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ABSTRACT Steganography without embedding (SWE) methods, which avoid modifying container images
and are thus theoretically immune to steganalysis tools, have drawn great attention. However, current
SWE techniques, including synthesis-based and mapping-based methods, still present challenges that need
to be solved. Specifically, the former ones can hardly recover secret messages completely, whereas the
latter ones face the problems of low payload capacity and a large number of required container images.
In this paper, a hybrid synthesis-mapping framework is designed for SWE to address the aforementioned
issues. Specifically, an image synthesis module is designed using a disentanglement auto-encoder to hide
the principal component of the secret message into a synthesis image. Another image mapping module is
designed to hide the compressed extraction error from the synthesis module by mapping additional container
images based on block statics hash matching. Since the length of the compressed error is significantly
shorter than the original message, only a few images are required. To the best of our knowledge, this is the
first time to fuse synthesis-based and mapping-based modules to harness their complementary strengths.
Extensive experimental results have demonstrated our method significantly outperforms state-of-the-art
SWE methods.

INDEX TERMS Steganography without embedding, image synthesis, image feature mapping, disentangle-
ment auto-encoder, block statistical hash.

I. INTRODUCTION
Image steganography aims to hide secret messages into
container image without arousing suspicion for the conceal
communication. It is widely used in military intelligence,
confidential data transfer, digital watermarking, and various
other fields where the security of transmitted information is
important. Traditional Image steganography methods embed
the secret information by modifying the pixels of the
texture-rich regions of a carrier image, which are selected by
either handcraft-designed strategies [1], [2], [3], [4], [5] or
deep learning (DL)-based mechanisms [6], [7], [8], [9], [10],
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to enhance the undetectability. However, it is difficult for
them to fundamentally avoid the detection risks of the
existence of secret message by using advanced steganalysis
tools since they still cause distortions on carrier images.

Recently, an emerging technique namely steganography
without embedding (SWE) is proposed by selecting or gen-
erating container images for conceal communication. This
technique avoids directly modifying the container image,
and thus is theoretically immune to typical steganalysis
tools [11].

Current SWE methods can be classified into two main
categories: synthesis-based [12], [13], [14] and mapping-
based techniques [15], [16], [17]. The former utilizes deep
synthesis methods, such as generative adversarial networks
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(GANs) [18], [19], [20], to synthesize images and hide
secret message in their latent space. While the latter selects
suitable images from an existing image set as carriers
by matching the secret message and image hashes. The
key weakness of the synthesis-based technique is that the
secret message can hardly be recovered completely at the
receiver side even without attack. While mapping-based
techniques pose the challenge of a low payload capacity,
which is limited by the size of the image set for container
selection. In addition, the required number of candidate
images increases exponentially with a increase in the length
of secret messages. In this manner, the number of images
required for conceal communication for even a short secret
message is quite large, which will also increase the suspicion
risks owing to the unusual behavior of sending extensive
images.

To address the above mentioned issues of current SWE
methods, a novel two stage framework including an image
synthesis module and an image mapping module, namely
synthesis-mapping hybrid SWE (SMH-SWE), is proposed.
In the synthesis module, a auto-encoder(AE) is trained to
disentangle the image structural and texture features. And
then the principal part of the secret message is hidden into
the synthesis image by swapping the structural features. In the
mapping module, the extraction error of the synthesis module
is compressed losslessly as secret residuals. Container images
are then selected by matching their block statistical hashes
to the compressed secret residuals. Since the lengths of the
compressed secret residuals are significantly shorter than
those of the original message, only a few images are required.

The main contributions of our proposed SMH-SWE are
highlight as below:

• We propose a two stage SWE framework by fusing
an image synthesis module and an image mapping
module. Extensive experimental evaluations demon-
strate superior performance compared to state-of-the-
art (SoTA) methods. To the best of our knowledge, this
is the first time to fuse synthesis-based and mapping-
based methods to fully utilize their complementary
advantages.

• We design an image synthesis module based on a
swapping auto-encoder and hide the principal part of
the secret message into a synthesis image to enlarge the
payload capacity.

• We design an image mapping module based on block
statistical hash matching to hide the secret residuals with
a few selected container images to ensure the complete
recovery of the secret message.

