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ABSTRACT In the context of high-speed networks with 5G and 6G, the influx of user requests under
variable usage scenarios puts great pressure on the monolithic architecture, and quality of service (QoS) is
gradually not guaranteed. Placing low-coupling, high-efficiency microservices on satellite edge computing
nodes with wide coverage is a good solution, but the exponential increase of users and edge nodes accessing
communication networks in recent years has gradually highlighted the importance of proper placement
and effective management of microservices. The existing studies generally fail to achieve autonomous
management of microservices in a variable and complex network environment, and the few studies
on autonomous management of microservices are limited to achieving autonomous placement without
constraints among microservices. The quality of service and operation cost will not be guaranteed when
facing a large number of network requests at the same time. This paper addresses the much-needed problem
of modeling microservice placement in satellite edge nodes as a network embedding problem and effectively
captures the features that affect microservice placement performance using the attention mechanism in graph
neural networks. Simulation experimental results illustrate the effectiveness of the research content of this
paper for the automatic management of microservices in satellite networks, while the proposed scheme in
this paper performs well in terms of success rate and the benefit-overhead ratio of microservice placement.

INDEX TERMS Software defined networking (SDN), edge computing, microservice management.

I. INTRODUCTION
In recent years, the space-air-ground integrated network
has garnered significant attention within the communication
field as an emerging network architecture [1], [2]. Within
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this novel network framework, two key technologies have
emerged as pivotal for future development: Software-Defined
Networking (SDN) and Network Function Virtualization
(NFV) technology. SDN, rooted in cloud technology [3],
embraces the concept of segregating control and forwarding
functionalities [4]. It conceptualizes the entire network
as a vast resource reservoir [5], enabling the efficient
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FIGURE 1. The process of autonomous management of microservices in
satellite networks.

scheduling and allocation of resources. It also facilitates the
reconfiguration of network functions and swift deployment.
Microservices are a new technology that evolved from
a single application architecture in recent years [6], [7].
Microservices vertically split the traditional monolithic
system into multiple small functional components according
to business requirements, and each microservice can be run
and deployed separately [8]. The concept of microservice
is analogous to the service function chain (SFC) in SDN,
which is a logical link composed of virtual network function
nodes in the order of functional requirements according to
user needs [9]. The satellite network in the integrated air-
space network has the characteristics of wide coverage and is
not affected by natural disasters compared with the terrestrial
network [10], [11], and deploying some microservices to
the satellite network can effectively improve the quality of
service (QoS) and the efficiency of edge computing [12],
[13]. For instance, Dowhuszko et al. [14] proposed that
telecom operators can store frequently requested content in
5G satellite edge nodes in advance during off-peak periods,
which can reduce the placement time and effectively utilize
network resources.

As satellite networks expand and the count of microser-
vices increases, the potential combinations of microservice
placements and assignments experience exponential growth
[15]. This exponential surge leads to an extensive search
space for exploring all feasible solutions, posing challenges
for conducting a comprehensive search within a reason-
able timeframe. Moreover, during the placement process
of microservices, intricate considerations arise, including

reciprocal dependencies among microservices, alongside
numerous other factors such as the CPU and bandwidth
resources available on satellite nodes. These considerations
further compound the complexity of arriving at a solution.
The virtual network embedding problem similar to the
microservice placement problem has been shown to be anNP-
Hard problem [16]. How to place each class of microservice
instances on the appropriate satellite edge computing nodes
in a controlled time while minimizing the capital expenditure
(CAPEX) and operational cost (OPEX) of operators and
guaranteeing the QoS of users is a hot topic of research
[17], [18]. There are various ways to place and manage
microservices, but when a large number of satellite nodes
meet the placement conditions and a large number of user
requests appear at the same time, it is difficult to manage
the placement manually. Mayer et al. [19], [20], [21] tried
to do research related to microservice management and
monitoring, but unfortunately, they did not achieve fully
autonomous management. A few studies have focused on the
problem of autonomous placement of microservices, but they
only consider the placement of individual microservice nodes
and do not consider the dependencies before and after the
microservices.

