermediate layers of the
backbone are used for feature fusion. We follow a similar
experiment setting with baseline method [13]. All images
are resized to 256 × 256. The dimension of the last layer
of feature fusion is set to 1536. The discriminator consists
of a linear layer, a batch normalization layer, a Leaky-Relu
activation layer, and a linear layer. The Adam optimizer is
used with a learning rate of 0.0002 and weight decay of
0.00001. Training epochs are set to 40 for each dataset and
batch size is 8. The number of iterations varies for each
dataset depending on the number of images in the dataset and
the training batch size. For MVTec [5], HSP, and SP datasets,
the number of training iterations is 1800, 1000, and 1000,
respectively.

The experiment is performed on an Nvidia GeForce GTX
3080Ti GPU and a 12th Gen Intel® CoreTM i7-12700K ×

20 CPU. The training time for 15 classes on AD MVTec is
about 15 hours. The training time for HSP and SP is about
30 minutes The inference time for one image is about 77 FPS.

IV. EXPERIMENTAL RESULT
A. ABLATION STUDIES
We report accuracy and reliability analysis for the HCELoss
and the FDFA to verify these two methods are reasonable
and more suitable solutions in the real-world manufacturing
industry. Additionally, the reliability analysis of methods is
measured by training loss in Fig. 4.
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TABLE 1. The comparison experimental results of three settings. Setting A: Baseline method [13], which contains backbone network, the fake defect
feature generation, and the discriminator with L1 loss. Setting B (this paper): Baseline + HCELoss. Setting C (this paper): Baseline + HCELoss + FDFA. The
best-performing method is in bold.

FIGURE 4. The change of three evaluation metrics I-AUROC, P-AUROC, PRO, and loss in each epoch of three settings. Each column shows one
evaluation metric, and each row shows Setting A, Setting B, and Setting C. Lines with different color denotes each class of the MVTec AD dataset.
Setting A: Baseline method [13], which contains backbone network, the fake defect feature generation, and the discriminator with L1 loss.
Setting B (this paper): Baseline + HCELoss. Setting C (this paper): Baseline + HCELoss + FDFA. Among them, RADL holds the most reliable result
because it can ensure network convergence to the flattest and most stable state.

TABLE 2. Performance on MVTec AD dataset with varied τ in Eq. (3).

1) THE EFFECTIVENESS OF FDFA AND HCELoss
The effectiveness of FDFA andHCELoss in terms of anomaly
detection and localization accuracy can be demonstrated
in Table 1. Setting A indicates the baseline method [13],
which contains the backbone network, the fake defect feature
generation, and the discriminator with L1 loss. Setting B
indicates the baseline method using our proposed HCELoss
in discriminator. Setting C indicates the baseline method

using our proposed HCELoss and FDFA. The highest scores
are bold.

Specifically, with the help of FDFA and HCELoss, the
I-AUROC, P-AUROC, and PRO of the baseline method in
MVTec AD [5] are improved from 99.50% to 99.53%, from
97.75% to 97.5%, and from 90.97% to 91.60%.

The effectiveness of FDFA and HCELoss in terms of
system reliability can be demonstrated in Fig. 4. Lines with
different color denotes each class of the MVTec AD dataset.
The network was trained for 40 epochs for each defect class.
It is observed that the baseline method exhibits significant
and unpredictable fluctuations in the three evaluation metrics
and loss. More specifically, the performances suddenly
dramatically decreased to 54.0% in I-AUROC, to 34.0% in
P-AUROC, and to 25.0% in PRO in epoch 22.
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TABLE 3. Comparison of RADL with state-of-the-arts works on MVTec AD. Image-wise AUROC (I-AUROC)(%), pixel-wise AUROC(%), and PRO(%) are
shown for every defect class. The best-performing method is in bold.

FIGURE 5. Visualization of anomaly detection and localization results in Public MVTec AD Dataset.

FIGURE 6. Visualizationn result in real-world manufacturing industrial datasets. Defect regions are
circled by red ellipses (curves).

Such fluctuations in accuracy and loss highlight the
unreliability of the baseline method in real-world manufac-
turing industrial applications, as workers may stop training
the network at a bad performance point. Additionally,
labeled ground-truth annotations may not be available
to compute model accuracy n real-world manufacturing
industrial environments. Hence, workers cannot rely on the
evaluation metrics or loss values to assess the network’s
performance and choose the model at its optimal point.

In such scenarios, the importance of having a stable
model becomes paramount for real-world manufacturing
industries.

In contrast to the ‘‘Baseline’’ method, our proposed
approach ‘‘Baseline + HCELoss + FDFA’’ achieves con-
vergence in all defect classes for the three evaluation
metrics and loss within 10 epochs. Moreover, our method
maintains a stable state after convergence, ensuring consistent
performance.
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TABLE 4. Comparison in model size and inference time.

The experimental results provide evidence of the effective-
ness of the proposed HCELoss and FDFA in constructing a
reliable anomaly detection and localization network suitable
for real-world applications.