The remainder of this paper is organized as follows.
Related work is discussed in Section II. In Section III,
we explain our proposed SMH-SWE method in detail.
Following it, Section IV presents the experimental results to
demonstrate that the proposed SMH-SWE method outper-
forms the SoTA benchmarks. Finally, conclusions are drawn
and future work is suggested in Section IV-E.

II. RELATED WORK
In the field of image steganography, methods can be classified
based on their approach of data hiding into the carrier image.
Traditional image steganography methods modify the carrier
image by embedding data, whereas steganography without
embedding methods explore alternative ways to achieve
covert communication without directly modifying the carrier
image.

A. TRADITIONAL EMBEDDING BASED IMAGE
STEGANOGRAPHY METHODS
Traditional image steganography methods predominantly
rely on the modification of pixels residing in texture-rich
regions of the carrier images. These methods employ either
handcrafted strategies [1], [2], [4], [5] or deep learning (DL)-
based mechanisms [6], [7], [8], [9], [10] to enhance the
undetectability of secret message embedding. Most of these
methods are based on the spatial domain [1], [2], [3] or
frequency domain [4], [5], and secret messages are embedded
into the image.

1) HANDCRAFTED BASED METHODS
Van Schyndel et al. [21] design a method by replacing the
least significant bits (LSBs) of pixel values in images with
secret message bits. Wu and Tsai [2] divide gray-valued
cover images into non-overlapping blocks and utilizing
range-based difference values. Their embedding process
achieves imperceptibility through sub-stream substitution
for enhanced steganography. Luo et al. [3] expand the LSB
matching revisited image steganography and propose an edge
adaptive scheme to enhance the security. To achieve better
resistance against steganalysis, Pevny et al. [22] minimize
the weighted difference of feature vectors by designing
high-dimensional models for data hiding, named HUGO.
Atawneh et al. [5] propose a diamond encoding (DE)-based
digital image wavelet-domain embedding scheme, which
efficiently embeds a 5-bit numerical sequence into the carrier
imagewhile minimizing image distortion. Holub and Fridrich
[23] select the texture-rich and noisy regions of images to
embed messages, named S-UNIWARD, and then extend this
strategy to arbitrary domains [24], named UNIWARD. Li et
al. [25] use a high-pass filter with two low-pass filters to
focus the embedding modification on the texture-rich area.
Zhou et al. [26] design a distortion function to concentrate
the embedding process towards the locations with signif-
icant distortion differences among different steganography
methods, named controversial pixels prior. Qin et al. [27]
models the image residuals obtained through high-pass
filtering kernel processing as independent variables subject
to multivariate Gaussian distribution, to further enhance the
imperceptibility.

2) DEEP LEARNING BASED METHODS
Recently, deep learning-based image information hid-
ing methods have been proposed to achieve acceptable
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imperceptibility and minimal secret message extraction
errors. Baluja [6] employ a full-size color image placed
on another image of the same size. Tang et al. [7] utilize
Generative Adversarial Networks (GANs) to identify optimal
embedding regions at the pixel level, optimizing embedding
quality and visual fidelity. Tang et al. [8] employ reinforce-
ment learning and pixel-level operations to optimize embed-
ding costs, enhancing undetectability in steganographic
schemes. Li et al. [9] propose a novel image steganography
scheme based on style transfer and quaternion exponential
moments, improving resistance against steganalysis attacks.
Lu et al. [28] deploy invertible neural networks (INN)
to improve the steganography method in terms of the
recovery quality with a large-capacity. To achieve higher
steganography robustness, Zhu et al. [10] and Wengrowski
and Dana [29] train DL-based models through impercep-
tible perturbations or using specialised datasets to encode
useful information, to ensure accurate message recovery.
Xu et al. [30] design a normalising flow to model the
distribution for the recovery of secret images from attacked
images.

B. STEGANOGRAPHY WITHOUT EMBEDDING METHODS
In recent years, a novel technique known as steganography
without embedding (SWE) has garnered significant attention.
This technique aims to avoid direct modifications to the
container image, thus offering theoretical immunity against
conventional steganalysis methods [11]. Instead of altering
the carrier image itself, SWE methods involve the careful
selection or generation of container images capable of
inherently accommodating concealed messages. The current
landscape of SWE methods can be broadly classified into
two categories: synthesis-based [12], [13], [31] and mapping-
based techniques [15], [16], [17].

