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ABSTRACT The vibration signal of rolling bearings is a nonlinear and non-stationary signal, which is
affected by the working condition change and background noise, and the reliability of traditional feature
extraction methods and fault identification methods is low. In order to effectively extract feature vectors and
improve the accuracy and reliability of fault identification, we propose a new fault diagnosis method based
on noise eliminated ensemble empirical mode decomposition and robust unsupervised feature selection
with local preservation (NEEEMD-RUSLP) and binary tree least squares twin support vector machine
(BTLSTSVM). Firstly, NEEEMD is introduced to suppress background noise and decompose the vibration
signal into a series of intrinsic mode functions (IMF), and the wavelet packet energy entropy, packet energy
coefficient, and Gini coefficient of each IMF are extracted to construct time-frequency domain features.
Then, 16 time-domain features and 13 frequency-domain features of the original signal are extracted and
combined with the time-frequency domain features of each IMF to construct a high-dimensional feature
space. In order to reduce the feature dimension and improve the diagnostic accuracy of the model, the
RUSLP feature selection method is introduced to select effective low-dimensional features from the high-
dimensional features. In addition, the binary tree (BT) strategy is introduced into the LSTSVM binary
classifier to construct the BTLSTSVM multi-classifier, which aims to improve the recognition accuracy
of low-dimensional features. In the bearing fault diagnosis of Case Western Reserve University, the fault
diagnosis accuracy obtained by the proposedmethod is improved by 10.67%. In the bearing fault diagnosis of
the University of Ottawa, the fault diagnosis accuracy obtained by the proposed method is improved by 10%.
In the fault diagnosis of check valve in the actual industrial production environment, the fault diagnosis
accuracy obtained by the proposed method is improved by 22%. The results show that the proposed method
can not only effectively extract and select the low-dimensional fault characteristics of the bearing, but also
achieve competitive fault diagnosis accuracy. Therefore, this method can provide a new method reference
for the field of fault diagnosis, and has great theoretical significance and application value.

INDEX TERMS Empirical mode decomposition, unsupervised feature selection, mixed domain, fault
diagnosis, least square twin support vector machine.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Shu .

I. INTRODUCTION
Bearings are important components in electric motors, gen-
erators, gearboxes, and couplings and are widely used in
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various fields. Bearings are prone to failure due to many fac-
tors, but the vibration signal has nonlinear and non-stationary
characteristics due to variable operating conditions and strong
noise, which poses a serious challenge to bearing fault diag-
nosis. Therefore, the research on bearing fault diagnosis
methods based on signal processing andmachine learning has
important economic significance and practical value.

In terms of feature extraction, the time-domain, frequency-
domain and time-frequency domain features will change
with the transition of state, but the single feature infor-
mation is incomplete and cannot effectively represent the
state information of mechanical parts. Therefore, it is nec-
essary to construct high-dimensional mixed features to mine
the state information and inherent characteristics of the
original vibration signal. The existing feature extraction
methods include domain analysis, frequency domain anal-
ysis, time-frequency domain analysis and other methods.
Tao et al. [1] decomposed and reconstructed the bearing
vibration signal by wavelet packet decomposition (WPD)
method, extracted the energy characteristics of each sub-
band and constructed a two-dimensional time-frequency dia-
gram to achieve fault diagnosis. Sun et al. [2] decomposed
the equal part signal into multiple IMFs through empir-
ical mode decomposition (EMD) method, and effectively
diagnosed rolling bearing faults with the improved Cheby-
shev distance as the feature. Motahari-Nezhad et al. [3]
first extracted 60 time-domain features of bearing vibra-
tion signals, then introduced an improved distance evalua-
tion (IDE) method for feature dimensionality reduction, and
finally classified healthy and faulty bearings by the k-nearest
neighbor (KNN) algorithm. Prakash Kumar et al. [4] used
fault detection time-domain vibration analysis technology
to explore the time-domain characteristics and information
contained in vibration signals. Wu et al. [5] denoised the
original signal through ensemble empirical mode decompo-
sition (EEMD), and extracted key bearing features through a
feature extraction module composed of convolutional layer,
attention mechanism module, and pooling layer. Li et al. [6]
took the kurtosis value of the envelope signal as the fit-
ness function and extracted the composite fault charac-
teristics of the bearing by parameter-optimized variational
mode decomposition (VMD). Wang et al. [7] first used the
grasshopper optimization algorithm (GOA) to optimize the
parameters of the VMD, and then decomposed the bear-
ing signal through the optimized VMD. Tang et al. [8]
extracted time-domain features by complete ensemble empir-
ical mode decomposition with adaptive noise (CEEMDAN),
while deep frequency-domain features were extracted by
fast Fourier transform (FFT), and the optimal features were
input into a classifier to identify bearing faults. Under the
loosely distributed cross-domain dataset, Chen et al. [9]
aggregated a single local feature through the vector of locally
aggregated descriptors based network (Net VLAD), and the
intra-class compactness and inter-class separability of cross-
domain features were improved. Jiang et al. [10] combined

the time-frequency spectral amplitude modulation (TFSAM)
method with the short-time Fourier transform, and more
accurate and detailed amplitude information in the time-
frequency domain was extracted, and the accuracy of fault
identificationwas improved. Vashishtha andKumar [11] opti-
mized the parameters of time-varying filter based empirical
mode decomposition (TVF-EMD) through kernel estimate
for mutual information (KEMI) and amended grey wolf opti-
mization (AGWO), and the fault diagnosis efficiency was
improved. However, the above extraction method has the
following problems: (1) WPD generates frequency confu-
sion and false components at frequency band segmentation,
and does not have adaptability, and the IMFs obtained by
decomposition methods such as EMD and EEMD has end-
point effect and modal aliasing, and the decomposition effect
of VMD depends on parameter settings. (2) The feature
extraction process is affected by background noise, and most
feature extraction methods do not specifically consider noise
suppression, which leads to background noise components in
the fault features. (3) Some artificial features are too singu-
lar, while others have redundancy, and feature selection and
filtering have not been fully considered.

A high-dimensional dataset formed by multi domain fea-
tures can reveal the inherent characteristics of the original
signal more widely, but it also brings some redundant and
negative feature information. In addition, the higher the fea-
ture dimension, the more time-consuming the classification
model will be. Given this, it is necessary to perform appro-
priate feature selection after multi domain feature extrac-
tion. According to the availability of class label information,
feature selection methods can be roughly divided into three
categories: supervised, unsupervised and semi supervised.
Lao et al. [12] extracted the time-domain features and multi-
scale permutation entropy features of the turnout switch
machine, and constructed an adaptive feature selection model
to extract the key sensitive features. He et al. [13] opti-
mized VMD through an improved sparrow search algorithm
to obtain effective IMF, and extracted the energy entropy of
IMF to construct a fault feature matrix, an Inverted Resid-
ual Convolutional Neural Network (IRCNN) can adaptively
select sensitive features and reduce feature dimensionality.
Mohd Saufi and Hassan [14] solved the problem of artifi-
cial selection of super parameters in deep learning through
Laplacian Score (LS) and Long Short-TermMemory (LSTM)
methods. Zheng et al. [15] effectively extracted complex
nonlinear dynamic information by combining Multi-Cluster
Feature Selection (MCFS) with The Gravitational Search
Algorithm Optimized Support Vector. Hashemi et al. [16]
had modelled the multi-label feature selection problem into
a bi-objective optimization problem regarding the relevancy
and redundancy degree of the features, to solve the prob-
lem of high feature dimensionality and noise interference
in multi label datasets. Ma et al. [17] took the expectation,
entropy, and hyper entropy of the cloud models representing
uncertainty in features as spatial vectors. By fusing redundant
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elements of space vectors through Interpretable and Unsuper-
vised Dimension Reduction Method, low dimensional fea-
ture components that were conducive to fault classification
are obtained. Wahid et al. [18] determined the Huber-Type
Weight Function by Unsupervised Discriminative Feature
Selection (UDFS) method and Mahalanobis distance, and
reduced the weight of cluster observations with large dis-
tance. Guo et al. [19] used Unsupervised Feature Selection
With Adaptive Structure (FSASL) method to eliminate the
impact of noise, redundancy, and missing values on the origi-
nal signal, improving the effectiveness of feature selection.
Zeng et al. [20] eliminated the influence of noise or out-
lier in real fault data through Robust Unsupervised Feature
Selection (RUFS) algorithm. Zhu et al. [21] combined the
construction of similarity matrices with the feature selection
process through the Graph Learning Unsupervised Feature
Selection (GLUFS) algorithm, improving the effectiveness
and superiority of the feature selection process. However,
the above feature selection methods have the following prob-
lems: (1) the correlation between features is ignored, result-
ing in redundant features being selected and reducing the
performance of the algorithm; (2) The crucial discriminative
information in feature selection is ignored; (3) The effects of
outlier and noise on performance are ignored.

In addition to the above methods, fault identification mod-
els are also key to ensuring the reliability of fault diag-
nosis. By using pattern recognition methods to accurately
identify the type, location, or degree of faults, the recog-
nition accuracy of the model can be improved. At present,
fault identification methods include neural networks, deep
learning, support vector machines, etc. Fotso et al. [22]
achieved the construction of a power loss model for wind
turbine bearings using Back-Propagation Neural Network
(BPNN) method, and predicted the expected values through
the constructed model. Ghorvi et al. [23] combined adversar-
ial domain adaptation and local maximum mean difference
(LMMD) to reduce structural differences between subdo-
mains and global domains, and accurately identified bear-
ing fault types through graph convolutional neural networks
(GCNN). Wang et al. [24] constructed suitable Spiking Neu-
rons through Improved Spiking Neural Network (ISNN) to
compensate for information loss during forward propagation
and simplify the back propagation process. Xie et al. [25]
used Locally Generalized Preserving Projection (LGPP) to
reduce the dimensionality of high-dimensional features, and
then constructed Flexible Grey Wolf Optimizer (FGWO) to
optimize the parameters of the Extreme Learning Machine
(ELM), significantly improving the fault recognition rate.
Gong et al. [26] extracted fault features through Varia-
tional Mode Decomposition (VMD) and Refined Composite
Multiscale Bubble Entropy (RCMBE), and then used the
Gorilla Troops Optimizer Optimized Kernel Extreme Learn-
ing Machine (GTO-KELM) to identify bearing faults. How-
ever, the short duration of mechanical equipment failures,
small number of fault samples, and non-linear distribution

make it difficult to meet the large sample requirements of
neural networks and deep learning, as well as the data require-
ments of statistical learningmethods. Support vector machine
(SVM) can solve nonlinear high-dimensional space prob-
lems by a small number of samples, and has outstanding
advantages for nonlinear, small-sample, high-dimensional
pattern recognition and other problems, and has good learn-
ing ability and adaptability. Therefore, many researchers use
SVM to identify the type and degree of mechanical faults.
Yaman et al. [27] extracted features from sound signals
usingMel-frequency Cepstral Coefficients (MFCC) and used
SVM to classify selected features for faults. Gao et al. [28]
combined isometric mapping with the Isometric Mapping
And Nonhomogeneous Cuckoo Search-Least Squares Sup-
port Vector Machine (NoCuSa-LSSVM) method to monitor
the operating status of rolling bearings. He et al. [29] first
extracted the Composite Multiscale Weighted Permutation
Entropy (CMWPE) features of bearings, and then constructed
a Least Squares Support VectorMachine (LSSVM)model for
bearing fault diagnosis, significantly improving recognition
accuracy. In fact, only one hyperplane is constructed in the
two classifiers of SVM, which is computationally complex,
inefficient and sensitive to parameters, and is not suitable
for complex nonlinear classification problems and large-
scale data samples. Wei et al. [30] used Moth-Flame Opti-
mization (MFO) algorithm to optimize the hyperparameters
(Sigma & γ ) of the LS-SVM classifier, achieving higher fault
diagnosis recognition rate and algorithm robustness. Twin
Support Vector Machines (TSVM) used two hyperplanes for
pattern recognition, which was four times more efficient and
more accurate than SVM. Dhiman et al. [31] extracted the
SCADA parameters of the wind turbine gearbox and com-
bined the Adaptive Threshold with TSVM to achieve gear
fault diagnosis. Bai et al. [32] used TSVM to regenerate unla-
beled samples, effectively solving the problem of difficulty in
extracting fault features and a small number of fault samples.
Yuan et al. [33] proposed a chemical reaction optimized
TSVM model to address the issue of SVM being affected
by imbalanced samples. The accuracy in transformer fault
diagnosis is superior to SVM, k-nearest neighbormethod, and
decision tree. However, TSVM needs to solve the Quadratic
Programming Problem (QPP) with inequality constraints,
which affects the classification accuracy and efficiency. The
Least Square Twin Support Vector Machine (LSTSVM) pro-
posed by Arun Kumar and Gopal [34] replaced the QPP
with inequality constraints in TSVM through a system of
linear equations, with better computational efficiency and
classification accuracy than TSVM. Ganae and Tanveer [35]
first generated weights through LSTSVM, then applies the
product of input features and weights to nonlinear functions
to obtain enhanced features, and finally classifies based on
these features through LSTSVM. Ali et al. [36] generated the
optimal hyperplane by solving a pair of linear equations with
LSTSVM, which improved the efficiency of the TWSVM
model. Zhou et al. [37] improved the diagnostic method
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by combining Multi-Scale Weighted Permutation Entropy
(MWPE) and LSTSVM to improve the signal-to-noise ratio
of signals and the diagnostic accuracy of bearings and one-
way valves. Chen et al. [38] used the Conjugate Gradient
(CG) algorithm to solve the linear equations appearing in
the Lap LSTSVM model, accelerating the training process
of the model. Yuan and Yang [39] reduced the impact of
noise and outlier on LSTSVMmodel by Capped L2, P-Norm
Distance Metric. Yu et al. [40] first constructed the Hessian
Scatter Regularization (HSR) term, then constructed the least
squares version of HSR-TSVM (HSR-LSTSVM) through
HSR, and finally solved the constructed model using the
Conjugate Gradient method. However, the above fault clas-
sification methods have the following problems: (1) outlier
detection and membership construction of samples affect the
performance of anti-outlier; (2) The objective function of the
diagnosticmodel only considers the training error and ignores
the generalization error, so the generalization performance
of the model needs to be improved; (3) LSTSVM has very
few applications in fault diagnosis, and as a binary classifier,
it is often used for complex binary classification problems.
How to apply the LSTSVM model to multi classification
recognition is also a problem worth exploring.

