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ABSTRACT This paper presents a hybrid algorithm for real-time instance segmentation of packages from
scenes represented by 2D distance maps (range images). The paper introduces a novel approach combining
deep learning-based methods and digital signal processing methods to enable accurate package recognition,
using a small training dataset with high variability and distance measurement errors characteristic of Time-
of-Flight-based scanning. Two convolutional neural networks with architecture optimized for training with
a limited number of samples perform an initial segmentation of package components (sides and edges).
An algorithm based on digital signal processing methods performs refinement of intermediate results, and
combines package components into packages. Training and evaluation of the algorithm were performed
on a custom dataset containing scenes of packages, shipping bags, and packaging of irregular shapes
with various sizes, orientations, and degrees of occlusion, organized either in ordered stacks or arbitrary
order. The convolutional neural networks provide a reliable distinction between components of packages
and components of other types of packaging and surroundings. Package sides containing a sufficient
number of distance points are correctly combined into packages. Thus, the proposed algorithm represents
a solid basis for fully automated loading/unloading of packages with arbitrary sizes and materials from
transport trailers and storage spaces. The dataset and annotations for box side surfaces are available at:
https://dipteam.feit.ukim.edu.mk/results-package-detection.html.

INDEX TERMS Automated loading/unloading, CNN, depth maps, edge detection, instance segmentation,
package recognition, planar surface detection, semantic segmentation.

I. INTRODUCTION
Loading/unloading of packages with arbitrary sizes and
packaging materials from transport trailers or storage spaces
is predominantly a fully manual process, and there are
no existing fully automated systems to date. Successful
partial or total process automation of loading/unloading of
packages will significantly increase the cost-effectiveness
of the loading/unloading process by reducing the time
needed and the number of damaged goods. Since cardboard
packages of various sizes and materials are the most common
type of packaging used for transporting goods, fast and
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correct package segmentation is the basis for constructing
automated systems for trailer loading/ unloading. The main
steps towards package segmentation are precise detection
and localization of packages of different sizes, shapes,
orientations, and varying degrees of occlusion, ordered in
both organized and unorganized piles; and successfully
differentiating packages from other types of packaging, such
as bags and irregular objects (cylindrical packaging etc.).

The package loading systems on the market are designed
to operate on packaging types with a strictly defined
set of different sizes, orientations, and materials, in a
heavily controlled environment. This limits their use to
specific use cases (shoe boxes [1], evenly ordered cardboard
packages of predefined sizes [2], [3], and plain, non-reflective
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cardboard packages [4], [5]). Some systems use additional
input information to localize and identify the packages
(QR codes [2], etc.). The details of the vision algorithms
used by these systems are not publicly available. Previous
research on general pick-and-place systems is also scarce,
and usually considers only a small variety of objects in a
controlled environment [6], [7], [8]. This results in a lack
of comprehensive labeled datasets necessary for successfully
training end-to-end deep learning algorithms, due to which
most of the algorithms employ only DSP-based (Digital
Signal Processing) techniques. The lack of comprehensive
datasets forces broadening the research area and breaking the
object detection problem into multiple consecutive steps.

Packages can be made of materials with different textures,
colors and reflectivity, which results in very different
representations in color photographs. However, all shipping
packages are cuboid boxes of variable sizes, and these
features are clearly distinguishable in a depth representation
of the scene. Package detection systems operating on distance
images are independent of color and texture. However, such
systemsmust adapt to a wide variety of distancemeasurement
errors due to imperfections of depth scanning systems. Based
on this, we propose a data-driven hybrid algorithm for
package detection in scenes represented with distance maps.

The proposed algorithm is a novel integration of CNNs
(Convolutional Neural Networks) and DSP-based methods
applied to the problem of segmenting rectangular packages
with arbitrary sizes, orientations, and degrees of occlusion,
from piles of packages in arbitrary order. A custom dataset
of packaging scenes represented by 2D distance maps con-
taining heavy surface distortion represents the training and
evaluation set for the initial deep learning-based segmentation
of package components (sides and edges). The box side and
edge detection are both performed by end-to-end trainable
CNN models with a small number of parameters, trained on
data with heavily imbalanced classes. Custom algorithms for
region expansion and edge thinning refine the box sides and
edges. The segmented sides and edges provide the input for
the rule-based box forming algorithm which combines the
box sides to form complete boxes.

The rest of this paper is organized as follows. An overview
of previous works regarding segmentation of geometric
shapes and related problems is given in Section II. Section III
covers the general overview of the package detection
algorithm. A description of the custom dataset and the
CNNs for initial segmentation of package sides and edges
are presented in Section IV. Section V details the box
forming algorithm. The experimental results and discussion
are presented in Section VI, and finally, conclusions are
presented in Section VII.

II. RELATED WORK
A. DETECTION OF DIFFERENT PACKAGING TYPES
The topic of automated package loading/unloading is dis-
cussed in few previous works. Proposed algorithms and

systems use range data from laser scanners for recognizing
and localizing goods inside shipping containers or precisely
ordered onto pellets. The proposed solutions rely heavily on
modeling techniques to represent the 3D shape of different
types of packaging, and are usually restricted to limited size
ranges and orientations. A method for package segmentation
based on superquadric segmentation in range images is
presented in [6]. The algorithm uses fusion of region and
boundary information to segment rectangular packages in
scenes containing a small number of packages (at most five)
with a low degree of occlusion. A modeling approach for
segmenting heavy, inflexible sacks stacked into ordered rows
is given in [7]. The range data acquired by a 2D laser
scanner is segmented based on the predefined characteristics
of the sack surface. The paper elaborates on the difficulties
in creating models for specific cases, such as tunnels or
overlapping sacks. A complete robot vision system for
detection and localization of objects with different shapes
and sizes in piled packaging scenarios is presented in [8].
In this paper, an initial segmentation of object parts in point
cloud data is based on the geometric properties of boxes,
bags, and barrels, followed by additional geometric criteria to
combine the segmented parts into complete objects. Different
approaches based on topology graphs and Gauss maps for
segmenting different types of objects in point clouds for
various target usages are presented in [9] and [10], respec-
tively. Reference [11] presents a modeling-based method for
corner detection in low-resolution 2D range images, drawing
attention to false positive detections of objects with rounded
and irregular shapes, and analyzing the drop in accuracy
caused by reducing the number of different range levels.
Detection and localization of a large cuboid-shaped container
using connected component analysis and model fitting are
presented in [12]. The algorithm requires that there is a
minimum surrounding free space around the object. Initial
object localization is performed by detecting the container
wheels in a 2D representation of the scene, and verification of
the container orientation is performed by fitting a simple box
model to a 3D point cloud obtained with a 3D ToF (Time-
of-Flight) camera. A model fitting algorithm for detecting
payload in the form of pellets, followed by estimating the
position of the pellets in a frontal view, is presented in
[13]. Weichert et al. [14] propose a similar approach to
detect box-shaped payloads on euro pellets in point clouds
obtained using 3D ToF cameras, and present successful
results for objects represented with a sufficient number of
points. An algorithm for detecting cardboard packages from
RGB-D images by fitting cuboidmodels to detected box faces
is described in [15]. The RGB-D camera is mounted onto
a robotic arm, enabling optimal positioning of the camera
to get the clearest view of the scene at every approach.
Non-reflective package surfaces represented with a sufficient
number of points are successfully detected. Other works
presenting detection and localization of objects in 3D point
clouds using machine learning techniques can be found in
the literature [17], [18]. These works show promising results,
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at the expense of creating and annotating large databases to
successfully train the networks.

