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ABSTRACT The complex q-Rung orthopair fuzzy (Cq-ROF) sets are an extended version of the fuzzy
sets and q-rung orthopair fuzzy circumstances. The Cq-ROF set carried extensive information about an
object with two components: membership grade (MG) and non-membership grade (NMG). The MG and
NMG enlarged the unit circle to a complex plane. The decision maker evaluates complex and complicated
information more accurately considering the Cq-ROF domain. This article aims to present the importance
of energy sources, and we discuss the application for the selection of a suitable company selection for
dam construction. Dams are the most appropriate and cheap sources to produce electricity. Now, the
day’s importance of electricity is not ignorable. So, construct the multi-attribute group decision-making
(MAGDM) methodology by utilizing Aczel-Alsina (AA) t-norm (TN) and t-conorm (TCN) operational
laws with power aggregation operators (PAO) to solve the appropriate company selection problem for
dam construction. PAO provides more accurate aggregation results between the several attributes. Finally,
we define the Cq-ROFAczel-Alsina power-weighted averaging (Cq-ROFAAPWA) and aggregation Cq-ROF
Aczel-Alsina power-weighted geometric (Cq-ROFAAPWG) operators. Also, some fundamental axioms are
discussed. By applying the proposed Cq-ROFAAPWA and Cq-ROFAAPWG operators, solve the real-life
MAGDM problematic issue through a numerical example. For the superiority and applicability of proposed
techniques, provide a comprehensive comparative analysis with other prevailing aggregation operators
(AOs). In the end, provide solid conclusions.

INDEX TERMS q-rung orthopair fuzzy set, complex q-rung orthopair fuzzy set, multi-attribute group
decision-making, Aczel-Alsina t-norm and t-conorm, aggregation operators.

I. INTRODUCTION
Crisp set theory has failed to dispose of unknown data in
the field of decision-making science. To overcome this gap,
in 1965, Zadeh [1] presented the innovative idea of a fuzzy
set (FS), which the MG characterizes with a range [0, 1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

He has proved that the concept of FS is a powerful tool
for aggregating uncertain data. Many mathematicians offered
several extensions of FS theory, such as Ramot et al. [2]
pioneered complex FS theory, and Gehrke et al. [3] deliv-
ered the advanced idea of interval-valued FS. In a recent
discussion, although FS has many advantages in decision-
making science. But for some complex situations, FS for
MG fails to aggregate the information. To overcome this gap,
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Atanassov provided the idea of intuitionistic FS (IFS)with the
accumulation of NMG. Its range also lies between the interval
[0, 1]. IFS is also a powerful tool for expressing uncertain and
fuzzy information. Furthermore, IFS has drawn much atten-
tion from mathematicians and has been effectively applied
in MAGDM and engineering information decision-making
sciences [4], [5], [6], [7], [8]. The IFS theory plays a vital
role in solving the MAGDM problems.

When the decision maker provided such type of data that
does not fall in the interval [0, 1] such as whoseMG is 0.7 and
NMG is 0.6, i.e., 0 ≤ 0.7+ 0.6 = 1.31 ≰ 1, and it will cross
the limitation of the IFS, then mathematicians need some
new ideas for aggregating the information. To handle this
shortcoming, Yager [9] presents the theory of Pythagorean
FS (PyFS). This is the extension of IFS by taking the square
of MG (W) and NMG (4) such as 0 ≤ W2

+ 42
≥ 1.

Is the suitable technique for aggregating information where
the FS and IFS concept has failed? However, for some more
complex situations, like when the decision-maker wants to
aggregate the information such as MG is 0.9 and NMG is 0.7,
then the concept of PyFS fails to provide precise results, i.e.,
0.92 + 0.72 = 1.30 > 1 because it crosses the limitation of
FS theory. To overcome these problems, Yager [10] presented
the thought of q-Rung orthopair FS (q-ROFS) by taking the
qth power of MG and NMG. The structure of q-ROFS is the
generalized shape of PyFS and IFS and a more powerful tool
for handling complicated and uncertain opinions of human
beings.

However, with the further development of FS theory,
questions were circulating among mathematicians. When we
change the co-domain of the FSwith complex numbers (CNs)
instead of interval [0, 1] thenwhat type of changes occur? The
solution to this problemRamot [2] provided by giving the the-
ory of complex FS (CFS) in 2002, in which he presented the
MG in the form of CNs. In addition, Salleh and Alkouri [11]
also developed the idea of complex IFS (CIFS) by involving
the NMG in CFS. CIFS failed for those situations in which
the value of MG and NMG exceeded the interval [0, 1]. Ullah
et al. [12] proposed the complex PyFS (CPyFS) concept to
remove this gap. The CPyFS is defined as taking the sum of
the squares of the MG and NMG. CPyFS is a more suitable
and appropriate tool than IFS due to its comprehensive range
for aggregating human opinions. Although the PyFS is a valu-
able tool for aggregating ambiguous information for some
complex problems, CPyFS theory fails where the sum of the
square of MG and NMG exceeds the range [0, 1]. To cover
this problem, Liu et al. [12] proposed a complex Cq-ROF set
(q-ROFS) by pleasing the function’s qth power on NMG and
MG. The q-ROFS is the most important and generalized form
of CIFS and CPyFS.

MAGDM is a trending research topic nowadays when
the decision-maker tries to select the most suitable option
from the list of groups. Many researchers proposed several
MAGDM techniques using power AOs (PAOs) based on
TNs and TCN. For example, CIF utilizing the idea of PAOs

depends upon the TN and TCN operations was presented by
Ali et al. [13], and complex cubic q-ROFS was developed
for decision-making sciences by Ren et al. [14]. Rani and
Garg [15] propose the idea of trigonometric AOs to select
the best alternative through MAGDM, and Mahmood and
Ali [16] defined the concept of CIFS through an AA power
operator. The Cq-ROF set for two tuples linguistic informa-
tion using MAGDM methodology described by Akram et
al. [17], and confidence levels Cq-ROF set for MAGDM is
diagnosed byQiyas et al. [18]. Khan et al. [19] proposed com-
plex T-spherical FS for PAOs. The AOs for decision-making
sciences are based on confidence levels PyFS defined by
Mahmood et al. [20].
Several mathematicians defined many TN and TCNs. Ini-

tially, the first concept of TN and TCNs was presented by
Menger [21]. In addition, many researchers proposed sev-
eral TN and TCNs under multiple fuzzy environments, such
as Aczel-Alsina (AATN) and Aczel-Alsina (AATCNs) were
defined by Aczel-Alsina [22], named AATN and AATCN
in 1982. Archimedean TN and TCN for complex IFSs pro-
posed by Khan et al. [23]. The PAOs based on TCN and TN
operations for complex IFS are presented by Ali et al. [13].
For Cq-ROF sets, AATN and AATCN were developed by
Ali and Naeem [24], and AATN and AATCN for complex
IFS were proposed by Mahmood et al. [25]. Lukasiewicz
TCN and TN operations were presented by Venkatesan and
Sriram [26], and some operations for Einstein TCN and TN
were suggested by Riaz et al. [27]. Sarkar [28] provided the
dual hesitant Dombi (DHD) TCN and TN theory. Hussain
et al. [29] also proposed Frank TN and TCN operations and
construct AOs data aggregation.

AATN and AATCN operations play a crucial role in
data aggregation through AOs because it gave high prior-
ity on variability with the movements of variable quantity.
After deep studing and discussing these mentioned examples,
we have clearly concluded that the structureb of Cq-ROFS
is a well-organized and truthful platform to deal with the
controversial and credible statistics that manifest in real-
world problems. Our inspiration for writing the presented
work came from the above-discussed complications facing
MAGDM experts for different uncertain and fuzzy aggrega-
tion (FA) contexts for TCN and TNs. AA operations give
more truthful and crucial reliability in outcomes than the
other prevailing approaches.