In addition, those methods based on deep learning and
methods combining feature extraction with machine learning
are increasingly being used for vibration signal analysis and
fault diagnosis. Othman et al. [41] proposed a custom residual
deep neural network to detect passive seismic events, which
not only suppresses background noise through the IIRWiener
filter, but also does not rely on real data to train a diagnostic
model. Iqbal et al. [42] proposed an intelligent deep convolu-
tional neural network method, which can train models with-
out real data, suppress various irrelevant noises in earthquake
signals, and provide a good foundation for earthquake pre-
diction. Lao et al. [12] extracted the time-domain features and
multi-scale permutation entropy features of the turnout switch
machine and constructed an adaptive feature selection model
(AFS) to reduce feature dimension, a light gradient boosting
machine based on the improved focal loss (IFL) function
improved the diagnostic model’s ability to distinguish similar
feature samples. He et al. [13] optimized the parameters of
VMD through improved sparrow search algorithm and dis-
persion entropy fitness, extracted the energy entropy features
of IMF, and constructed an inverted residual convolutional
neural network (IRCNN) to obtain a diagnostic accuracy
of 97.5%, and IRCNN itself has feature selection ability.
Wei et al. [43] proposed a third order tensor model, a density-
based affinity propagation tensor clustering algorithm is pre-
sented to identify different failures with unlabeled, which
unsupervised characteristics show it has potential for appli-
cations on rail transit trains. Jin et al. [44] optimized the
parameters of VMD through a gray wolf algorithm based
on hybrid strategy, extracted multi-scale dispersion entropy
and diagnosed train axle box bearing faults through the deep
belief network (DBN). Yu et al. [45] constructed the multi

group Resnet (MGRN) structure to extract multi-scale and
multi resolution wavelet packet time-frequency feature maps
from vibration time-frequency features, and then the multi
kernel maximum mean diversity (MK-MMD) is employed to
evaluate the distribution difference of depth features between
the source and target domain. This strategy has good noise
reduction performance and variable condition transfer diag-
nosis performance. Wen et al. [46] constructed a clustering
graph convolutional network with multiple adaptive learning
(c-GCN MALs) based on auto encoder (AE), AE and graph
convolutional networks can extract the structural correlation
of the dataset, and the setting of loss functions enhances
the transfer and clustering capabilities of data and domain
adversaries. It can be seen from the above that deep learning
and deep transfer learning not only avoid the artificial expe-
rience in feature extraction, but also do not need to consider
dimensionality reduction issues, and have gradually become
popular research directions. However, for small sample prob-
lems, sample imbalance problems, and outlier problems, fault
diagnosis methods based on deep learning and deep trans-
fer learning still have some shortcomings. In addition, deep
learning methods generally require a large number of training
samples, and deep transfer learning performs poorly when
the differences in the data domain are too large. Therefore,
the fault diagnosis method based on dimensionality reduction
feature extraction and recognition model is adopted in this
paper.

In order to solve the above problems of feature extraction,
feature selection, and recognition models, a new fault diag-
nosis method based on NEEEMD-RUSLP feature selection
and BTLSTSVM is proposed. Firstly, a denoising integrated
empirical mode decomposition NEEEMD method is con-
structed to suppress noise in the signal, and the original signal
is decomposed into a series of IMFs; The wavelet packet
energy entropy extracted from each IMF, small packet energy
coefficients, and Gini coefficients are constructed as time-
frequency domain features of the signal; The time-domain,
frequency-domain, and time-frequency features extracted
from signal samples are constructed as a mixed fault fea-
ture vector set. Then, a robust unsupervised feature selection
RUSLP method with local preservation is constructed in this
paper, where RUSLP obtains information by decomposing
the clustering labels of the predicted data into matrices. The
constraints of the orthogonal two decomposition matrices
help to achieve more accurate class labels for selecting fea-
tures with high discrimination ability. Finally, we use linear
equations to replace the QPP with inequality constraints,
and the Binary Tree (BT) strategy is introduced to build
a multi classification LSTSVM model (BT-LSTSVM). BT-
LSTSVM does not need any optimizer, and its computational
efficiency is better than TSVM and SVM, and its classifica-
tion performance is stronger. Therefore, the innovation points
and main contributions of this article are as follows:

1) The time-frequency domain features based on
NEEEMD are constructed in this paper. Among

113968 VOLUME 11, 2023



R. Lu et al.: Novel Fault Diagnosis Method Based on NEEEMD-RUSLP Feature Selection and BTLSTSVM

them, NEEEMD is superior in signal separation and
noise robustness, and can obtain richer fault feature
information.

2) The feature selection method based on RUSLP and the
low dimensional feature space are constructed in this
paper. Among them, RUSLP selects features with high
discriminative ability through more precise class labels
in feature selection.

3) A multi classification model based on BT-LSTSVM
is constructed in this paper. Among them, The
BT-LSTSVM multi classification model achieves
higher efficiency and better recognition accuracy in
fault recognition.

The chapters of the text are arranged as follows:
Section II discusses the theories and methods involved

in this paper. Section II-A discusses the high-dimensional
feature extraction process based on the NEEEMD method,
and proposes the problems and optimizations solved by the
NEEEMD method. Section II-B describes the theoretical
method of robust unsupervised feature selection with local
preservation. Section II-C describes the theoretical method
of binary tree least squares twin support vector machines.
Section III discusses the implementation process of a new
fault diagnosis method based on NEEEMD-RUSLP feature
selection and BTLSTSVM proposed in this paper. Section IV
conducts experimental verification. Section IV-A uses sim-
ulation signals to verify the effectiveness of the NEEEMD
decomposition method. Section IV-B verifies the effective-
ness of RUSLP dimensionality reduction method and BTL-
STSVM classifier with data collected from Case Western
Reserve University Experimental Platform. Section IV-C ver-
ifies the effectiveness of the RUSLP dimensionality reduction
method and the BTLSTSVM classifier by using the data
collected by the experimental platform of the University of
Ottawa. Section IV-D verifies the validity of the RUSLP
dimensionality reduction method and the BTLSTSVM clas-
sifier by using the data set generated by a check valve in a
real industrial production environment. Section V provides a
summary of the writing.

II. THEORY AND METHODS
A. HIGH DIMENSIONAL FEATURE EXTRACTION BASED ON
NEEEMD
1) NOISE ELIMINATED ENSEMBLE EMPIRICAL MODE
DECOMPOSITION
Noise Elimination Ensemble Empirical Mode Decomposi-
tion (NEEEMD) adopts a different method from CEEMD to
eliminate white noise in the final stage. Instead of adding
negative white noise at the primary level, it subtracts the
intermediate frequency of the same white noise from the final
intermediate frequency. In order to evaluate the effectiveness
of the proposed feature extraction methods, relevant feature
extractionmethods such as EEMD, CEEMD, and Continuous
Wavelet Transform (CWT) are compared. By using the orig-
inal vibration signal decomposition, all output results show

that NEEEMD method not only has the highest accuracy,
sensitivity and robustness, but also can effectively eliminate
the existence of white noise and save a lot of calculation time.
The key steps of NEEEMD are as follows:
Step 1:Add the set white noise wi(t) (its length is the same

as the original signal, the average value is 0, and the standard
deviation is 1) and the original signal X (t) to obtain Xi(t).
Step 2: Use EMD to decompose Xi(t) and obtain the IMF

set average value cj(t).

cj(t) =
1
M

M∑
i=1

cij(t) (1)

Step 3:Take the input set white noisewi(t), and apply EMD
to each of them.

Wi =

N∑
j=1

wcij(t) + wri(t). (2)

Among them, j = 1, 2, . . . ,N , N is the number of IMF,
and wcij(t) is the IMF (ci1, ci2, . . . , ciN ) of noise. wrij(t)
represents the residual of the i-th trace.
Step 4: Calculate the set average of IMF for noise.

wcj(t) =
1
M

M∑
i=1

wcij(t). (3)

Subtract the noisy IMF from the IMF obtained by EEMD
to reduce white noise.

IMFj = cj(t) − wcj(t) (4)

Step 5: The original signal can be obtained and make
following things.

X (t) =

M∑
i=1

IMFij(t) + rMj(t) − wrMj(t). (5)

where wrM (t) is the residual of white noise. More detailed
information can be found in reference [47]. The parameter
selection method for white noise can be referenced in refer-
ences [48] and [49], the number of ensembles in this research
is 100 and the standard deviation of the white noise is 1 and
the mean of it is 0.

2) HIGH DIMENSIONAL FEATURES BASED ON NEEEMD
a: TIME DOMAIN FEATURE EXTRACTION
This article uses statistical methods to extract 16 time-domain
features, whose expressions are listed in Table 1. As shown in
Table 1, the 10 features TF1 ∼ TF10 are commonly referred to
as dimensional statistical parameters, namely mean, standard
deviation, square root amplitude, absolute mean, skewness,
kurtosis, variance, maximum, minimum and peak to peak
values. The six characteristics of TF11 ∼ TF16 are called
waveform index, peak index, pulse index, edge index, skew-
ness index and kurtosis index, also known as dimensionless
statistical parameters. Among the 16 expressions given in
Table 1, x(n), n = 1, 2, . . . ,N is a given discrete time series,
and N is the number of data points for signal x(n).
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TABLE 1. Expression of time domain characteristic parameters [50].

b: FREQUENCY DOMAIN FEATURE EXTRACTION
For a given time series x(n), the text can extract 13 frequency
domain features FF1 ∼ FF13 using FFT. Table 2 describes
the expressions of these features. As shown in Table 2,
eigenvalues FF1 reflect the vibration energy in the frequency
domain, eigenvalues FF1 ∼ FF4, FF6, and FF10 ∼ FF13
represent the concentration and dispersion of the spectrum,
and eigenvalues FF5 and FF7 ∼ FF9 represent the positional
changes of the main frequency band. Among the thirteen
expressions given in Table 2, y(k) is the FFT spectrum of the
given time series x(n), k = 1, 2, . . . ,K , K is the number of
spectral lines in the FFT spectrum, and fk is the frequency
value corresponding to the k − th spectral line.

c: WAVELET PACKET ENERGY ENTROPY FEATURE
EXTRACTION
Wavelet transform has the ability to characterize local fea-
tures of signals in the time-frequency domain, but it only
decomposes the low-frequency part of the signal in the next
step and does not process high-frequency signals. Wavelet
packet transform decomposes low-frequency and high-
frequency signals, providingmore complete information. The
energy entropy Hjk of the wavelet packet is calculated using
equation (6), where the letters N and J represent the signal
length and the number of layers of wavelet packet decom-
position, respectively, to obtain the decomposition sequence
Xij(k = 0 ∼ 2j − 1). Component Sjk is obtained through
a single reconstruction of the decomposition coefficients,
and Ejk is set to the power of the reconstructed signal,
Ejk =

∣∣Sjk (i)
∣∣2, and εjk = Ejk/E , then

∑
k

εjk = 1.