As discussed in the previous works, correct segmentation
of packages from scenes containing payloads of arbitrary
shape, size and orientation, in a cluttered environment with a
high degree of occlusion, requires an extremely large dataset
to represent all possible configurations and adapt to the wide
variety of distance measurement errors characteristic of the
distance measurement technologies (LIDAR, ToF IR range
scanners, etc.). Most of the published works performing
detection of packaging types focus on using modeling
techniques based on DSP methods, and omit deep learning
solutions due to the unavailability of large comprehensive
datasets. On the other hand, the traditional DSP methods
have a large number of prerequisites, and provide limited
success. Therefore, decomposing the packaging detection
problem into consecutive straightforward tasks is the most
often chosen approach.

In recent years, deep learning-based algorithms have
achieved remarkable success in object detection. The emer-
gence of CNNs resulted in different object detectors operating
on a single RGB image. The two-stage CNN-based architec-
ture proposed by He et al. [19] performs object detection and
instance segmentation in RGB images. Efficient architectures
[20], [21] have outperformed two-stage detectors in terms
of inference time. One-stage detectors have provided faster
and more efficient object detection [22], [23], and instance
segmentation [24], at the cost of reduced accuracy regarding
small objects. Recent state-of-the-art models (Transformer
Neural Networks [25], [26], Focal Modulation Networks
[27]) employ complex architectures with a large number
of parameters to successfully leverage the concept of
attention for improving the detection accuracy of small and
occluded objects, at the expense of inference time and large
requirements for training data.

The increase in model complexity has also given rise
to end-to-end models able to perform multiple complex
tasks based only on RGB input. Works in the field of
monocular depth estimation [28], [29] and monocular 3D
object detection [30] have provided results comparable to
state-of-the-art methods leveraging both RGB and depth
data. Recent advances in the field of 6D pose estimation of
objects from RGB images have provided exceptional results
in different target applications, demonstrating the power
of large learning-based models. Park et al. [31] proposed
Pix2Pose, an auto-encoder-based pose estimation method
that predicts 3D coordinates of objects without textured 3D
models, which successfully handles occlusion by leveraging
GANs (generative adversarial networks) to recover occluded
parts. The end-to-end CNN presented by Zhang et al. [32]
extends a 2D object detection pipeline with a pose estimation
module to indirectly regress the image coordinates of the
object’s 3D vertices based on 2D detection results. Fan et al.
[33] propose a novel approach which achieves state-of-the-
art category-level 6D object pose estimation results with only
RGB image input.

Several papers have proposed object detection algorithms
for detecting various packaging types using only RGB input.
A CNN-based algorithm for detecting KLT packaging units
from a single color photograph, published by D’orr et al.
[16], operates on one type of packaging unit and provides
successful detection of the visible faces of packaging units
precisely ordered in a uniform stack, with two visible
sides, and no occlusions. Naumann et al. [34] developed an
algorithm to reconstruct the 3D shape of individual parcels
from a single RGB image, finding that although knowledge
gained by training on synthetic data can be applied in
the real world to a certain extent, reliable deployment in
different real-world scenarios is still challenging. The system
developed by Castaño Amoros et al. [35] includes a module
for detecting and recognizing separate pallets that contain
unassembled corrugated cardboard packaging from top-view
RGB images.

Several conclusions can be drawn from the review of
the datasets and models used in the discussed works in
terms of the number of samples in the dataset, degree of
variability, and model complexity. Firstly, object detection
in RGB images as an active area of research has achieved
outstanding results in recent years. Outstanding results in
the field of monocular computer vision have been reported
in high-complexity tasks, such as monocular 3D object
detection and pose estimation. However, the ability to
accurately represent various objects and conditions from
different real-life scenarios is a result of utilizing large,
complex model architectures with millions of parameters,
which require large training datasets. In cases where there is
a lack of large, comprehensive labeled datasets, the practical
use of the algorithms is limited to a predefined set of
different object types and configurations, and controlled
environments. Furthermore, although synthetic data can be
beneficial for representing certain aspects of real-world
scenarios, deploying models trained exclusively on synthetic
data in diverse real-world scenarios still poses a challenge.
As a result, the crucial aspect of creating an effective
model designed to perform well in real-life scenarios
with minimal constraints is the selection of the model
architecture.

As discussed, both papers proposing object detection
algorithms in photographs and in distance maps can be
found in the literature. The preference for the input type
is based on the specific use case – the material of the
packages, and most importantly, the amount of data available.
Shipping packages can be made of very different mate-
rials, textures, and colors. Therefore, a large number of
samples are needed to represent all types of packages
in color photographs. In distance maps or depth images,
all packages are represented as boxes consisting of adja-
cent perpendicular planar sides marked with a gradual
change in distance/depth represented with gray levels.
The packages have straight, continuous edges marked by
changes in either distance/depth or direction of change of
distance/depth. Furthermore, the distance representation of
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the scene retains complete information about the objects’
geometric structure, which provides a straightforward way
to differentiate shipping packages from other packaging
types. The depth scanning methods are susceptible to various
distance measurement errors, such as irregularly erroneous
distance measurements of highly reflective surfaces, different
measurement values for adjacent surfaces with a sharp
difference in color, and different manifestations of surface
distortion at object edges. However, despite the distance
measurement errors, the simplicity and uniformity of the
depth representation of packages and their constituent
components (sides and edges) is a strong motivation to use
distance maps as input to our proposed package recognition
algorithm.

CNNs present state-of-the-art results in image processing
problems in the presence of sufficient labeled data. However,
for practical use, especially for complex problems lacking
large labeled datasets, deep learning methods are often
combined with DSP methods forming hybrid algorithms.
One of the key benefits of this approach is the ability
to leverage the strengths of both techniques: CNNs are
highly effective at learning complex feature representations
from data, while DSP methods provide computationally
efficient signal processing and analysis, independently of
the amount of data available. Recent papers have proposed
hybrid approaches combining different deep learning-based
algorithms and DSP methods, demonstrating promising
results in different applications such as speech recognition,
image analysis, biomedical signal and image processing,
and time series forecasting. In these studies, DSP methods
are often used for enhancing the CNN results through
pre- and post-processing; and parts of DSP algorithms are
replaced with deep learning-based algorithms to achieve
higher accuracy. Lopac et al. [36] utilize time-frequency
representations to generate the input for an ensemble of
CNN classifiers to detect non-stationary gravitational-wave
signals in high noise, demonstrating an improvement over a
baseline CNNmodel operating directly on the source signals.
Abdelhamid et al. [37] use DSP methods for extracting task-
specific features, which are input into a CNN-LSTM (Long
Short-Term Memory) hybrid model for emotion recognition
in speech. Yadav et al. [38] propose a novel multi-scale fusion
of features generated by a CNN and an improved Canny edge
detection algorithm [39] for detection of bone fractures in
X-ray images, achieving an increase in accuracy over a base-
line CNN model. Furthermore, ensembles of learning-based
models are proposed to extract information from 3D spatial
data and time series data. Montaha et al. [40] propose a
hybrid 3D CNN-LSTM model to classify brain tumor on
3D MRI scans, and Sajjad et al. [41] propose a hybrid
learning-based model combining CNNs and GRUs (Gated
Recurrent Units) to form a unified framework for predicting
energy consumption. The small number of labeled data with
high variability makes a hybrid CNN-DSP algorithm a more
suitable approach as opposed to an end-to-end learning-based
solution.

The goal of the proposed algorithm is package recognition
in cluttered environments, using only a small custom
dataset of distance maps obtained with ToF-based scanning
technology. The small, highly variable dataset, and the simple
representation of the basic package components, motivate
decomposing the problem into several consecutive steps.
The initial phase of segmenting package sides and package
edges utilizes deep learning methods to model the object and
measurement distortions with a single end-to-end network.
In the second phase, the components are combined into
complete packages by a rule-based algorithm that takes into
account the box side orientation, adjacency and type of edge
formed by a pair of sides.