The suggested Cq-ROFS has a significant approach to
handling complicated information and applying it to solve
the MAGDM problems with better preciseness in results.
The structure of Cq-ROFS has the more generalized form of
C-PyFS and CIFS. Suppose the imaginary part is zero from
MG and NMG. The suggested structure is turned into the q-
ROFS. If we consider the value of parameter q = 2 in our
proposed q-ROFS, then it will be converted into the PyFS.
Also, when we take the value of q = 1, the suggested q-ROFS
change into the IFS. So, we concluded that the IFS and PyFS
are the generalized versions of q-ROFS.
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The framework of Cq-ROFS has a more reliable and suit-
able structure for the following reasons: the Cq-ROFS can
deal with two-dimensional (2-D) uncertain and fuzzy infor-
mation, including amplitude and phase term. On the other
hand, the simple structure of q-ROFS has failed to aggregate
information, including complex values. Also, by combining
the concept of Cq-ROFSwith AATCN andAATN operations,
the worth of proposed AOs increases because it enhances
the accuracy of aggregated data and provides more suitable
results than previously existing AOs. In AATN and AATCN,
the operational rule emphasizes parametric values during data
aggregation, a keynote quality of these operations.

The proposed algorithm is based on the suitable site selec-
tion for constructing a water dam on a river. Dams play a vital
role in recreation, flood control, water supply, hydroelec-
tric power, waste management, river navigation, and wildlife
habitat. In this regard, many researchers proposed several
thoughts, such as the best suitable location selection through
the MAGDM technique given by Rezaei et al. [30] and the
concept for assessment of appropriate site selection for water
dam selection by using fuzzy logic offered by Noori et al.
[31]. The optimal place selection for building a dam through
the undefined TOPSIS method provided by Noori et al. [32]
and construction material selection using FS information dis-
cussed by Khan et al. [33].
The article is organized as follows: Section II offers essen-

tial definitions that would make it easy to understand the
paper. Elementary operations are discussed in Section III.
Section IV presents the concept of PAOs for Cq-ROFAAPWA
and Cq-ROFAAPWG AOs and discusses some desirable
properties. Also, the algorithm is based on the Cq-ROFSs
addressed and a numerical problem for illustrating the worth
of the proposed work. Section V offers a comparative anal-
ysis with other prevailing AOs and discusses the sensitivity
analysis. A concrete conclusion is provided in Section VI.

II. PRELIMINARIES
This segment contains the fundamental vital concepts such as
PyFS and CPyFS, q-ROFS, and Cq-ROFS that will help us
understand the manuscript, also for our convenience, in this
manuscript. X is to denote the non-empty set, and Wη (x) and
4η (x) represents the MG and NMG, respectively.
Definition 1 [9]: Let X be the universe of discourse, then

PyFS is specified by two functions called MG and NMG
such as η =

{
x, W2

η (x) , 42
η (x) |x ∈ X

}
here W2

η : X →

[0, 1] , 42
η : X → [0, 1] also it satisfy the condition 0 ≤

W2
η (x) + 42

η (x) ≥ 1. And hesitancy grade X is defined as

Hη = 1 −

(
W2

η (x) + 42
η (x)

) 1
2
.

Definition 2 [34]: A CPyFS η =

{
x, W2

η (x) , 42
η (x) /

x ∈ X
}

is defined as in which W2
η : X →

{s1 : s1 ∈ η, |s1| ≤ 1} and W2
η : X → {s2 : s2 ∈ η, |s2| ≤ 1}

such as 42
η (x) = s1 = x1 + iy1 and 42

η (x) = s2 = x2 + iy2
given that 0 ≤ |s1|2 +|s2|2 ≤1 or W2

η (x) = Ťη (x) .e
i2πWŤη(x)

and 42
η (x) =

◦Fη (x) .ei2πW ◦Fη(x) satisfying the condition
0 ≤ Ť2

η (x) +
◦F2η (x) ≤ 1 and 0 ≤ W 2

Ťη
(x) +W 2

◦Fη
(x) ≤ 1.

Furthermore, the hesitancy grade is defined as Hη (x) =

S.ei2πZs(x) such that R =

(
1 −

(
Ť2

η (x) +
◦F2η (x)

)) 1
2

and WR (x) =

(
1 −

(
P2
Ťη

(x) + P2◦Fη
(x)
)) 1

2
. Then η =(

Ť.ei2πWŤ , ◦F.ei2πW ◦F
)
is known as complex Pythagorean

fuzzy value (CPyFV).
Definition 3 [10]: Let X be the universe of discourse, then

q-ROFS is specified by two functions called MG and NMG
such as η =

{
x, Wq

η (x) , 4q
η (x) |x ∈ X

}
here Wq

η : X →

[0, 1] , 4q
η : X → [0, 1] also, it satisfy the condition 0 ≤

Wq
η (x) + 4qη (x) ≥1. And hesitancy grade X is defined as

Hη =
q
√
1 −

(
Wq

η (x) + 4qη (x)
)
.

Definition 4 [35]:ACq-ROFS η =
{
x, Wq

η (x) , 4q
η (x) |x ∈

X
}
is defined as in which Wq

η : X → {s1 : s1 ∈ η, |s1| ≤ 1}
and Wq

η : X → {s2 : s2 ∈ η, |s2| ≤ 1} such as 4q
η (x) =

s1 = x1 + iy1 and 4q
η (x) = s2 = x2 + iy2 given that

0 ≤ |s1|q + |s2|q ≤1 or Wq
η (x) = Ťη (x) .e

i2πWŤη(x) and
4q

η (x) =
◦Fη (x) .ei2πW ◦Fη(x) satisfying the condition 0 ≤

Ťqη (x) +
◦Fqη (x) ≤ 1 and 0 ≤ W q

Ťη
(x) +W q

◦Fη
(x) ≤ 1.

Furthermore, the hesitancy grade is defined as Hη (x) =

R.ei2πZR(x) such that R =
q
√(

1 −
(
Ťqη (x) + ◦Fqη (x)

))
and WR (x) = q

√
1 −

(
W q

Ťη
(x) +W q

◦Fη
(x)
)
. Then η =(

Ť.ei2πWŤ , ◦F.ei2πW ◦F
)

is said to be complex q-Rung
orthopair fuzzy values (Cq-ROFVs). Where Wq

η (x) and
4q

η (x) are complex values in cartesian/polar format. We take
Ťη (x) =

◦Fη = r and 2π .WŤη
(x) = ϑ1, 2π;W ◦Fη (x) = ϑ2

then each term can be interchangeable with the other.

Wq
η (x) = Ťη (x) .ei2πŤη(x)

= Ťη (x) .
(
cos 2πWŤη

(x) + isin2πWŤη
(x)
)

= Ťη (x) . cos 2πWŤη
(x) + iŤη (x) . sin 2πWŤη

(x)

= rcosϑ1 + isinϑ1 = x1 + iy1 = s1
4q

η (x) =
◦Fη (x) .ei2π

◦Fη(x)

=
◦Fη (x) .

(
cos 2πW ◦Fη (x) + isin2πW ◦Fη (x)

)
=

◦Fη (x) . cos 2πW ◦Fη (x)

+ i ◦Fη (x) . sin 2πW ◦Fη (x)

= rcosϑ2 + isinϑ2 = x2 + iy2 = s2

Here, we will explain how Cq-ROFS is superior to CIFS
and show the advantages of Cq-ROFS with some numerical
examples.

Let us take a CIFS of the form. {x, (0.488 + 0.017i) ,
(0.277 + 0.037i)} . This set satisfies the condition of CIFS as
|0.488 + 0.017i| = 0.488 and |0.277 + 0.037i| = 0.279 and
0 ≤ 0.488 + 0.279 ≤ 1. The polar form of complex IFS
values (CIFVs) is {x, 0.488ei(0.017), 0.277ei(0.037)}.Whenever
we take {x, 0.688848 + 0.038463i, 0.58883 + 0.05378i}
then |0.688848 + 0.038463i| = 0.78895 and |0.58883 +
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FIGURE 1. Graphical representation shows that Cq-ROFS is superior to
CIFS and CPyFS.

0.05378i| = 0.05912 and 0 ≤ 0.78895 + 0.05912 ̸< 1.
This means the structure of CIFS cannot deal with such
information. However, the thought of Cq-ROFS is allowed
to deal with this type of problem and give precise results
under the range of [0, 1]. Thus, the values in the form
of {x, (0.688848 + 0.038463i), (0.58883 + 0.05378i)} can
be written as {x, 0.688848ei(0.038463), 0.58883ei(0.05378)} is
called Cq-ROFVs.
Definition 5 [12]:A score value (SV) and accuracy values

of function ϔ on η =

(
Ť.e

i2πWŤη , ◦F.ei2πW ◦Fη

)
S (η) =

[(
Ťq −

◦Fq
)
+

(
WŤqη −W ◦Fqη

)]
(1)

where SV (η) ∈ [−1, 1].