Microservice management consists of a set of operations
and tasks that are used to manage and maintain various
aspects of the microservice architecture. One of the key
components is the controller, which is used to implement
specific management functions for microservices. What we
need to do is to allow the controller to control the placement
of each microservice in the appropriate satellite node. The
physical hierarchy of microservices is mainly divided from
top to bottom into user layer, application layer, data storage
layer, and infrastructure layer. Microservice management
is a broader concept. It first includes the function of
service registration and discovery. Microservices register
their information with the management platform at startup,
including service name, IP address, port number, and so
on. Other microservices can query and discover available
services through the management platform, thus enabling
communication between services. Monitoring and logging
also belong to the scope of microservice management,
which is used to monitor the operation status, performance
indicators, and abnormalities of microservices in real-time.
In addition, microservice management also includes security
management, deployment, and upgrading. In this paper,
we focus on the placement of microservices, which is the
interaction between microservices and the infrastructure
layer. Deployment of microservices is a crucial part of
microservice management, which is related to the stability
of the cloud platform and the revenue of the operator.
Microservice placement requests in real environments arrive
continuously. Deployment of microservices depends on
constraints such as containerized environment, orchestration
tools, and security levels. There are differences in the
environments in each satellite node and the types of
microservices that can be hosted are different, but a satellite

114342 VOLUME 11, 2023



X. Su et al.: Attention Mechanism-Based Microservice Placement Scheme

node can host several different types of microservices. Such
a status quo also results in the diversity of placement
schemes. Figure 1 shows an example of the placement
of a set of microservices with forward and backward
call relationships. To ensure service integrity, the same
microservice can only be hosted and run in one satellite node.
There are several constraints such as cost overheads that
also need to be considered when microservices are placed.
Our proposed microservice autonomy management platform
models satellite nodes and microservices as a graph structure
consisting of nodes and edges when there is a service
request from a user or a change in the satellite node. The
graph neural network is a hot topic in the field of data
science and machine learning in recent years. Petar et al.
[22] 2017 proposed the graph attention mechanism, which
has the ability to learn from graph data and provide more
accurate results. Problems such as resource scheduling [23],
knowledge graphs, etc. can find solutions by combining
with theories related to graph attention. Inspired by the
recent research related to virtual network embedding in
SDN, we propose an autonomous microservice placement
strategy for on-satellite edge computing under software-
defined networks. We mainly use the graph attention mech-
anism to aggregate the features between satellite nodes and
microservice nodes to calculate the relative importance thus
achieving better performance in the microservice placement
problem.

Especially, the main contributions of this paper are as
follows.

1) To address the problem of increased difficulty in
operation and maintenance in satellite networks due
to the possible emergence of a larger volume of
microservices in the future, this paper designs a
set of edge computing microservice management
platform that operates autonomously in satellite net-
works according to the characteristics of satellite
networks.

2) We model the microservice management problem
as a candidate physical node selection problem.
We define satellite nodes as physical network nodes,
and the whole satellite network topology is regarded
as a physical network, and use a deep learn-
ing approach to solve the microservice placement
problem.

3) The simulation experiments demonstrate that the
microservice placement strategy proposed in this paper
achieves satisfactory results in terms of acceptance rate,
average benefit ratio and comprehensive evaluation
metrics.

The rest of this paper is summarized below. In Section II
the related work is analyzed. Section III analyzes the problem
in detail and proceeds to model the problem as. Section IV
demonstrates the effectiveness of the work in this paper
through simulation experiments. Section V summarizes the
work done in this paper and points out the future research
directions.

II. RELATED WORK
In this section, we introduce the relevant research progress
in recent years from two aspects, namely, microservice
management and applications of graph neural networks,
respectively.

A. MICROSERVICE MANAGEMENT
Microservices are easy to develop and maintain and can be
extended at a fine-grained level according to demand, which
has become a hot research direction in recent years. Some of
these researchers focus on the study of microservice moni-
toring. Mayer et al. [19] propose an experimental dashboard
for microservice monitoring and management, which enables
monitoring and management of microservice status, but the
study cannot achieve autonomous placement and orches-
tration of microservices. Another part of the researchers
optimizes for the subsequent stages after microservice
placement. Jiang et al. [24] also proposed an idea for
efficient management of microservice architectures, using
technologies such as Redis clusters and service gateways
to achieve load balancing of microservices, but still could
not achieve fully autonomous management of microservices.
Xu et al. [25] proposed an enhanced service framework
based on microservice management for efficient access to
services in edge computing environments. Li et al. [26]
designed a fuzzy-based microservice computing resource
scaling algorithm for a microservice management platform
that can reduce the response time of microservice resource
adjustment and achieve dynamic scaling of microservices
both horizontally and vertically. Research on microservice
management, as represented by Xu et al., has driven the
development of edge computing, compared to researchers
who have done relatively little research on the placement
phase of microservices.