In the following Sections II-B and II-C, we present a
short overview of the related work in semantic and instance
segmentation, and edge detection, as it represents the basis
for segmenting package components.

B. SEGMENTATION OF PLANAR SURFACES
Segmenting planar surfaces from a distance map is a
straightforward task in an ideal environment since a plane
is represented by a surface with gradually changing distance
values, as proved in several previous works (RANSAC [42],
wavelet segmentation [43], region growing [8]). However,
although the DSP methods are good at rejecting true outliers
and random noise, the drawbacks of these methods introduce
the need for complex time-intensive post-processing even in
an ideal environment. For example, the inability to segment
instances of connected surfaces – coplanar points belonging
to disjoint components will be grouped by RANSAC or
wavelet segmentation. Furthermore, the large variability of
distance measurement errors is impossible to represent by a
unified set of rules, and previous works [8], [11] prove that
DSP methods provide limited success even with simulated
datasets that lack the faults of the scanning technologies. As a
result, we look into works utilizing deep learning methods
for segmentation applied to various other segmentation
problems.

Recent advances in CNN-based semantic and instance
segmentation in color photographs [19] have produced state-
of-the-art results. However, many state-of-the-art models
designed for general object recognition have a complex
architecture requiring thousands of training samples [19],
[44], and thus are not suitable for training with a small
dataset. Pre-training of CNNs on large datasets [45], [46] is
a commonly used strategy, proven useful in improving the
overall accuracy of CNNs when working with small datasets.
However, positive results are achieved only when pre-training
is performed with similar data and for similar problems; pre-
training for a significantly different objective hinders network
performance.

Due to the rising use of LIDAR, especially in the
field of automated navigation, the most widely used for-
mat of distance data is unstructured point clouds. Many
recent works presenting deep learning-based point cloud
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segmentation algorithms show satisfying results [47], [48],
[49], [50]. However, handling point cloud input requires
adding pre-processing modules to reformat the unstructured
point cloud input data, resulting in large and complex CNN
architectures unsuitable for training with small datasets.

Papers introducing medical image segmentation models
[51], [52], [53], [54], [55] present a similar problem – binary
semantic segmentation of single-channel image data. The
medical image processing research field regularly encounters
a lack of manually labeled data, and the medical image
datasets generally contain a small number of samples. There-
fore, research in the field of medical image segmentation
focuses on designing machine learning models with a limited
number of parameters that can be successfully trained on
relatively small datasets. This makes such models a good
starting point in defining a network structure for distance map
segmentation with a limited number of training samples.

C. EDGE DETECTION
Edge detection in the context of package recognition
should enable detecting edges that belong to packages,
while disregarding edges belonging to different objects and
artificial edges within package sides that result from depth
measurement errors or physical deformation of the packages.
Differentiating the package edges from other edges relies on
the structural difference of the different edge types. Package
edges are long, straight, and continuous, separating two areas
with different directions or rates of change of surface depth;
as opposed to edges of other types of packaging items that
are short, broken, and less emphasized. Objects with uneven,
irregular surfaces (e.g. bags) contain a large number of small
edges within the object surface.

Classifying the edges into different types (package edges
and edges belonging to other types of packaging) using
traditional DSP methods for edge detection is very difficult.
This creates the need for learning-based methods for reliable
edge detection in the context of package recognition in
distance maps. Many recent state-of-the-art works present
learning-based edge [56], [57] and contour [58], [59], [60],
[61] detection designed for and tested on color photographs.
However, unlike distance maps, photographs contain more
edges within the objects resulting from object texture and
color variation, posing the need for complex models with
a large number of training parameters and large training
datasets. Therefore, algorithms designed to work on color
photographs are not suitable for small datasets of distance
maps.

CNNs with an encoder-decoder structure are an efficient
and straightforward solution for edge detection in a single
feed-forward step without additional pre-processing. U-Net
[51] provides top results in the field of object segmentation
in both photographs and medical images. However, due to
the large number of parameters, it requires large datasets to
be successfully trained. Our work focuses on segmentation
of single-channel images with small convolutional networks

suitable to be trained on a limited number of samples, which
makes previous medical image segmentation works [51],
[52] an ideal starting point. In this paper, we propose an
encoder-decoder CNN with a limited number of parameters,
but enough capacity to retain the crucial dataset features for
correct segmentation of box edges. This CNN, presented in
our previous work [62], is briefly described in Section IV-C.

III. PACKAGE DETECTION
The proposed package detection algorithm is an integration
of CNNs for initial segmentation of object components, DSP
methods for refinement of object components, and rule-based
criteria for object forming. The algorithm, shown in Fig. 1,
consists of 3 main steps marked with dotted line rectangles.
First, initial segmentation of package sides and package
edges is performed with two CNN-based algorithms. An end-
to-end trainable CNN with a small number of parameters
performs segmentation of box sides as connected compo-
nents. The segmented box sides are then expanded through
region growing-based surface expansion. Each connected
component in the binary mask of box sides represents one
side of a package. Another end-to-end trainable CNN [62]
with a similar structure performs segmentation of box edges
as connected components. A custom edge thinning algorithm
based on non-maximum suppression generates binary masks
of edges with 1 pixel thickness.

The edge masks are used to refine the surface masks.
The edge detection network is given priority in this step
due to providing higher accuracy in areas of rounded inner
edges. Since the shape and orientation of the box sides is
crucial for combining the segmented box sides into packages,
perspective correction is applied to the raw distance maps,
thereby generating a depth map of the scene.

Next, a rule-based box forming algorithm combines the
package sides to form complete packages. Since a side
directly facing the scanner is the only visible side of the
package, we first detect the sides facing the scanner. The
remaining package sides are combined into packages using
a set of rules based on the geometric properties of packages
in Euclidean space. The sets of sides where each pair of sides
fulfills the given criteria form a package.

Finally, with surface expansion of the package sides and
forming closed borders around each side, we obtain the final
segmented packages. The input to the package detection
algorithm is a raw distance map of 144 pixels × 176 pixels,
where the pixel values represent the distance of the scene
points to the scanner. Sections IV and V describe the package
segmentation algorithm in detail.

IV. SEGMENTATION OF PACKAGE SIDES AND EDGES
A. DATASET
1) DATASET DESCRIPTION
The custom dataset used for training and evaluation of the
proposed algorithm consists of distance maps representing
different scenes of stacked packaging items of three types:
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FIGURE 1. The proposed algorithm for package detection. The data preparation is marked in blue. The green blocks represent two deep
convolutional neural networks. The orange blocks define the refining of CNN results and preparing the input for the package forming
algorithm. The rule-based algorithm for forming packages from the segmented package sides is represented with yellow blocks.

FIGURE 2. Example scenes from the custom dataset. Top: Distance maps of scenes with a normalized value range. Lighter pixels represent points
closer to the scanner. Bottom: Color photographs of the corresponding scenes. The dataset contains scenes with packages arranged in a package
wall configuration (a), or arbitrary order (b). Besides cardboard packages, the dataset contains cardboard packages with different reflective materials
(colorful packages in c); large, semi-transparent shipping bags (c, d); bags of arbitrary shapes and sizes (orange bag in c), and objects of irregular
shape (carpet roll, tree in d). The scenes contain one of two types of background: planar (a, b, c), simulating most common trailer interiors; and
variable, non-planar background (d) simulating cases where trailer walls are fully occluded by objects of arbitrary shapes.

boxes, shipping bags, and irregular objects (cylindrical
packaging, carpets, etc.), with a variable scene background.