A (η) =

[(
Ťq +

◦Fq
)
+

(
WŤqη +W ◦Fqη

)]
(2)

where A (η) ∈ [0, 1].
Definition 6: The ordering relation between two Cq-

ROFVs η and η̇ is defined as follows:
1. If S (η) > S (η̇) then η > η̇

2. If S (η) = S (η̇) then
a) If A (η) > A (η̇) then η > η̇

b) If A (η) = A (η̇) then η = η̇

Definition 7 [36]: Consider the collection of two Cq-
ROFVs α =

(
Ť.ei2πWŤα , ◦F.ei2πW ◦Fα

)
and β =(

Ť.e
i2πWŤβ , ◦F.ei2πW

◦Fβ

)
then the normalized hamming dis-

tance between numbers can be described as:

� (α, β) =
1
2


{(

Ťqα − Ťqβ
)

+

(
WŤqα −WŤqβ

)}
+

{(
◦Fqα −

◦Fqβ
)

+

(
W ◦Fqα −W ◦Fqβ

)}

(3)

Definition 8 [36]: The PAO was first introduced by Yager
[36], and it is defined as

þ (à1, à2, . . . , àn) =

n
⊕

é = 1

∑n
é=1

(
1 + Ť

(
ąé
))

.ąé∑n
é=1

(
1 + Ť

(
ąé
)) (4)

where

Ť
(
ąé
)

=

n∑
é=1

Sup
(
ąé, ąj

)
(5)

Here Ť
(
ąé, ąj

)
is said to support of ąé and ąj that will must

satisfy the following conditions discussed below:

1. Sup
(
ąé, ąj

)
∈ [0, 1]

2. Sup
(
ąé, ąj

)
= Sup

(
ąj, ąé

)
3. Sup

(
ąé, ąj

)
≥ 2.Sup

(
ąé, ąj

)
The PAO is the relationship among the weight vectors and

aggregated values, and it depends upon the argument and
makes the values combine and support one another.
Definition 9 [21]: Consider a function Z : [0, 1] ×

[0, 1] → [0, 1] and assume that æ, ç, ë be three fuzzy val-
ues (FV), such that æ, ç, ë ∈ [0, 1] if function Z satisfy the
following axioms, then Z is said to be TN of the function.
Such that identity element exists Z (æ, 1) = æ; monotonicity
hold Z (æ, ç) = Z (ç, ë) ,æ ≤ ç, ç ≤ ë; associativity
holds Z ((æ, ç) , ë) = Z (æ, (ç, ë)) ; commutativity holds
Z (æ, ç) = Z (ç,æ).
Example 1 [21]: The example of the product of TN can

be presented as Zæ (ç, ë) = ç.ë; minimum of TN is denoted
as ZM (ç, ë) = min (ç, ë); Lukasiewicz TN is defined as
ZL (ç, ë) − min (ç + ë − 1, 0); and Drastic TN is provided
below as follows:

ZD = (r, s) =


ç if ë = 1
s if ë = 1
0 otherwise

∀ç, ë ∈ [0, 1] (6)

Definition 10 [37]: Consider a function Z : [0, 1] ×

[0, 1] → [0, 1] and assume that æ, ç, ë be three fuzzy val-
ues (FV), such that æ, ç, ë ∈ [0, 1] if function Z satisfy the
following axioms, then Z is said to be TCN of the function.
Such that identity element exists Z (æ, 0) = æ; monotonicity
holds Z (æ, ç) = Z (ç, ë) ,æ ≤ ç, ç ≤ ë; associativity
holds Z ((æ, ç) , ë) = Z (æ, (ç, ë)) ; commutativity holds
Z (æ, ç) = Z (ç,æ).
Example 2 [37]: The example of a product of TN can be

presented as Zæ (ç, ë) = ç.ë; maximum of TCN is denoted
as ZM (ç, ë) = max (ç, ë); Lukasiewicz TCN is defined as
ZL (ç, ë) − max (ç + ë − 1); and Drastic TCN is provided as
follows:

ZD = (r, s) =


ç if ë = 0
s if ë = 0
1 otherwise

∀ç, ë ∈ [0, 1] (7)

Definition 11: Aczel et al. [22] 1980s diagnosed the clas-
sification of TCNs and TNs for functional equations.

The AATN can be written as

(
Zλ
A

)
=


ZD (ç, ë) if λ = 0
min (ç, ë) if λ = ∞

e
−

(
(− ln(ç))λ

+(− ln(ë))λ
) 1

λ

otherwise

(8)
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The AATCN can be written as

(
Zλ
A

)
=


ZD (ç, ë) if λ = 0
max (ç, ë) if λ = ∞

e
−

(
(− ln(1−ç))λ

+(− ln(1−ë))λ
) 1

λ

otherwise

(9)

Definition 12 [10]: Let ηé =
(
Wé, 4é

)
, (é = 1, 2) be the

assembly of two q-ROFVs, here ϔ > 0. Then

1. η1 ⊕ η2 =

(
q
√

Wq
1 + Wq

2 − Wq
1.W

q
2,41.42

)
2. η1 ⊗ η2 =

(
W1.W2,

q
√

4q1 + 4q2 − 4q1.4
q
2

)
3. ϔ.η =

(
q
√
1 − (1 − Wq)ϔ , 4ϔ

)
4. ηϔ

=

(
Wϔ ,

q
√
1 − (1 − 4q)ϔ

)
III. OPERATIONAL LAWS BASED ON AATN AND AATCN
This section contains Aczel-Alsina [10], operational laws
based on Cq-ROFS philosophy, and some elementary prop-
erties.
Definition 13 [38]: Let α =

(
Ť.ei2πWŤα , ◦F.ei2πW ◦Fα

)
and β =

(
Ť.e

i2πWŤβ , ◦F.ei2πW
◦Fβ

)
two Cq-ROFVs and

suppose the symbols Z and Z to signify the AATCN and
AATN respectively. Then the term P is considered to be
union, and termQ is consider to be intersection of Cq-ROFVs
can be defined as:

α ⊗ β =

 ZA
{
Ť.ei2πWŤα ,Ť.e

i2πWŤβ

}
,

ZA
{

◦F.ei2πW ◦Fα , ◦F.ei2πW
◦Fβ

}


α ⊕ β =

 ZA
{

◦F.ei2πW ◦Fα , ◦F.ei2πW
◦Fβ

}
,

ZA
{
Ť.ei2πWŤα ,Ť.e

i2πWŤβ

}


Definition 14 [38]: Let α =
(
Ť.ei2πWŤα , ◦F.ei2πW ◦Fα

)
,

α1 =
(
Ť1.e

i2πWŤα1 , ◦F1.e
i2πW ◦Fα1

)
and α2 =

(
Ť2.e

i2πWŤα2 ,
◦F2.e

i2πW ◦Fα2
)
be three q-ROFVs, with conditions such as

Þ ≥ 1 and λ ≥ 0. Then, the AATN and AATCN operations
can be explained as follows:

i.

α1 ⊕ α2

=



q

√
1 − e

−

((
− ln

(
1−
(
Ť1
)q))Þ

+

(
− ln

(
1−
(
Ť2
)q))Þ) 1

Þ

e

i2π

 q
√
1−e

−

(
(− ln(1−(Ť1)

q
))

Þ
+(− ln(1−(Ť2)

q
))

Þ) 1Þ 
,

e−((− ln( ◦F1))Þ
+(− ln( ◦F2))Þ)

1
Þ

e
i2π

(
e−((− ln( ◦F1))

Þ
+(− ln( ◦F2))

Þ)
1
Þ

)


ii.

