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ABSTRACT Knowledge graph (KG) embedding has been used to benefit the diagnosis of animal diseases
by analyzing electronic medical records (EMRs), such as notes and veterinary records. However, learning
representations to capture entities and relations with literal information in KGs is challenging as the KGs
show heterogeneous properties and various types of literal information. Meanwhile, the existing methods
mostly aim to preserve graph structures surrounding target nodes without considering different types of
literals, which could also carry significant information. In this paper, we propose a knowledge graph
embedding model for the efficient diagnosis of animal diseases, which could learn various types of literal
information and graph structure and fuse them into unified representations, namely LiteralKG. Specifically,
we construct a knowledge graph that is built fromEMRs alongwith literal information collected from various
animal hospitals. We then fuse different types of entities and node feature information into unified vector
representations through gate networks. Finally, we propose a self-supervised learning task to learn graph
structure in pretext tasks and then towards various downstream tasks. Experimental results on link prediction
tasks demonstrate that our model outperforms the baselines that consist of state-of-the-art models.

INDEX TERMS Medical knowledge graph embedding, disease diagnosis, companion animal disease.

I. INTRODUCTION
Identifying animal diseases early is important to prevent and
control further companion animal diseases and spread. For
the diagnosis of animal diseases, pet owners mostly rely
on professional veterinarians who possess general medical
knowledge. However, the lack of high-level experts and
timelines could not be guaranteed, resulting in a great
financial loss. Therefore, there is a critical need to find
efficient methods to assist experts in efficiently diagnosing
animal diseases. Furthermore, sick animals provide historical
diagnosis records from different sources, which could bring
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valuable information for expert systems to explore latent
knowledge.

Recently, knowledge graphs (KGs) have shown the power
to solve important tasks in the biomedical area, especially
in animal disease diagnostics. KGs could represent natural
relations of entities that are extracted from electronic medical
records (EMRs), which then be used to explore useful
knowledge [1], [2], [3], [4], [5], [6], [7], [8]. Several object
information in EMRs, i.e., edge, gender, and treatments,
are defined as entities, and edges denote the relations of
entities. By usingKGs to represent entities and their relations,
learning representations of KGs could assist as an auxiliary
role in providing expert decision support. Accordingly,
various graph embedding methods have been proposed
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to learn different types of relations among entities in an
MKG [4], [9]. The learned representations are then utilized
to solve downstream tasks, such as disease diagnosis and
medicine recommendation [4], [10], [11].

Most of the graph-based methods have been proposed
to mainly learn the graph structure in diagnosing animal
diseases while ignoring literal information [12], [13]. Since
knowledge graphs have heterophily properties and different
types of relations, the learned representations thus could
be limited to capturing the implicit and complex relations
in KGs. For example, literal information in EMRs, i.e.
symptoms, text description, and doctor’s advice for the
treatments, could also benefit the models to predict animal
diseases [14], [15], [16]. Consequently, the performance of
the models could be reduced as the models overlooked literal
information.

Most Graph neural networks (GNNs) have shown great
power in learning representations to address homophily
graphs [17], [18]. However, a few studies apply GNN-based
models to solve the knowledge graph problem [10], [11].
Applying GNNs to knowledge graphs is a challenging task
because knowledge graphs have heterogeneous properties,
complex relations, and different types of entities. Moreover,
most GNN models aim to directly solve classification and
link prediction tasks, which is not in an end-to-end manner.
Considering the limitations of existing GNNs, we believe
it is critical to develop a GNN-based model that could
learn different types of relations and complex relations
efficiently and in an end-to-end manner. There have been
several studies [16], [19] that leverage literal information
to capture the semantic relations and improve the learned
representations, two limitations of the existingmodels restrict
their ability to represent KG structure. First, some methods
treat various entity attributes and their relations equally,
which could not be sufficient for learning important features
of different entities [20]. Second, these methods mainly learn
textual information through several deep learning models,
i.e., RNNs and LSTM, as auxiliary modules to capture
the literal information [19]. The entity attributes and literal
information are then learned independently, which could not
bring the expressiveness of the graph-based model to handle
heterogeneous properties.