Hjk = −

N∑
i=1

εjk (i) log εjk (i) (6)

Obtain the energy entropy of the wavelet packet from
equation (6) to form a feature vector [H1,H2, · · ·,Hn].

d: FEATURE EXTRACTION OF WAVELET ENERGY
COEFFICIENTS
The wavelet energy coefficient represents the energy distri-
bution of signals within each frequency range, and different
distributions result in different characteristics of acoustic
emission sources and different damage conditions. There-
fore, by comparing the changes in wavelet coefficients of
each layer, the time-frequency characteristics of bearing fault
expansion signals at different stages are obtained, and the
corresponding relationship between wavelet energy coeffi-
cients and bearing fault expansion signal process is estab-
lished. Wavelet energy coefficients can effectively represent
the characteristics of bearing fault process. The extraction of
wavelet energy coefficients first requires wavelet decomposi-
tion of the signal. Assuming that the original signal undergoes
wavelet decomposition with K layers and K+1 frequency
range components, the total energy of the signal can be
represented by the energy of the wavelet coefficients of each
layer, which is the wavelet energy coefficient:

Ef = Eak +

k∑
j=1

Edj(j = 1, 2, · · ·, k, k ∈ Z ) (7)

In the equation:Ef represents the total signal energy;Eak is
the energy of the approximate wavelet coefficients for k-scale
decomposition; Edj is the energy of the j-level detail wavelet
coefficients.

e: GINI COEFFICIENT FEATURE EXTRACTION
When a rolling bearing malfunctions, the energy of its vibra-
tion signal is usually concentrated at certain positions in the
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TABLE 2. Expression of frequency domain characteristic parameters [50].

signal sequence, and the Gini coefficient has good resistance
to random strong pulse signals in the signal. Therefore, the
Gini coefficient, which is not sensitive to random pulse sig-
nals and can measure fault characteristics, is used to char-
acterize the development trend of rolling bearing faults and
evaluate the health status. Specifically, the definition of Gini
coefficient is

G = 1 − 2
L∑
j=1

xj
∥x∥

(
L − j+ 0.5

L
) (8)

Among them, x = (x1, x2, · · ·, xL).
In the formula: G is the value of Gini coefficient; x is

the vector of the vibration acceleration signal xj sorted in
ascending order of amplitude; L is the total length of vector x;
∥x∥ is the sum of the absolute values of all amplitudes of x.

f: STEPS FOR CONSTRUCTING HIGH-DIMENSIONAL
FEATURES
Extracting fault feature information frommultiple fields such
as time domain, frequency domain, energy coefficient, energy
entropy, and Gini coefficient can comprehensively explore
the state information and inherent characteristics of the orig-
inal vibration signal. Here are the steps for extracting high-
dimensional features.
Step 1: Set the sampling frequency fs = 12000, sample

length N = 2000, and sample division into [smp1, smp2,
. . . , smp60], totaling 60 samples.

Step 2: Extract 16 time-domain features for each sample,
namely equation (9).

[TF1,TF2, . . . ,TF16] (9)

Extract 13 frequency domain features, namely equation
(10).

[FF1,FF2, . . . ,FF13] (10)

Step 3: By using the NEEEMD decomposition method,
where each smpi sample is decomposed into [IMF1, IMF2,
. . . , IMF8], the wavelet packet energy entropy features,
small packet energy coefficient features, and Gini coefficient
features of each IMFi are extracted, namely equation (11).

[WPEEi, SPECi,GINIi] . (11)

Construct the multi domain features of 8 IMF as the
time-frequency domain features of each a sample, namely
equation (12).

MDFi =

WPEE1
i SPEC

1
i GINI

1
i

...
...

...

WPEE8
i SPEC

8
i GINI

8
i

 (12)

Step 4: Finally, a high-dimensional feature set GTCdata
is constructed based on the time-domain, frequency-domain,
and time-frequency features of each sample smpi, where
each feature is considered as its element. Among them, data
MDFi represents the mixed domain features of sample smpi.
The characteristic dimension of matrix GTCdata is 60 ×

(16+13+3 × 8). TFi×16 is the 16-dimensional time-domain
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feature vector of sample i, FFi×13 is the 13-dimensional
frequency-domain feature vector of sample i,WPEEi×8 is the
8-dimensional wavelet packet energy entropy feature of sam-
ple i, SPECi×8 is the 8-dimensional small packet energy coef-
ficient feature of sample i, and GINIi×8 is the 8-dimensional
Gini coefficient feature of sample i. Equations (13) and (14),
as shown at the bottom of the page.

B. ROBUST UNSUPERVISED FEATURE SELECTION WITH
LOCAL PRESERVATION
In this paper, we propose a Robust Unsupervised Feature
Selection with Local Preservation (RUSLP) method that uti-
lizes matrix decomposition while preserving local feature
information. Inspired by matrix decomposition technology,
the objective matrix is decomposed into two different matri-
ces, namely the parametermatrix and the basismatrix. Apply-
ing orthogonal constraints on these two matrices to learn
discriminative clustering labels for the projection data of the
target matrix enhances the feature importance information in
the projectionmatrix to select more relevant features. The key
steps of RUSLP are as follows:

Requirements: data matrix X ∈ Rn×d , Laplacian matrix
L ∈ Rn×n, parameters α, λ, γ, µ.
Step 1: Initialize: t = 0, µ = 10−6, ∈= 10−2 and Wt ,Gt ,

Ft ,Ht .
Step 2: Repeat steps 3, 4, 5, 6, 7, and 8.
Step 3: Update Gt+1 and Ht+1 through algorithm 1.
Step 4:When equation (15) satisfied,

Qii =
1

2
√
wTi wi+ ∈

. (15)

according to equation (16),

W = (2αXTLX + µXTX + 2λQ)−1XT (µE + µGFT − Y ).

(16)

updated equation (17).

Wt+1 = (2αXTLX + µXTX + 2λQ)−1XT

× (µEt + µGt+1FTt − Yt ). (17)

Step 5:When equation (18) satisfied,

GTt (XWt+1 − Et + Yt/µ) = UF ImV T
F (18)

according to equation (19),

F = VF Im,cUF (19)

updated equation (20).

Ft+1 = VF Im,cUT
F . (20)

Step 6:When equation (21) (22) satisfied,

J = XW − GFT + Y/µ. (21)

Mii =
1

2
√
eTi ei+ ∈

(22)

according to equation (23),

E = µ(2M + µI )−1J (23)

updated equation (24).

Et+1 = µ(2M + µI )−1J (24)

Step 7: By equation (25),

Yt+1 = Yt + (Et+1 + XWt+1 + Gt+1FTt+1) (25)

updated multiplier.
Step 8: t = t + 1.
Step 9:Check if the convergence condition meets equation

(26) or equation (27).

∥1ε(Wt ,Gt ,Ft ,Et ,Yt )∥ ≤∈ (26)

t ≥ T (27)

If satisfied, ensure that the feature
∥∥W i

t

∥∥ is selected based
on the maximum value. When i = 1, . . . , d , it is sorted
in descending order and ends. More detailed information
on RUSLP and parameter selection methods based on grid
search strategies can be found in reference [51].

It is worth noting that this new feature extraction strategy
has excellent noise suppression performance and periodic
impact extraction performance. There are three specific rea-
sons for this. Firstly, NEEEMD can suppress some white
noise in the vibration signal by subtracting the intermediate
frequency of the same white noise from the final intermediate
frequency during the decomposition process. Second, dur-
ing the feature extraction of wavelet packet energy entropy
and packet energy coefficient, wavelet packet decompo-
sition can suppress some noise, and the Gini coefficient

GTCdata =


MDF1
MDF2

...

MDFi

 . (13)

GTCdata =


TF1×16
TF2×16

...

TF60×16

FF1×13
FF2×13

...

FF60×13

WPEE1×8
WPEE2×8

...

WPEE60×8

SPEC1×8
SPEC2×8

...

SPEC60×8

GINI1×8
GINI2×8

...

GINI60×8


60×(16+13+8+8+8)

(14)

113972 VOLUME 11, 2023



R. Lu et al.: Novel Fault Diagnosis Method Based on NEEEMD-RUSLP Feature Selection and BTLSTSVM

can extract the periodic impact characteristics contained
in IMFs. Thirdly, the RUSLP feature selection strategy
enhances the importance information in the projection matrix
to select more relevant features. Therefore, the proposed
dimensionality reduction feature extraction strategy can sup-
press noise in vibration signals and extract effective low
dimensional fault features, and the proposed method also
has great potential for application in fault feature extraction
under white noise, pink noise, and salt and pepper noise
backgrounds.

C. BINARY TREE LEAST SQUARES TWIN SUPPORT
VECTOR MACHINE
When TSVM solves dual problems, (GTG)−1 and (HTH )−1

must exist or GTG and HTH must be non-singular, but
not both of these conditions can be met. Arun Kumar M
used a quadratic loss function to replace the hinge loss,
and used a convex linear equation to replace the convex
Quadratic Programming Problem (QPP) of TSVM, and pro-
posed LSTSVM [143]. LSTSVM did not require any opti-
mizer, has better computational efficiency than TSVM and
SVM, and has stronger classification performance.

1) NONLINEAR LSTSVM
The purpose of LSTSVM is to find two nonparallel kernel
hyperplanes and make one hyperplane as close to one type of
sample as possible and away from the other type of sample.
The target core hyperplane is as follows:

K
(
xT ,C t

)
w1 + b = 0 and K

(
xT ,CT

)
w2 + b2 = 0

(28)

where A ∈ Rm1×n is m1 positive samples, B ∈ Rm2×n

is m2 negative samples, K
(
xT ,CT

)
is the kernel function,

C = [A;B], wi ∈ Rn are the normal vector of the hyperplane,
and bi is the offset. The optimization problem for nonlinear
LSTSVM is :

min
w1,b1,ξ2

1
2

∥∥∥K (
A,CT

)
w1 + e1b1

∥∥∥2 +
c1
2

ξT2 ξ2

s.t. − (K (B,CT )w1 + e2b1) + ξ2 = e2 (29)

min
w2,b2,ξ1

1
2

∥∥∥K (
B,CT

)
w2 + e2b2

∥∥∥2 +
c2
2

ξT1 ξ1

s.t. − (K (A,CT )w2 + e1b2) + ξ1 = e1 (30)

Among them, c1, c2 are penalty parameters, ξ1 and ξ2 are
relaxation variables, e1 and e2 are vectors with each element
being 1. By introducing equality constraints into the objec-
tive function, the following optimization problems without
constrained optimization can be obtained:

min
w1,b1

1
2

∥∥∥K (A,CT )w1 + e1b1
∥∥∥2

+
c1
2
(e2 + K (B,CT )w1 + e2b1)T

× (e2 + K (B,CT )w1 + e2b1) (31)

min
w2,b2

1
2

∥∥∥K (B,CT )w2 + e2b2
∥∥∥2

+
c2
2
(e1 − K (A,CT )w2 − e1b2)T

× (e1 − K (A,CT )w2 − e1b2) (32)

Order KerE = [K (A,CT )e1] ∈ Rm1×(m+1), KerF =

[K (B,CT )e2] ∈ Rm2×(m+1). The above equation calculates
the partial derivatives of w1 and b1, w2 and b2 respectively,
and the solutions of Quadratic programming problems (29)
and (30) can be obtained by constructing linear equations.

v+ = −(KerFT · KerF + (1/c1)KerET · KerE)−1
· KerFT e2

(33)

v− = −(KerET · KerE + (1/c2)KerFT · KerF)−1
· KerET e1

(34)

Order KerE =
[
K (A,CT )e1

]
∈ Rm1×(m+1), KerF =[

K (B,CT )e2
]

∈ Rm2×(m+1), in the linear case, the solutions
for OPP (31) and (32) are obtained:

(KerET · KerE + c1KerFT · KerF) · v+ = −c1KerFT · e2
(35)

(KerFT · KerF + c2KerET · KerE) · v− = −c2KerET · e1
(36)

where v+ = [w1; b1] ∈ Rm+1, v− = [w2; b2] ∈ Rm+1,
Simplify (35) and (36) to obtain:

v+ = −(KerFT · KerF + (1/c1)KerET · KerE)−1
· KerFT e2

(37)

v− = −(KerET · KerE + (1/c2)KerFT · KerF)−1
· KerET e1

(38)

Nonlinear LSTSVM requires solving the inverse of a
matrix with size (l + 1) × (l + 1) twice. Then, using the
Sherman-Morr-rison-Woodbury (SMW) formula, the nonlin-
ear LSTSVM can be solved by the inverse of three matrices
with dimensions less than (l + 1) × (l + 1).
1) When m1 < m2, rewrite (37) and (38) after SMW as

follows:

v+ = −(Y − Y · KerET (c1 · I + KerE · Y · KerET )−1

KerE · Y )KerFT e2 (39)

v− = −c2(Y − Y · KerET (I/c2 + KerE · Y · KerET )−1

KerE · Y )KerET e1 (40)

where Y = (KerFT · KerF)−1. Using TSVM as a reference
to introduce the regularization term εI , ε > 0 in Y to solve
the possible ill-posed inverse problem KerFT · KerF .