Earlier, an integer linear programming approach was
proposed by formalizing the placement process as in
Luizelli et al. [27] Zhang et al. [28] devised a solution
method using a clustering algorithm combined with non-
linear programming. The joint edge server deployment
and service placement model of this method formulates
multiple constraints, such as the relationship between edge
servers and base stations, storage capacity, and computational
power of each edge server, to maximize placement profit.
Tomassilli et al. [29] set minimizing the total deployment cost
as the optimization objective. Zhao et al. address the current
situation where existing studies do not consider service
compliance attributes and propose a distributed redundant
placement framework. This approach models the problem
as a discrete stochastic optimization problem. Simulation
results show that the scheme proposed by Zhao et al.
[30] is robust. Overall, most of the existing algorithms for
microservice placement focus on using linear integer pro-
gramming and heuristic algorithms. These methods generally
lack scalability and tend to fall into the category of optimal
solutions.
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Chen et al. [31] proposed a software-defined network-
based virtual network embedding algorithm that first ranks
physical nodes according to their importance and then maps
virtual links between virtual nodes using a BFS policy.
Chowdhury et al. [32] proposed to use of linear programming
to map nodes while ensuring that the cost of embedding
requests is as small as possible. However, the quality of
the current embedding algorithms based on software-defined
networks, when the current research handles embedding
requests with a large influx of embedding requests, can be
severely degraded.

B. APPLICATION OF GRAPH NEURAL NETWORKS
Graph Convolutional Neural Network (GCN) is a feature
extractor similar to Convolutional Neural Network (CNN)
[33], [34], but GCN is mainly oriented to graph-structured
data.GCN is widely used in various directions related
to graph data such as graph node classification, graph
edge prediction, and graph embedding representation. The
attention mechanism focuses on useful features in graph
data, which can suppress useless information and can achieve
efficient feature extraction, and reduce the difficulty of
network training.

We proposed a scheme that can automate the control
of microservices running in the satellite network under the
software-defined network, inspired by the above-mentioned
research, which can realize services such as placement,
control, and maintenance of microservices.

III. PROBLEM DEFINITION AND ALGORITHM DESIGN
In this section, we model the problem of microservice
placement for edge computing satellite nodes and describe
in detail the algorithmic flow of microservice placement.

A. PROBLEM DEFINITION
In this paper, we list the relevant notations used in the
problem definition in Table 1. Specifically, we abstract the
satellite network as the physical network SN = {N S ,ES ,
AV S

CPU ,AV S
Mem,AV S

LBW ,AV S
LR}. The properties of the satellite

network include the available CPU of the satellite nodes,
the memory, and the available bandwidth and resources of
the links between the satellite nodes. Similarly, we define
microservices asMN = {NM ,EM ,CM

CPU ,CM
Mem,CM

LBW ,CM
R }.

Each microservice running in a satellite node consumes
the CPU, memory, and bandwidth of the satellite node.
Therefore, we define the microservice placement problem as
MNi → SN . MNi is a microservice placement request. The
complete microservice placement process mainly includes
the mapping of nodes and the mapping of dependencies
between nodes.

We use the symbol ϱn
s

nmk
to indicate whethermicroservice nmk

has been deployed on satellite node ns, where k represents the
k-th microservice in this group of microservices. Similarly,
we use the symbol ςe

s

empq
to indicate whether the microservice

p and q invocation process uses the communication link

TABLE 1. Symbols related to the placement of microservices in the
satellite network.

between satellite nodes. ϱn
s

nmk
and ςe

s

empq
are denoted as (1)

and (2), respectively.