To address this limitation, we represent LiteralKG, a KG
representation learning model that could learn both differ-
ent types of literal information and graph structure and
then fuse them into unified representations. In particular,
we first transform entities and their attributes into unified
representations by using a gate function [21]. Since the
different attributes are formed from different types of
information, such as numerical and textual values, such
fusion layers could benefit for representing unified vectors
and then embedding models [22]. After composing literal
enriched embedding vectors, the representations could be
encoded and obtained from attentive embedding propagation
layers [23], [24]. We propose an embedding propagation
mechanism that could learn recursively neighbourhood

information with an attention mechanism. The propagation
mechanism could benefit the model by capturing high-order
structural information with complex relations, which could
be suitable for knowledge graphs. Note that our propagation
mechanism differs from the original GNN aggregators and
GAT model [23]. We first apply different GNN aggregators
to capture the neighbourhood information surrounding target
entities to learn the vector representations. Then, the embed-
ding propagation mechanism captures the coefficients across
various triplets in our knowledge graph. We believe that our
proposed model could capture the relations between different
entities with the learned attentional weights. It means that
we only use GNN aggregators to aggregate the neigh-
bourhood information of each entity. Then, the embedding
propagation mechanism could capture the complex relations
between head and tail entities attentively. Furthermore,
we adopt a self-supervised learning task that could learn
graph structures from pretext tasks without using any label
information to generate learned representations and then
use the representations for downstream tasks, such as link
prediction [25].

In particular, we focus on several research questions:
• RQ1. Could fusing different types of literal information
and entity relations benefit the representation learning to
discover explicit and complex relations in KGs?

• RQ2. Which characteristics of encoders could benefit
the model in learning various types of features and
complex relations in KGs?

• RQ3. Could the pre-training model with pre-training
tasks generate effective representations that could then
benefit downstream tasks?

To answer RQ1, we aim to conduct experimental cases to
explore which types of attributes could benefit the learned
representations and contribute to the overall performance
of LiteralKG. Since there are two types of literal features,
i.e., numerical and textual information, it is critical to
investigate combinations between different forms of fea-
tures that can contribute to the effective performance of
LiteralKG. For RQ2, we aim to investigate the performance
of our model on different types of GNN aggregators.
It is worth noting that most GNN aggregators are initially
designed for homogeneous and simple graphs. However,
applying GNN aggregators to KGs could be different as
KGs show heterophily properties and complex relations.
Furthermore, we aim to investigate which aggregators could
be appropriate and show a powerful aggregation function
to capture the complex relations in our data. For RQ3,
we investigate the efficiency of the pre-trained model
trained by optimizing a triplet loss function. Pre-training
tasks could learn representations to capture underlying
relations and structures without using labelled information.
We aim to investigate whether learned representations
could benefit downstream tasks [26], [27]. Therefore, the
pre-training model is expected to bring more efficiency
in extracting complex relations and benefit downstream
tasks.
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The contributions of this paper are summarized as follows:

(i) We construct a medical knowledge graph that com-
prises 595,172 entities and 16 relation types from
various EMRs.

(ii) We propose LiteralKG, a knowledge graph embedding
model that could learn different types of literal infor-
mation and graph structure and then fuse them into
unified representations with an attentive propagation
mechanism.

(iii) We propose a self-supervised learning task that could
learn the graph structure from pretext tasks to generate
representations, and then the pre-trained model is used
for downstream tasks to predict animal diseases.

(iv) The experimental results on the KG with different
types of GNN aggregators and residual connection and
identity mapping show the superiority of LiteralKG over
baselines.

The rest of this paper is organized as follows. Section II
presents literature reviews of existing methods to solve the
above problems. Section III describes our proposed strategies
to construct a medical KG from EMRs. The methodology
of LiteralKG is presented in section IV. Section V shows
the experimental results and analysis. Section VI is the
conclusion and future work.

II. RELATED WORK
Over recent years, several graph-based methods have
been proposed to handle medical records through learning
graph structure [4], [9], [28], [29]. For example, several
studies [14], [15] use translation-based methods, such as
TransE [30] and TransR [31], to map entities and relations
into latent space and then predict diseases. PrTransX [9]
enhances translation-based methods, such as TransE [30],
TransH [32], TransR [31], TransD [33], or TranSparse [34]
by optimizing triplet probability into a scoring function and
the margin-based loss function to enrich representations.
Gong et al. [4] have proposed a model representing
diseases, medicines, and patient data in EMRs by utilizing
a KG triplet loss function. However, most existing models
aim to learn entity representations without considering
the literal information, i.e. symptoms and doctor’s advice,
which could carry significant information for learning
representations [35]. In contrast, our model could learn
different side information types, such as numeric and literal
features.

Several studies have been proposed to capture entity
features and literal information to enrich learned repre-
sentations. For example, Tay et al. [36] introduce AttrNet
model to learn the entities and their relations in triplets
through the combination with attribute features.Wu et al. [37]
have proposed TransEA, which can represent the numerical
features of entities and learn the attribute triplet based on an
attribute score. Kristiadi et al. [21] have proposed the LiteralE
model to learn the numerical and textual features through
linear transformation and optimize a triplet scoring function.

FIGURE 1. An example of a sub-graph from our knowledge graph. The
circles and the rectangles surrounding entities denote entities and their
attributes, respectively. Several entities, such as M, A, R, O, and D, denote
the Medical records, Animals, Drugs, Treatment code, and Disease,
respectively.