Y =
1
ε
(I − KerFT (εI + KerF · KerFT )−1KerF). (41)

2) When m2 < m1, rewrite (37) and (38) after SMW as
follows:

v+ = −c1(Z − Z · KerFT (I/c1 + KerF · Z · KerFT )−1

KerF · Z )KerFT e2 (42)
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FIGURE 1. BT based multi-classification LSTSVM model BTLSTSVM.

v− = (Z − Z · KerFT (c2 · I + KerF · Z · KerFT )−1

KerF · Z )KerFT e1 (43)

Z =
1
ε
(I − KerET (εI + KerE · KerET )−1KerE). (44)

where v+ = [w1; b1] ∈ Rm+1, v− = [w2; b2] ∈ Rm+1.
Once w1 and b1, w2 and b2 are obtained, two nonparallel
hyperplanes (28) can be solved. By the following decision
formula (45), the new data point x ∈ Rn is divided into a
positive classW1 or a negative classW2, where |·| represents
the distance from the data point to the core hyperplane.

k = argmin
k=1,2

{

∣∣∣K (x,CT )w1 + b1
∣∣∣ , ∣∣∣K (

x,CT
)
w2 + b2

∣∣∣}
x ∈ Wk (45)

The steps of non-linear LSTSVM are as follows:
Step 1: Input the positive sample A ∈ Rm1×n and negative

sample B ∈ Rm2×n, and select the appropriate kernel func-
tion K ;
Step 2: Define KerE = [K (A,CT )e1] ∈ Rm1×(m+1) and

KerF = [K (B,CT )e2] ∈ Rm2×(m+1);
Step 3: Select the penalty parameter c1, c2 by verification;
Step 4: Ifm1 < m2, the parametersw1, b1 andw2, b2 of the

two hyperplanes are determined by (39) and (40), otherwise
w1, b1 and w2, b2 are determined by (42) and (43);
Step 5: Calculate the distances

∣∣K (x,CT )w1 + b1
∣∣ and∣∣K (x,CT )w2 + b2

∣∣ from the new sample x ∈ Rn to the two
hyperplanes and assign this sample to the positive or negative
class by (45).

2) MULTI-CLASSIFICATION LSTSVM
To obtain better fault diagnosis results, we extend non-linear
LSTSVM to multi-classification LSTSVM through binary
tree (BT) strategy according to different fault diagnosis
requirements and use it for fault diagnosis of mechanical
equipment. If the training set is:

T = {(x1, y1), (x2, y2), . . . , (xL , yL)} (46)

where xi ∈ Rn, i = 1, 2, . . . ,L is the data point of n dimen-
sional real space Rn, yi ∈ {1, 2, . . . ,K } is the category label,
and L is the number of samples. In this section, LSTSVM is
extended to a multi-classification model through the binary
tree (BT), as shown in Figure 1.

3) BTLSTSVM
Assuming that the total number of categories is K , BTL-
STSVM constructs K − 1 binary classifiers and the i clas-
sifier identifies Class i (+1 class) data and Class [i+ 1,K ]
(−1 class) data. Class i data is Xi ∈ Rli×n, and Class
[i+ 1,K ] data is Y ∈ R(l−l′i)×n, where l ′i is the number
of samples with class labels less than or equal to i, that is,
Yi = [(Xi+1)T , (Xi+2)T , . . . , (XK )T ]T . Therefore, the farther
away the classifier is from the root node, the fewer negative
class samples it has, and the higher its efficiency.
Let the i hyperplane be fi = (wix)+bi = 0, the K −1 non-

parallel hyperplanes of non-linear BTLSTSVM are solved
according to the above training process, and the category is
determined according to the distance. The classifier trained
by the BT model is farther away from the root node, the
smaller the number of negative samples and the higher the
efficiency. BTLSTSVM combines the advantages of the high
computational efficiency of BT and the high classification
accuracy of LSTSVM, and BT trains fewer classifiers and
does not have the problem of inseparable regions. The param-
eter settings of multi classification model such as BTL-
STSVM can be found in the paper [52], and the experimental
results also show that the parameter settings have little effect
on the recognition accuracy of multi-classification LSTSVM.

III. A NEW FAULT DIAGNOSIS METHOD BASED ON
NEEEMD-RUSLP FEATURE SELECTION AND BTLSTSVM
We extract mixed fault features based on NEEEMD and
perform more compact feature selection through RUSLP,
and low-dimensional and effective feature space is obtained.
To accurately identify different fault types and fault degrees
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FIGURE 2. Experimental flow chart.

FIGURE 3. Signal decomposition comparison diagram.

of bearings, we construct a BTLSTSVM multi-classification
model. The detailed steps are as follows:

1) Firstly, the vibration signals of each state of the rolling
bearing are collected through the acceleration sensor
(one set of data each from Case Western Reserve
University and the University of Ottawa); Then, the
vibration signals of each state of the rolling bearing are
divided into 60 non-overlapping samples (each sample
size is 2000) with the same length.

2) 16 time-domain features and 13 frequency-domain
features of 60 original vibration signal samples are
extracted respectively.

3) The signal decomposition method based on NEEEMD
is constructed to extract 8 IMFs of the original vibration
signal; Then, the wavelet packet energy entropy, packet
energy coefficient and Gini coefficient extracted from
each IMF are constructed as the time-frequency domain
features of the signal.

4) The time-domain features, frequency-domain features,
and time-frequency domain features extracted from the
signal samples are constructed as a mixed fault feature
vector set, where the maximum dimension of the fea-
ture vector set is D = 53, and the size of the feature
matrix for each state is 60·53.
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TABLE 3. Feature extraction time.

5) The RULSP algorithm is constructed to select the opti-
mal low-dimensional features from the fault feature
vector set, and the optimal low-dimensional training
sample dataset and low-dimensional test sample dataset
can be obtained.

6) 600 low-dimensional feature samples are divided into
300 training samples and 300 test samples, and the
training set is input into the BTLSTSVM classifier to
train themodel. The trained BTLSTSVMmodel is used
for fault pattern recognition of the test samples.

To verify the effectiveness of the new fault diagnosis
method based on NEEEMD-RUSLP feature selection and
BTLSTSVM, the experiment is organized by the flow chart
shown in Figure 2.

1) To verify the effectiveness of NEEEMD in fault feature
extraction, we simultaneously extract EMD and VMD
and compare the fault diagnosis results with NEEEMD.

2) To verify the effectiveness of the RUSLP dimensional-
ity reduction method, we compare the fault diagnosis
results of LS, UDFS, MCFS and RUSLP.

3) To verify the effectiveness of the multi-classification
BTLSTSVMmodel in fault identification, we compare
the fault diagnosis results of SVM, BBN, ELM and
BTLSTSVM.

IV. EXPERIMENTAL VERIFICATION
A. SIMULATION SIGNAL VERIFICATION
In the feature extraction stage, the vibration frequency of the
simulation signal is used to carry out experiments, and the
following bearing simulation signal is constructed.

x(t) = y0e−2π fnζ t sin(2π fn
√
1 − ζ 2t) (47)

Among them, the natural frequency fn = 3000 Hz, displace-
ment constant y0 = 2.5, damping coefficient ζ = 0.1, impact
failure period T= 0.00625 s (characteristic frequency fchthe =

0.00625 s = 160 Hz), sampling frequency fs = 12KHz, and
number of data points N = 4096 of the bearing. Mean-
while, 5dB of white noise is added to the fault simulation
signal. The parameters based on the NEEEMD method are
num_IMF = 8,NR = 10,NstdMax = 0.2. In order to verify
the performance of NEEEMD in characterizing bearing fault
features, we also extract the fault features of EMD and VMD
from each signal sample for comparative analysis.

The original signal is decomposed into four IMFs by EMD,
VMD and NEEEMD, and the results are shown in Figure 3.
The signal decomposed by EMD does not contain strong
periodicity and contains messy noise components, that is, the
performance of EMD filtering noise is poor. In the signal

decomposed by VMD, IMF1∼IMF2 have good periodicity
and smooth trend, but the noise component in IMF3 still
exists, that is, VMD cannot filter the noise component in
the signal well. In the signals decomposed by NEEEMD,
IMF2∼IMF3 contain obvious periodic characteristics, and
the noise component in IMF1 is suppressed, which can better
eliminate the influence of the noise proposed in this paper
on fault extraction. The three signal decomposition methods
used in this paper and the feature extraction time are shown
in Table 3. EMD consumes the least time but the signal
decomposition performance is not high, and the performance
of VMD signal decomposition is general and consumes up to
70 times that of the NEEEMD method. NEEEMD not only
effectively suppresses noise and extracts vibration shocks
from signals, but also consumes relatively less time. There-
fore, this paper constructs time-frequency domain features
through NEEEMD to ensure the accuracy and efficiency of
feature extraction.

B. CASE WESTERN RESERVE BEARING FAULT DIAGNOSIS
EXPERIMENT
1) INTRODUCTION TO THE EXPERIMENTAL PLATFORM
The experimental platform for rolling bearings at Case
Western Reserve University is shown in Figure 4.

FIGURE 4. Case western reserve university rolling bearing experimental
platform [37].

The rolling bearing type is 6205-2RSJEMSKF, the motor
speed is 1797rpm (conversion frequency is 1797/60 Hz =

29.53 Hz), the sampling frequency of the system is 12 KHz,
and the experimental data length is 2048. The parameters are
shown in Table 4.
The vibration signal of the fan end bearing at the motor

speed of 1797 r/min is used as the experimental data. Each
set of data has 120,000 sampling points, and 2000 sam-
pling points are taken for each sample. Therefore, there are
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TABLE 4. Structural parameters of skf 6205 bearing [37].

60 sample data for each group of faults and 10 sets of fault
data for a total of 600 samples. Among them, 1∼60 are
normal data; 61∼120, 121∼180, 181∼240 are inner ring fault
data; 241∼300, 301∼360, 361∼420 are outer ring fault data;
421∼480, 481∼540, 541∼600 are rolling element fault data.
The data description is shown in Table 5. The three fault
diameters of the inner ring, outer ring and rolling element
are 0.007 inches, 0.014 inches and 0.021 inches, respectively.
The sample labels for the 10 types of feature vectors are 1, 2,
3, 4, 5, 6, 7, 8, 9 and 10.

The time-domain waveform of the vibration signal is
shown in Figure 5, and it can be seen that the signals IR07,
IR21, OR07, OR14 andOR21 have obvious periodic impacts,
and the amplitude difference between the signals is obvious.
The impact characteristics and cycles of the remaining signals
are not obvious, so it is necessary to diagnose the bearing
fault type and fault degree through feature extraction and fault
diagnosis model.

2) FAULT FEATURE EXTRACTION
The bearing vibration signal at the motor speed of Case
Western Reserve University at 1797 r/min is used as exper-
imental data, and the data description refers to the exper-
imental introduction in this section. Firstly, the vibration
signal of each state is divided into 60 non-overlapping sam-
ples with a length of 2000. Then, the time-domain and
frequency-domain characteristics of each original bearing
vibration signal are extracted. Secondly, in order to construct
the time-frequency domain characteristics of the vibration
signal, the wavelet packet energy entropy, packet energy
coefficient and Gini coefficient are extracted from the IMF
obtained by NEEEMD decomposition. Finally, the extracted
time-domain, frequency-domain, and time-frequency domain
features are constructed into a fault feature vector set. The
obtained high-dimensional feature matrix size is 600·53,
and the maximum dimension of is D = 53. The distribu-
tion of feature samples under each dimension D is shown
in Figure 6 (a) and (b).

The distribution of feature samples in partial dimension D
is shown in Figure 6(b). In Figure 6(a), the mixed features
of different fault types have differences in dimension D, but
some features of the same fault type deviate from most of
the features of that type, that is, there are outliers. As shown
in Figure 6(b), when dimension D=2, the mixed features of
10 bearing fault states are separable to a certain extent, but the
edges of the mixed features of various fault states are fuzzy.
When dimension D = 20, the mixed features of various fault

states overlap, and the calculated feature values are clustered
below. When dimension D=38, the mixed characteristics of
various fault states are chaotic and scattered.When dimension
D=46, the mixed features of various fault states overlap, and
the calculated eigenvalues are clustered above. Therefore, the
mixed features obtained by the original extraction are difficult
to find the dividing line for dividing sample categories under
most dimensions, resulting in low sample separability. There-
fore, this paper proposes RUSLP to sort and select hybrid
features, filter out features with small correlation to reduce
feature redundancy, and improve fault diagnosis reliability.