α1 ⊗ α2

=



e
−

((
− ln

(
Ť1
))Þ

+
(
− ln

(
Ť2
))Þ) 1

Þ

e
i2π

(
e−((− ln(Ť1))

Þ
+(− ln(Ť2))

Þ
)
1
Þ
)
,

q
√
1 − e−((− ln(1−( ◦F2)q))

Þ
+(− ln(1−( ◦F2)q))

Þ)
1
Þ

e
i2π

 q
√
1−e−((− ln(1−( ◦F2)

q))Þ
+(− ln(1−( ◦F2)

q))Þ)
1
Þ




iii.

λα =



q

√
1 − e

−

(
λ

(
− ln

(
1−
(
Ť
)q))Þ) 1

Þ

e

i2π

 q
√
1−e

−

(
λ(− ln(1−(Ť)

q
))

Þ) 1Þ 
,

e−(λ (− ln( ◦F))Þ)
1
Þ e

i2π

(
e−(λ(− ln( ◦F))Þ)

1
Þ

)


iv.

αλ
=

 e
−

(
λ
(
− ln

(
Ť
))Þ) 1

Þ

e
i2π

(
e−(λ(− ln(Ť))Þ)

1
Þ
)
,

q

√
1−e−(λ (− ln(1−( ◦F)q))Þ)

1
Þ e
i2π

q
√
1−e−(λ(− ln(1−( ◦F)q))Þ)

1
Þ




IV. CQ-ROF POWER AGGREGATION OPERATOR
Applying the operational rules defined in Definition (14)
Based on Aczel-Alsina TN and TCN, we establish new
Cq-ROFAAWA and Cq-ROFAAWG operators.
Definition 15: Let à =

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
, (é =

1, 2, . . . , n) be the group of Cq-ROFVs, and the
Cq-ROFAAWA operator is defined as: µn

→ µ, if

Cq− ROFAAPWA (à1, à2, . . . , àn)

=

n
⊕

é = 1

∑n
é=1

(
1 + Ť

(
ąé
))

ąé∑n
é=1

(
1 + Ť

(
ąé
)) (10)

where µ be the collection of all Cq-ROFVs and Ť
(
ąé
)

=∑n
é=1 Sup

(
ąé, ąj

)
, then Cq-ROF AA power weighted aver-

aging operator (AAPWAO). Suppose

εé =

(
1 + Ť

(
ąé
))∑n

é=1
(
1 + Ť

(
ąé
))

then (4) will become as

Cq− ROFAAPWA (à1, à2, . . . , àn) =

n
⊕

é = 1
εéąé

Theorem 1: Let àé =

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
, (é = 1,

2, . . . , n) be the Cq-ROFVs group using Definition 4. aggre-
gation results from Cq-ROFAAPWA is also Cq-ROFV.

Cq− ROFAAPWA (à1, à2, . . . , àn)

=

n
⊕

é = 1

(
αéϖé

)
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=



q

√
1 − e

−

(∑n
é=1 ξé

(
− ln

(
1−Ťqé

))Þ) 1
Þ

e

i2π

 q
√
1−e

−

(∑n
é=1 ξé(− ln(1−Ťqé ))

Þ) 1Þ  ,

e
−

(∑n
é=1 ξé(− ln( ◦Fé))

Þ
) 1

Þ

e
i2π

e−(∑n
é=1 ξé(− ln( ◦Fé))

Þ
) 1

Þ



. (11)

where ξé (é = 1, 2, . . . ,n) be the group of integrated weights
such as

εé =
ϖé
(
1 + Ť

(
ąé
))∑n

é=1 ϖé
(
1 + Ť

(
ąé
))

And it is always. εé > 0 and
∑n

é=1 ϖé = 1.
Proof: By using the AA operational rule and mathematical

induction rule, take n = 2, then we have

à1ϖ1 =



q

√
1 − e

−

(
ξ1
(
− ln

(
1−Ťq1

))Þ) 1
Þ

e

i2π

 q
√
1−e

−

(
ξ1(− ln(1−Ťq1))

Þ) 1Þ 
,

e−(ξ1(− ln( ◦F1))Þ)
1
Þ

e
i2π

(
e−(ξ1(− ln( ◦F1))

Þ)
1
Þ

)



à2ϖ2 =



q

√
1 − e

−

(
ξ2
(
− ln

(
1−Ťq2

))Þ) 1
Þ

e

i2π

 q
√
1−e

−

(
ξ2(− ln(1−Ťq2))

Þ) 1Þ 
,

e−(ξ2(− ln( ◦F2))Þ)
1
Þ

e
i2π

(
e−(ξ2(− ln( ◦F2))

Þ)
1
Þ

)


Consider

v =

q

√
1 − e

−

(
ξ1
(
− ln

(
1−Ťq1

))Þ
+ξ1

(
− ln

(
1−Ťq2

))Þ) 1
Þ

× e

i2π

 q
√
1−e

−

(
ξ1(− ln(1−Ťq1))

Þ
+ξ1(− ln(1−Ťq2))

Þ) 1Þ 
Then

ln
(
1 − vq

)
= −

(
ξ1
(
− ln

(
1 − Ťq1

))Þ
+ξ1

(
− ln

(
1 − Ťq2

))Þ ) 1
Þ

× e

i2π

−

 ξ1
(
− ln

(
1 − Ťq1

))Þ
+ξ1

(
− ln

(
1 − Ťq2

))Þ  1
Þ


by using this, we obtain the following:

Cq− ROFAAPWA (à1, à2, . . . , àn)

= à1ϖ1 ⊕ à2ϖ2

=



q

√
1 − e

−

(
ξ1
(
− ln

(
1−Ťq1

))Þ) 1
Þ

e

i2π

 q
√
1−e

−

(
ξ1(− ln(1−Ťq1))

Þ) 1Þ 
,

e−(ξ1(− ln( ◦F1))Þ)
1
Þ e

i2π

(
e−(ξ1(− ln( ◦F1))

Þ)
1
Þ

)



⊕



q

√
1 − e

−

(
ξ2
(
− ln

(
1−Ťq2

))Þ) 1
Þ

e

i2π

 q
√
1−e

−

(
ξ2(− ln(1−Ťq2))

Þ) 1Þ 
,

e−(ξ2(− ln( ◦F2))Þ)
1
Þ e

i2π

(
e−(ξ2(− ln( ◦F2))

Þ)
1
Þ

)



=



q

√
1 − e

−

(
ξ1
(
− ln

(
1−Ťq1

))Þ
+ξ2

(
− ln

(
1−Ťq2

))) 1
Þ

e

i2π

 q
√
1−e

−

(
ξ1(− ln(1−Ťq1))

Þ
+ξ2(− ln(1−Ťq2))

) 1
Þ


,

e−(ξ1(− ln( ◦F1))Þ
+ξ2(− ln( ◦F2))Þ)

1
Þ

e
i2π

(
e−(ξ1(− ln( ◦F1))

Þ
+ξ2(− ln( ◦F2))

Þ)
1
Þ

)



=



q

√
1 − e

−

(∑2
é=1 ξ2

(
− ln

(
1−Ťq2

))Þ) 1
Þ

i2π

 q

√
1 − e

−

(∑2
é=1 ξ2

(
− ln

(
1−Ťq2

))Þ) 1
Þ

 ,

e
−

(∑2
é=1 ξ2(− ln( ◦F2))Þ

) 1
Þ

e
2π i

e−(∑2
é=1 ξ2(− ln( ◦F2))

Þ
) 1

Þ



Hence the statement is true for n = 2.
Now we take n = k , then we have

Cq− ROFAAPWA (à1, à2, . . . , àk)

=

k
⊕

é = 1

(
àéϖé

)

=



q

√
1 − e

−

(∑k
é=1 ξé

(
− ln

(
1−Ťqé

))Þ) 1
Þ

e

2π i

 q
√
1−e

−

(∑k
é=1 ξé(− ln(1−Ťqé ))

Þ) 1Þ 
,

e
−

(∑k
é=1 ξé(− ln( ◦Fé))

Þ
) 1

Þ

e
2π i

e−(∑k
é=1 ξé(− ln( ◦Fé))

Þ
) 1

Þ



Hence, the declaration is true for n = k .
Consider the declaration is true for n = k + 1, then.