Li et al. [38] have utilized the bilinear feature multiplication
in a multi-model fusion to learn the text and image attributes
with the entities in the KGs. However, most existing models
learn representations through linear transformations, which
could suffer from slow convergence and the capability to
capture the heterogeneous property and graph structures
in KGs.

Some studies have been proposed to automatically diag-
nose animal diseases through constructing an MKG and
then learning the entities and relations [39], [40], [41]. For
example, to diagnose dairy cows’ diseases, Gao et al. [5] have
constructed anMKG from EMRs and learned representations
by using TransD method. Several studies adopt GAT to
represent entities and relations in KGs and then combine
themwith the RNNsmodel to capture the patient’s history for
predicting disease [14], [16]. For example, Xu et al. [16] use
GAT to learn representations through the combination with
LSTMs as an auxiliary module for diagnosing pathology and
disease [14]. However, learning KG structures independently
with literal information may not enrich the learned represen-
tations and eventually reduce the model performance [42].
Unlike existing models, our model could learn different
types of literal information combined with graph structures.
Furthermore, the existing models learn different types of
attributes with uniform weights between different entities
and may not capture important ‘‘messages’’. In contrast,
our model first fuses different types of entities and literal
information through gate networks. Then, LiteralKG learns
vector representations through coefficients between triplets in
the KG, which could benefit from capturing graph structure
using attentive weights.

III. MEDICAL KNOWLEDGE GRAPH CONSTRUCTION
WITH ELECTRONIC MEDICAL RECORDS
We now represent our strategy to construct a medical
knowledge graph from EMRs. A knowledge graph (KG)
is a semantic network that represents heterogeneous data
with different types of entities and relations in the real
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TABLE 1. Summary of entities, relations, and attributes in our MKG. There are various types of relations between entities, including one-to-one,
one-to-many, and many-to-many. Several entities, e.g., age, weight, and disease, carry the numerical or textual attributes described in the Attribute
column.

world [30], [31]. Formally, a KG is a set of triples where
each triple is formed of ⟨h, r, t⟩, where h, r, t refers to the
head, relation, and tail, respectively [43]. Medical knowledge
graph (MKG) is a knowledge graph that represents the
relations in the healthcare area through representing medical
data, i.e., electronic medical records (EMRs) [4]. These
records contain various types of information, such as patients,
diseases, medicines, and symptoms [4], [44].
We now explain our proposed strategy to construct

a KG and entity relations from EMRs. In our study,
we constructed a KG, which is composed of 85,965 EMRs
from 31 companion animal hospitals, collected from IntoCNS

company.1 In EMRs, a record is a collection of medical
properties, such as companion animal, symptoms, disease,
and the veterinarian’s decisions for each companion animal
visit. We generate entities from the medical properties. There
are a total of sixteen entity types and fifteen relation types
in our KG. Table 1 shows the detailed statistics of entity
types and their relations. In each record, the types and names
of the entities are extracted from the fields and elements
in EMRs, respectively. As the symptoms (Y) are recorded
in the form of textual sentences, they could be represented

1http://intoh.monoalliance.com/en/
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under the different views of veterinarians. It shows that
when we construct our KG, each textual symptom may
contain different textual sentences, even if they could have
several similar symptoms. We then apply Fasttext [43] to
mapping textual information into fixed-length vectors to
generate the initial symptom features. If textual sentences
have some common words, such as ‘‘fever’’ and ‘‘vomiting’’,
the Fasttext could learn their contextual information and
semantics between them and then map them to be close in
the latent space. As a result, we constructed 86,537 symptom
vectors, which could be different from each other. It is
worth noting that the relationship between symptoms (Y) and
medical records (M) is a one-to-one relationship due to the
text embedding.

Figure 1 illustrates simplified entities and their relations
in our MKG. Our purpose is first to construct entities and
then build different types of relations between entities in
KGs from EMRs. Let M denote the set of medical record
entities, and A refers to the animal entity set. We construct
one-to-many relations between animal entity A and M since
an animal Ai could be examined many times and have
more than one medical record. Other entities in our MKG
are constructed into a structure that satisfies their natural
types of relations. For example, the relations between M
and D are many-to-many since one animal could suffer
many diseases or many animals have the same diseases.
According to the hospital process, when a companion animal
visits a hospital, a veterinarian could make a medical record
(M) containing the symptoms (Y) and then predict the
diseases (D). Therefore, the symptom (Y) and disease (D)
are connected through the medical records (M), which aligns
with the nature of the relationship. To predict the disease (D)
of an animal (A), the veterinarian considers various additional
factors, such as the species of the animal (S), Breed (B),
previous medical records, and so on. After considering all
the related information, the veterinarian could predict the
animal diseases as represented in our knowledge graph.
Therefore, the current symptom is one of the factors that
a veterinarian could consider to give a disease prediction.
By representing such relations in the knowledge graph, our
model could learn the representations and capture the rela-
tionship between various entities, such as symptom (Y) and
disease (D).