3) FAULT FEATURE SELECTION
In order to verify the influence of RUSLP dimension-
ality reduction method on the diagnostic performance of
bearing faults, using the NEEEMD decomposition method
and BTLSTSVM multi-classification, we compare the accu-
racy of RUSLP dimensionality reduction method with LS,
MCFS and UDFS methods under the same mixed high-
dimensional fault feature vector set and the same parameters.
The parameters of BTLSTSVMmulti-classification are set to
OptPara.c1=0.25, OptPara.c2=4, OptParaKerfPara.pars=4.
The results are shown in Figure 7.

It can be seen that the fault diagnosis accuracy without the
dimension reduction method can reach 95% in 8 ≤ x ≤ 19
interval. However, as the feature dimension gradually
increases, the fault diagnosis accuracy continues to decrease
to 10%. In addition to the LS method, other dimensional-
ity reduction methods can also maintain high fault diagno-
sis accuracy when the dimension is increasing. Therefore,
it is necessary to select an effective dimensionality reduction
method to select more compact low-dimensional fault fea-
tures for high-dimensional fault feature vector sets. For the
model constructed in this paper, except for LS, the accuracy
of fault diagnosis can reach≥ 95%when the other dimension
reduction methods are in 11 ≤ x ≤ 39 interval. Table 6
shows the highest accuracy obtained by each dimensionality
reduction method in Figure 7, and the corresponding feature
dimension x. When using the LS dimensionality reduction
method, as the feature dimension continues to increase, the
fault diagnosis accuracy decreases from 63% to 10%, indi-
cating that the LS dimensionality reduction method is not
suitable for the model constructed in this paper. However,
when x = 31, the fault diagnosis accuracy of 96% can be
obtained by using the MCFS dimension reduction method.
When x = 26, the fault diagnosis accuracy of 96.67% can
be obtained by using the UDFS dimension reduction method.
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TABLE 5. Bearing vibration signal description [37].

FIGURE 5. Time domain waveform of vibration signal [37].

When x = 39, the fault diagnosis accuracy of 97% can be
obtained by using the RUSLP dimension reduction method.
Therefore, for the model constructed in this paper, the use of
the RUSLP dimensionality reductionmethod can improve the
fault diagnosis accuracy of bearings.

When the LS, MCFS, UDFS, and RUSLP methods extract
the first 1 dimensional, first 31 dimensional, first 26 dimen-
sional, and first 39 dimensional features, respectively, the
resulting confusion matrix is shown in Figure 8. If the

LS dimensionality reduction method is used, there is a
false diagnosis between the seven states of IR07, IR14,
IR21, OR07, OR14, B07 and B14, and the fault cate-
gories are difficult to be accurately distinguished. If the
MCFS dimensionality reduction method is used, 3% of B14
samples will be wrongly diagnosed as IR14 status. If the
UDFS dimensionality reduction method is used, 3% of B14
samples will be wrongly diagnosed as IR14 state. If the
RUSLP dimensionality reduction method is used, samples of
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FIGURE 6. Distribution of characteristic samples for Casey Reservoir bearings with different dimensions D.

FIGURE 7. Fault diagnosis accuracy under different dimensionality reduction methods.

10 different states can be correctly diagnosed. The experi-
mental results show that the RUSLP dimensionality reduction
method can effectively improve the accuracy of bearing fault
diagnosis.

4) FAULT IDENTIFICATION
To verify the effect of the BT-LSTSVM multi-classifier
method on the bearing fault diagnosis performance, we use
the NEEEMD decomposition method and the BT-LSTSVM
multi-classifier under the condition of the same mixed high-
dimensional fault feature vector set and the same parameters.
The accuracy of BT-LSTSVM multi-classifier is compared
with SVM, BPNN and ELM methods. The parameters
of the RUSLP-based method are set as X= data matrix,

G= encoding matrix, F= orthogonal basis matrix, and
W= feature selection matrix.

The results are shown in Figure 9. It can be seen that,
except for the SVM and BPNN methods, both the ELM and
BT-LSTSVM classification methods can achieve the accu-
racy of ≥ 95% in the interval 3 ≤ x ≤ 19. Table 7
shows the highest accuracy obtained by each classification
method in Figure 9 and the corresponding feature dimen-
sion x. SVM extracts the first 12 dimensional features, and
the accuracy can be 87%. BPNN extracts the first 25 dimen-
sional features with an accuracy of 94%. ELM extracts the
first three-dimensional features with an accuracy of 95.33%.
BT-LSTSVM extracts the first 19 dimensional features
with an accuracy of 97.67%. Therefore, the fault diagnosis
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TABLE 6. The highest accuracy and corresponding feature dimension x obtained by different dimensionality reduction methods.

FIGURE 8. Confusion matrix Obtained by different dimension reduction methods taking the dimension with the highest accuracy.

accuracy is improved by 10.67% under BT-LSTSVM
dimension reduction method.

When the SVM, BPNN, ELM, and BT-LSTSVMmethods
extract the first 12 dimensions, the first 25 dimensions, the
first 3 dimensions, and the first 19 dimensions respectively,
the confusion matrix obtained is shown in Figure 10. If the
SVM recognition model is used, 10% of B14 samples will be
incorrectly diagnosed as IR14, 10% of B14 samples will be
incorrectly diagnosed as B07, and 3% of B14 samples will
be incorrectly diagnosed as B21. 3% of B21 samples will
be incorrectly diagnosed as IR07, 3% of B21 samples will be
incorrectly diagnosed as IR14, and 3%of B21 samples will be

incorrectly diagnosed as B07. If the BPNN is used to identify
the model, there is a misdiagnosis between IR14, OR14,
OR21, B07, B14 and B21. If the ELM recognition model
is used, 3% of B14 samples will be incorrectly diagnosed
as IR14,20% of B14 samples will be incorrectly diagnosed as
OR14, 3% of B14 samples will be incorrectly diagnosed as
B07, and 3% of B14 samples will be incorrectly diagnosed
as B21. 20% of B21 samples will be incorrectly diagnosed as
OR14, 7% of B21 samples will be incorrectly diagnosed as
B07, and 7% of B21 samples will be incorrectly diagnosed
as B14. If the BT-LSTSVM multi-classifier is used, only
3% of B07 samples are incorrectly diagnosed as OR14.

113980 VOLUME 11, 2023



R. Lu et al.: Novel Fault Diagnosis Method Based on NEEEMD-RUSLP Feature Selection and BTLSTSVM

FIGURE 9. Fault diagnosis accuracy of different classification methods.

The experimental results show that the BT-LSTSVM multi-
classifier can effectively improve the accuracy of bearing
fault diagnosis.

C. BEARING FAULT DIAGNOSIS EXPERIMENT OF
UNIVERSITY OF OTTAWA
1) INTRODUCTION TO THE EXPERIMENTAL PLATFORM
Ottawa data is carried out on the Spectra Quest Mechanical
Failure Simulator (MFS-PK5M). The experimental device is
shown in Figure 11.

The simulator is a data set of bearing vibration collected
under the condition of time varying speed. The health status
of this bearing includes health, failure and inner and outer
seat defects. The running speed conditions of the data set
include increasing speed, decreasing speed, increasing then
decreasing speed, and decreasing then increasing speed (the
data set used in this paper is running at increasing speed).
The bearing is driven by a motor and the speed is controlled
by an AC drive. The experimental platform is equipped with
two ER16K ball bearings to support the shaft, the healthy
one on the left and the experimental one on the right, which
are replaced by bearings with different health conditions.
The accelerometer (ICP accelerometer, model 623C01) is
placed on the housing of the test bearing to collect vibration
data. In addition, an incremental encoder (EPC model 775)
was installed to measure shaft speed. Bearing faults can
be detected and diagnosed by observing the fault charac-
teristic frequency (FCF) in the frequency domain. For each
type of failure, it has a specific FCF, which is proportional
to the operating rotation frequency, and the coefficient is
determined by the bearing structure parameters. The struc-
tural parameters of the bearings used in the experiment are
shown in Table 8. According to the bearing parameters, the
FCF coefficient of the bearing inner ring is 5.43, that is,
BPFI=5.43. Similarly, the FCF of the bearing outer ring, the
ball passing frequency (BPFO) of the outer ring = 3.57.

The number of datasets is shown in Table 9. The data are
sampled at 200000 Hz, and the sampling duration is 10s.
For each dataset, there are two experimental settings: bearing
health condition and variable speed condition. The health
condition of bearings includes health, faults with inner ring
defects, and faults with outer ring defects. The operating
speed condition is to increase the speed. Therefore, there are
three different scenarios. In order to ensure the authenticity of
the data, three experiments are collected in each experimental
environment, and the results are in a total of nine data sets.

2) FAULT FEATURE EXTRACTION
The bearing vibration signal when the operating speed of
the Ottawa motor is increasing is taken as the experimental
data, and the data description is referred to the introduction
of the test bench in this section. Firstly, the vibration signal
of each state is divided into 60 non-overlapping samples
with a length of 2000. Then, the time-domain and frequency-
domain features of each original bearing vibration signal are
extracted. Secondly, to construct the time-frequency domain
features of the vibration signal, the wavelet packet energy
entropy, packet energy coefficient and Gini coefficient are
extracted from the IMF obtained by NEEEMD decomposi-
tion. Finally, the extracted time-domain, frequency-domain
and time-frequency domain features are constructed into a
set of fault feature vectors. The dimension of the high-
dimensional feature matrix is 180·53, and the maximum
dimension is D=53. The distribution of feature samples under
each dimension D is shown in Figure 12 (a) and (b).

In Figure 12 (a), the mixed features of different fault types
are different in dimension D, but some features of the same
fault type deviate frommost features of this type, that is, there
are outliers. As shown in Figure 12 (b), When the dimension
D= 12, the mixed features of the three fault states of the bear-
ing have a certain degree of separability, but the edges of the
mixed features of the two fault states on the right are blurred.
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TABLE 7. The highest accuracy and corresponding feature dimension x obtained by different classification methods.

FIGURE 10. The confusion matrix obtained by selecting the highest precision dimension with different classification methods.

TABLE 8. Structural parameters of bearings [53].

When the dimension D=23, samples of the same fault type
are clustered together, and the sample boundaries of different
fault types are clear. However, the result of the division is
6 categories, while the true number of fault types is only 3.
When dimension D = 31, the mixed features of various

fault states overlap and are clustered below. When dimension
D = 40, the mixed characteristics of various fault states are
chaotic and scattered. Therefore, the mixed features obtained
by the original extraction are difficult to find the dividing
line for dividing sample categories under most dimensions,
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TABLE 9. Data type description [53].

FIGURE 11. Spectra Quest mechanical fault simulator [53].

resulting in low sample separability. Therefore, this paper
proposes RUSLP to sort and select the mixed features, filter
out the features with small correlations, and improve the
reliability of fault diagnosis.

3) FAULT FEATURE SELECTION
To verify the impact of the RUSLP dimensionality reduc-
tion method on bearing fault diagnosis performance, we use
the NEEEMD decomposition method and the BT-LSTSVM
multiple classifiers to compare the accuracy of the RUSLP
dimensionality reduction method with LS, MCFS and UDFS
methods under the condition of the same mixed high-
dimensional fault feature vector set and the same param-
eters. Among them, the parameter Settings based on the
BT-LSTSVM multi-classifier are the same as above. The
results are shown in Figure 13.