1) SYNTHESIS-BASED METHODS
Synthesis-based methods leverage sophisticated deep syn-
thesis techniques, such as generative adversarial networks
(GANs) [18], [19], [20], to generate images with latent
spaces that serve as carriers for the secret message. Hu et.
al and Wang et al. [18], [32] train GANs together with
an extractor network, to synthesise container images for
concealed message transmission. To improve the quality of
synthesis, Yu et. al [33] extend this work by introducing
self-attention blocks while Li et al. [34] use Wasserstein loss
with gradient penalty. Liu et al. [12] propose a carrier-free
information hiding method using ACGAN to achieve good
performance in terms of embedding capacity, distortion
resilience, security, and reliability. To enhance the recovery
quality, Peng et al. [35] recover the secret message by using
an iterative vector updating strategy. You et al. [36] propose
a method which trains the message hiding and recovery
modules with JPEG compression to defend possible attacks
in transmission channels.

Thesemethodsmanipulate the parameters of the generative
model to ensure that the desired hidden information is
encoded within the generated images. However, a notable
limitation of synthesis-based methods lies in the challenge
of reliably recovering the complete secret message at the
receiver’s end, even in the absence of adversarial attacks.

2) MAPPING-BASED METHODS
Zhou et al. [11] compare the mean values of image
blocks and binarise the compared results to generate an
image hash for matching the secret message. To enhance
the steganography robustness, Zheng et al. [37] employ the
orientation of scale-invariant feature transform (SIFT) feature
points as a stable image hash. To ensure that the candidate
mapping images belong to the same topic, Zhang et al. [38]
design a steganography method based on the latent Dirichlet
allocation (LDA) classification mechanism and discrete
cosine transform (DCT) features. To ensure the similarity
of candidate images, Liu et al. [15] design a DenseNet-based
retrieval mechanism and extract an image hash using a
discrete wavelet transform (DWT). Liu et al. [39] propose an
algorithm based on the DenseNet feature mapping method,
utilizing deep learning to extract high-dimensional CNN
features and map them into hash sequences. Luo et al. [16]
introduce a coverless image steganography method based on
multi-object recognition, utilizing Faster RCNN for object
detection and a novel mapping rule for robust sequence
generation,achieving improved robustness against geometric
attacks. Zou et al. [17] present a method that focuses on
the efficient construction of a coverless image dataset by
extracting CNN-based deep hash and utilizing a specific
mapping rule, thereby achieving higher dataset utilization and
robustness.

This selection process relies on matching criteria between
the secret message and the image hashes, facilitating an
efficient mapping between the message and the chosen
carriers. Nevertheless, mapping-based methods encounter
an inherent limitation in terms of the payload capacity.
The number of candidate images required for container
selection grows exponentially with the secret message length.
Consequently, even for relatively short secret messages,
a substantial quantity of images must be employed for
concealment, which may raise suspicion owing to the
conspicuous behavior of transmitting an extensive array of
images.

To summarize, while traditional embedding-based meth-
ods aim to enhance undetectability through modifications
to carrier images, SWE techniques provide an alternative
paradigm that circumvents such alterations. Synthesis-based
methods focus on generating images intrinsically carrying
the hidden messages, whereas mapping-based methods rely
on judiciously selecting carriers from a pre-existing image
set. However, both approaches possess inherent limitations,
such as incomplete message recovery and restricted payload
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FIGURE 1. The framework of the proposed method:(a) secret message hiding phase in the sender (b) secret message extraction phase in the
receiver.

capacity. Addressing these challenges represents an active
research area within the realm of image steganography.

III. METHODS
As shown in Figure 1, our proposed SMH-SWE comprises a
secret message hiding phase in the sender and an extraction
phase in the receiver.

A. SECRET MESSAGE HIDING PHASE
The hiding phase consists of two stages, as depicted in
Figure 1(a). The first stage employs an image synthesis
module to conceal the principal component of the secret
message. The second stage utilizes an imagemappingmodule
to hide the residual component of the secret message.