ϱn
s

nmk
=

{
1, if nmk → ns

0, not deployed

k = 1, 2, . . . ,Len(Nm),

nmk ∈ Nm, ns ∈ N s,

Nm
∈ MNi,N s

∈ SN . (1)

ςe
s

empq
=

{
1, if empq → es

0, not deployed

empq ∈ Em, es ∈ Es,

Em ∈ MNi,Es ∈ SN . (2)

The following constraints also need to be satisfied when
placing microservices:

AV S
CPU

(
ns

)
≥ CM

CPU
(
nmi

)
, if ϱn

s

nmi
= 1 (3)

AV S
Mem

(
ns

)
≥ CM

Mem
(
nmi

)
, if ϱn

s

nmi
= 1 (4)

AV S
LBW

(
es

)
≥ CM

LBW

(
empq

)
, if ςe

s

empq
= 1 (5)

AV S
R

(
es

)
≥ CM

R

(
empq

)
, if ςe

s

empq
= 1 (6)

(3)-(6) indicates that the total amount of resources
remaining in the satellite nodes must be greater than or equal
to the total amount of resources required by the microservices
to be placed, and these constraints are satisfied to ensure the
proper operation of the microservices,

Len(N S )∑
i=1

ϱ
nsi
nmk

= 1 ∀nmk ∈ NM , ∀nsi ∈ N S , (7)

We use (7) to represent the uniqueness of microservice
hosting. To ensure service integrity, one of the microservices
in a set of microservices can only be hosted in one satellite
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node running at runtime. Where i denotes the i-th satellite
node in the satellite network.

B. ALGORITHM DESIGN
Figure 2 shows the exact flow of our proposed microservice
placement approach. The process mainly consists of feature
extraction, calculating the importance using the trained
model, sorting the nodes with the highest importance
according to the calculated importance, and finally mapping
the edges using the SPFA algorithm. Before starting the
process, first the network properties of the satellite network
and the microservice should be extracted separately. This is
to allow the subsequent steps to be trained in a real network
environment. The more attributes we extract, the more the
computational complexity increases and the more redundant
attributes may be extracted that do not have an impact on
the placement. So instead of extracting all the attributes of
the satellite network and microservices we extract the key
attributes that affect the placement of the microservices.
The key attributes include computational resources, storage
resources, and bandwidth resources. Firstly, we need to
construct feature vectors for the extracted network attributes
using (8). Subsequently, we need to use these feature vectors
to compute the attention weights between nodes.

h =

{
h⃗1, h⃗2, . . . , h⃗N

}
, h⃗i ∈ RF , (8)

where the notation RF is used to denote an F-dimensional
real vector space, where each element is a real number, where
F represents the dimensionality of the vector. the size of F
is determined by the number of kinds of key attributes we
extract from the network. h is a collection of feature vectors
that contain the feature vectors of N nodes, and the feature
vector h⃗i of each node belongs to an F-dimensional real
feature vector space RF .

eij = a
([
Whi∥Whj

])
, (9)

The computation of Whi and Whj is a linear transformation,
where Whi and Whj are the product between the features of
node i and node j, respectively, and the matrix of learnable
parametersW . This operation maps the original node features
to a new feature space for subsequent attention computation.
To increase the expressive power of the model, we introduce
non-linear properties by introducing LeakyReLu to allow the
model to learn more complex representations. In order to
obtain the corresponding input and output transformations,
we need to perform at least one linear transformation based
on the input satellite node and microservice node features
to obtain the output features, so we need to train a weight
matrix W ∈ RF ′

×F for all nodes. The learned weights W
are carried out through the training data so that the model
can be able to learn an effective representation of the graph
data consisting of satellite nodes and microservices can be
carried out. The attention factor formula is shown in (9),
this formula can be expressed without considering the overall
structure of the satellite network and microservice requests

the importance of node j for node i. The symbol ∥ has
stitched for the node transformed features and finally maps
the stitched high-dimensional features to a real number. The
attention coefficient αij is obtained after normalising the real
numbers using equation (10).

αij = softmaxj
(
eij

)
=

exp
(
eij

)∑
k∈Ni

exp (eik)
(10)

Next, we use Equation (11) to perform a weighted summation
based on the computed attention coefficients.

h′
i = σ

∑
j∈Ni

αijWhj

 (11)

where Ni represents the combination of neighbor nodes of
node i, in other words, the set of satellite nodes where
this microservice can be placed. The weighted sum is
computed based on the attention weight αij of the neighboring
nodes to node i and makes it pass through the activation
function of the obtained h′

i is the vector after aggregating
the neighboring nodes. The training process pseudo code is
shown in Algorithm 1. Lines 1-4 represent the initialisation
process for the variables and the loop while wraps the training
process. We set the number of training rounds to 100, the
learning rate to 0.005, and the slope of LeakyReLu to 0.2.
Figure 3 shows the Loss variation curve during the training
process. It can be observed from the figure that the model
experienced a rapid decline and eventually leveled off.