It can be seen that the fault diagnosis accuracy without the
dimension reduction method can reach 98% when 6≤x≤19
interval. However, with the increase of feature dimension, the
fault diagnosis accuracy decreases to 35%. In addition to LS
and UDFS methods, other dimensionality reduction methods
can also maintain high fault diagnosis accuracy when the
dimensionality continues to increase. Therefore, it is neces-
sary to select an effective dimensionality reduction method to
select more compact low-dimensional fault features from the
high-dimensional fault feature vector set. For the model built
in this paper, except LS, the fault diagnosis accuracy of other
dimension reductionmethods can reach≥ 95% in the interval
2 ≤ x ≤ 19. Table 10 shows the highest accuracy obtained

by each dimension reduction method in Figure 13, and the
corresponding feature dimension x. When the LS dimension
reduction method is used, the fault diagnosis accuracy is
maintained near 33.34% by selecting any feature dimension.
This indicates that the LS dimension reduction method is
not suitable for the model constructed in this paper. How-
ever, when x = 10, the fault diagnosis accuracy of 100%
can be obtained by using the MCFS dimension reduction
method.When x = 2, the UDFS dimension reductionmethod
can achieve 99.56% of the fault diagnosis accuracy. When
x = 7,100% fault diagnosis accuracy can be obtained using
the RUSLP dimensionality reduction method. Therefore, for
the model constructed in this paper, the other dimensional-
ity reduction methods, except the LS dimensionality reduc-
tion method, obtain high fault diagnosis accuracy. However,
MCFS can achieve 100% fault diagnosis accuracy only by
selecting the first 10 dimensional features, and RUSLP can
achieve 100% fault diagnosis accuracy only by selecting the
first 7 dimensional features. It shows that RUSLP can well
characterize the characteristics of bearing faults with fewer
dimensions. The data from theUniversity of Ottawa can again
demonstrate the superiority of the dimensionality reduction
method cited in this paper by RUSLP.

If the LS dimension reduction method is used, 65% of the
normal state samples will be incorrectly diagnosed as inner
loop fault state, and the fault mode is difficult to be accurately
identified. If the MCFS dimensionality reduction method is
used, 96% of the normal state samples will be incorrectly
diagnosed as the inner ring fault state, and 1% of the inner
ring fault samples will be incorrectly diagnosed as the outer
ring fault state. If the UDFS dimensionality reduction method
is used, 94% of the inner ring fault samples will be incorrectly
diagnosed as the outer ring fault state.When using the RUSLP
dimensionality reduction method, only 3% of inner ring fault
samples will be incorrectly diagnosed as outer ring faults.
The experimental results show that the RUSLP can effec-
tively solve the problem of feature confusion and improve the
accuracy of fault diagnosis.

4) FAULT IDENTIFICATION
To verify the impact of the BT-LSTSVM multi-classifier
method on bearing fault diagnosis performance, the
NEEEMD decomposition method and the BT-LSTSVM
multi- classifier are used. Under the condition of the same
mixed high-dimensional fault feature vector set and the same
parameters, we compare the accuracy of the BT-LSTSSVM
multi- classifier with SVM, BPNN and ELM methods.
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FIGURE 12. Distribution of characteristic samples of Ottawa bearings with different dimension D.

FIGURE 13. Fault diagnosis accuracy under different dimensionality reduction methods.

The parameter settings based on the RUSLP method are the
same as above. The results are shown in Figure 15.

It can be seen that except for SVM, the other classification
methods can achieve the accuracy of≥ 95%when the interval
7 ≤ x ≤ 21 is used. Table 11 shows the highest accuracy
obtained by each classification method in Figure 15 and the
corresponding feature dimension x. SVM can extract the
first 14 dimensional features with an accuracy of 89.56%.
BPNN can extract the first 20 dimensional features with an
accuracy of 98.67%. ELM can extract the first 15 dimen-
sional features with an accuracy of 97.56%. BT-LSTSVMcan
extract the first nine dimensional features with an accuracy
of 99.56%. Therefore, under the BT-LSTSVM dimension

reduction method, the fault diagnosis accuracy is improved
by 10%.

When the SVM, BPNN, ELM and BT-LSTSVM respec-
tively extract the first 14, 20, 15 and 9 dimensions of features,
the confusion matrix is shown in Figure 16.

When LS, MCFS, UDFS, and RUSLP methods extract the
first 1, 10, 2, and 7 dimensions of features respectively, the
Confusion matrix obtained is shown in Figure 14.

If the SVM recognition model is used, 18% of the normal
state samples will be incorrectly diagnosed as the outer ring
fault state. If the BPNN identification model is used, 11% of
the normal state samples will be incorrectly diagnosed as the
inner circle fault state, and 18% of the normal state samples
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TABLE 10. The highest accuracy and corresponding feature dimension x obtained by different dimensionality reduction methods.

FIGURE 14. Confusion matrix Obtained by different dimension reduction methods taking the dimension with the highest
accuracy.

TABLE 11. The highest accuracy and corresponding feature dimension x obtained by different classification methods.

will be incorrectly diagnosed as the outer circle fault state.
If the ELM identification model is used, 21% of inner loop
fault samples will be incorrectly diagnosed as normal. If the
BTLSTSVM multi-classifier is used, only 8% of the normal
state samples are incorrectly diagnosed as the outer circle
fault state, and only 3% of the inner circle fault samples are
incorrectly diagnosed as the normal state. The experimental
results show that the BT-LSTSVMmulti-classifier can effec-
tively improve the accuracy of bearing fault diagnosis.

D. CHECK VALVE FAULT DIAGNOSIS EXPERIMENT
1) INTRODUCTION TO THE EXPERIMENTAL PLATFORM
Check valves operate in complex slurry conveying envi-
ronments, and the spool is continuously affected by slurry
flushing and its own spring system, so the vibration signal
is generally composed of fault signal, multi-part vibration
coupling signal and background noise. In this experiment, the
vibration signal acquisition system of each state of the check
valve is shown in Figure 17.
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FIGURE 15. Fault diagnosis accuracy under different classification methods.

FIGURE 16. Confusion matrix obtained by selecting the highest precision dimension with different classification methods.

The red circle marks six PCB 352C33 accelerometers
with a sensitivity of 100 mV/g, fixed to the housing of six
check valves. The PCB 352C33 sensor is connected to the
PS PXI-3342 Type 8-channel data acquisition card via the
type 002C10 BNC high shielded wire, as shown in the blue

transmission line in the figure, as shown in Figure 17(d).
The resolution during data transmission is 24 bit, and the
transmission rate is up to 204.8 ks/s. We collect vibration
data through PXI-3342 data acquisition card, of which chan-
nels 0, 2 and 4 collect vibration signals in the Z direction of
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FIGURE 17. Sensor measuring points and data acquisition platform.

the #1, #2 and #3 feed valves respectively, and channels 1,
3 and 5 collect vibration signals in the Z direction of #1,
#2 and #3 discharge valves respectively, with a sampling
frequency of 2560 Hz and a single channel data length of
76800 points. Among the acquired signals, the time-domain
waveforms of a random set of vibration signals with nor-
mal state, stuck valve failure, and wear fault are shown
in Figure 18.

FIGURE 18. Faulty check valve and replaced check valve.

2) FAULT FEATURE EXTRACTION
The vibration signal of the check valve in the actual work-
ing condition is used as the experimental data, and the
data description refers to the experimental introduction in
this section. First, the vibration signal of each state of
the check valve is divided into 60 non-overlapping sam-
ples of length 1280. Then, the time-domain, frequency-
domain characteristics of each original bearing vibration
signal are extracted. Secondly, in order to construct the
time-frequency domain characteristics of the vibration sig-
nal, the wavelet packet energy entropy, packet energy coef-
ficient and Gini coefficient are extracted from the IMF
obtained by NEEEMD decomposition. Finally, the extracted

time-domain, frequency-domain, and time-frequency domain
features are constructed into a fault feature vector set, and
the obtained high-dimensional feature matrix size is 180·53,
and the maximum dimension D=53. The distribution of
characteristic samples under each dimension D is shown
in Figure 19 (a) and (b).

In Figure 19 (a), the mixed characteristics of different fault
types differ in dimension D, but some features of the same
fault type deviate frommost of the characteristics of this type,
that is, there are outliers. As shown in Figure 19 (b), when the
dimension D= 18, the mixed characteristics of the three fault
states of the bearing have a certain degree of separability, but
the edges of the mixed characteristics of the two fault states
below are blurred. When the dimension D=28, samples of
the same fault type are clustered together, and the sample
boundaries of different fault types are clear. However, the
result of the division is 2 categories, and the true number of
fault types is 3. When dimension D = 35, the mixed features
of various fault states overlap and are clustered below. When
dimension D=43, the mixed characteristics of various fault
states are chaotic and scattered. Therefore, the mixed fea-
tures obtained by the original extraction are difficult to find
the dividing line for dividing sample categories under most
dimensions, resulting in low sample separability. Therefore,
this paper proposes RUSLP to sort and select hybrid features,
filter out features with small correlation to reduce feature
redundancy, and improve fault diagnosis reliability.

3) FAULT FEATURE SELECTION
In order to verify the influence of RUSLP dimensionality
reduction method on the diagnostic performance of bearing
faults, we compare the accuracy of RUSLP dimensionality
reduction method with LS, MCFS and UDFS methods under
the same mixed set of high-dimensional fault feature vectors
and the same parameters. The parameter settings of the BT-
LSTSVM-based multi-classifier are the same as above. The
results are shown in Figure 20.

For the model constructed in this paper, except for LS, the
fault diagnosis accuracy of other dimensionality reduction
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FIGURE 19. Characteristic sample distribution of check valves under different dimensions D.

FIGURE 20. Fault diagnosis accuracy under different dimensionality reduction methods.

TABLE 12. The highest accuracy and corresponding feature dimension x obtained by different dimensionality reduction methods.

TABLE 13. The highest accuracy and corresponding feature dimension x obtained by different classification methods.

methods in the interval of 2 ≤ x ≤ 15 can reach 95%.
Table 12 shows the highest accuracy obtained by each

dimensionality reduction method in Figure 20, and the cor-
responding feature dimension x. When x = 1, the fault
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FIGURE 21. Confusion matrix obtained by selecting the highest precision dimension with different classification methods.

FIGURE 22. Fault diagnosis accuracy under different classification methods.

diagnosis accuracy of LS dimension reduction method is
maintained near 93.33%. With the increase of feature
dimension, the fault diagnosis accuracy of LS dimension
reduction method drops sharply to 36.67%, indicating that
LS dimension reduction method is not suitable for the model
constructed in this paper. However, when x = 12, the

fault diagnosis accuracy of 95.56% can be obtained by using
MCFS dimensionality reduction method. When x = 2, the
fault diagnosis accuracy of 95.01% can be obtained by using
UDFS dimensionality reduction method. When x = 14,
100% accuracy of fault diagnosis can be obtained by using
RUSLP dimensionality reduction method. Therefore, for the
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FIGURE 23. Confusion matrix obtained by selecting the highest precision dimension with different classification methods.

model constructed in this paper, except LS dimensionality
reduction method, other dimensionality reduction methods
have obtained high fault diagnosis accuracy. However, the
RUSLP method can achieve 100% accuracy of fault diagno-
sis. The superiority of the dimensionality reduction method
of RUSLP used in this paper can be proved again by the data
of check valve in actual working conditions.

When LS, MCFS, UDFS and RUSLP methods extract the
features of the first 1 dimension, the first 12 dimension, the
first 2 dimension and the first 14 dimension respectively,
the confusion matrix obtained is shown in Figure 21. If LS
dimensionality reduction is used, 7% of the card valve fault
samples will be incorrectly diagnosed as wear faults, and 13%
of wear fault samples will be incorrectly diagnosed as normal
state. If the MCFS dimensionality reduction method is used,
10% of the sample of the valve failure will be incorrectly
diagnosed as normal. If UDFS dimensionality reduction
is used, 17% of the sample of valve faults is incorrectly
diagnosed as normal. If the RUSLP dimensionality reduction
method is used, 100% of the samples can be identified by
classification. Experimental results show that the RUSLP
dimensionality reduction method can effectively solve the
problem of feature confusion and the fault diagnosis accuracy
is improved.

4) FAULT IDENTIFICATION
In order to verify the influence of the BT-LSTSVM multi-
classifier method on the diagnostic performance of bearing
faults, we compare the accuracy of the BT-LSTSVM multi-
classifier with the SVM, BPNN and ELM methods under
the same mixed high-dimensional fault feature vector set and
the same parameters. The parameter settings based on the
RUSLP method are the same as above. The results are shown
in Figure 22.
It can be seen that except for SVM, other classification

methods can achieve 95% accuracy in the interval of 2 ≤

x ≤ 32. Table 13 shows the highest accuracy obtained by
each classification method in Figure 22, and the correspond-
ing feature dimension x. SVM extracts the first 3 dimensional
features, and the accuracy can be obtained 77.78%. BPNN
extracts the first 4 dimensional features and obtains an accu-
racy of 97.78%. ELM extracts the first 4dimensional features
and obtains an accuracy of 97.78%. BT-LSTSVMextracts the
first 31 dimensional features with 100% accuracy. Therefore,
under the BT-LSTSVM method, the fault diagnosis accuracy
is improved by 22%.