Note that the entities are composed of different types of
attributes, such as numeric and text attributes. For example,
the disease, symptom, treatment, age, and weight entities
have textual or numerical attributes that can be divided into
numeric or text groups. For textual attributes, we then encode
the attributes by using Fasttext [45] to capture the semantic
contexts of the textual attributes. Otherwise, if an entity does
not contain an attribute, its attribute embedding should be
known as a non-attribute entity. In this case, the textual or
numerical attribute vectors will be presented as vectors of
zero. Accordingly, we then fuse entity and attributed features
through gate networks to generate literal enriched embedding
vectors for entities.

IV. LITERAL-AWARE MEDICAL KNOWLEDGE GRAPH
REPRESENTATION LEARNING
In this section, we first represent how to fuse entities and
different attribute types into unified representations. Then,
we will introduce the architecture of our model in detail.
In addition, we represent a pre-training task that could learn
the representations in the pretext tasks and then apply them
to downstream tasks, i.e., predicting diseases.

A. FUSING ENTITY AND ATTRIBUTE FEATURES
As mentioned earlier, the entities contain two main types
of attributes, including numerical and textual attributes.
We first design a fusion layer that contains a gate function
to transform different types of attributes into unified vectors.
The textual attributes, such as disease, symptom, prescription,
treatment, and comment, are transformed into vectors through
Fasttext [45]. Numerical attributes, such as age and weight
entities, are normalized and transformed directly into feature
vectors [21]. In several cases, missing values are represented
by ‘−1’ as missing features. We then transform entities
into the shared space to generate the unified literal-enriched
vectors by using a gate function [21]. Formally, the output
representations for an i-th entity can be defined as:

h(0)i = g(ei, ni, ti) = µ ⊙ ν + (1 − µ) ⊙ êi
where, µ = σ1

(
êi + n̂i + t̂i + b

)
,

ν = σ2 (W · (ei∥ni∥ti)) , (1)

and ⊙ is the Hadamard product, σ1 and σ2 are sigmoid and
tanh activation functions, respectively. The entity vector ei ∈

RE , the numerical attribute vector ni ∈ RN and the textual
attribute vector ti ∈ RT are combined and transformed into a
vector h(0)i ∈ Rh with fixed dimension h by a gate function g.
ei, ni, ti are passed through a linear projection êi = WE · ei,
n̂i = WN · ni, and t̂i = WT · ti, respectively. WE ∈ RE×h,
WN ∈ RN×h,WT ∈ RT×h and b ∈ Rh andW ∈ R(E+N+T )×h

are learnable parameters.

B. LEARNING GLOBAL AND LOCAL STRUCTURAL
FEATURES
After generating literal-enriched embedding vectors, we use
an attention mechanism to learn the co-coefficients across
triplets. Figure 2 shows the overall architecture of our
model. The literal-enriched embedding vectors will be
passed through the attentive embedding propagation layers.
Formally, the representation of a entity ei at l-th layer could
be updated as:

h(l)i = f∗
(
h(l−1)
i , h(l−1)

Ni

)
(2)

h(l−1)
Ni

=

∑
∀(hi,rj,tk )∈Ni

π (hi, rj, tk )t
(l−1)
k (3)

where h(l)i is the output representation of an entity ei at l-th
layer, Ni denotes a set of neighbours of entity ei which is
composed with the triple (hi, rj, tk ) if and only if there is a
link between hi and tk , and f∗ is a GNN aggregator.
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FIGURE 2. The overall architecture of LiteralKG. The entities and attributes are fused into unified vectors through a gate function g(·). The unified vectors
are then passed through attentive embedding propagation layers to generate the output representations. The output representations are then
concatenated with the initial embeddings to generate final representations by optimizing a score function.

Since neighbours with different relation types could
contribute differently to a target entity, we aim to aggregate
features of neighbouring nodes with attentional weights to
benefit the model in learning different relations between
entities. The attentive weights could, therefore, describe
the nature of the relations between entities in KGs. More
formally, the attentive scores are computed as follows:

π (h, r, t) = (W · t)⊺ tanh(W · h+ r) (4)

π (h, r, t) :=
exp(π(h, r, t))∑

(h,r ′,t ′)∈Ni
exp(π(h, r ′, t ′))

. (5)