1) IMAGE SYNTHESIS MODULE
In the image synthesis module, an auto-encoder (AE)
architecture is employed to hide the message by swapping the
structural features within the synthesized image. This opera-
tion ensures that no image modification is introduced, thus

fundamentally avoiding the risk of detection by steganalysis
tools.

a: NETWORK ARCHITECTURES
Figure 2 illustrates our designed steganography AE, which
includes encoder E , generator G, discriminative network
D, co-occurrence discriminative network DCO, distribution
discriminator DDIST , structure encoding generation network
GSTRU and extraction network Ex . The encoder E and
generatorG are employed for texture swapping in the images.
The discriminative network D and co-occurrence discrimi-
native network DCO supervise the image generation quality
and the disentanglement of structure and texture encoding
in the encoding and generation networks. The distribution
discriminator DDIST is utilized to train the texture encoding
component of encoder E , ensuring that the generated texture
encoding adheres to a specific explicit distribution. The
structure encoding generation network GSTRU establishes a
mapping from the secret tensor to structure encoding. Finally,
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FIGURE 2. The image synthesis module of our proposed method.

the extraction network Ex extracts the secret tensor from the
recovered structure feature.

The encoder E encodes input image I and produces both
structure features S1 and texture features T1. Our proposed
encoder applies 1× 1 convolutions to expand the dimensions
of the input image and then employs down-sampling
residual convolution blocks four times. Subsequently, the
encoder branches into two branches based on the different
features: the structure feature branch focuses on encoding
local features such as key-points and edges, requiring the
neural network to capture the spatial relationships between
neighboring pixels. Therefore, a fully convolutional structure
is used to better encode the neighborhood information at
each position in the feature map. In contrast, the texture
feature branch encodes the global texture features of the input
image and needs to be position-agnostic. To achieve this,
a convolutional network with zero padding, combined with
average pooling layers and fully connected layers, effectively
encodes global texture features while masking positional
information. For a 256 × 256 input image, an 8 × 162

feature map is produced as the structure feature, while a
one-dimensional vector of length 2048 is generated as the
texture feature. The network architecture of the encoder is
illustrated in Figure 3.

The generator G has a similar structure to Style-
GAN2 [40], which consists of multiple Style Residual
Blocks (SRBs) and takes both the structure feature and

FIGURE 3. The network architecture of encoder.

texture feature as inputs to generate images. The generator
utilizes the structure feature as the initial feature map
and performs convolution and up-sampling using four style
residual blocks and four up-sampling style residual blocks.
During the convolution process, the generator feeds the
texture feature into the modulation and demodulation layers
of each style residual block to modulate the convolutional
kernel weights, thereby controlling the global texture features
of the generated images.

The discriminator network D and co-occurrence
discriminator network DCO together ensure the image
generation quality and decoupling of the structure and
texture encoding and decoding for the encoder and generator
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FIGURE 4. The structure of the co-occurrence discriminator network.

networks. Specifically, the discriminator network has a
similar structure to that in [40], which distinguishes between
generated images and real images to assist the generator
network in generating images that closely resemble the real
image distribution. while the structure of the co-occurrence
discriminator network are illustrated in Figure 4. This
network takes multiple randomly cropped reference image
blocks from real images patch (I ) and one randomly cropped
image block from the generated images patch

(
Î2

)
as the

input. As shown in Figure 4, the network first uses the same
structure feature network to encode each image block and
obtain their respective structure feature vectors. The mean
value of the encoded reference image blocks is then taken
as the reference encoding vector. The block of the generated
image is then encoded as a target encoding vector. Finally,
both the reference encoding vector and the target encoding
vector are concatenated together and distinguished using a
classification network.

The distribution discriminator network DDIST is uti-
lized to train the texture feature extraction part of the
encoder network, which ensures that the generated texture
features conform to a specific explicit distribution. In testing
and practical applications, we can directly sample texture
features from a specific distribution and combine them with
the structure features to generate images. This distribution
discriminator network is implemented based on a multi-layer
perceptron (MLP) classification model.

The structure encoding generator network GSTRU
establishes a mapping from the secret tensor to the structure
feature, enabling the generation of structure feature. Simul-
taneously, it facilitates coverless image steganography by
embedding secret information into the structure feature of an
image. The architecture of the structure encoding generator
network is illustrated in Figure 5.
The extraction network Ex is finally employed to extract

the secret tensor. As the extraction network can be regarded as
the inverse process of the structure feature generator network,
its architecture is designed symmetrically. The specific
network structure of the extraction network is illustrated in
Figure 5.