When the SVM, BPNN, EML and BT-LSTSVM respec-
tively extract the first 3, 4, 4 and 31 dimensions of features,
the confusion matrix is shown in Figure 23. If the SVM
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identification model is used, 53% of normal state samples
will be incorrectly diagnosed as wear faults, and 17% of
card valve faults will be incorrectly diagnosed as wear faults.
If the BPNN identification model is used, 20% of the nor-
mal state samples will be incorrectly diagnosed as a valve
fault, and 20% of the sample will be incorrectly diagnosed
as a wear fault. If the ELM identification model is used,
3% of normal state samples will be incorrectly diagnosed as
stuck valve faults, 7% of card valve faults will be incorrectly
diagnosed as wear faults, and 10% of wear fault samples
will be incorrectly diagnosed as normal states. If the BT-
LSTSVM multi-classifier is used, only 3% of the card valve
failure samples were incorrectly diagnosed as wear fault
conditions. Experimental results show that the BT-LSTSVM
multi-classifier can effectively improve the fault diagnosis
accuracy of bearings.

V. CONCLUSION
Because the bearing vibration signal contains different fre-
quency interference data, the traditional method can not get
satisfactory results. Therefore, in order to solve the defects
of previous methods in fault diagnosis, this paper proposes
a new fault diagnosis method based on NEEEMD-RUSLP
feature selection and BTLSTSVM. Experimental analysis of
feature extraction, feature selection, and classification identi-
fication was carried out through Case Western Reserve Uni-
versity data, University of Ottawa data, and check valve data
under actual industrial production environment. the effective-
ness and superiority of this method are proved.

1) In the simulation signal experiment, the IMF obtained
by NEEEMD is least affected by noise and contains
the most obvious fault impact. The results indicate that
NEEEMD can suppress white noise in vibration signals
by subtracting the intermediate frequency of the same
white noise from the final intermediate frequency, and
NEEEMDhas outstanding advantages in signal decom-
position accuracy, decomposition efficiency and noise
suppression, and is suitable for fault feature extraction
in the background of strong noise.

2) In fault feature extraction, most of the dimensionality
features obtained by the proposed method have good
separability and fewer feature aliasing phenomena.
The results show that wavelet packet decomposition
can suppress some noise during feature extraction of
wavelet packet energy entropy and packet energy coef-
ficient based onNEEEMD, and the Gini coefficient can
extract the periodic impact characteristics contained
in IMF, and the constructed high-dimensional features
have superior performance. In feature selection, the
diagnostic accuracy obtained by the first x-dimensional
low-dimensional features of RUSLP is higher than
that obtained by other feature selection methods. The
results show that the RUSLP feature selection strategy
can select more relevant fault features by enhancing

the feature importance information in the projection
matrix.

3) In the fault identification experiment, the proposed
BTLSTSVM can obtain the best diagnostic accuracy
in a suitable dimension, that is, close to 100%, and
the feature dimension required by BTLSTSVM is rel-
atively small. The results indicate that the proposed
multi classification LSTSVMbased on binary tree (BT)
not only inherits the advantages of fewer classifiers and
higher efficiency of BT, but also has the advantage of
high recognition accuracy of LSTSVM.

After improving the method, the bearing fault diagno-
sis accuracy in Case Western Storage data increased by
10.67%, and the bearing fault diagnosis accuracy in Ottawa
data increased by 10%. The accuracy of fault diagnosis in
check valve data is improved by 22%. The experimental
results show that the proposed method not only has outstand-
ing advantages in the fault diagnosis of rotating machinery
equipment in the laboratory environment, but also has good
performance in the fault diagnosis of reciprocating machin-
ery in the industrial production environment. Therefore, the
method proposed in this paper is expected to be used for
mechanical bearing fault diagnosis under actual production
conditions. However, the proposed fault diagnosis method
inevitably has some shortcomings. Although the proposed
feature extraction strategy has noise reduction performance
and impact feature extraction performance, the configuration
of high-dimensional features is complex, which relies on
manual experience and the obtained fault features do not have
the ability to transfer and diagnose under different work-
ing conditions. Therefore, a deep feature extraction method
with transfer capability will be the focus of the next step of
research. Although the proposed BTLSTSVM can effectively
identify multiple fault modes and the recognition results are
not sensitive to hyper parameters, the recognition errors of
the upper nodes in BTLSTSVM will be transmitted to the
lower nodes and have a significant impact on the recogni-
tion accuracy of the lower nodes, which means there is an
error accumulation problem. The more categories, the more
serious the problem of error accumulation. In addition, the
hyper parameters in BTLSTSVM can also affect recognition
accuracy and performance to a certain extent. Therefore,
solving the problem of error accumulation in BTLSTSVM
and implementing an adaptive BTLSTSVMmodel is the next
research focus.

AUTHOR CONTRIBUTIONS
Conceptualization: Chengjiang Zhou; Methodology: Ron-
grong Lu and Miao Xu; Software: Rongrong Lu and
Miao Xu; Validation: Zhaodong Zhang, Qihua Yang, and
Shanyou He; Formal Analysis: Chengjiang Zhou; Investi-
gation: Chengjiang Zhou; Resources: Min Mao and Jing-
zong Yang; Data Curation: Rongrong Lu, Shanyou He,
and Zhaodong Zhang; Writing—Original Draft Preparation:
Qihua Yang and Miao Xu; Writing—Review and Editing:

VOLUME 11, 2023 113991



R. Lu et al.: Novel Fault Diagnosis Method Based on NEEEMD-RUSLP Feature Selection and BTLSTSVM

Chengjiang Zhou; Visualization: Chengjiang Zhou; Super-
vision: Min Mao and Jingzong Yang; Project Administra-
tion: Min Mao; Funding Acquisition: Jingzong Yang. All
authors have read and agreed to the published version of the
manuscript.

INSTITUTIONAL REVIEW BOARD STATEMENT
Not applicable.

INFORMED CONSENT STATEMENT
Informed consent was obtained from all subjects involved in
the study.

DATA AVAILABILITY STATEMENT
The data used to support the findings of this study are avail-
able from the corresponding author upon request.

ACKNOWLEDGMENT
The authors would like to thank the team for their guidance
and also thank the CaseWest Reserve University and the Uni-
versity of Ottawa for their bearing datasets. They also thank
Yunnan Dahongshan Pipeline Company Ltd., for providing
check valve vibration signal data and platform equipment.
They also thank the reviewers for taking the time to review
the paper in a busy schedule.

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

REFERENCES
[1] H. Tao, J. Qiu, Y. Chen, V. Stojanovic, and L. Cheng, ‘‘Unsupervised cross-

domain rolling bearing fault diagnosis based on time-frequency informa-
tion fusion,’’ J. Franklin Inst., vol. 360, no. 2, pp. 1454–1477, Jan. 2023.

[2] Y. Sun, S. Li, and X. Wang, ‘‘Bearing fault diagnosis based on EMD and
improved Chebyshev distance in SDP image,’’ Measurement, vol. 176,
May 2021, Art. no. 109100.

[3] M. Motahari-Nezhad and S. M. Jafari, ‘‘Bearing remaining useful life
prediction under starved lubricating condition using time domain acoustic
emission signal processing,’’ Expert Syst. Appl., vol. 168, Apr. 2021,
Art. no. 114391.

[4] J. P. Kumar, P. S. Chauhan, and P. P. Pandit, ‘‘Time domain vibration
analysis techniques for condition monitoring of rolling element bearing:
A review,’’Mater. Today, Proc., vol. 62, pp. 6336–6340, Jan. 2022.

[5] H. Wu, J. Li, Q. Zhang, J. Tao, and Z. Meng, ‘‘Intelligent fault diagnosis
of rolling bearings under varying operating conditions based on domain-
adversarial neural network and attentionmechanism,’’ ISA Trans., vol. 130,
pp. 477–489, Nov. 2022.

[6] H. Li, X. Wu, T. Liu, S. Li, B. Zhang, G. Zhou, and T. Huang, ‘‘Composite
fault diagnosis for rolling bearing based on parameter-optimized VMD,’’
Measurement, vol. 201, Sep. 2022, Art. no. 111637.

[7] B.Wang, Y. Guo, Z. Zhang, D.Wang, J. Wang, and Y. Zhang, ‘‘Developing
and applying OEGOA-VMD algorithm for feature extraction for early fault
detection in cryogenic rolling bearing,’’Measurement, vol. 216, Jul. 2023,
Art. no. 112908.

[8] Z. Tang, M. Wang, T. Ouyang, and F. Che, ‘‘A wind turbine bearing
fault diagnosis method based on fused depth features in time–frequency
domain,’’ Energy Rep., vol. 8, pp. 12727–12739, Nov. 2022.

[9] J. Chen and H. Liu, ‘‘A multi-gradient hierarchical domain adaptation net-
work for transfer diagnosis of bearing faults,’’ Expert Syst. Appl., vol. 225,
Sep. 2023, Art. no. 120139.

[10] Z. Jiang, K. Zhang, L. Xiang, G. Yu, and Y. Xu, ‘‘A time-frequency
spectral amplitude modulation method and its applications in rolling bear-
ing fault diagnosis,’’ Mech. Syst. Signal Process., vol. 185, Feb. 2023,
Art. no. 109832.

[11] G. Vashishtha and R. Kumar, ‘‘An amended grey wolf optimization with
mutation strategy to diagnose bucket defects in Pelton wheel,’’ Measure-
ment, vol. 187, Jan. 2022, Art. no. 110272.

[12] Z. Lao, D. He, Z. Wei, H. Shang, Z. Jin, J. Miao, and C. Ren, ‘‘Intel-
ligent fault diagnosis for rail transit switch machine based on adaptive
feature selection and improved LightGBM,’’ Eng. Failure Anal., vol. 148,
Jun. 2023, Art. no. 107219.

[13] D. He, C. Liu, Z. Jin, R. Ma, Y. Chen, and S. Shan, ‘‘Fault diagnosis
of flywheel bearing based on parameter optimization variational mode
decomposition energy entropy and deep learning,’’ Energy, vol. 239,
Jan. 2022, Art. no. 122108.

[14] M. S. R. M. Saufi and K. A. Hassan, ‘‘Remaining useful life prediction
using an integrated Laplacian-LSTM network on machinery components,’’
Appl. Soft Comput., vol. 112, Nov. 2021, Art. no. 107817.

[15] J. Zheng, H. Pan, J. Tong, and Q. Liu, ‘‘Generalized refined composite
multiscale fuzzy entropy and multi-cluster feature selection based intelli-
gent fault diagnosis of rolling bearing,’’ ISA Trans., vol. 123, pp. 136–151,
Apr. 2022.

[16] A. Hashemi, M. B. Dowlatshahi, and H. Nezamabadi-Pour, ‘‘An efficient
Pareto-based feature selection algorithm formulti-label classification,’’ Inf.
Sci., vol. 581, pp. 428–447, Dec. 2021.

[17] S. Ma, G. Cheng, Y. Li, and R. Zhao, ‘‘Dimension reduction method of
high-dimensional fault datasets based on C_M_t-SNE under unsupervised
background,’’Measurement, vol. 214, Jun. 2023, Art. no. 112835.

[18] A. Wahid, D. M. Khan, I. Hussain, S. A. Khan, and Z. Khan, ‘‘Unsuper-
vised feature selection with robust data reconstruction (UFS-RDR) and
outlier detection,’’ Expert Syst. Appl., vol. 201, Sep. 2022, Art. no. 117008.

[19] Y. Guo, H. Sun, and S. Hao, ‘‘Adaptive dictionary and structure learning
for unsupervised feature selection,’’ Inf. Process. Manage., vol. 59, no. 3,
May 2022, Art. no. 102931.

[20] C. Zeng, H. Chen, T. Li, and J. Wan, ‘‘Robust unsupervised feature
selection via sparse and minimum-redundant subspace learning with dual
regularization,’’ Neurocomputing, vol. 511, pp. 1–21, Oct. 2022.

[21] P. Zhu, X. Hou, K. Tang, Y. Liu, Y.-P. Zhao, and Z. Wang, ‘‘Unsuper-
vised feature selection through combining graph learning and l2,0-norm
constraint,’’ Inf. Sci., vol. 622, pp. 68–82, Apr. 2023.

[22] H. R. F. Fotso, C. V. A. Kazé, and G. D. Kenmoé, ‘‘Real-time rolling
bearing power loss in wind turbine gearbox modeling and prediction
based on calculations and artificial neural network,’’ Tribol. Int., vol. 163,
Nov. 2021, Art. no. 107171.

[23] M. Ghorvei, M. Kavianpour, M. T. H. Beheshti, and A. Ramezani, ‘‘Spatial
graph convolutional neural network via structured subdomain adaptation
and domain adversarial learning for bearing fault diagnosis,’’ Neurocom-
puting, vol. 517, pp. 44–61, Jan. 2023.