Distance maps (top) and photographs (bottom) of different
scenes are shown in Fig. 2. The packaging items are arranged
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in one of two configurations: package walls representing
ordered packages, and arbitrary order representing cases of
tumbled packages that may occur during transportation or
unloading errors. The shipping bags are standard, widely-
used partially transparent bags, filled with either non-rigid
materials that create a large number of edges on the
bag surface, or smaller packages that shape the bags into
multiple planar segments. The dataset contains two types of
background: planar, which represents themost common types
of trailer interiors, and non-planar where trailer walls are fully
occluded by objects of arbitrary shape.

The dataset consists of distance maps of size 144 pixels
× 176 pixels. The pixel values are the distances of the
scene points to the scanner (Fig. 2, top). For a clearer
understanding of the scene contents, color photographs of
the scenes are provided alongside the distance maps (Fig. 2,
bottom). The distancemaps are generated using a pulse-based
ToF depth scanner (device model: SICK Visionary-T DT,
type V3S130-2AAAAAA). The scanner generates a distance
map (range image) of the scene in a single shot within 20ms.
To provide initial noise reduction, for each scene, we acquired
20 consecutive distance maps over 400ms. The final distance
map included in the dataset is obtained by averaging the
20 distance maps.

To simulate a real-life loading/unloading scenario, the
scene used for creating the dataset (Fig. 2) is designed to
resemble the interior of a shipping trailer. The dimensions of
the scene filled with packages are 1.65m × 1.95m × 1.2m
(height × width × depth), and the average distance of the
closest object in the scene to the scanner is 1.2m. To create
the dataset, we used 40 packages with different dimensions,
along with 5 standard partially transparent shipping bags, and
other types of soft bags and objects of irregular shapes. The
package sizes vary greatly, from 92cm × 51cm × 28cm to
13cm × 18cm × 25cm, and the aspect ratios of box sides
range from 1:1 to 3.3:1. The size of the shipping bags is
85cm × 95cm. Following from the scene dimensions and
the scanner resolution, at a distance of 1.2m from the scene
the distance between two measured points is 2cm. Depending
on the orientation of the box sides (whether they are directly
facing the scanner or not), and degree of occlusion, even large
package sides can be represented with a small number of
points.

The created dataset consists of 272 scenes in total, where
240 of the scenes contain completely different package
configurations in arbitrary order. The remaining scenes form
two sequences of 16 scenes each, where the first scene shows
the space fully loaded with different packaging types, and the
next 15 scenes are created by consecutively removing one
package from the previous scene. These sequences simulate
the unloading process, and enable testing the algorithm’s
performance in a real-life unloading scenario, where the
vision system of an automatic loader/unloader is required to
correctly segment the boxes which can be removed at the
moment – boxes at the top front of the scene. Removing
the top front boxes improves the visibility of occluded boxes

in the next scene, and successful segmentation of the scene
would mean all boxes were correctly detected by the time the
scene is empty.

2) DISTANCE MEASUREMENT ERRORS
Distance measurement errors of ±3cm are expected for
objects at a distance of up to 3m, as stated by the scanner
manufacturer (device model: SICK Visionary-T DT). Since
the measurement errors and distortions are emphasized by
the large number of reflection points present in the tight
enclosed space of a transport trailer, we observed errors
ranging from 5 – 15cm during the creation of the dataset.
Besides the general distance measurement errors stated by
the manufacturer, four additional types characteristic of
ToF-based scanning are observed in the dataset: rounding
of inner edges, displacement of outer edges, displacement
of whole box sides along the depth axis, and irregularly
erroneous measurements of highly reflective surfaces, such
as plastic tape and labels. The types of errors observed are
shown in Fig. 3 and Fig. 4.

FIGURE 3. ToF-specific distance measurement errors and effects. Left:
distance map of a packaging scene. Right: 3D view of the central box
where distortions are clearly visible. The orange arrow on the distance
map marks the direction of the view of for the 3D representation – the
viewpoint for the 3D representation is from the right side of the scene.
The front box side is marked with a green, and the top box side with a red
arrow. The blue circle marks the rounding of an inner edge, and the
orange circle marks an emphasized (sharpened) outer edge. The true
position of the top surface in the 3D view is marked with a red dashed
line, showing that the top surface is displaced farther away than its true
position. Color photograph of the scene is given in Fig. 2(a), bottom.

The rounding of the inner edges spanning over a local
environment of up to 5 pixels, and the displacement of the
outer edges which can range from 20 – 100mm, are marked
in Fig. 3. Fig. 3 also highlights the continuous displacement of
whole surfaces, making them appear farther than their actual
position. As a result, the intersection of two package sides
does not correspond with the true location of the edge. Fig. 4
further demonstrates the extent of measurement errors on
reflective surfaces through an example of greatly erroneous
measurements on a planar surface made of reflective material
(marked in blue). We observed that the orientation of the
surface is a significant factor in the magnitude of the
measurement error – edges facing the scanner and surfaces
at a steep angle to the optical axis of the scanner are
affected most. The distortion effects are further emphasized
by the large number of reflection points present in the
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FIGURE 4. Distortion of inner and outer edges and reflective surfaces.
Top: distance map with marked areas of interest, and color photograph of
the scene. Middle left: 3D view of the area marked with a red rectangle
showing rounding of the inner edge. Middle right: 3D view of the area
marked with a green rectangle showing emphasized outer edge, which in
the real world is formed by perpendicular surfaces. Bottom: 3D view of
the area marked with a blue rectangle showing that a planar package
side made of reflective material has a non-planar representation in the
distance map.

small, enclosed space of a transport trailer filled with
packages.

The emphasis of outer edges facilitates separating adjacent
surfaces. However, the rounding of inner edges poses a
significant problem in separating the surfaces sharing the
edge, since the change in distance levels in a small local
environment is unnoticeable. As a result, the traditional edge
detection methods are unable to detect the inner edges in the
distance maps. Furthermore, our previous experiments have
shown that the significant irregularities in the measurement
of reflective surfaces make it impossible to successfully
segment complete package sides with plane segmenta-
tion methods based on DSP techniques (RANSAC [42],
wavelets [43], etc.).
In this paper we aim to utilize the data from readily avail-

able pulse-based scanners, and create a unified algorithm for
package segmentation that will successfully adapt to all types
of distortion errors, eliminating the need for heavy prepro-
cessing and correction. To that end, we propose a CNN-based
algorithm for initial segmentation of package parts in the
presence of surface distortion. The annotation process and
ground truth labels are described in the sections detailing
the CNN-based parts of the algorithm – Section IV-B
for segmentation of package sides, and Section IV-C for
detection of package edges.

B. SEGMENTATION OF PACKAGE SIDES
1) GENERATING GROUND TRUTH DATA
The ground truth data consist of binary masks marking all
box sides in the scene (fully visible and partially occluded
boxes of varying sizes and orientations). Each connected
component in the binary mask corresponds to a box side. The
ground truth data for the distance map shown in Fig. 2(a) is
given in Fig. 5, where the annotated box sides are marked
in yellow. As seen in Fig. 5, the surface masks (marked in
yellow) do not extend to the edges of the box sides. Instead,
they cover only the cores of the box sides. The borders of the
ground truth surfaces are at a distance of 2 pixels from the
edges of the box sides, and any resulting ground truth surface
annotated in this manner that is too small (has height or width
below 2 pixels, or surface area below 5 pixels), is not included
in the ground truth mask. Ground truth data are provided for
253 scans (4586 box sides). The box sides are account for 8%
of the total number of pixels in the dataset.

FIGURE 5. Ground truth data for the distance map in Fig. 2(a). The
annotated box side cores are marked in yellow.