Since different GNN aggregators show individual charac-
teristics, they could benefit in different ways to explore the
explicit and complex KG structures. Therefore, we aim to
investigate which types of GNN aggregators could contribute
to the overall performance of our model. In this study,
we use four aggregators, including GCN, GraphSAGE, Bi-
Interaction, and GIN aggregators. First, GCN aggregator [46]
combines the entity feature and its neighbour’s features by
a sum operator. At each k-th layer, the model aggregates
k-hop neighbourhood features to leverage the graph structure
and generate output representation. A non-linearity trans-
formation is then utilized to transform the output features
before updating the representations. The GCN aggregator is

defined as:

f (l)GCN

(
h(l−1)
i , h(l−1)

Ni

)
= σ

(
W (l)

(
h(l−1)
i + h(l)Ni

))
(6)

where σ denotes the activation function, h(l−1)
i and h(l−1)

Ni
are the output of the previous layer and the aggregated
neighbourhood features of an entity, respectively, and W (l)

is the learnable transformation matrix at l-th layer.
GraphSAGE aggregator replaces sum by concatenation

operator to distinguish between the entity feature and its
neighbourhood aggregation feature [17], [46]. Note that
the difference between GCN and GraphSAGE is that
GraphSAGE learns the topological structure for each target
node neighbourhood through random walks, which could
then calculate node embeddings in an inductive manner.
GraphSAGE aggregator is described as follows:

f (l)SAGE

(
h(l−1)
i , h(l−1)

Ni

)
= σ

(
W (l)

(
h(l−1)
i ∥h(l−1)

Ni

))
(7)

where ∥ is the concatenation.
Wang et al. [46] have proposed a Bi-Interaction aggre-

gator which combines the GCN-based strategy and the
element-wise product of the target node and its neighbour
feature. The element-wise product could assist the model in
learning the similarity between target nodes and neighbour-
hoods. Formally, the Bi-Interaction equation is considered
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as follows:

f (l)BI

(
h(l−1)
i , h(l−1)

Ni

)
= σ

(
W (l)

1

(
h(l−1)
i + h(l−1)

Ni

))
+ σ

(
W (l)

2

(
h(l−1)
i ⊙ h(l−1)

Ni

))
,

(8)

whereW (l)
1 and W (l)

2 are the learnable parameters.
Inspired by 1-d Weisfeiler-Lehman (WL) isomorphism

testing, GIN [18] aims to maximize the GNNs power up
to 1d-WL test. The key difference between GIN and other
aggregators is that GIN could map different sub-structures
into different representations, leading to the power to
distinguish non-isomorphic sub-structures. At each layer, the
GIN aggregator updates the representations through the entity
and neighbour features with a sum aggregator. Note that GIN
does not include any normalization during updating node
features. The GIN aggregator can be described as:

f (l)GIN

(
h(l−1)
i , h(l−1)

Ni

)
=σ

[
FC

((
1+ϵ(l)

)
· h(l−1)

i +h(l−1)
Ni

)]
,

(9)

where ϵ can be a fixed scale or learnable parameter, and
FC denotes the fully connected layer. In the GIN model,
the embeddings of a node i at layer l-th could be updated
iteratively with h(l)i = φ

(
(1 + ε(l−1)) · h(l−1)

i + f
(
h(l−1)
Ni

))
,

where f (·) operates on multisets and φ(·) denotes injective.
We then model f (l) ◦ φ(l) with one fully connected layer as
shown in Equation 9, following the work [18].
Stacking more GNN layers can lead to the over-smoothing

problem, and eventually lead to reducing the performance
of the model. Therefore, we add initial residual connections
and identity mapping, following the work [22]. Formally, the
formula of residual connection and identity mapping can be
described as:

H (l+1)
= σ

[(
(1 − αl)P̃H

(l)
i + αlH

(0)
i

)
×

(
(1 − βl)In + βlW (l)

)]
where βl = log

λ

1 + l
P̃ = (D+ In)−1/2(A+ In)(D+ In)−1/2, (10)

and P̃ is a graph convolution matrix, λ and αl are hyper-
parameters.

To compute the final representation of an i-th entity ei,
we first concatenate all the output representations of GNN
layers. As the local and global graph structures are important
to represent entities, we aim to combine the initial feature
with the output features of all GNN layers. Therefore,
the representations could learn the local and global graph
structures [11], [46].We then apply a linear function followed
by an activation function to transform the entity vectors into
final representations:

ei = σ

W ·

K∥∥∥
k=1

(
h(k)i

)
+ b

 (11)

where K presents the number of GNN layers, b is the bias
of the linear function, and W ∈ Rh×K

→ Rd is the weight
matrix.