FIGURE 5. The network architecture of structure feature generator
network and extraction network.

b: LOSS FUNCTION
In our method, the total loss Ltotal to train the encoder
E , generator G, structure encoding generator GSTRU , and
extractor Ex is formulated as shown in Equation 1.

Ltotal = LE + LG + αEx × LEx (1)

where αEx enables a balance between the synthesis quality
and extraction accuracy. In our study, αEx is 15 to ensure the
successful hiding of the principal component of the secret
message.

The encoding loss LE is obtained by combining the encoder
distance loss LE,dist and encoder structure loss LE,stru as
defined in Equation 2. Here, DDIST is utilized to ensure that
T1 conforms to a uniform distribution U (−1, 1). LE,stru is

defined as LE,stru =

∣∣∣Ŝ2 − Ŝ1
∣∣∣1. Ŝi indicates the structure

feature of the reconstructed image.

LE = LE,dist + LE,stru (2)

The generation loss LG is formed by combining a reconstruc-
tion loss LG,rec, a texture loss LG,texture and an adversarial
loss LG,real because they work collaboratively for image
synthesis. Specifically, LG is defined in Equation 3, and the
higher weight for LG,real guarantees the generation quality.
LG,rec is calculated using L1 loss between the original image
I and the reconstructed image Î1. LG,textureis calculated by
generating Î2 with the same texture feature as image I
but different structure S2, which is then passed along with
randomly cropped patches of I and Î2 to the co-occurrence
discriminator Dco, from [41]. LG,real is introduced to make
all synthesized images Î1, Î2 and Î3 indiscriminative from real
images, as shown in Equation 4.

LG = LG,rec + LG,texture + 2 × LG,real (3)

LG,real = D
(
Î1

)
+ D

(
Î2

)
+ D

(
Î3

)
(4)

The tensor extracting loss, LEx is calculated by L1 loss as
shown in Equation 5.

LEx =

∣∣∣Ẑ − Z
∣∣∣1 (5)

where Ẑ represents the secret tensor extracted from Ex , Z
represents the secret tensor.
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c: HIDING PROCESS OF PRINCIPAL COMPONENT
Firstly, we map secret messageM to secret tensor ZM . Then,
GSTRU is used to translate ZM into structure feature SM .
Afterward, the texture feature TM is generated with a uniform
sampling from U (−1, 1). Finally, we input the secret SM and
TM into the pre-trained image generation network described
above to generate an image containing hidden information.
The following is a description of the information hiding with
the image generation network process:

Step 1: Divide secret informationM into L segments, each
with a length of σ bits referring to Equation 6. In our study,
σ is set to 512 according to the designed structure encoding
generator network.

L =
len
σ

(6)

where len is the length of secret informationM .
Step 2: The decimal value m corresponding to each

segment is mapped to a floating-point value z based on the
following mapping rule as shown in Equation 7.

z = rand
(

m
2σ−1 − 1 + δ,

m+ 1
2σ−1 − 1 − δ

)
(7)

where, σ represents the length of the secret information
after segmentation, m represents the decimal number corre-
sponding to the binary secret information, δ represents the
interval between subintervals and is set to 0.001 in our study.
The function rand(x, y) is used to calculate a random value
of the interval [x, y], and z represents the floating-point
value corresponding to the decimal number m after mapping.
During the mapping process, a larger value of σ and leads
to a greater hiding capacity of the model but a lower error
tolerance, while a smaller value of σ leads to the opposite
effect.

Step 3: Combine the floating-point values z that correspond
to each segment of the secret information to form the secret
tensor ZM and generate a texture feature TM by sampling from
a uniform distribution.

Step 4: Obtain the structure feature SM from secret tensor
ZM using the trained structure generator GSTRU .
Step 5: Use the image generator G, trained in Sec-

tion III-A1a, with the structure feature SM and texture
feature TM to generate an image IM that contains secret
informationM .
Step 6: Calculate the residual message RM by applying

an Exclusive OR (XOR) function to the original secret
information and its principal component PM . This principal
component is extracted from the synthesised image IM
using encoder E and extractor Ex together. Because our
image synthesis module can successfully hide the principal
component, most of the bit values of RM are ‘0’.