Cq− ROFAAPWA (à1, à2, . . . , àk , àk+1)

=

k
⊕

é = 1

(
àéϖé

)
⊕ (àk+1ϖk+1)
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=


q

√
1 − e

−

(∑k
é=1 ξé

(
− ln

(
1−Ťqé

))Þ) 1
Þ

e
q
√
1−e

−

(∑k
é=1 ξé(− ln(1−Ťqé ))

Þ) 1Þ ,

e
−

(∑k
é=1 ξé(− ln( ◦Fé))

Þ
) 1

Þ

ee
−

(∑k
é=1 ξé(− ln( ◦Fé))

Þ
) 1

Þ


Hence, the declaration is true for n = k + 1.
Theorem 2 (Idempotency): If àé =

(
Ťé.e

i2πWŤé ,
◦Fé.e

i2πW ◦Fé

)
, (é = 1, 2, . . . , n) be the group of Cq-ROFVs

that àé = à then we have

Cq− ROFAAPWA (à1, à2, . . . , àn) = à

Proof: Since àé =

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
, (é = 1,

2, . . . , n), then by using (11), we have

Cq− ROFAAPWA (à1, à2, . . . , àn)

=

n
⊕

é = 1

(
αéϖé

)

=



q

√
1 − e

−

(∑n
é=1 ξé

(
− ln

(
1−Ťqé

))Þ) 1
Þ

e

2π i

 q
√
1−e

−

(∑n
é=1 ξé(− ln(1−Ťqé ))

Þ) 1Þ 
,

e
−

(∑n
é=1 ξé(− ln( ◦Fé))

Þ
) 1

Þ

e
2π i

(
−

(∑n
é=1 ξé(− ln( ◦Fé))

Þ
) 1

Þ

)



=


q
√
1 − eln

(
1−Ťqé

)
i2π

(
q
√
1 − eln

(
1−Ťqé

))
,

eln(
◦Fé)e

i2π
(
eln(

◦Fé)
)


=

q
√
Ťqé e

i2π
(
q
√

Ťqé
)
, ◦Fei2π( ◦Fé)

=

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
= à

Thus, Cq− ROFAAPWA (à1, à2, . . . , àn) satisfied.
Theorem 3 (Boundedness): If àé =

(
Ťé.e

i2πWŤé ,
◦Fé.e

i2πW ◦Fé

)
, (é = 1, 2, . . . , n) be the group of

Cq-ROFVs that is à−
= min(à1, à2, . . . , àn) and à+

=

max(à1, à2, . . . , àn) then condition holds for boundedness
à−

≤ Cq− ROFAAPWA(à1, à2, . . . , àn) ≤ à+.
Proof: Suppose that àé =

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
,

(é = 1, 2, . . . , n) be the group of Cq-ROFVs. Let à−
=

min(à1, à2, . . . , àn) =

(
Ť−

é .e
i2πWŤ−

é , ◦F−
é .e

i2πW ◦F−
é

)
and

à−
= max(à1, à2, . . . , àn) =

(
Ť+

é .e
i2πWŤ+

é , ◦F+
é .e

i2πW ◦F+
é

)
thenwe have à−

= min
(
Ťé.e

i2πWŤé

)
, à−

= max
(

◦Fé.e
i2πW ◦Fé

)
,

à+
= max

(
Ťé.e

i2πWŤé

)
, à+

= min
(

◦Fé.e
i2πW ◦Fé

)


q

√
1 − e

−

(∑n
é=1 ξé

(
− ln

(
1−
(
Ť−

é
)q))Þ) 1

Þ

e

i2π

 q
√
1−e

−

(∑n
é=1 ξé

(
− ln

(
1−(Ť−

é )
q))Þ) 1Þ 



≤


q

√
1 − e

−

(∑n
é=1 ξé

(
− ln

(
1−
(
Ťé
)q))Þ) 1

Þ

e

i2π

 q
√
1−e

−

(∑n
é=1 ξé(− ln(1−(Ťé)

q
))

Þ) 1Þ 



≤


q

√
1 − e

−

(∑n
é=1 ξé

(
− ln

(
1−
(
Ť+

é
)q))Þ) 1

Þ

e

i2π

 q
√
1−e

−

(∑n
é=1 ξé

(
− ln

(
1−(Ť+

é )
q))Þ) 1Þ 


e−(∑n

é=1 ξé

(
− ln ◦F−

é

)Þ) 1
Þ

e
2π i

e−(∑n
é=1 ξé(− ln ◦F−

é )
Þ) 1Þ 

≤

e−(∑n
é=1 ξé

(
− ln ◦F−

é

)Þ) 1
Þ

e
i2π

e−(∑n
é=1 ξé(− ln ◦F−

é )
Þ) 1Þ 

≤

e−(∑n
é=1 ξé

(
− ln ◦F+

é

)Þ) 1
Þ

e
i2π

e−(∑n
é=1 ξé(− ln ◦F+

é )
Þ) 1Þ 

Thus à−
≤ Cq−ROFAAPWA (à1, à2, . . . , àn) ≤ à+ satisfied.

Theorem 4 (Monotonicity): Let àé =

(
Ťé.e

i2πWŤé ,
◦Fé.e

i2πW ◦Fé

)
, (é = 1, 2, . . . , n) be the group of Cq-ROFVs,

if à ≤ à′ then Cq − ROFAAPWA(à1, à2, . . . , àn) ≤ Cq −

ROFAAPWA(à′

1, à
′

2, . . . , à
′
n).

Theorem 5: Let àé =

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
, (é =

1, 2, . . . , n) be the Cq-ROFVs group using the Defini-
tion (4). aggregation results from Cq-ROFAAPWG are also
Cq-ROFV.

Cq− ROFAAPWG (à1, à2, . . . , àn)

=

n
⊕

é = 1

(
αéϖé

)

=



q

√
e
−

(∑n
i=1 ξé

(
− ln

(
Ťqé
))Þ) 1

Þ

e

2π i

 q
√
e
−

(∑n
i=1 ξé(− ln(Ť

q
é ))

Þ) 1Þ 
,

1 − e
−

(∑n
é=1 ξé(− ln(1− ◦Fé))

Þ
) 1

Þ

e
2π i

1−e
−

(∑n
é=1 ξé(− ln(1− ◦Fé))

Þ
) 1

Þ



(12)
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where ξé (é = 1, 2, . . . ,n) be the group of integrated weights
such as

εé =
ϖé
(
1 + Ť

(
ąé
))∑n

é=1 ϖé
(
1 + Ť

(
ąé
))

And it is always. εé > 0 and
∑n

é=1 ϖé = 1.
Proof: By using the AA operational rule and mathemat-

ical induction rule, take n = 2, then we have

à1ϖ1

=


q

√
e
−

(
ξ1
(
− ln

(
Ťq1
))Þ) 1

Þ

e

i2π

 q
√
e
−

(
ξ1(− ln(Ť

q
1))

Þ) 1Þ 
,

1 − e−(ξ1(− ln(1− ◦F1))Þ)
1
Þ
e
i2π

(
1−e−(ξ1(− ln(1− ◦F1))

Þ)
1
Þ

)


à2ϖ2

=


q

√
e
−

(
ξ2
(
− ln

(
Ťq2
))Þ) 1

Þ

e

i2π

 q
√
e
−

(
ξ2(− ln(Ť

q
2))

Þ) 1Þ 
,

q
√
1 − e−(ξ2(− ln(1− ◦F2))Þ)

1
Þ
e
i2π

(
1−e−(ξ2(− ln(1−◦F2))

Þ)
1
Þ

)


Cq− ROFAAPWG (à1, à2, . . . , àn)

= à1ϖ1 ⊕ à2ϖ2

=


q

√
e
−

(
ξ1
(
− ln

(
Ťq1
))Þ) 1

Þ

e

i2π

 q
√
e
−

(
ξ1(− ln(Ť

q
1))

Þ) 1Þ 
,

1 − e−(ξ1(− ln(1− ◦F1))Þ)
1
Þ
e
i2π

(
1−e−(ξ1(− ln(1− ◦F1))

Þ)
1
Þ

)


⊕


q

√
e
−

(
ξ2
(
− ln

(
Ťq2
))Þ) 1

Þ

e

i2π

 q
√
e
−

(
ξ2(− ln(Ť

q
2))

Þ) 1Þ 
,

1 − e−(ξ2(− ln(1− ◦F2))Þ)
1
Þ
e
i2π

(
1−e−(ξ2(− ln(1− ◦F2))