We propose an on-satellite microservice placement strat-
egy in two main phases. In the first stage, the importance of
each satellite node and microservice node at the current time
is calculated and themicroservice nodes in the service request
are sorted in descending order according to their attention
importance. Similarly, we have to sort all satellite nodes in
order of importance. To ensure QoS, we finally use a greedy
strategy to place the important microservice nodes on the
satellite nodes with high importance values. In the second
stage, the satellite nodes that cannot satisfy the bandwidth
demand of the current service request are first offloaded.
In the remaining satellite nodes, the mapping is completed
using the SPFA algorithm. The detailed placement algorithm
is shown in Algorithm 2 and Algorithm 3.

We assume that the number of microservice nodes is
M and the number of satellite nodes is N . In the training
phase, the time complexity is jointly determined by M and
N as O(MN ). In the placement phase, the time complexity
is jointly determined by the two phases of microservice
node placement and link placement. In the microservice
node placement phase time complexity is O(MN ). For the
edge placement phase, the total computational complexity
is O(ED) assuming that the total number of edges is E
and the number of edges on the path from a node that can
reach the final destination node through a series of edges is
D. The total computational complexity is O(ED). So the total
microservice placement complexity is O(MN + ED).
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FIGURE 2. The process of placing microservices in satellite nodes using the attention mechanism.

FIGURE 3. Training process loss curves.

C. EVALUATION INDICATORS
The main goal is to improve the utilization of satellite nodes
as much as possible while ensuring the normal operation
of microservices so that operators can gain more revenue.
Since this problem is difficult to find the optimal solution
in polynomial time, we usually design some evaluation
metrics for the algorithm to evaluate its performance of
the algorithm. In this paper, we use three metrics, long-
term average revenue, acceptance rate, and comprehensive
evaluation metrics, to evaluate the microservice placement
strategy. We define the evaluation metrics as follows.

Algorithm 1 Training Process

Input: N S , AV S
CPU , AV

S
Mem, N

M , CM
CPU , C

M
Mem, epochs

Output: Weighting matrixW
Initialize input feature dimension in_features;
Initialize output feature dimension out_features;
Initialize the LeakyReLU activated parameters alpha,
dropout parameters dropout , iteration;
InitializeW according to AV S

CPU , AV
S
Mem, N

M , CM
CPU and

CM
Mem;

while iteration ≤ epochs do
foreachMicroservice nodes in microservice requests
do

foreach Each satellite node that can be placed
do

Clear the gradient;
CalculateWhi and Whj;
SpliceWhi and Whj and activate them using
LeakyReLU using Equation (9);
Use Equations (10) and (11) to compute the
attention factor and aggregate neighbouring
nodes;
Calculated loss and back propagation;
Update W ;

iteration++;

1) LONG-TERM REVENUE-COST RATIO
As shown in (12), we define the bandwidth requirement size
of the link for each service request sent by each user, and the
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Algorithm 2Microservice Node Placement Algorithm

Input: N S , AV S
CPU , AV

S
Mem, N

M , CM
CPU , C

M
Mem, W

The importance values between nodes is calculated by
substituting the known weight matrixW and node
attributes into Equations (8)-(10);
Rank the importance values of nodes N S and NM in
descending order;
foreach NM

= {nm1 , nm2 , . . . } do
foreach N S

= {ns1, n
s
2, . . . } do

if The node does not place the requested service
and satisfies constraints (3) and (4) then

Placement of microservice nodes nmi → nsj ;
Update satellite node nsj resource status;
break;

Algorithm 3Microservice Link Selection Algorithm

Input: N S , EM , AV S
LBW , AV S

LR, C
M
LBW , CM

R
Resource requirements for the links between
microservices requests CM

LBW and CM
R in descending

order;
foreach Unplaced links in EM = {emij , . . . } do

foreach ES = {esij, e
s
pq, . . . } do

if The resources remaining on this link do not
satisfy constraints (5) and (6). then