2) DATA PREPARATION
The barrel distortion is noticeable only on large planar sur-
faces (trailer floor, walls). Therefore, perspective correction
is not applied to the distance maps, as it would have little
effect on the results. Previous works have shown that CNNs
can successfully model complex perspective transformations
[63], which implies that the CNN will be able to adapt to
distortions in the depth representation, while successfully
performing its primary objective.

Raw distance maps normalized in the range of 0 – 1 are
used as input to the CNN. Cropping the distance maps
(method first introduced in [51] as overlap-tile in order to
create a model usable for different image resolutions) acts
as an augmentation method, as it introduces more variety in
the input samples by showing different parts of the scene.
The distance maps are cropped into 4 patches of 94 rows and
110 columns each (marked with colored borders in Fig. 6),
forming 4 input samples.

The training set consists of 140 randomly chosen scans.
The validation set consists of 33 scans, and the testing set of
80 scans. The goal of creating a CNN that can be successfully
trained on a small dataset with high variability introduces
limitations in both the process of data preparation and the
complexity of the CNN architecture. Several techniques
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FIGURE 6. Forming 4 training samples from a distance map. The colored
borders mark the 4 partially overlapping patches that are used as input to
the CNN. Each input patch provides a quarter of the output probability
map for a scene (marked by the overlay of the corresponding color).

were employed to overcome overfitting issues. Firstly,
a data augmentation strategy of applying different random
combinations of transformations (rotation, shifting, zoom,
shear, and horizontal flip) to each batch of training samples
during every epoch maximizes the number of different data
transformations, effectively simulating a much larger dataset.
Introducing variation in the training data proved crucial
for successfully training a network with the small dataset.
Additionally, the CNN design is constrained to a simple
design and a small number of parameters, and is thoroughly
tested on a dataset of sufficient size (31% of the total data,
including various object types, sizes, and positions). L2
regularization is employed during training.

3) PROPOSED CNN STRUCTURE
The primary goal of the CNN is detection of box sides
through an optimal compromise between good box side
surface coverage, and minimal leakage onto surrounding
surfaces. Due to the small number of original images in the
dataset (without data augmentation), the main requirement
for successful training without overfitting is a low number
of parameters.

By segmenting only surface cores, we are able to use
a semantic segmentation model for solving the instance
segmentation problem of segmenting separate box sides.
Segmenting surface cores results in box side masks with
clearly distinguishable borders between surfaces, and each
connected component can be declared a box side. Since the
surface orientation is crucial in determining which box sides
are parts of the same package, the CNN outputs surface
cores, thereby excluding the heavily distorted areas near the
edges that may introduce errors in computing the surface
orientation. Furthermore, the simultaneous segmentation of
all box sides in a single forward pass of the network gives this
algorithm a significant time advantage compared to iterative
methods.

The diagram in Fig. 7 shows the structure of the proposed
box side segmentation CNN. The encoder (contraction path)
consists of 4 convolution blocks, marked in yellow. The
downsampling layer in each block reduces the feature
map dimensions by 2 with a non-overlapping window.

FIGURE 7. Proposed CNN structure for segmentation of box sides. The
first two numbers from the output dimensions represent the height and
width of the feature maps generated by the layer; and the third number
represents the number of convolution filters in the layer.

The encoder is followed by two convolutional layers,
marked in orange. The decoder (expansion path) consists
of 2 convolution blocks marked in green. The upsampling
layer in each block increases the feature map dimensions
by 4, to generate class labels for each pixel in the input
image. The convolution and transposed convolution layers
operate on zero-padded input feature maps with filter size
3 × 3, and are followed by ReLU activations. The output
convolutional layer with a single filter followed by sigmoid
activation produces a probability map of box sides for each
input distance map. The probability map for the distance
map in Fig. 2(a) generated by the proposed CNN is shown
in Fig. 8.

FIGURE 8. Probability map of box sides in the distance map in Fig. 2(a),
generated by the proposed CNN given in Fig. 7.

The main motivation behind the asymmetric CNN struc-
ture is reducing the number of parameters, thus minimizing
execution time. Using 4 pooling layers to greatly reduce the
spatial featuremap dimensions increases the receptive field of
the CNN, and thereby improves the CNN’s ability to separate
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large surfaces sharing an inner edge, since the change in gray
levels around inner edges is imperceptible in a small local
environment. Due to the significant loss of information by
pooling, the two horizontal skip connections are crucial for
retaining features of the small objects in the scene. Removing
the skip connection before the first pooling layer significantly
reduced the precision of segmenting edge pixels and small
surfaces.

FIGURE 9. Segmented box sides in the distance map in Fig. 2(a). The CNN
output is marked in yellow, and the area added to the surfaces after
surface expansion is marked in red.

The resulting probability maps (Fig. 8) are binarized with
a fixed threshold of 0.5 (Fig. 9, marked in yellow). Surfaces
consisting of fewer than 5 pixels are removed from the final
output mask.

4) OPTIMIZATION DETAILS
The CNN was trained for 100 epochs with the ADAM
(ADAptive Moment estimation) optimization algorithm [64],
with a learning rate of 10−4 and binary cross-entropy cost
function. A mini-batch of 2 samples is chosen to enable
the model to retain rare, but crucial features observed only
in a small number of samples. Balancing the class weights
according to the class frequency did not provide a significant
change in results.

5) PROBLEM-SPECIFIC PERFORMANCE METRIC
In the context of box side segmentation, the importance of
correctly classifying a pixel depends on the pixel’s position
(the distance to the nearest surface border). The background
pixels separating two surfaces are crucial. Therefore, the
weight of the pixels that do not belong to a surface depends
on the distance to the two nearest surfaces. The distance to the
two nearest surfaces is calculated as the sum of the distances
to each surface. Based on these rules, a pixel weight map
(Fig. 10) with values normalized in the range of 0 – 1 is
calculated for each ground truthmask, and used for evaluating
the model performance.

6) SURFACE EXPANSION
In order to provide connected components for each box side,
the CNN is trained to output box side cores avoiding pixels
near the surface borders. This results in eroded box sides
occupying only the surface core (marked in yellow in Fig. 9).
We designed a region growing algorithm to perform surface

FIGURE 10. Pixel weight map for the annotated box sides shown in Fig. 5,
used for calculating the custom problem-specific performance
metric.

expansion, thus enabling more accurate plane fitting to
determine the orientation of the box sides, while still rejecting
the edge areas distorted by depth scanning errors. The surface
expansion algorithm iteratively checks all neighboring pixels
of the particular surface against two criteria: 1) distance of the
pixel from the plane fitted in the initial surface, and 2) angle
between the normal vectors of the initial CNN-generated
surface and the plane fitted in the local 3 × 3 neighborhood
of the pixel. The pixels added to the CNN-generated surface
cores after expansion are shown in Fig. 9, marked in red.
Merging of sides is not allowed in this step.

C. DETECTION OF PACKAGE EDGES
The box side segmentation CNN (Section IV-B) provides
masks containing only the surface cores, and cases of surfaces
merged in areas of short, rounded inner edges can be detected
in the output. To obtain precise localization of the package
borders and more accurate segmentation in the areas around
rounded inner edges, we perform edge detection in the
distance maps using a CNN-based edge detection algorithm
that consists of a CNN optimized for training with a limited
number of samples, followed by a custom edge thinning
algorithm. The edge detection algorithm is described in our
previous work [62]. Since the inner and outer edges are
marked by significantly different characteristics (as discussed
in detail in Section IV-A), the CNN performs classification
of inner and outer package edges into two separate classes,
thus reducing the intra-class variance, and simplifying the
problem of detecting rounded inner edges. As a result, the
edge detection CNN produces complete and precise detection
of all edges, providing superior accuracy to the box side
detection CNN in the areas of weak edges and heavily
rounded inner edges. In the following Section IV-D, the
results of the box side segmentation CNN and the edge
detection CNN are combined to obtain refined box side
masks.