Þ)
1
Þ

)


=



q

√
e
−

(
ξ1
(
− ln

(
Ťq1
))Þ

+ξ2
(
− ln

(
Ťq2
))) 1

Þ

e

i2π

 q
√
e
−

(
ξ1(− ln(Ť

q
1))

Þ
+ξ2(− ln(Ť

q
2))

) 1
Þ


,

1 − e−(ξ1(− ln(1− ◦F1))Þ
+ξ2(− ln(1− ◦F2))Þ)

1
Þ

e
i2π

(
1−e−(ξ1(− ln(1− ◦F1))

Þ
+ξ2(− ln(1−◦F2))

Þ)
1
Þ

)


=


q

√
e
−

(∑2
é=1 ξ2

(
− ln

(
Ťq2

))Þ) 1
Þ

e

i2π


q
√
e
−

(∑2
é=1 ξ2

(
− ln

(
Ťq2

))Þ) 1Þ 
,

1−e
−

(∑2
é=1 ξ2(− ln(1−◦F2))

Þ
) 1

Þ

, e
2π i

(
−

(∑2
é=1ξ2(− ln(1−◦F2))

Þ
)1

Þ

)


Hence, the declaration is true for n = 2.
Now we take n = k , then we have

Cq− ROFAAPWG (à1, à2, . . . , àk) =

k
⊕

é = 1

(
àéϖé

)

=


q

√
e
−

(∑k
é=1 ξé

(
− ln

(
Ťqé
))Þ) 1

Þ

e

i2π


q
√
e
−

(∑k
é=1 ξé

(
− ln

(
Ťqé
))Þ) 1Þ 

,

1−e
−

(∑k
é=1 ξé

(
− ln

(
1− ◦Fé

))Þ) 1
Þ

e

2π i

1−e−(∑k
é=1 ξé(− ln(1− ◦Fé))Þ

) 1
Þ




Hence, the declaration is true for n = k .
Consider the declaration is true for n = k + 1, then.

Cq− ROFAAPWG (à1, à2, . . . , àk , àk+1)

=

k
⊕

é = 1

(
àéϖé

)
⊕ (àk+1ϖk+1)

=



q

√
e
−

(∑k
é=1 ξé

(
− ln

(
Ťqé
))Þ) 1

Þ

e

i2π

 q
√
e
−

(∑k
é=1 ξé(− ln(Ť

q
é ))

Þ) 1Þ 
,

1 − e
−

(∑k
é=1 ξé(− ln(1− ◦Fé))

Þ
) 1

Þ

e
2π i

1−e
−

(∑k
é=1 ξé(− ln(1−◦Fé))

Þ
) 1

Þ



Hence, the declaration is true for n = k + 1.
Theorem 6 (Idempotency): If àé =

(
Ťé.e

i2πWŤé ,
◦Fé.e

i2πW ◦Fé

)
, (é = 1, 2, . . . , n) be the group of Cq-ROFVs

that àé = à then we have

Cq− ROFAAPWG (à1, à2, . . . , àn) = à

Proof: Since àé =

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
, (é = 1,

2, . . . , n), then by using Equation 11. we have

Cq− ROFAAPWG (à1, à2, . . . , àn)

=

n
⊕

é = 1

(
αéϖé

)

=



q

√
e
−

(∑n
é=1 ξé

(
− ln

(
Ťqé
))Þ) 1

Þ

e

i2π

 q
√
e
−

(∑n
é=1 ξé(− ln(Ť

q
é ))

Þ) 1Þ 
,

1 − e
−

(∑n
é=1 ξé(− ln(1− ◦Fé))

Þ
) 1

Þ

e
i2π

1−e
−

(∑n
é=1 ξé(− ln(1− ◦Fé))

Þ
) 1

Þ




=

 q
√
eln
(
Ťqé
)
e
i2π

(
q
√
eln(Ť

q
é )
)
,

1 − eln(1−
◦Fé)e

2π i
(
1−eln(1−

◦Fé)
)


=

(
q
√
Ťqé e

i2π
(
q
√

Ťqé
)
, q
√

◦Fée
i2π

(
q
√

◦Fé

))
=

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
= à

Thus, Cq− ROFAAPWG (à1, à2, . . . , àn) satisfied.
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Theorem 7 (Boundedness): If àé =

(
Ťé.e

i2πWŤé ,
◦Fé.e

i2πW ◦Fé

)
, (é = 1, 2, . . . , n) be the group of

Cq-ROFVs that is à−
= min(à1, à2, . . . , àn) and à+

=

max(à1, à2, . . . , àn) then condition holds for boundedness
à−

≤ Cq− ROFAAPWG(à1, à2, . . . , àn) ≤ à+.
Proof: Suppose that àé =

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
,

(é = 1, 2, . . . , n) be the group of Cq-ROFVs. Let à−
=

min (à1, à2, . . . , àn) =

(
Ť−

é .e
i2πWŤ−

é , ◦F−
é .e

i2πW ◦F−
é

)
and à−

= max(à1, à2, . . . , àn) =

(
Ť+

é .e
i2πWŤ+

é ,

◦F+
é .e

i2πW ◦F+
é

)
then we have à−

= min
(
Ťé.e

i2πWŤé

)
,

à−
= max

(
◦Fé.e

i2πW ◦Fé

)
, à+

= max
(
Ťé.e

i2πWŤé

)
, à+

=

min
(

◦Fé.e
i2πW ◦Fé

)


q

√
1 − e

−

(∑n
é=1 ξé

(
− ln

(
1−
(
Ť−

é
)q))Þ) 1

Þ

e

2π i

 q
√
1−e

−

(∑n
é=1 ξé

(
− ln

(
1−(Ť−

é )
q))Þ) 1Þ 



≤


q

√
1 − e

−

(∑n
é=1 ξé

(
− ln

(
1−
(
Ťé
)q))Þ) 1

Þ

e

2π i

 q
√
1−e

−

(∑n
é=1 ξé(− ln(1−(Ťé)

q
))

Þ) 1Þ 



≤


q

√
1 − e

−

(∑n
é=1 ξé

(
− ln

(
1−
(
Ť+

é
)q))Þ) 1

Þ

e

2π i

 q
√
1−e

−

(∑n
é=1 ξé

(
− ln

(
1−(Ť+

é )
q))Þ) 1Þ 



≤


q

√
e
−

(∑n
é=1 ξé

(
− ln ◦F−

é

)Þ) 1
Þ

e

2π i

 q
√
e
−

(∑n
é=1 ξé(− ln ◦F−

é )
Þ) 1Þ 



≤


q

√
e
−

(∑n
é=1 ξé(− ln ◦Fé)

Þ
) 1

Þ

e

2π i

 q
√
e
−

(∑n
é=1 ξé(− ln ◦Fé)Þ

) 1
Þ





≤


q

√
e
−

(∑n
é=1 ξé

(
− ln ◦F+

é

)Þ) 1
Þ

e

2π i

 q
√
e
−

(∑n
é=1 ξé(− ln ◦F+

é )
Þ) 1Þ 


Thus à−

≤ Cq − ROFAAPWG (à1, à2, . . . , àn) ≤ à+

satisfied.
Theorem 8 (Monotonicity): Let àé =

(
Ťé.e

i2πWŤé ,
◦Fé.e

i2πW ◦Fé

)
, (é = 1, 2, . . . , n) be the group of Cq-ROFVs,

if à ≤ à′ then Cq − ROFAAPWG(à1, à2, . . . , àn) ≤ Cq −

ROFAAPWG(à′

1, à
′

2, . . . , à
′
n)

A. MAGM ALGORITHM BASED ON CQ-ROFS
In the Cq-ROFS system, we proposed a MAGDM algorithm
using the derived Cq-ROFAAPWA and Cq-ROFAAPWG
operators.