C. PRE-TRAINING WITH FOCUSING ON
MULTI-RELATIONAL STRUCTURES
We now represent our pre-training task to learn multi-
relational structures between different types of entities in KG.
In this study, we aim to preserve the co-coefficients across
all triplets through a scoring function. For each triplet, entity
embedding vectors are first transformed into a shared space
through a projection matrix. Then, we use a triplet score
function to calculate their relation score [31]. To preserve
all the entity relations, we aim to maximize all the positive
triplets coming from KGs and minimize all the negative
triplets that are not coming from KGs [30], [31]. Formally,
the scoring function is defined as:

fscore = ŷ(h, r, t) = Wrh+ r −Wr t (12)

where h, t , and r are the output representations of head, tail,
and relation, andWr is a projection matrix to map entities and
relations onto the r space. A triplet loss function is computed
to compare the positive and negative triple pairs defined as:

LP (T ) =

∑
∀(h,r,t)∈T

− ln σ
(
ŷ(h, r, t̄) − ŷ(h, r, t)

)
+ λ||2||

2
2,

(13)

where T denotes the set of triplets, (h, r, t̄) denote the
negative triplet, 2 refers to L2 regularization parameter.

D. FINE-TUNING FOR ANIMAL DISEASE DIAGNOSTICS
We now apply learned LiteralKG and representations to new
downstream task, such as predicting animal diseases. We first
compute a coefficient score to measure the relationship
between each head and tail pair. The equation for calculating
the coefficient score can be formulated as follows:

ŷh,t = ŷ(h, t) = ⟨φ(h), φ(t)⟩ = FC(Wrh||Wr t), (14)

where h and t denote the learned representations of head and
tail, respectively, || is the concatenation operator, Wr is the
transformation matrix corresponding to the relation between
h and t , FC denotes the fully connected layers to get the
prediction output, and φ(·) represents the final embeddings
computed from the Equation 11.

For disease diagnosis, the model classifies the coefficient
score between two entities into binary digits.With pre-trained
embeddings, two observed entity vectors are first projected
into the relation space. Their embedding vectors are then
concatenated and transformed into a one-dimensional class
by MLP layers to form the coefficient score. It is used
to identify the relationship probability among the observed
entities. Additionally, a binary cross entropy loss function
is utilized for training classification. The loss function is
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described as:

LF (M) = −

∑
∀(Mk ,Di)∈M

[
yMk ,Di log

(
ŷMk ,Di

)
+ (1 − yMk ,Di ) log

(
(1 − ŷMk ,Di )

)]
(15)

where Mk and Di are the medical record and disease entity,
yMk ,Di and ŷMk ,Di are the actual and predicted outputs, and
M is the collection of all the training medical records
containing positive and negative disease information. It is
worth noting that each medical record is connected with
various types of entities, such as species of the animal (S),
Breed (B), and previous medical records, which could benefit
our model in learning the additional information to predict
the disease (D). As the relation between M and D is a many-
to-many connection, our model could discover the relations
between medical records (M) and disease entities (D) and
then map them to be close in the latent space if they are
connected in our knowledge graph. In addition, since the
relation between symptoms (Y) and disease (D) is a one-
to-one connection and through medical record (M), our
model could also capture the similarity between them by
the GNN aggregation mechanism. It indicates that if there
is any relation between symptoms (Y), medical records (M),
and disease (D), our model could learn the similarity
between them by aggregating the neighbourhood information
iteratively with several GNN layers.

V. EXPERIMENTS
In this section, we provide extensive experimental results
to validate the performance of our model versus baselines.
In addition, we conduct ablation studies to investigate the
contribution of the combination of different types of relations
as well as residual connection and identity mapping to the
overall performance.

A. EXPERIMENTAL SETTINGS
1) DATASET DESCRIPTION
As mentioned earlier, we collected 85,965 EMRs from
31 animal hospitals and transformed to a knowledge graph.
After transforming, our MKG contains a total of 595,172
entities and 16 relation types. Note that we sampled three
negative triplets for each positive triplet in the experiments.
We first pre-trained our model in a self-supervised manner
without using any label information. Then, we fine-tuned the
LiteralKG model to learn the knowledge for link prediction
tasks. For the fine-tuning task, we conducted the experiment
by randomly sampling training, validation, and testing sets of
size 60%, 20%, and 20%, respectively.

2) EVALUATION METRICS
Since our task is a binary classification problem, we utilized
several evaluation metrics, including accuracy (Acc), preci-
sion (P), recall (R), andF1. The evaluationmetrics are defined

as follows:

Acc =
|D+

true ∪ D−
true|

|D+ ∪ D−|
P =

|D+
true|

|D+|

R =
|D+

true|

|D+
true ∪ D−

false|
F1 = 2

(PR)
(P+ R)

(16)

where the D+
true and D

−
true denote the correct predictions for

positive and negative diseases, respectively, and D−

false is the
incorrect predictions for negative diseases. These criteria are
intended to assess how well our model performs compared to
baselines.