D. SURFACE MASK REFINEMENT
Distance measurement errors and heavy surface distortion
may result in several types of errors observed in the results of
the surface and edge segmentation CNNs – mainly merging,
and oversegmentation of box sides. Although rare (observed
in fewer than 3% of the test samples), these types of
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errors are critical since they result in erroneous box forming
(merging of boxes or significant errors in estimating the box
size), and eliminating them would improve the outcome of
crucial situations. Two post-processing algorithms based on
combining the results of the segmentation CNNs (surfaces
and edges) and DSP techniques, described in detail in the
following Sections IV-D1 and IV-D2, are introduced to
eliminate the errors.

FIGURE 11. Photograph and distance map of a scene containing a
package made of highly reflective material. The visible sides of the box
are marked with 1 and 2. The edge between the sides is non-distinctive in
the distance map.

FIGURE 12. The output of the box side detection CNN (marked in yellow)
for the scene in Fig. 11. The masks of the two large box sides that belong
to the same box (marked with 1 and 2) are partially merged in an area of
heavy outer edge distortion.

1) EDGE-BASED BLEEDING AND MERGING ELIMINATION
Several cases of small or severely distorted surfaces merged
with neighboring surfaces, and surfaces leaking onto other
types of packaging, can be observed in the results of the box
side segmentation CNN. Fig. 11 shows the photograph and
distance map of a scene containing a package made of highly
reflective material and contrasting colors, whose visible sides
are marked with 1 and 2. This causes the edge formed by the
two sides to be non-distinctive in the distance map, as seen
in Fig. 11. Fig. 12 shows the output of the box side detection
CNN for this scene, marked in yellow. The surface masks for
the two reflective box sides are partially merged. The edge
detection CNN correctly detects the complete edge formed by
the two sides (Fig. 13). Thus, separating areas in the surface
mask along the detected edges eliminates cases ofmerged box
sides.

FIGURE 13. The two merged sides marked with 1 and 2 (Fig. 12) are
correctly split by the edge detection CNN (along the red line). The pixels
representing box sides are marked in yellow, the edge pixels in green,
and the pixels where the edges overlap with the surfaces (lines where
surfaces should be split) are marked in red.

2) BOX SIDE MERGING
The box side segmentation CNN can result in surface
oversegmentation as a result of distance measurement errors
caused by reflective sticky tape and labels, or images and text
printed on the boxes. The box sidemerging algorithm is based
on two criteria:

• surface adjacency (the surfaces should be adjacent to be
part of the same box side)

• surface orientation (the normal vectors of the surfaces
should be parallel)

Both criteria rely on empirically determined threshold ranges
selected to compensate for the perspective distortion and
distance measurement errors. Merging of surfaces separated
by edges generated from the edge detection CNN is not
allowed. The box side merging algorithm corrects nearly all
cases of oversegmentation.

V. FORMING PACKAGES
The algorithm described in this section combines the box
sides detected in the previous steps into boxes to provide the
final result – position and orientation of all packages in the
scene. A box consists of at most three sides perpendicular
to each other, where each side forms an outer edge with the
other sides. Therefore, the crucial properties to consider when
determining if the detected box sides belong to the same box
are the angle between the detected box sides, adjacency of the
sides, and the type of edge the sides are forming.

A. DETECTING BOXES WITH ONE VISIBLE SIDE
The simplest form of a box in the depth map is a box
consisting of only one visible side directly facing the scanner.
Since this box side cannot satisfy the box forming conditions
with any of the other detected sides, detecting sides facing the
scanner reduces the processing time by eliminating a large
number of checks of box forming criteria.

The ray vector of a surface represents the vector with
an initial point at the center of gravity of the surface and
a terminal point at the origin of the coordinate system

VOLUME 11, 2023 113209



E. Vasileva, Z. A. Ivanovski: Hybrid CNN-DSP Algorithm for Package Detection in Distance Maps

(location of the scanner). In a distance map, the normal
vector of a surface facing the scanner would also be pointing
directly towards the scanner. Therefore, a box side facing
the scanner is detected by checking whether the angle
between the normal vector and ray vector of the surface is
smaller than a predefined tolerance threshold. The tolerance
threshold is introduced to compensate for distance errors
and distortion. Fig. 14 shows a comparison of the directions
of normal vectors and ray vectors of two surfaces – one
facing the scanner (marked with 1), and one facing the top
of the scene (marked with 2). Boxes with only one visible
side which is not facing the scanner may appear due to
occlusion of the other sides by other objects. Since there
is no direct way to detect such box sides, they have to be
checked against all box forming criteria with the neighboring
sides.

FIGURE 14. Left: Directions of the normal vectors of the surfaces (marked
in red) and ray vectors (marked in white) in a distance representation of a
scene. Lighter pixels represent points closer to the scanner. The angle
between both vectors of the surface facing the scanner (surface 1) is
small, whereas the vectors of the surface that does not face the scanner
(surface 2) have completely different directions. Note that the viewpoint
for this image is moved away from the location of the scanner to enable
better visibility of the vectors (if the viewpoint is at the same location as
the scanner, the ray vectors would be represented as points). Right: Color
photograph of the scene. The corresponding box sides are marked with
the same number.

B. FORMING BOXES WITH MULTIPLE VISIBLE SIDES
The number of visible sides of a box depends on the viewing
angle of the scanner. Therefore, the next step of the algorithm
is finding the sides belonging to the same box. Five main
criteria have to be fulfilled in order to declare that two box
sides are a part of the same box:

1. The surfaces have to be neighboring – each box
side can form a box only with the neighboring
box sides. Determining surface adjacency in 3D is
challenging in the presence of displacement of whole
surfaces along the depth axis. Since the displacement
doesn’t affect the adjacency of the surfaces in the
distance maps, we perform the adjacency check in the
distance maps. Two surfaces at a maximum distance of
5 pixels in the distance map are declared neighboring
(adjacent).

2. The normal vectors of the surfaces have to be orthogo-
nal, with a given range of tolerance to compensate for
surface distortion.

To form a closed cuboid shape, each pair of box sides has
to form an outer edge. An outer edge is marked by the
fulfillment of the following two criteria (3 and 4):

3. Selecting either one of the two surfaces currently tested
as the starting (first) plane, we calculate the projections
of all points of the second plane onto the first plane. All
points of the second plane (with a given tolerance for a
small number of outliers) have to be farther away from
the origin (scanner location) than their corresponding
projections onto the first plane.

4. The center of gravity of each box side has to be at
a greater distance from the origin compared to its
orthogonal projection onto the edge the two box sides
form.

Criteria 1 – 4 allow for surfaces having neighboring parts
but not necessarily sharing an edge, such as two orthogonal
surfaces with neighboring corners. Criterion 5 is introduced
to eliminate these cases:

5. All points from both box sides are projected onto the
intersection line of the two planes fitted to the box
sides. The spans of the projections of the box sides
onto the intersection line have to overlap at least a
given percentage. The overlap percentage threshold
is decided based on a balance between including
cases of mild surface distortion and one partially
covered side, and preventing perpendicular sides of
adjacent boxes to be mistakenly classified as a single
box.

The criteria have to be fulfilled for all pairs of sides forming
a box.

Surface distortion and scanning errors may cause several
types of errors in forming boxes considering small, distorted
surfaces. Surfaces represented with a small number of points
(small surfaces, or surfaces positioned at a small angle to the
optical axis of the scanner) can be heavily distorted, causing
the surface normals to deviate from a 90◦ angle, in which case
they are regarded as separate boxes. Surface displacement
along the depth axis may lead to errors in detecting the
position of the shared edge (intersection of the two box sides),
which is crucial for criteria 3-5. Highly reflective surfaces
with irregularly erroneous distance measurements may cause
problems with all of the specified criteria.