Consider j =
(
j1,j2, . . . ,jX

)
are X

th attributes and
a = (a1,a2, . . . ,an) be the nth alternatives for choosing
the finest option among the multiple choices. Consider the
weight vectors. ϖé in decision-makers’ opinion, the sum of
all weights must be 1. We represent the weight vector (WV)
of decision-experts Dp is signified by rp (K = 1, 2, . . . ,p)
and also the sum of all the weights must be 1. By utilizing the
Cq-ROFS Information, construct the decision matrix which
R = (SK)

X×n. The information in the matrix is in the form
of Cq-ROFS, such as àé =

(
Ťé.e

i2πWŤé , ◦Fé.e
i2πW ◦Fé

)
, where

evaluate the alternatives within the range of 0 ≤ Ťé.e
i2πWŤé +

◦Fé.e
i2πW ◦Fé ≤ 1. Thus, construct the matrix R = (SK)

X×n

using Cq-ROFS information.
In general, there are two types of alternatives: cost type and

benefit type.

f̄i =

{
fi benefit type attribute
fc
i cost type attribute

Suppose that, fc
i be the cost type attribute and fi be the

benefit type attribute of the matrix. If both facts are different,
they must be interchanged with each other, while if they
are the same, then there is no need to change during the
aggregation of the decision matrix.

In this segment, we offer an algorithm by applying the
developed Cq-ROFAAWA and Cq-ROFAAWG operators in
the q-ROFS theory to select the finest alternative. By using
the proposed AOs, solve the MAGDM problematic issues.
The following steps are listed as follows:

Step 1: By using Definition (6). calculate the support
values of the decision matrix.

Sup
(
btéj, b

K
éj

)
= 1 − d

(
btéj, b

K
éj

)
where support function t, K = 1, 2, . . . , p, é =

1, 2, . . . , X; j = 1, 2, . . . , n satisfy the conditions discussed
in Definition (6). and Definition (4).

Step 2: To calculating the values of Ť
(

ąK
éj

)
Ť
(

ąK
éj

)
=

p∑
é=1

Sup
(

ąK
éj , ąt

éj

)
where t, K = 1, 2, . . . ,p, é = 1, 2, . . . , X; j = 1, 2, . . . , n.

Step 3: To compute εK
é weights of the attribute associated

with Cq-ROFVs by using the following formula:

εé =
rp
(
1 + Ť

(
ąé
))∑n

é=1 rp
(
1 + Ť

(
ąé
))

Step 4: Aggregate the decision matrices àé by using the
developed Cq-ROFAAWA and Cq-ROFAAWG operators.

Cq− ROFAAPWA
(
à1éj, à

2
éj, . . . , à

n
éj

)
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=

n
⊕

é = 1

(
àéjϖéj

)

=



q

√
1 − e

−

(∑n
éj=1 ξéj

(
− ln

(
1−Ťqéj

))Þ) 1
Þ

e

2π i

 q
√
1−e

−

(∑n
éj=1 ξéj

(
− ln

(
1−Ťqéj

))Þ) 1Þ 
,

e
−

(∑n
éj=1 ξéj(− ln ◦Féj)

Þ
) 1

Þ

e
2π i

e−(∑n
éj=1 ξéj(− ln ◦Féj)

Þ) 1Þ 


and

Cq− ROFAAPWG
(
à1éj, à

2
éj, . . . , à

n
éj

)
=

n
⊗

é = 1

(
àéjϖéj

)

=



q

√
e
−

(∑n
éj=1 ξéj

(
− ln

(
Ťqéj

))Þ) 1
Þ

e

2π i

 q
√
e
−

(∑n
éj=1 ξéj

(
− ln

(
Ťqéj

))Þ) 1Þ 
,

1 − e
−

(∑n
éj=1 ξéj(− ln(1− ◦Féj))

Þ
) 1

Þ

e
2π i

1−e
−

(∑n
éj=1 ξéj(− ln(1− ◦Féj))

Þ) 1Þ 



Step 5: Calculate the values of Ť
(

ąK
éj

)
.

Ť
(

ąK
éj

)
=

n∑
é=1

Sup
(

ąK
éj , ąt

éh

)

where t, K = 1, 2, . . . ,p, é, j, h = 1, 2, . . . ,n.
Step 6: To calculate εK

é weights of the attribute associated
with Cq-ROFVs by using the following formula:

εé =
ϖé
(
1 + Ť

(
ąé
))∑n

é=1 ϖé
(
1 + Ť

(
ąé
))

And it is always. εé> 0 and
∑n

é=1 ϖé = 1.
Step 7:Aggregate each attribute by applying the diagnosed

Cq-ROFAAWA and Cq-ROFAAWG operators.

Cq− ROFAAPWA (à1, à2, . . . , àn)

=

n
⊕

ϖé = 1

(
àéϖé

)

=



q

√
1 − e

−

(∑n
i=1 ξé

(
− ln

(
1−Ťqé

))Þ) 1
Þ

e

2π i

 q
√
1−e

−

(∑n
i=1 ξé(− ln(1−Ťqé ))

Þ) 1Þ 
,

e−(
∑n

i=1 ξi(− ln( ◦Fé))
Þ
)
1
Þ

e
2π i

(
e−(

∑n
i=1 ξi(− ln( ◦Fé))

Þ)
1
Þ
)


and

Cq− ROFAAPWG (à1, à2, . . . , àn)

=

n
⊗

é = 1

(
àéϖé

)

=



q

√
e
−

(∑n
i=1 ξé

(
− ln

(
Ťqé
))Þ) 1

Þ

e

i2π

 q
√
e
−

(∑n
i=1 ξé(− ln(Ť

q
é ))
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Step 8: Calculate the score value by using Definition (5).

S (η) =

[(
Ťq −

◦Fq
)
+

(
WŤqη −W ◦Fqη

)]
Step 9:We are arranging the alternatives to show the finest

alternative.

B. NUMERICAL PROBLEM
Dam construction is a high-cost project, and it should be
built at a location with more significant economic potential to
cover the costs. In this instance, many researchers conducted
several case studies to select a suitable company. In this arti-
cle, we develop a case study of appropriate company selection
for dam construction, and during the choice of a convenient
company, consider the following factors as listed below:

1. Experience: It is the major factor before assigning the
contract that the company should have extensive experience
in the construction of dams, including a good track record of
successful dam construction projects.

2. Expertise: The dam construction company must have
a team of skilled professionals, including dam engineers
and dam designers because the successful completion of the
project depends on the company’s expertise.

3. Resources: observe the dam construction company’s
necessary resources, such as advanced equipment and
technology-based machinery.

4. Safety record: The dam construction company has a
strong safety record and follows all safety regulations accord-
ing to international standards.

5. Financial stability: The dam construction company has
a stable financial budget to ensure the successful completion
of the project without causing delays in the decided period.
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TABLE 1. (Cq-ROFS decision matrix S1).

6. Reputation: The company should have a good reputation
within the industry and among its clients and stakeholders.

There are many multinational companies, such as
China Gezhouba Group Company Limited (CGGC), Salini
Impregilo S.p.A., China State Construction Engineering
Corporation (CSCEC), Power Construction, Corporation of
China (PowerChina), Vinci Construction Grands Projets, J-
Power Systems Corporation, Hochtief Aktiengesellschaft,
Larsen & Toubro Limited (L&T), Andritz Hydro, Strabag
SE. These are some of the top-ranked dam construction
companies in the world based on their experience, expertise,
and reputation. It is problematic for decision-makers to find
the finest company for dam construction. We construct the
MAGDM algorithm depending on the C-q-ROFS methodol-
ogy to solve this difficulty.

Consider a set of five different companies. (ℵ1, ℵ2, ℵ3, ℵ4,
ℵ5) as an alternative, and we also have a group of three
decision-makers Di (i = 1, 2, 3) and their weight vector is
(0.24, 0.35, 41)T . Consider the attributes Ā1 is the expe-
rience of the company, Ā2 is resources, Ā3 is safety
record, Ā4 is financial stability. The weight vectors of
attributes kept in mind during the selection of the best
alternative is (0.30, 0.20, 0.24, 0.26) respectively. Using the
Cq-ROFS information, decision-makers evaluate the five
companies with concerning attributes

(
Ā1, Ā2, Ā3, Ā4, Ā5

)
.

Then, we built three decision matrices.
[
Skij
]
5×4

for group
decision-making as given below in Tables 1-3.
The evaluation steps are discussed in detail as follows:
Step 1: Collect the fuzzy information from anonymous

experts. Then, give weight to decision-makers (D1, D2, D3)

is (0.24, 0.35, 0.41) respectively. We also assign a weight
vector for attributes, 0.30 for the experience of the company
(Ā1); 0.20 for resources (Ā2); 0.24 for safety record (Ā3);
0.26 for financial stability (Ā4). The collection of vague data
is presented in Tables 1–3.