3) BASELINES
We compare our model to relevant translation-based methods
and GNN models, which have gained remarkable success in
KG representation learning. Translation-based models learn
representations by mapping the entities and their relations
into latent space through translations.

• TransE [30]. The model uses a simple scoring function
to represent the similarity between pairs of entities
and map them into latent space through a linear
translation. Note that all types of entities and relations
are represented in the same space.

• TransR [31]. TransR uses projection matrices to map
various types of entities into different relation spaces and
then construct translations between entities.

• SMR [4]. The idea of SMR is to use TransR to transform
entities into latent space linearly. Meanwhile, SMR uses
the LINE [47] model to capture the similarity between
entities, which successfully addresses homogeneous
graphs.

Furthermore, we also compare our model with recent
GNNs, which could learn high-order sub-structures and
semantic relations in KGs. There are three GNN baselines,
including KGNN, KGNMDA, and LaGAT model, as:

• KGNN [10] learn KG structures through a local recep-
tive to aggregate neighbour features and topological
information. KGNN could also capture the high-order
structures surrounding target entities and semantic
relations to learn global structural information.

• KGNMDA [48] represent the relations between
microbes and diseases based on the Gaussian kernel and
then learn the similarity between them in an uncertain
manner. They then use a linear transformation to predict
the scores across microbe-disease relations.

• LaGAT [11] extendsKGNNby using an attentivemech-
anism, which could learn different weighted messages
contributed from different entities. Furthermore, the
outputs of different attentive embedding propagation
layers are concatenated and then contribute to the final
representations.

4) IMPLEMENTATION DETAILS
Our model is implemented based on the Pytorch library. All
the experiments were done in two GPU servers with four
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TABLE 2. The performance of LiteralKG and baselines in terms of
accuracy, recall, precision and F1. The top two are highlighted
by first and second.

NVIDIA RTX A5000 GPUs for each (24GB RAM/GPU).
Adam optimizer [49] was applied to the pre-training and
fine-tuning phases. We applied Leaky ReLU as an activation
function in the aggregation layers. The range of learning
rate is ∈ {0.0001, 0.00005, 0.00001}. The hidden dimension
of the GNN layers ∈ {16, 32, 64, 128}. The number of
GNN layers ∈ {2, 4, 8, 16}. The dropout ratio ∈ {0.1, 0.5}
after each layer. For fair comparisons with the baselines,
the hyper-parameters in all baselines were tuned in the
same range, including the learning rate ∈ {0.001, 0.0001},
hidden dimension ∈ {16, 32, 64, 128} and the number
of layers ∈ {1, 2, 4}. The source code is available at
https://github.com/NSLab-CUK/LiteralKG.

B. PERFORMANCE ANALYSIS
Table 2 shows the performance of our model and baselines
in terms of accuracy, recall, precision, and F1. We have the
following observations: (1) LiteralKG with pre-training out-
performed baselines in most measurements. Specifically, our
proposed model reached the best value at 0.9357 regarding
Recall measurement. We argue that our model could learn
the literal information well to maximize the relations between
entities. (2) Translation-based models, i.e., TransE, TransR,
and SMR, showed low performance in predicting disease.
We argue that these models overlooked literal information
and eventually could not capture the complex relations since
they only learn representations through simple linear trans-
formations. (3) LaGAT showed competitive performance
compared to our model. We argue that as LaGAT could learn
graph structure through the attention mechanism, the model
thus could learn attentive weights contributed from different
neighbourhood entities in KGs.

C. ABLATION STUDIES
1) ON THE IMPORTANCE OF LEARNING LITERAL
INFORMATION
Table 3 shows how the literal information contributes to the
overall performance of our model. We have the following
observations: (1) LiteralKG showed the best performance
with the combination of numerical and textual information
in most measurements. We argue that both types of literal
information could benefit our model to explore similar enti-
ties in the KG and thus contribute to the overall performance.

TABLE 3. The results for evaluating the efficiency of leveraging literals.
The first column contains the combining literal strategies. There are four
cases, including without (w/o) literal, without textual, without numerical,
and the combination of numerical and textual features. The top two are
highlighted by first and second.

TABLE 4. Link prediction performance on the Residual Connection and
Identity Mapping (R.C& I.M) in GNN aggregators. × and ⃝ denote a
setting ignoring and adopting R.C& I.M, respectively. The top two are
highlighted by first and second.

TABLE 5. The performance of LiteralKG on the role of the pre-training
task. × and ⃝ denote a setting without a pre-trained model and utilizing
the pre-trained model, respectively. The top two are highlighted by first
and second.