C. FORMING OBJECT BORDERS
After the initial segmentation (Section IV), the box side
surfaces cover only the surface cores and do not reach the
box side edges, and the edges are not required to form
closed contours (Fig. 15). Complete detection of the box
sides and precise detection of the surface borders is necessary
to correctly determine the object position, volume, and
orientation. A box side expansion algorithm forms complete,
closed borders around every box side surface by adding an
edge pixel where the criteria for side expansion are not met.
The final result of the box segmentation algorithm for the
distance map in Fig. 2(a) is shown in Fig. 16. The complete
box side edges are used to determine the absolute box
position, volume, and orientation, by detecting and projecting
two opposite corners of the box to the world coordinate
system.
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FIGURE 15. Segmented boxes in the scene in Fig. 2(a). Thinned box edges
are marked in white, and surfaces representing sides of the same box are
marked with the same color. The surfaces do not reach the edges, and the
edges do not form closed contours around each box side.

FIGURE 16. Final result of box segmentation with fully formed object
borders from the scene in Fig. 2(a). Box sides are complete and fully
bounded by edges. Box edges are marked in white, and surfaces
representing sides of the same box are marked with the same color.

D. IMPLEMENTATION DETAILS
The training and testing of the proposed algorithm was
performed on a computer with the following specifications:
Intel Core i7-8700K CPU, 32GB RAM, NVIDIA 1080Ti
GPU. The time for training the package surface segmentation
CNN (Section IV-B3) for 100 epochs was 5minutes. The time
for training the package edge segmentation CNN (Section IV-
C) for 350 epochs was 12 minutes. Inference time per input
depth map of the proposed package side detection CNN,
including prediction for each image patch and stitching of
the patches, is 6ms. Inference time per input depth map of
the edge detection CNN is 4ms. The execution time for the
DSP-based box forming algorithm is significantly lower. The
package detection algorithm is implemented using Python
with Tensorflow-Keras and OpenCV.

VI. RESULTS AND DISCUSSION
A. SEGMENTATION OF PACKAGE SIDES
The performance of the proposed algorithm is calculated on
a test set of 80 distance maps containing packages, bags
and irregular objects, organized in different configurations.

The segmentation accuracy of package sides (percentage
of correctly classified pixels) is 97.8%, and the box side
detection accuracy (percentage of detected box sides) not
taking into account if they are correctly combined into boxes
is 93.8%. All observed errors are a result of surfaces too small
in size, or extreme surface distortion.

The CNN successfully separates object instances, despite
lacking the standard structure of a complex instance segmen-
tation network. In the context of package unloading, it is
crucial to correctly segment the boxes in the top front of the
scene which are the first to be taken out. Visual inspection
of the results proves that box sides of all top front boxes
represented by a sufficient number of distance points are
correctly segmented, with a high difference in probability
between the positive and negative classes (as observed in
Fig. 8). The proposed CNN (Section IV-B3) outperforms
the other CNNs in separating adjacent surfaces sharing an
inner edge. The CNN performs correct classification of
pixels belonging to partially transparent shipping bags as
negative, regardless of the bag contents (soft filling with
non-rigid shape, and small rigid boxes). The box sides are
successfully distinguished from other planar surfaces, such as
planar trailer interiors, and planar surface parts of bags filled
with boxes. The CNN successfully adapts to various depth
measurement errors on reflective surfaces, and the box side
expansion further improves the results by providing better
surface coverage, enabling more precise localization of the
detected box sides.

Several cases of split surfaces and incomplete surface cov-
erage are observed in the test set. However, these cases have
no significant effect on the estimation of the box sides’ size
and position (Fig. 17c). The cases of split surfaces occur only
as a result of large distance measurement errors on reflective
surfaces (e.g. reflective tape). Separating two adjacent planar
surfaces is not possible using only low-resolution distance
maps, and requires additional information (e.g. photographs).

The performance of the proposed CNN (Section IV-
B3) is compared to three U-Net-based models: the original
U-Net architecture; a U-Net architecture with a reduced
number of filters (maximum of 128 – in the last layer);
and proposed inverse model. The inverse model shares the
proposed architecture, with the difference of doubling the
number of filters after each convolution block (maximum
of 128) instead of halving. The architecture specifications
(number of filters per layer) of the reduced U-Net and
proposed inverse architecture were selected to achieve a total
number of parameters as similar to the proposed CNN as
possible. All CNNs are trained on our custom dataset with
the same training-validation-test split. The CNNs are trained
using ADAM [64], binary cross-entropy cost function, and a
mini-batch of 2 samples. An optimal learning rate for each
CNN was selected through grid search.

We compare the performance of the proposed CNN to
the original U-Net architecture, which has demonstrated
top results in segmentation of single-channel images, and
effectiveness with small training datasets. With the reduced
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FIGURE 17. Results of surface segmentation with the CNN specified in Section IV-B3: a) U-Net, b) Reduced U-Net, c) Proposed, d) Proposed inverse.
The CNN output is marked in yellow, and the area added to the surfaces after surface expansion is marked in red. Although the U-Net results seem
most accurate at first glance, the segment circled in blue shows a crucial mistake of detecting a cylindrical object as two planar segments. This error
is absent only in the result of the proposed CNN (c). In b), circle 2 marks surface oversegmentation, and merging of two large surfaces along an inner
edge. The surface marked in green in c) is eroded due to depth errors on tapes. However, this enables a more precise calculation of the surface
normal. In d), circle 2 marks complete merging of surfaces along an inner edge. A photograph of the scene is shown in Fig. 18.

U-Net architecture we aim to reduce the chance of overfitting
and provide a fair comparison with the proposed model. With
the proposed inverse architecture, we aim to show the benefits
of having a larger number of filters in the bottom layers for
datasets with high variability. Having a similar number of
parameters enables comparison of the architecture changes
independent of computational capacity, thus ensuring that
the observed performance differences result strictly from
the architecture changes, rather than the overall change in
processing power due to the number of parameters.

FIGURE 18. Color photograph of the scene analyzed in Fig. 17.

Fig. 17 shows the results of package side segmentation
on the scene shown in the color photograph in Fig. 18.
As observed in Fig. 17, the proposed CNN performs well in
crucial tasks, such as successfully separating surfaces sharing
a gradual, rounded inner edge, and rejecting irregular objects.
Furthermore, the proposed CNN shows a significantly lower
sensitivity to small imperfections of the planar surfaces.

Table 1 quantifies the performance of the proposed
method in comparison to previous image segmentation
algorithms and experiments based on the U-Net architecture.
We evaluated the performance of the algorithms using four
different metrics:

• Accuracy (ratio of the number of correct predictions to
the total number of input samples)

• Pixel-wise F1 Score (harmonic mean of precision and
recall)

• Average Precision (weighted mean of precisions calcu-
lated at 11 different equally-spaced recall levels)

TABLE 1. Performance comparison of the proposed method and
experiments.

• Weighted accuracy (accuracy with different importance
assigned to pixels based on their location, described in
detail in Section IV-B5)

All metrics are calculated at the pixel level, where each pixel
is treated as an independent sample, rather than at the object
level (package sides). The predicted class of each pixel is
obtained by binarizing the CNN-generated probability maps
using a fixed binarization threshold of 0.5. AP (Average
Precision) is calculated on the CNN-generated probability
maps, and the other metrics are calculated on the binary
surface masks. For a detailed comparison of computational
complexity and time efficiency, independent of the exact
hardware configuration, the rightmost column of Table 1
shows the total number of parameters of each CNN. The
performance metrics take into account incomplete surface
coverage, and segmentation errors on all types of packaging
and scene backgrounds.