2) IMAGE MAPPING MODULE
A mapping mechanism is proposed to conceal the inac-
curately restored secret information (residual message) of

FIGURE 6. Divided blocks of an image with a Zig-Zag order.

our image synthesis module. The module consists of two
main steps: residual processing and feature mapping based
concealment.

a: RESIDUAL PROCESSING
In residual processing, the RM is compressed using lossless
compression, resulting in compressed residual secret infor-
mation RCM . Specifically, our lossless compression is first
performed by the position coding of bit values ‘1’ in the RM .
As a result, the information has a length of k × num_bit ,
in which k is the number of bit values ‘1’ and the num_bit
is defined as shown in Equation 8.

num_bit = log2σ (8)

where σ denotes the length of a segment of hidden message
M . In this study, σ is set to 512. This information is then
further compressed by Asymmetric Numeral Systems [42]
to generate the RCM . Finally, the RCM is divided into
non-overlapping compressed residual segments for feature
mapping-based concealment. In our study, the length of the
divided residual segments is 16 bits. Since the length of RCM
is significantly shorter than that ofM because most of the bit
values of RM are ‘0’, this approach effectively reduces the
number of required container images.

b: FEATURE MAPPING BASED CONCEALMENT
In this section, image features are extracted by calculating
the block statistical hashes. The feature extraction steps are
described in detail below.

Step 1: Normalize all candidate images to a fixed size using
nearest interpolation.

Step 2: Convert all the normalized images from RGB to
the YUV color space, and use their Y components for feature
extraction.
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Step 3: Divide the normalized images into 3 × 3 non-
overlapping blocks and label the 3 × 3 blocks in a Zig-Zag
order as shown in Figure 6.

Step 4: Two statistics namely, the mean value and the
variance, are calculated as follow:

µk =
1
Nk

Nk∑
i=1

Pk (i) (9)

δk =
1

Nk − 1

Nk∑
i=1

(Pk (i) − µk )2 (10)

where Nk is the number of pixels in the kth block, k =

1, 2, . . . , 9, and Pk (i) is the ith pixel in the kth block.
The mean value reflects the energy concentration trend of
each image block, whereas the variance can indicate the
fluctuation of the pixel values of each block.

Step 5: Calculate the differences in the mean value
and variance between adjacent blocks and binarize these
differences by their median values in the equations below.

Dµ(k) = µk+1 − µk (11)

Dδ(k) = δk+1 − δk (12)

Bµ(k) =

{
1, Dµ(k) > Tµ

0, Dµ(k) ≤ Tµ

(13)

Bδ(k) =

{
1, Dδ(k) > Tδ

0, Dδ(k) ≤ Tδ

(14)

where Dµ(k) and Dδ(k) are the differences in the mean value
and variance, Bµ(k) and Bδ(k) are their biniriased values; Tµ

and Tδ are the median values of Dµ(k) and Dδ(k), and k =

1, 2, . . . , 8.
Step 6: Combine the binarized differences of the mean

value and the variance to generate the final feature.
Step 7: Select the suitable images of which the extracted

features are equal to the compressed residual segments as the
matched containers to further to hide the compressed residual
secret information.

Step 8: Send matched images together with the image
synthesised in Section III-A1 for conceal communication of
a secret message.

B. SECRET MESSAGE EXTRACTION PHASE
At the receiver, the principal component of the secret message
PM is extracted from the synthesis image IM while the
residual message RM is recovered from the other matched
images, as illustrated in Figure 1(b).

First, encoder E and extractor Ex are jointly used to extract
ŜM and ẐM sequentially from IM , and the inverse mapping
function is applied to extract the principal component of the
secret message PM according to Equation 15.

m̂ = floor
(
(z+ 1) × 2σ−1

)
(15)

where σ represents the length of the secret information
segment, z denotes the elements of the secret tensor, floor()

represents the floor function, and m̂ represents the restored
secret information segment. The image features are then
extracted from the other matched images following the
same steps 1-5 in feature mapping-based concealment.
Feature extraction is repeated until all the compressed
residual segments are extracted, and the extracted hashes
are connected to form the compressed residual RCM . Sub-
sequently, the residual RCM is decompressed to recover the
residual message RM . Finally, the complete secret message is
recovered losslessly by performing an XOR operation on the
extracted PM and RM .