(2) We find out that the performance of our model increased
slightly in comparison with without using numerical infor-
mation, from 0.8529 to 0.8616 and from 0.8610 to 0.8712 in
terms of accuracy and F1, respectively. It indicates that the
textual information contributes considerably to the overall
performance compared to numerical attributes. Thanks to
the textual features, LiteralKG performs well even without
numerical features. (3) When combining different types of
attributes, the recall measurement increased from 0.8664 to
0.9357, which shows a good point for maximizing the ability
to diagnose patients with a correct disease. It indicates that
the gating mechanism transformed the attributes and entity
embedding vectors into the shared space and eventually
contributed to the overall performance.

2) ON THE IMPORTANCE OF RESIDUAL CONNECTION AND
IDENTITY MAPPING
We further conducted experiments to evaluate the effective-
ness of residual connection and identity mapping shown in
Table 4. We have the following observations: (1) The overall
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FIGURE 3. Performance on link prediction over attentive embedding
propagation layers on four types of aggregators, including GCN,
GraphSAGE, Bi-Interaction, and GIN aggregators.

performance increased slightly by applying the residual con-
nection and identity mapping. It indicates that even though
KGs have complex relations and heterophily properties,
residual connections and identity mapping could act as
auxiliary modules to contribute to the overall performance
of LiteralKG. In other words, the two modules could help
LiteralKG prevent over-smoothing problem and improve
the performance of our model. (2) In comparison with
GraphSAGE, the performance of our model with residual
connection was reduced from 0.8580 to 0.8300 and from
0.8670 to 0.8394 in terms of accuracy and F1, respectively.
It indicates that the residual connection does not contribute
much to our model performance as GraphSAGE sampled
the neighbourhoods based on random walks. (3) For the
GIN aggregator, using residual connection can improve
the model performance from 0.8174 to 0.8378 in terms
of F1 measure. Note that GIN aggregators aim to map
different sub-structures into different representations, leading
to the power of 1d-WL isomorphism testing. This implies
that residual connections could contribute to the model
performance as GIN aggregators could ignore the original
features of entities.

3) ON THE PRE-TRAINING PHASE
Table 5 shows the link prediction performance on the
pre-training phase evaluation. We discovered that our
pre-trained model could show comparable performance in
most of the aggregators. In particular, LiteralKG reached
the highest values in the Bi-Interaction aggregator at 0.8616,
0.8150, and 0.8712 in terms of accuracy, precision, and F1,
respectively. We argue that the triplet scoring function in the
pre-training phase first learns to maximize relation proximity

across triplets in the KG. Therefore, it could learn and capture
the entity similarity, which can contribute to the performance
of the fine-tuning task in link prediction, in which the
link is also considered by representation proximity. In GIN,
applying the pre-trained model improves performance on
F1 and accuracy from 0.8021 to 0.8612 and 0.8013 to 0.8490,
respectively. These results, therefore, explain the efficiency of
the pre-trained model, which satisfies the RQ2.

D. SENSITIVITY ANALYSIS
Figure 3 shows the performance of our model by applying
different range of GNN layers. We have the following
observations: (1) This result illustrates that LiteralKG with
a 1-layer or 2-layer can efficiently learn the KG structure in
most of the aggregators. For the Bi-Interaction aggregator,
LiteralKG achieves the best performance when using only
one layer, which captures 1-hop neighbourhood entities.
We argue that as Bi-Interaction could capture the graph
structure through sum aggregators and element- wise product,
the aggregators could suffer the over-smoothing problem
when staking more layers. In other words, Bi-Interaction
aggregators could not distinguish sub-structures as the
aggregators learned the similarity between target nodes and
neighbours at the first layers. (2) It is worth noting that GIN
aggregators showed the highest performance when staking
more GNN layers compared to other aggregators. We argue
that as the power of GIN achieves nearly 1d-WL isomorphism
testing, the model then could handle the over-smoothing
problem even staking more GNN layers. In other words, GIN
aggregators could distinguish different sub-structures even
staking more layers.

VI. CONCLUSION AND FUTURE WORK
In this study, we propose a knowledge graph embedding
model, LiteralKG, which could learn different types of entity
attributes to diagnose companion animal disease. By doing
so, we first constructed an MKG from various EMRs
collected from 31 animal hospitals. Then, LiteralKG fuses
different types of literals into unified representations through
a gating network. We then use the attention mechanism with
the initial feature to learn the coefficients across triplets to
capture local and global graph structures. The experiment
results show that our model outperforms the shallow KG
embedding and GNN-based models due to the improvements
from leveraging the literal features and the efficiency of the
pre-trained phase. Furthermore, we present a pre-training
task that could learn graph structure and its properties
without using any label information to generate learned
representations. The pre-trained model with representations
could then be used for prediction tasks. Besides, the negative
samples from our data are sampled randomly so that it can
affect the overall performance of LiteralKG. In future work,
we plan to build useful sampling strategies to effectively build
positive and negative samples, such as graph clustering and
sub-graph sampling methods.
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