Offload links in ES ;

Put the first microservice node nSfirst to be placed
in MapQueue;
Place the first microservice node to be placed;
whileMapQueue ̸= ∅ do

Remove the set N S
next of nodes connected to

the satellite node nSfirst from MapQueue;
foreach N S

next do
if Joining this link will consume less
resources than before then

Adding nodes toMapQueue;

Update link resource status;

sum of the resource requirement size and the size of the CPU
and memory computing resources required from the satellite
node constitutes the operational gain for the satellite network
from that request. We introduce the concept of hops, where
additional spend exists if the placement process is performed
across satellite nodes during placement. If this is not the case,
the spend and gain are equal. (13) is the cost required to place
the microservice. (14) is the long-term average benefit ratio
equation.

REVE =

∑
nm∈NM

{
CM
CPU

(
nmi

)
+ CM

Mem
(
nmi

)}
+

∑
em∈EM

CM
LBW

(
emij

)
+

∑
em∈EM

CM
R

(
emij

)
(12)

COST =

∑
nm∈NM

{
CM
CPU

(
nmi

)
+ CM

Mem
(
nmi

)}
+ (

∑
em∈EM

CM
LBW

(
emij

)
+

∑
em∈EM

CM
R

(
emij

)
) ∗ hops(emij ) (13)

RC = lim
t→∞

∑T
t=0 REVE∑T
t=0 COST

(14)

2) ACCEPTANCE RATIO
The number of microservice chains successfully placed on
satellite nodes based on user requests as a percentage of used
user requests. A higher acceptance rate means that more user
requests can be processed in the same situation, so a higher
acceptance ratio is better.

ACC = lim
t→∞

∑T
t=0 Reqacc∑T
t=0 Reqall

(15)

3) COMPREHENSIVE EVALUATION INDICATORS
We define the weighted sum of the long-term average revenue
and acceptance rate as the composite evaluation metric for
microservice placement. In this paper, α takes the value of
0.3 and β takes the value of 0.7.

CE = αACCR+ βAVGreve (16)

IV. EXPERIMENT
In this section, we introduce the simulated simulation
experimental environment and experimental conditions set
up according to the real satellite network environment, and
detail the evaluation metrics of this paper, and finally analyze
the effectiveness of our proposed microservice placement
strategy in the satellite network based on the experimental
results.

A. EXPERIMENTAL ENVIRONMENT
The experiments in this paper were run on a host with
an 8-core, 16-thread i7-11800H processor and 16GB-DDR4
3200MHz memory. The graphics card used for training in
this article is an NVIDIA GeForce RTX3060 with 6G of
video memory. In this paper, we used the ALEVIN2 tool to
randomly generate a satellite network containing 150 nodes
and 500 microservice placement requests. We exported the
generated topological network as an XML format file and
put it into the project for processing. The programming envi-
ronment we used is Python 3.8+ Miniconda3. The detailed
configuration of the simulation experiment is recorded in
Table 2.

B. EXPERIMENTAL RESULTS
We choose the heuristic algorithm NodeRank, the baseline
algorithm BaseLine based on greedy strategy, and the
algorithm R-VNE based on node importance ranking as the
comparison algorithms. The performance of the algorithms
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TABLE 2. Simulation parameters.

FIGURE 4. Variation curves of parameters related to the training process.

is then compared in three aspects: 1) the acceptance rate
of microservice requests and 2) the long-term average
gain of deploying microservice requests in satellite nodes
and 3) the overall evaluation metrics. The four algorithms
including our algorithm are described and summarized
in Table 3.

First, we verified the convergence of the algorithm
by observing the change curves of the evaluation metric
parameters during the training process. We show in Figure 4
the trend of the two metrics, AC and RC, at each training
round. At the beginning of the training, the W parameter
matrix is randomly initialized, thus the results are poor and
fluctuate greatly. As the number of training rounds increases,
the three evaluation metrics move in a better direction and
achieve better results while stabilizing in the later stages
of training. The experimental results also show that our
proposed algorithm is convergent and can achieve good
results.