2) ANALYSIS OF HARDNESS-AWARE HYPER-PARAMETER τ

In Table 2, we investigate the effect of the temperature fact
τ in Eq. (5) and Eq. (6). When τ = 1, HCELoss is a normal
cross-entropy loss. The best results are produced when τ =

0.5. The performance remains consistent when τ ≤ 0.5,
indicating that τ is a quite robust hyper-parameter.

B. COMPARISON ON PUBLIC DATASET MVTec AD
1) ACCURACY
This study conducts a comparative analysis between the
proposed RADL and state-of-the-art methods on the public
dataset MVTec AD [5]. Experiment results of SimpleNet
[13] is re-implemented in our local environment using
their open-source code, with a fixed seed for experiment
consistency. Table 3 summarizes the comparisons. For texture
defect (Avg. Texture), the proposed RADL achieves the
best average performance with 99.83% in I-AUROC(%),
96.83% in P-AUROC(%), and 90.09% in PRO(%). For object
defect (Avg. Object), the proposed RADL achieves the best
average performance with 99.37% in I-AUROC(%), 98.36%
in P-AUROC(%), and 92.36% in PRO(%). For all 15 classes
of defects in MVTec AD, the proposed RADL achieves the
best average performance with 99.53% in I-AUROC(%),
97.85% in P-AUROC(%), and 91.60% in PRO(%).

2) INFERENCE TIME
Training inference time is also an important factor for
manufactory industrial model deployment. The inference
time of our model and state-of-the-art methods on inference
time is reported in Table 4. All the methods are evaluated
on our local PC with the same hardware configuration as
mentioned in Sec III-C. Our method has the same inference
time as SimpleNet [13] because our proposed modules are
only used in training and are removed at inference. It is
noteworthy that our proposed HCELoss and FDFA improve
network accuracy without adding any inference time. The
RADL can work in real-time manufacturing applications.

3) VISUALIZATION
Visualization results of the proposed RADL on MVTec AD
are shown in Fig. 5. Each column represents a different
defect class. The second row shows binary ground truth maps
(labels), where black indicates non-defect regions and white
indicates anomaly regions. The third row shows predicted

defect (anomaly) maps. The anomaly region of the low
anomaly score is colored black, and the high anomaly score
is colored orange. The results demonstrate that RADL can
locate defect regions accurately on various textures and
objects.

C. EXPERIMENTS ON REAL-WORLD DATASETS
To evaluate the model performance in real-world applica-
tions, we perform quantitative experiments on two real-world
manufacturing industrial datasets, which are collected from
the production line of factories.

Visualization results of the proposed RADL on real-world
Manufacturing Industry Datasets, i.e., HSP and SP, are shown
in Fig. 6. Sample images and predicted defect (anomaly)
maps are shown in the first and second rows, respectively.
The defect region is circled by red ellipses (curves). The
RADL accurately detects defect locations even when the
input image sizes vary. RADL can effectively identify tiny
defective regions in SP.

V. CONCLUSION
This study identifies the existing gap between academic
research and real-world manufacturing industry applications.
In response to this gap, an accurate and reliable anomaly
detection and localization system called RADL is introduced.
RADL is specifically designed to address the challenges of
real-world industrial product quality inspection. Compared
with previous research, the performance achieved on the
MVTec AD dataset and real-world manufacturing industrial
datasets validate the effectiveness of RADL. The proposed
inspection system holds the potential to enhance the effi-
ciency of real-world manufacturing industry processes.

REFERENCES
[1] J. Liu, G. Xie, J. Wang, S. Li, C. Wang, F. Zheng, and Y. Jin, ‘‘Deep

industrial image anomaly detection: A survey,’’ 2023, arXiv:2301.11514.
[2] W. Huang and P. Wei, ‘‘A PCB dataset for defects detection and

classification,’’ 2019, arXiv:1901.08204.
[3] S. Liao, C. Huang, H. Zhang, J. Gong, M. Li, and Z. Wang, ‘‘Object

detection of welding defects in SMT electronics production based on deep
learning,’’ in Proc. 23rd Int. Conf. Electron. Packag. Technol. (ICEPT),
Aug. 2022, pp. 1–5.

[4] H. Jung and J. Rhee, ‘‘Application of YOLO and ResNet in heat staking
process inspection,’’ Sustainability, vol. 14, no. 23, p. 15892, Nov. 2022.

[5] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, ‘‘MVTec
AD—A comprehensive real-world dataset for unsupervised anomaly
detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 9584–9592.

[6] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, ‘‘A survey of deep
learning techniques for autonomous driving,’’ J. Field Robot., vol. 37, no. 3,
pp. 362–386, Apr. 2020.

[7] Q. Tang, G. Cao, and K.-H. Jo, ‘‘Integrated feature pyramid network
with feature aggregation for traffic sign detection,’’ IEEE Access, vol. 9,
pp. 117784–117794, 2021.

[8] F. Shamshad, S. Khan, S. W. Zamir, M. H. Khan, M. Hayat, F. S. Khan,
and H. Fu, ‘‘Transformers in medical imaging: A survey,’’ 2022,
arXiv:2201.09873.