TABLE 2. (Cq-ROFS decision matrix S2).

TABLE 3. (Cq-ROFS decision matrix S3).

Step 2: Using the proposed Cq-ROFAAPWA and Cq-
ROFAAPWG operators, aggregate the Cq-ROF Information.
The aggregated findings are presented in Table 4. (When
Þ = 1 and q = 3).

Step 3: To evaluate the SV from Definition 5. On aggre-
gated findings, find the finest alternative. The results are
given in Table 5.

Step 4: Arrange the alternatives based on the SV formula.
It is noticed that ℵ1 is the finest alternative by using the pro-
posed Cq-ROFAAPWGAOwhile ℵ5 be the finest alternative
by using the proposed Cq-ROFAAPWA AO. The ordering of
other options is shown in Table 6.

C. SENSITIVITY STUDY BY VARIATION OF PARAMETERS
In this section, we observe the sensitivity of parametersÞ and
q on our proposed Cq-ROFAAPWA and Cq-ROFAAPWG
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TABLE 4. Aggregation results.

TABLE 5. (Score function of aggregated information).

FIGURE 2. Represents the graphical depiction of Table 5, where green
lines denote the ranking sequence of Cq-ROFAAPWA operators while blue
lines denote the ranking sequence of Cq-ROFAAPWG operators.

AOs. For more clarity, we can see the effect of parameters
through the geometrical representation and ranking order.

1) THE CONSEQUENCE OF PARAMETER Þ
The developed numerical example shows that ranking order
varies when we vary the parameter Þ in our proposed AOs.
For example, the variation in Þ = 1, 3, 5, 7, 11 in the pro-
posed Cq-RFAAPWA operator, then the following changes
in the ordering of alternatives can be observed in Table 7.
Also, the variation in Þ = 1, 3, 5, 7, 11 in the proposed Cq-
RFAAPWG operator, then the following changes in the
ordering of alternatives can be observed in Table 8.

TABLE 6. Ranking of core values.

TABLE 7. Ranking of the order of Cq-ROFAAPWA by variation in
parameter Þ.

TABLE 8. The ranking sequence of Cq-ROFAAPWG by variation in
parameter Þ.

For more clarity, the aggregation findings of Table 7 and
Table 8 are presented in Figure 3 and Figure 4, respec-
tively. We easily observe variation in the ranking sequence
of Cq-ROFAAPWA operators by changing the value of Þ.
Finally, when we place Þ = 11, the ranking of the alternative
will be stable, which means Þ = 11 is the stability point for
the Cq-ROFAAPWA operator. While in Cq-ROFAAPWG,
operator ranking order also varies by the parameter variations
in parameter Þ. In Cq-ROFAAPWA, operator Þ = 11 is
the stability point because by putting Þ = 11, the following
aggregation results will remain the same. It is also a notice-
able feature, and no ranking outcome is obtained by placing
an even number in Cq-ROFAAPWA and Cq-ROFAAPWG
AOs.

2) THE CONSEQUENCE OF PARAMETER q
In our proposed numerical example, we take the param-
eter q = 3 and aggregate the q-ROF data by applying
the established Cq-ROFAAPWA and Cq-ROFAAPWG AOs.
In this scenario, we also observe the consequences of rank-
ing order by variation in parameter q. It is observed that
the Cq-ROFAAPWA ranking order varies by increasing the
value of parameter q. When we take q = 7 ranking order
is ℵ5 > ℵ2 > ℵ3 > ℵ1 > ℵ4 after q = 7, the
ranking sequence will be constant for all higher terms of
q. While in Cq-ROFAAPWG, there are also ranking order
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FIGURE 3. The geometrical depiction of SVs of Cq-ROFAAPWA operator,
variation by Þ.

FIGURE 4. The geometrical depiction of score value of Cq-ROFAAPWG
operator, variation by Þ.

variations by changing the parameter q. When we take q =

9 ranking order, it is ℵ1 > ℵ4 > ℵ5 > ℵ3 > ℵ2 after
q = 9, the ranking sequence will be constant for all higher
terms of q.

The graphical representation of Table 9. and Table 10 in
Figure 6 and Figure 6, respectively. It is also noticed that by
increasing the value of parameter q, the value of the score
function gradually decreases for Cq-ROFAAPWA and Cq-
ROFAAPWG operators.

TABLE 9. The ranking sequence of Cq-ROFAAPWA by variation in
parameter q.

TABLE 10. The ranking sequence of Cq-ROFAAPWG by variation in
parameter q.

FIGURE 5. The geometrical depiction of the score value of the
Cq-ROFAAPWA operator, variation by q.

V. COMPARATIVE STUDY
In this segment, we will compare our projected
Cq-ROFAAPWG and Cq-ROFAAPWA operators with the
presence of AOs. Also, we discussed the significance of
developed AOs. In this scenario, we compare our proposed
AOs with Cq-ROF weighted averaging (WA) (Cq-ROFWA)
and Cq-ROF weighted geometric (WG) (Cq-ROFWG) given
by Garg et al. [39], Cq-ROF Dombi WA (Cq-ROFDWA)
and Cq-ROF Dombi WG (Cq-ROFDWG) presented by Ali
and Mahmood [40], and the concept of Cq-ROF frank WA
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FIGURE 6. The geometrical depiction of the score value of the
Cq-ROFAAPWG operator, variation by q.

FIGURE 7. Represents the graphical view of developed AOs with existing
operators in the comparative study section, where lines denote the
alternatives’ SV.

(Cq-ROFFWA) and Cq-ROF FrankWG (Cq-ROFFWG)AOs
given by Du et al. [41]. It is also noticed that many AOs
are unable to handle Cq-ROF information due to limitations
in their structures, such as triangular IF weighted averaging
(TIFWA) and triangular IF weighted geometric (TIFWG)
AOs given by Mahmood et al. [42], complex IF power
WA (CIFPWA) and complex IF power WG (CIFPWG) AOs
developed by Ali et al. [13], IF Aczel Alsina (IFAA) AOs
Senapati et al. [43], and prioritized IF Hesitant set (PIFHFS)
presented by Liu et al. [44]. These AOs failed to deal with
the given information in Table 1-3 because the IFS structure
is designed for only dealing with minimal values of MG and
NMG. On the other hand, our q-ROS is the generalization
of IFS and PyFS. So, the structure of q-ROFS allows us to
deal with the bigger value of MG and NMG. For a better
understanding and to discuss the superiority of proposedAOs,
offer a comparative study in Table 10. as given below:
Some AOs cannot aggregate information because of their

structural limitation. However, they cannot handle Cq-ROFS

TABLE 11. Comparative analysis.

information due to lake of ability to deal with complex values.
A brief review of our developed work with other present AOs
is discussed in Table 10. For more simplicity, a geometric
depiction is also provided in Figure 7.

VI. CONCLUSION
MAGDM is considered a trading tool for selecting the best
alternative among the list of other options in decision-making
sciences. The solid conclusion of the developed theory is
as follows: construct the Cq-ROFAAPWA and ROFAAPWG
operators and satisfy the fundamental axioms of AOs, such
as boundedness, monotonicity, and idempotency. For better
understanding, build the MAGMD algorithm and solve prob-
lematic real-life issues using the developed algorithm. The
influence of changing the parameters q and Þ is discussed
with the geometrical representation of data. To demonstrate
the significance of proposed AOs, give a comparative study
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and compare the results with present AO results. The geomet-
rical model of comparative study is also part of the article.

Soon, our objective to apply our proposed technique in
bipolar soft FS (BSFS) [45], Spherical FS (SFS) with Bon-
ferroni mean AOs (SFSBAOs) [46], application for improved
SFS (ISFS) [43], AATN and AATNS for IFS [48], interval-
valued T-SFS doDombi TN andTCN [49], and cubic q-ROFS
with linguistic terms [50]. Also, we will explain our devel-
oped methodology in the picture FS (PFS) presented by Ullah
[51] environment and rough IFS for Aczel-Alsina operations
defined by Khan et al. [52].
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