[24] J. Wang, T. Li, C. Sun, R. Yan, and X. Chen, ‘‘Improved spiking neural
network for intershaft bearing fault diagnosis,’’ J. Manuf. Syst., vol. 65,
pp. 208–219, Oct. 2022.

[25] S. Xie, H. Tan, Y. Li, Z. Feng, and Z. Cao, ‘‘Locally generalized preserving
projection and flexible grey wolf optimizer-based ELM for fault diagnosis
of rolling bearing,’’Measurement, vol. 202, Oct. 2022, Art. no. 111828.

[26] J. Gong, X. Yang, H. Wang, J. Shen, W. Liu, and F. Zhou, ‘‘Coordinated
method fusing improved bubble entropy and artificial gorilla troops opti-
mizer optimized KELM for rolling bearing fault diagnosis,’’ Appl. Acoust.,
vol. 195, Jun. 2022, Art. no. 108844.

[27] O. Yaman, F. Yol, and A. Altinors, ‘‘A fault detection method based on
embedded feature extraction and SVM classification for UAV motors,’’
Microprocessors Microsyst., vol. 94, Oct. 2022, Art. no. 104683.

[28] S. Gao, S. Zhang, Y. Zhang, and Y. Gao, ‘‘Operational reliability evaluation
and prediction of rolling bearing based on isometric mapping and NoCuSa-
LSSVM,’’ Rel. Eng. Syst. Saf., vol. 201, Sep. 2020, Art. no. 106968.

[29] C. He, T. Wu, C. Liu, and T. Chen, ‘‘A novel method of compos-
ite multiscale weighted permutation entropy and machine learning for
fault complex system fault diagnosis,’’ Measurement, vol. 158, Jul. 2020,
Art. no. 107748.

[30] J. Wei, H. Huang, L. Yao, Y. Hu, Q. Fan, and D. Huang, ‘‘New imbal-
anced fault diagnosis framework based on cluster-MWMOTE and MFO-
optimized LS-SVM using limited and complex bearing data,’’ Eng. Appl.
Artif. Intell., vol. 96, Nov. 2020, Art. no. 103966.

[31] H. S. Dhiman, D. Deb, S. M. Muyeen, and I. Kamwa, ‘‘Wind turbine gear-
box anomaly detection based on adaptive threshold and twin support vector
machines,’’ IEEE Trans. Energy Convers., vol. 36, no. 4, pp. 3462–3469,
Dec. 2021.

113992 VOLUME 11, 2023



R. Lu et al.: Novel Fault Diagnosis Method Based on NEEEMD-RUSLP Feature Selection and BTLSTSVM

[32] X. Bai, T. Tao, L. Gao, C. Tao, and Y. Liu, ‘‘Wind turbine blade icing diag-
nosis using RFECV-TSVM pseudo-sample processing,’’ Renew. Energy,
vol. 211, pp. 412–419, Jul. 2023.

[33] F. Yuan, J. Guo, Z. Xiao, B. Zeng, W. Zhu, and S. Huang, ‘‘A transformer
fault diagnosis model based on chemical reaction optimization and twin
support vector machine,’’ Energies, vol. 12, no. 5, p. 960, Mar. 2019, doi:
10.3390/en12050960.

[34] M. Arun Kumar and M. Gopal, ‘‘Least squares twin support vector
machines for pattern classification,’’ Expert Syst. Appl., vol. 36, no. 4,
pp. 7535–7543, May 2009.

[35] M.A. Ganaie andM. Tanveer, ‘‘LSTSVMclassifier with enhanced features
from pre-trained functional link network,’’ Appl. Soft Comput., vol. 93,
Aug. 2020, Art. no. 106305.

[36] J. Ali, M. Aldhaifallah, K. S. Nisar, A. A. Aljabr, and M. Tanveer, ‘‘Reg-
ularized least squares twin SVM for multiclass classification,’’ Big Data
Res., vol. 27, Feb. 2022, Art. no. 100295.

[37] C. Zhou, Y. Jia, S. Zhao, Q. Yang, Y. Liu, Z. Zhang, and T. Wang,
‘‘A mechanical part fault diagnosis method based on improved multiscale
weighted permutation entropy and multiclass LSTSVM,’’ Measurement,
vol. 214, Jun. 2023, Art. no. 112671.

[38] W.-J. Chen, Y.-H. Shao, N.-Y. Deng, and Z.-L. Feng, ‘‘Laplacian least
squares twin support vector machine for semi-supervised classification,’’
Neurocomputing, vol. 145, pp. 465–476, Dec. 2014.

[39] C. Yuan and L. Yang, ‘‘Capped L2,p-normmetric based robust least squares
twin support vector machine for pattern classification,’’ Neural Netw.,
vol. 142, pp. 457–478, Oct. 2021.

[40] G. Yu, J. Ma, and C. Xie, ‘‘Hessian scatter regularized twin support vec-
tor machine for semi-supervised classification,’’ Eng. Appl. Artif. Intell.,
vol. 119, Mar. 2023, Art. no. 105751.

[41] A. Othman, N. Iqbal, S. M. Hanafy, and U. B. Waheed, ‘‘Automated event
detection and denoising method for passive seismic data using residual
deep convolutional neural networks,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5900711.

[42] N. Iqbal, ‘‘DeepSeg: Deep segmental denoising neural network for seis-
mic data,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 7,
pp. 3397–3404, Jul. 2023.

[43] Z. Wei, D. He, Z. Jin, B. Liu, S. Shan, Y. Chen, and J. Miao, ‘‘Density-
based affinity propagation tensor clustering for intelligent fault diagnosis
of train bogie bearing,’’ IEEE Trans. Intell. Transp. Syst., vol. 24, no. 6,
pp. 6053–6064, Jun. 2023.

[44] Z. Jin, D. He, R. Ma, X. Zou, Y. Chen, and S. Shan, ‘‘Fault diagno-
sis of train rotating parts based on multi-objective VMD optimization
and ensemble learning,’’ Digit. Signal Process., vol. 121, Mar. 2022,
Art. no. 103312.

[45] X. Yu, Z. Liang, Y.Wang, H. Yin, X. Liu,W. Yu, and Y. Huang, ‘‘A wavelet
packet transform-based deep feature transfer learning method for bear-
ing fault diagnosis under different working conditions,’’ Measurement,
vol. 201, Sep. 2022, Art. no. 111597.

[46] H. Wen, W. Guo, and X. Li, ‘‘A novel deep clustering network using multi-
representation autoencoder and adversarial learning for large cross-domain
fault diagnosis of rolling bearings,’’ Expert Syst. Appl., vol. 225, Sep. 2023,
Art. no. 120066.

[47] A. Faysal, W. K. Ngui, M. H. Lim, and M. S. Leong, ‘‘Noise elimi-
nated ensemble empirical mode decomposition scalogram analysis for
rotating machinery fault diagnosis,’’ Sensors, vol. 21, no. 23, p. 8114,
Dec. 2021.

[48] A. Faysal, W. K. Ngui, and M. H. Lim, ‘‘Noise eliminated ensemble
empirical mode decomposition for bearing fault diagnosis,’’ J. Vib. Eng.
Technol., vol. 9, pp. 2229–2245, Aug. 2021.

[49] A. Borré, L. O. Seman, E. Camponogara, S. F. Stefenon, V. C. Mariani,
and L. D. S. Coelho, ‘‘Machine fault detection using a hybrid CNN-LSTM
attention-based model,’’ Sensors, vol. 23, no. 9, p. 4512, May 2023.

[50] X. Yan and M. Jia, ‘‘A novel optimized SVM classification algorithm
with multi-domain feature and its application to fault diagnosis of rolling
bearing,’’ Neurocomputing, vol. 313, pp. 47–64, Nov. 2018.

[51] C. Luo, J. Zheng, T. Li, H. Chen, Y. Huang, and X. Peng, ‘‘Orthogonally
constrained matrix factorization for robust unsupervised feature selection
with local preserving,’’ Inf. Sci., vol. 586, pp. 662–675, Mar. 2022.

[52] C. Zhou, H. Li, J. Yang, Q. Yang, L. Yang, S. He, and X. Yuan, ‘‘Fuzzy
regular least squares twin support vector machine and its application in
fault diagnosis,’’ Expert Syst. Appl., vol. 231, Nov. 2023, Art. no. 120804.

[53] H. Huang and N. Baddour, ‘‘Bearing vibration data collected under time-
varying rotational speed conditions,’’ Data Brief, vol. 21, pp. 1745–1749,
Dec. 2018.

RONGRONG LU is currently pursuing the
bachelor’s degree in data science and big data
technology with Yunnan Normal University,
China.

Her current research interests include signal
processing and fault diagnosis research, mechan-
ical equipment fault detection, and condition
monitoring of electromechanical equipment.

Ms. Lu’s awards and honors include the
National Encouragement Scholarship and the

Professional Quality Award from Yunnan Normal University.

MIAO XU received the bachelor’s degree in com-
puter science and technology fromYunnanNormal
University, China, in 2023.

His current research interests include signal
processing and fault diagnosis research, mechan-
ical equipment fault detection, and condition
monitoring of electromechanical equipment.

CHENGJIANG ZHOU received the bachelor’s
degree in automation from the North China Uni-
versity of Science and Technology, in 2014, and
the master’s degree in control theory and control
engineering and the Ph.D. degree in metallurgical
control engineering from the Kunming University
of Science and Technology, in 2017 and 2020,
respectively.

He is currently a Teacher with the Informa-
tion School, Yunnan Normal University, China.

He has published more than 30 academic articles, including more than 20
SCI articles. His current research interests include signal processing and
fault diagnosis research, mechanical equipment fault detection, mechanical
equipment fault diagnosis, and mechanical fault diagnosis based on image
processing. His research results can be found in the academic homepage at
https://www.researchgate.net/profile/Chengjiang-Zhou/research.

ZHAODONG ZHANG is currently pursuing the
bachelor’s degree in computer science and tech-
nology (teacher education) with Yunnan Normal
University, China.

His current research interests include signal
processing and fault diagnosis research, mechan-
ical equipment fault detection, and condition
monitoring of electromechanical equipment.

Mr. Zhang’s awards and honors include the
University-Level Second Prize of the National

English Competition for College Students, in November 2022 and June 2023,
and the Practical Ability Award from Yunnan Normal University.

SHANYOU HE is currently pursuing the bache-
lor’s degree in computer science and technology
with Yunnan Normal University, China.

Her current research interests include signal
processing and fault diagnosis research, mechan-
ical equipment fault detection, and condition
monitoring of electromechanical equipment.

Ms. He’s honors include the Excellence Award
in the Preliminary Round of the Fourth Huajiao
Cup National College Student Mathematics
Competition, in 2021.

VOLUME 11, 2023 113993

http://dx.doi.org/10.3390/en12050960


R. Lu et al.: Novel Fault Diagnosis Method Based on NEEEMD-RUSLP Feature Selection and BTLSTSVM

QIHUA YANG is currently pursuing the bachelor’s
degree in data science and big data technology
with Yunnan Normal University, China.

Her current research interests include signal
processing and fault diagnosis research, mechan-
ical equipment fault detection, and condition
monitoring of electromechanical equipment.

Ms. Yang’s honors include the Merit Student of
Yunnan Normal University of China, in June 2021,
the Merit Student of Yunnan Province of China,

in June 2022, and the Provincial First Prize of ChinaMathematical Modeling
Competition, in December 2022.

MIN MAO received the bachelor’s degree in elec-
trical engineering and automation from Zhejiang
Wanli University, China, in 2013, and the mas-
ter’s degree in instrument science and technol-
ogy from the Kunming University of Science and
Technology, China, in 2017.

He is currently a Teacher with the Faculty
of Information Engineering, Quzhou College of
Technology, China. He has published more than
ten academic articles, includingmore than two SCI

articles. His current research interests include dynamic signal processing,
intelligent fault diagnosis and prediction, and mechanical and electrical
equipment status monitoring. His research results can be found in the
academic homepage at https://orcid.org/0000-0002-0209-4077.

JINGZONG YANG received the bachelor’s degree
in electronic information science and technol-
ogy from Yunnan Normal University, China,
in 2013, and the Ph.D. degree in metallur-
gical control engineering from the Kunming
University of Science and Technology, China,
in 2018.

He is currently a Teacher with the College of
Big Data, Baoshan University, China. He has pub-
lished more than 40 academic articles, including

more than 20 SCI and EI retrieval articles. His current research interests
include mechanical equipment fault detection and mechanical equipment
fault diagnosis. His research results can be found in the academic homepage
at https://www.webofscience.com/wos/author/record/GNP-4449-2022.

113994 VOLUME 11, 2023