According to Table 1, further confirmed by visual inspec-
tion of the results, the proposed CNNprovides the best overall
performance. The accuracy metric is not optimal for datasets
with heavy class imbalance (the box sides class is represented
with 8% of the pixels). Therefore, the superiority of the
proposed model is more emphasized in the other metrics, and
is most noticeable in the weighted accuracy metric which
takes into account pixel importance in the context of box
recognition. The small number of training samples is not
enough to train the complex U-Net with a large number of
parameters. Having a larger number of filters in the first
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FIGURE 19. Package detection results. Top: color photographs. Bottom: final result of the proposed package detection algorithm for the
corresponding scenes. Sides that are a part of the same box are marked with the same color. The package sides represented with a sufficient number
of distance points are fully segmented and correctly combined into packages, as shown in a) and b). The unmatched side of the top left package in a)
marked in green (pointed at by the red arrow) is small, with high eccentricity, and as such, can be easily removed through a surface eccentricity
check. The only unmatched package side in b) is a result of oversegmentation of the top side along the reflective tape. The assumption of at most
3 visible sides prevents the fourth surface (pointed at by the red arrow) to be assigned to the correct package. As seen in c), the proposed algorithm
performs well in unorganized piles of packages in scenes with a variable background containing additional packaging items of arbitrary shape,
including partially transparent bags. Additionally, free packages are successfully differentiated from the packages inside shipping bags.

layers allows the model to retain a larger number of different
low-level characteristics of the dataset which contains high
variability due to reflections and distance errors. Decreasing
the number of filters in the deeper layers forces the deepest
layers to focus only on the features most relevant for defining
a box side. This causes the performance increase of the
proposed model compared to both the reduced U-Net and
Proposed inverse models.

B. SEGMENTATION OF PACKAGE EDGES
The edge detection algorithm is based on an edge detection
CNN containing 648190 parameters. The performance of
the edge detection algorithm is calculated on a test set of
80 distance maps containing packages, bags and several types
of irregular objects, and achieves segmentation accuracy
of 97.13%. The algorithm correctly segments box edges
represented by a sufficient number of distance points in the
presence of heavy distortion in the distance maps. More
details on the edge detection algorithm and performance
metrics can be seen in [62].

C. FORMING PACKAGES
The performance of the box forming algorithm that combines
the package sides into packages is calculated on a test
set of 62 distance maps containing packages, bags and
irregular objects, organized in different configurations. The

box recognition accuracy (percentage of boxes with all
visible sides detected and classified into the same box) is
82.5%. Packages with only one visible side are successfully
detected, and box sides represented by a sufficient number
of distance points are correctly combined into packages.
The algorithm successfully handles cluttered environments
containing packages inside partially transparent shipping
bags, and items of arbitrary shape, as seen in Fig. 19c. Visual
inspection of the results shows that packages located at the top
front of the scene and represented by a sufficient number of
distance points are correctly detected. Removing the top front
packages would make small, heavily occluded surfaces at the
back of the scene fully visible, allowing them to be correctly
detected.

Small surfaces and surfaces with high eccentricity may
have distorted normal vectors, which results in those types
of surfaces remaining unmatched (Fig. 19a). These cases
represent the largest part of the box forming errors. The errors
do not affect the accuracy of the calculated package size
or optimal point of contact for removal, and can be easily
resolved by excluding the small surfaces and surfaces with
high eccentricity from the final package mask.

Several cases of falsely matched box sides can be resolved
by introducing additional rules in the box forming algorithm
based on the geometry and placement of the boxes. For
example, the green box side marked with an arrow in
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Fig. 19(a) cannot be a separate box, since a whole box cannot
fit into the space between the dark blue and yellow boxes.
Similarly, the green box side (marked with an arrow) in
Fig. 19(b) can only be a part of the top leftmost box, and
allowing more than 3 segmented components to form a box
would enable matching the green side to the dark blue box
sides.

VII. CONCLUSION
The proposed hybrid algorithm for detecting packages
in 2D distance maps has proved successful in detecting
packages in a cluttered environment filled with packaging
objects of arbitrary shape, and partially transparent shipping
bags. Structuring the algorithm as an integration of deep
learning-based initial segmentation of box sides and edges,
and combining the segmented sides to form complete boxes
based on the cuboid shape of packaging boxes, enable fast
and correct package segmentation.

The two proposed CNN configurations designed for fast
initial segmentation of package components, trained with a
limited number of samples with heavily imbalanced classes,
successfully generalize over the samples with high variability,
heavy surface distortion, and distance measurement errors
characteristic of ToF-based depth scanning. The CNNs per-
form correct segmentation of box sides and edges represented
with a sufficient number of points, regardless of their size,
position, and orientation. The results demonstrate that a
carefully designed simple network architecture with a limited
number of parameters, combined with data augmentation
strategies and regularization techniques, have resulted in
CNNs able to generalize over a wide selection of packaging
items in different lighting conditions, and successfully over-
come overfitting issues due to the limited number of training
samples. The CNNs prove superior to the DSP techniques
in segmenting package components due to their higher
robustness to the depth measurement errors. Furthermore, the
CNNs’ ability to adapt to perspective distortionminimizes the
need for pre-processing.

Forming the ground truth masks such as to contain only
the surface cores enables the successful use of a semantic
segmentation CNN structure for instance segmentation of
planar surfaces. The surface segmentation CNN successfully
differentiates the planar surfaces of boxes from planar
surfaces of other types of packaging. Formulating the
objective of the edge detection as two separate targets
represented by largely different features (inner and outer
edges) had a great influence in obtaining favorable results.
As shown by both the visual results and calculated metrics,
simple CNNs with a limited number of training parameters
and a decreasing number of filters in the top layers prove best
in retaining crucial features in a highly variable small dataset.
Alongside precise detection of planar segments in distance
maps with highly variable distance measurement errors, the
proposed work serves as an initial step for general detection
of edges and planar surfaces in distance maps.

The concise set of geometry-based rules for combining
the segmented box sides to form packages produce fast and
accurate segmentation results regardless of package position,
orientation, and partial occlusion. The initial step of detecting
boxes with only one visible side results in a significant
decrease of the processing time. The final box forming results
show that segmentation and detection errors occur primarily
in two cases: surfaces too small in size, and surfaces with
significantly distorted depth representation due to distance
measurement errors. Therefore, the main limitations of the
proposed approach stem from the scanning technology and
dataset size – the minimum object size is limited by the
scanning resolution, and the small dataset size does not allow
for complex learning-based solutions for the box forming step
of the algorithm. Surfaces represented with a small number
of points due to the angle they are positioned at cannot be
segmented with a high precision, and as a result, they are
discarded, and the package detection decision is made relying
on the remaining visible box sides.

Since the errors are concentrated on small and reflective
surfaces, simulated data lacking ToF-specific distance mea-
surement errors are rendered unusable for this application.
This implies that using more precise scanning technol-
ogy would result in an additional increase in algorithm
performance. Several cases of errors in box forming can
be eliminated with additional geometry-based constraints.
A promising research direction to address the problem
of incorrect distance measurements of reflective surfaces
is increasing the training dataset. A significant increase
of training data available would provide a possibility for
wider use of learning-based methods, thus introducing new
possibilities for further improvement of the box forming
accuracy of small, heavily occluded boxes and boxes made of
highly reflective materials. Overall, the proposed algorithm is
a precise, robust solution for package detection, which serves
as a solid basis for fully automated loading and unloading of
transport trailers.
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