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
To demonstrate the superiority of our proposed SMH-
SWE, we compare it with six SoTA synthesis-based SWE
methods, namely DCGAN-Steg [32], SAGAN-Steg [33],
SSteGAN [18], WGAN-Steg [34], GDA-Steg [35], and
CIS-Net [36] and six SoTA mapping-based SWE methods,
namely MEAN [11], DCT [38], DWT [15], DenseNet [39],
MOR [16] and CID [17].
Three publicly available datasets, including LSUN [43]

Bedrooms, LSUN [43] Churches, FFHQ [44] andCelebA [45],
are used to train the different image synthesis models. All
images are resized to a resolution of 256×256 pixels. All the
results are obtained on an RTX 3090 GPU.

B. EVALUATION OF THE TWO STAGES IN SMH-SWE
We evaluate the effects of our designed image synthesis and
mapping modules in terms of extraction accuracy and the
number of container images used. The detailed results are
presented in Table 1.
It is apparent that the image synthesis and mapping mod-

ules have complementary performances. Our designed image
synthesis module successfully hide the principal component
of the secret message with an extraction accuracy near to
99.70% on the Bedrooms, Churches FFHQ and CelebA
datasets, which ensures the effectiveness of the lossless
compression of residuals (extraction errors). Moreover, the
extraction accuracy of the compressed residuals by using
our designed image mapping module is perfect (100.00%).
By combining the image synthesis and mapping modules, the
complete recovery (100.00%) of the secret message is further
satisfied, which is usually considered as the most important
aspect for conceal communications. For the number of
required container images, the synthesis module requires just
one generated image. In contrast, the mapping module needs
three additional matched images to guarantee a 100.00%
recovery of the secret message’s residual, which is still
acceptable for real applications.

C. COMPARISON WITH SYNTHESIS-BASED SWE
First, we compare the extraction accuracy results with the
corresponding hidden capacities in Table 2. It is evident
that only our designed SMH-SWE can achieve 100.00%
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FIGURE 7. The container images synthesised using different messages by different synthesis-based SWE methods.

TABLE 1. Evaluation of the effects of designed image synthesis and mapping modules in terms of extraction accuracy.

TABLE 2. Extraction accuracy results for different synthesis-based SWE methods.

extraction accuracy in all three tested datasets with compara-
ble hidden capacity which outperforms the other benchmark
methods. This remarkable performance is attributed to our
unique combination of image synthesis and image mapping
modules, which aims to hide the principal component of the
secret message and the other hides the residual values.

We then test the container images by using different
SWE methods in terms of the resistance against steganalysis
tools by using three well-known steganalysis tools including
StegExpose [46], XuNet [47], YeNet [48] and SRNet [49].
The area under the curve (AUC) values of receiver operating
characteristic (ROC) curves are presented in Table 3. It is
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FIGURE 8. The images synthesised using the same message by different synthesis-based SWE methods.

TABLE 3. Steganalysis results for different synthesis-based SWE methods
(in terms of AUC of ROC).

TABLE 4. Container image quality results for different synthesis-based
SWE models in terms of FID scores.

evident that the AUC values of different SWE methods are
close to 0.5, indicating that the steganalysis tools are similar
to random guessing. These results demonstrate that SWE
methods are immune to the detection of current steganalysis
tools since secret messages are hidden without introducing
any image modification.

TABLE 5. Comparison with different mapping-based SWE methods.

Further, we compare the synthesis fidelity of the synthe-
sised images by testing their authenticity and diversity, which
indicates their imperceptibility to visual inspection. In this
experiment, a widely employed synthesis fidelity metric, the
Fréchet inception distance (FID), is used to evaluate the
synthesis fidelity, and the results are listed in Table 4. For
SMH-SWE, it is noted that the values outside the brackets
are the FID values of the synthesised images while the values
in the brackets are the average FID values of the synthesised
images and matched mapping images. As shown in Table 4,
our SMH-SWE achieves the best FID scores on all four
datasets, which outperforms all other methods by a wide
margin. The reason for the remarkable fidelity lies in twofold:
the disentangled structure feature guarantees high synthesis
authenticity, while the uniformly sampled texture vectors
enhance synthesis diversity.