[9] X. Jiang, G. Xie, J. Wang, Y. Liu, C. Wang, F. Zheng, and Y. Jin, ‘‘A survey
of visual sensory anomaly detection,’’ 2022, arXiv:2202.07006.

[10] Y. Chen, Y. Ding, F. Zhao, E. Zhang, Z. Wu, and L. Shao, ‘‘Surface defect
detection methods for industrial products: A review,’’ Appl. Sci., vol. 11,
no. 16, p. 7657, Aug. 2021.

VOLUME 11, 2023 114621



Q. Tang, H. Jung: RADL System: Implications on Manufacturing Industry

[11] T. Defard, A. Setkov, A. Loesch, and R. Audigier, ‘‘PaDiM: A patch
distribution modeling framework for anomaly detection and localization,’’
in ICPR Workshops, 2020, pp. 475–489.

[12] K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, and P. Gehler,
‘‘Towards total recall in industrial anomaly detection,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 14298–14308.

[13] Z. Liu, Y. Zhou, Y. Xu, and Z. Wang, ‘‘SimpleNet: A simple network
for image anomaly detection and localization,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 20402–20411.
[Online]. Available: https://api.semanticscholar.org/CorpusID:257766673

[14] G. Xie, J. Wang, J. Liu, F. Zheng, and Y. Jin, ‘‘Pushing the limits
of fewshot anomaly detection in industry vision: Graphcore,’’ 2023,
arXiv:2301.12082.

[15] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[16] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for
convolutional neural networks,’’ 2019, arXiv:1905.11946.

[17] X. Feng, X. Gao, and L. Luo, ‘‘A ResNet50-based method for classifying
surface defects in hot-rolled strip steel,’’ Mathematics, vol. 9, no. 19,
p. 2359, Sep. 2021.

[18] Q.Wan, L. Gao, and X. Li, ‘‘Logit inducing with abnormality capturing for
semi-supervised image anomaly detection,’’ IEEE Trans. Instrum. Meas.,
vol. 71, pp. 1–12, 2022.

[19] J.M. Johnson and T.M. Khoshgoftaar, ‘‘Survey on deep learningwith class
imbalance,’’ J. Big Data, vol. 6, no. 1, pp. 1–54, Dec. 2019.

[20] P. Perera, P. Oza, and V. M. Patel, ‘‘One-class classification: A survey,’’
2021, arXiv:2101.03064.

[21] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh,
and A. Van Den Hengel, ‘‘Memorizing normality to detect anomaly:
Memory-augmented deep autoencoder for unsupervised anomaly
detection,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1705–1714. [Online]. Available: https://api.semanticscholar.org/
CorpusID:102353587

[22] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, ‘‘GANomaly:
Semi-supervised anomaly detection via adversarial training,’’ 2018,
arXiv:1805.06725.

[23] P. Perera, R. Nallapati, and B. Xiang, ‘‘OCGAN: One-class nov-
elty detection using GANs with constrained latent representations,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2893–2901. [Online]. Available: https://api.semantic
scholar.org/CorpusID:84186723

[24] V. Zavrtanik, M. Kristan, and D. Skoaj, ‘‘Reconstruction by inpainting for
visual anomaly detection,’’ Pattern Recognit., vol. 112, Jan. 2020,
Art. no. 107706. [Online]. Available: https://api.semanticscholar.
org/CorpusID:225114154

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[26] C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, ‘‘CutPaste: Self-supervised
learning for anomaly detection and localization,’’ inProc. IEEE/CVFConf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 9659–9669.

[27] S. Kong and D. Ramanan, ‘‘OpenGAN: Open-set recognition via open data
generation,’’ inProc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 793–802.

[28] C. Shorten and T.M. Khoshgoftaar, ‘‘A survey on image data augmentation
for deep learning,’’ J. Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019.

[29] T. DeVries and G. W. Taylor, ‘‘Dataset augmentation in feature space,’’
2017, arXiv:1702.05538.

[30] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz,
and Y. Bengio, ‘‘Manifold mixup: Better representations by interpolating
hidden states,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 1–6. [Online].
Available: https://api.semanticscholar.org/CorpusID:59604501

[31] F. Wang and H. Liu, ‘‘Understanding the behaviour of contrastive loss,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 2495–2504.

QING TANG (Member, IEEE) received the
bachelor’s degree in vehicle engineering from
the School of Automotive Engineering, Shanghai
University of Engineering Science, Shanghai,
in 2015, and the Ph.D. degree in electrical and
computer engineering from the Graduate School
of Electrical Engineering, University of Ulsan,
Ulsan, South Korea, in 2022.

She is currently a Senior Researcher with the
Data Analysis Team, INTERX, South Korea. Her

current research interests include computer vision, machine learning,
intelligent manufacturing, surveillance systems, and transportation systems.

HAIL JUNG (Member, IEEE) is currently an
Assistant Professor with the Seoul National Uni-
versity of Science and Technology. He is also
a founding member and the CTO of INTERX,
a manufacturing AI solution provider. He has
served ad-hoc referee for multiple academic jour-
nals, such as the Journal of Business Research.

114622 VOLUME 11, 2023