For our experiments, the XML network topology files
exported using the ALEVIN2 tool are fed into each compar-
ison algorithm. To ensure the reliability and fairness of the
experimental results, we use exactly the same environment
for all participating algorithms. In addition, since the
distribution of random samples is usually fixed, we conduct
100 sets of experiments in each scenario for simulation
testing when the number of samples increases in positive
correlation with the increase in accuracy. We compared
the microservice placement acceptance rate, long benefit-
cost ratio, and comprehensive evaluation metrics of the four
algorithms. The results are shown in Figure 5, Figure 6, and
Figure 7.
Figure 5 shows the comparison of acceptance rates of the

four algorithms, and the experimental results can clearly show

FIGURE 5. Comparison with other algorithms on microservice request
acceptance rate.

FIGURE 6. Comparison with other algorithms on microservice request
long-term revenue-cost ratio.

FIGURE 7. Comparison with other algorithms on microservice request
comprehensive evaluation indicators.

that the microservice placement scheme proposed in this
paper has good performance in terms of microservice request
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TABLE 3. Description of the experimental algorithm.

FIGURE 8. The performance of microservice placement policies over time on ACC,RC,CE.

acceptance rates. The comparison algorithm NodeRank
computes the importance of satellite nodes considering only
the local importance of satellite nodes and is limited by
constraint rules, so it leads to a decrease in acceptance
rate with the influx of microservice requests and over time.
The algorithm R-VNE uses a linear programming approach
when processing microservice requests. This algorithm can
achieve good results when dealing with small-scale requests,
but large-scale service requests often appear simultaneously
in real networks, and linear programming cannot handle a
problemwith a large number of decision variables in a limited
computation time, which can reduce the acceptance rate of
microservice requests.

Figure 6 shows the performance of the four algorithms
in terms of the resource gain overhead ratio. Our proposed
scheme also achieves good results in terms of revenue-
to-overhead ratio and is more stable than the remaining
three placement algorithms. All three algorithms, BaseLine,
NodeRank, and R-VNE, prefer to place microservices on
the satellite nodes with more resources left, and such
placement habits may lead to a decrease in available
resources when new microservice requests arrive on the
most suitable satellite nodes. The new microservice can
be successfully deployed in this satellite node, and the
tie revenue will increase, thus the revenue-overhead ratio

will increase, and vice versa, the revenue-overhead ratio
will decrease. So it causes the fluctuation of the revenue
overhead ratio fold of the comparison algorithm in Figure 6.
Our proposed algorithm takes into account the available
resources of all types of satellite nodes adequately and
does not appear to focus only on the node with the most
resources left, so the revenue overhead ratio does not fluctuate
high and low. The stability exhibited by our proposed
algorithm is also exactly what is needed in a real network
environment.

As shown in Figure 7, the scheme proposed by us is better
than the other three schemes in a comprehensive evaluation.
After calculation, our placement algorithm is 18.1%, 25.4%,
and 30.1% higher than the other three algorithms in terms of
comprehensive evaluation indicators.

Then, we observe the performance of the proposed
microservice placement strategy in this paper by setting
different microservice service durations. From Figure 8,
we can see that when the service duration is longer, the
acceptance rate is lower, and the benefit-overhead ratio and
comprehensive evaluation index are lower. In the real network
environment, with the influx of microservice requests, the
microservices placed earlier have not yet completed their
missions, so the remaining allocatable resources in the
satellite network gradually become less. Our simulation
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results also show that the trend is very consistent in line
with the real situation. Our proposed on-satellite microser-
vice placement strategy can achieve an acceptance rate
of more than 55% with a guaranteed revenue-to-overhead
ratio. The experimental results demonstrate the effectiveness
of our proposed placement strategy, and it has more
obvious advantages than manually monitoring and placing
microservices.

V. CONCLUSION
With the development of communication technology, the
shortcomings of the manual monitoring and management of
the microservices approach are gradually revealed. In this
paper, we propose a placement strategy for microservices on
new satellites in the context of SDN.Wemodel satellite nodes
as physical nodes and microservices as virtual nodes and
design a microservice placement strategy. The performance
of this strategy in terms of service request acceptance
rate verifies the stability and effectiveness of our proposed
strategy. In the future, we will give more consideration to the
impact of security on microservice placement. In addition,
we will pay more attention to the impact of dynamic changes
in microservices on the network, and research targeted
solutions for it.
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