Finally, examples of synthesised images of different
models are shown in Figures 7 and 8 for subjective evaluation.
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TABLE 6. Qualitative comparison.

As shown in Figure 7, the quality of the images synthesised
by our method is much higher, with more realistic structures
and clearer textures. Moreover, as shown in Figure 8, our
method achieves more diversified styles because of the
uniformly sampled texture vectors when hiding identical
secret messages.

D. COMPARISON WITH MAPPING-BASED SWE
In this section, we compare our proposed method with
SoTA mapping-based SWE for different aspects in Table 5.
As is apparent from this, our proposed method significantly
outperforms the othermethods in terms of the hidden capacity
and number of container images when hiding secret messages
with different lengths,meanwhile, it requires an acceptable
number of candidate images. This result demonstrates that
our method is much more suitable for real world applications
because the unusual behavior of extensive image sending
significantly increases the risk of suspicion. The reason for
this is that in our methods, the mapping images are only
used to hide the compressed residual message, which is
significantly shorter than the original message, while the
principle message is hidden by a synthesised image.

E. DISCUSSION AND LIMITATION
Finally, we qualitatively compare our proposed SMH-SWE
with other methods in terms of seven metrics: i) the hidden
capacity, ii) the required number of candidate images, iii) the
required number of container images, iv) the quality of the
container, v) the complete recovery of the secret message,
vi) the resistance against steganalysis and vii) the robustness
against image attack, as shown in Table 6. Based on these
aspects, the proposed scheme addresses the core challenges
(shown in bold) of the other approaches and thus achieves
the superior performances.

Compared with embedding-based methods, our proposed
SMH-SWE is fundamentally immune to typical steganalysis
tools due to its modification-free hiding process.

Compared with synthesis-based SWE methods, our pro-
posed SMH-SWE achieves completed recovery of the secret
message, which is considered as one of the most core
requirements for steganography since the secret message is
usually considered as extremely valuable. In addition, the
quality of container images is also higher than that of current
synthesis-based SWE methods as discussed in Section IV-C.
Compared with mapping-based SWE methods, our pro-

posed SMH-SWE method requires only a few matched
container images to hide the compressed residual message
while deploying a high quality synthesis image to hide

the principal message. Therefore, our method avoids using
large number of images for conceal communication and thus
reduces the suspicion risks owing to the unusual behavior of
extensive image sending, which is also very important for
real-world applications.

Although the proposed SMH-SWE achieves significantly
superior performance compared to the state-of-the-art SWE
methods by fusing the synthesis-based and mapping-based
methods to fully make use of their complementary advan-
tages, our method still has some limitations to be further
addressed. Firstly, our hidden capacity is still lower than
that of embedding based methods. In addition, the recovery
robustness of our method also needs to be improved.
Specifically, it is unable to recover the principal message
from synthesised images tampered by compression [50],
[51], blurring, or image sterilization [52], [53]. We attribute
this result to the fact that some components sensitive to
high-frequency feature changes are encoded in structure
features.

V. CONCLUSION
In this paper, we have proposed SMH-SWE, a novel
two-stage hybrid framework that seamlessly combines an
image synthesis module and an image mapping module.
By designing the image synthesis module based on a
disentanglement auto-encoder, the principal component of
the secret message is hidden in the structure feature of a
high fidelity synthesis image with FID lower than 20.00,
which significantly reduces the number of container images
required by current mapping based SWE. For example,
the current mapping based SWE methods need more than
22 container images while our proposed method needs only
4 images when hiding 512 bits. In addition, by combining
the image mapping module, the extraction error from the
synthesis module are hidden by matching a few additional
container images, which solves the challenge faced by current
synthesis based SWE, i.e, the 100% recovery rate of the secret
message. The limitations of our method are twofold: (i) the
hidden capacity is still lower than that of embedding based
method, (ii) and the robustness against image compression,
blurring and sterilizations. Therefore, we aim to expand the
hidden capacity and boost the robustness of our proposed
SWE by incorporating concepts of full-image-to-image
hiding and adversarial learning for future work.
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