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ABSTRACT Representing the nodes of continuous-time temporal graphs in a low-dimensional latent space
has wide-ranging applications, from prediction to visualization. Yet, analyzing continuous-time relational
data with timestamped interactions introduces unique challenges due to its sparsity.Merely embedding nodes
as trajectories in the latent space overlooks this sparsity. However, a natural way to account for this sparsity
is to model the uncertainty around the latent positions. In this paper, we propose TGNE (TemporalGaussian
Network Embedding), an innovative method that bridges two distinct strands of literature: the statistical
analysis of networks via Latent Space Models (LSM) and temporal graph machine learning. TGNE embeds
nodes as piece-wise linear trajectories of Gaussian distributions in the latent space, capturing both structural
information and uncertainty around the trajectories. We evaluate TGNE’s effectiveness in reconstructing
the original graph and modelling uncertainty. The results demonstrate that TGNE generates time-varying
embedding locations that can accurately reconstruct missing parts of the network based on observed ones.
Furthermore, the uncertainty estimates align experimentally with the time-varying degree distribution in the
network, providing valuable insights into the temporal dynamics of the graph. To facilitate reproducibility,
we provide an open-source implementation of TGNE at https://github.com/aida-ugent/tgne/.

INDEX TERMS Temporal networks, latent space models, variational inference, representation learning,
dimensionality reduction, networks, random graphs.

I. INTRODUCTION
Continuous-time temporal networks arise from various
sources. They have successfully been used to study com-
munication patterns [23], epidemic spreading [4], [21], and
neuron firing, to name a few. Moreover, interaction data
is often available with a high level of detail, making it
possible to model the time dimension as continuous. In that
setting, a temporal interaction network can be viewed as the
realization of a collection of edge-specific point processes,
enabling the use of statistical methods to study the dynamics
of the interactions [22].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tawfik Al-Hadhrami .

Latent SpaceModels for graphs [10] are an important class
of probabilistic models, where each node in the graph is
embedded into a latent space, and the probabilities of links
between nodes are independently distributed according to a
notion of distance between node embeddings. Such dyadic
independence models allow one to reliably infer unobserved
node-level information based on the observation of links
between the nodes. The learned node embeddings can then
be used directly for downstream tasks such as clustering or
link prediction [13]. Latent SpaceModels have been extended
to make them applicable to a variety of network types, and
publicly available packages allow analyzing a broad range of
relational data [20].

For continuous-time temporal graphs, however, where
each interaction is allowed to occur at any time stamp,
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the translation of Latent Space Models has not been
fully explored yet. Indeed, for this type of data, the
point process nature of the dyad-level variables that gen-
erate the data does not allow parameterizing the nodes
into simple embedding vectors, but instead would require
(in theory) a full trajectory of embeddings. To cope with
these limitations, the recently introduced continuous latent
position model (CLPM) [27] models the temporal network
as arising from a multivariate point process, while assuming
the latent trajectories of embeddings to be piece-wise linear
in order to derive a fully parametric model. Rastelli and
Corneli [27] proposed maximum a posteriori inference to
estimate the latent trajectories based on a history of dyadic
interactions. However, the authors do not consider estimating
the uncertainty of the estimated trajectories. Given the
sparsity of typical interaction networks, such uncertainty
may be large and vary across nodes, dyads and time. Yet,
understanding this uncertainty may be crucial in many
applications. To meet this need, in this work we present
TGNE (Temporal Gaussian Network Embedding), which
hinges onBayesian inference to capture a time-varying notion
of uncertainty of the model on the latent position. While
still allowing one to visualize temporal networks in a low-
dimensional space, TGNE additionally allows one to gauge
the uncertainty around the latent positions in a natural and
rigorous manner.

Our contributions can be summarized as follows.
• We propose TGNE: a variational approach to inference
in the CLPM model that allows one to calculate trajec-
tories of Gaussian distributions for node embeddings in
a latent space, given a history of interactions.

• We develop model-based statistical analysis of simu-
lated and real-world datasets using the obtained dynamic
embeddings.

• We conduct a novel and rigorous evaluation of the uncer-
tainty learned through the variational approximation of
the posterior.

• We assess to what extent the TGNE can be used to
reconstruct missing events in the temporal network.

The paper is organized as follows. In Section II we discuss
related work. In Section III we provide a Point Process
perspective to Continuous-Time Temporal Networks and
introduce the CLPM model in light of these definitions.
In Section IV, we detail TGNE, and discuss its scalability.
In Section IV-E we detail and discuss the results of our
experiments. Finally, in Section VI we outline potential
extensions of TGNE.

II. RELATED WORK
Our work builds on previous work on Latent Space and Point
Process Modelling of (Temporal) Graphs.

A. LATENT SPACE MODELS
Since Hoff’s seminal paper [10], Latent Position Models
(LPMs) have been extensively studied [14] and extended
to various types of graphs, including weighted graphs and

dynamic graphs [16], [29]. The Continuous Latent Position
Model (CLPM) [27] further extends this line of research to
continuous-time temporal graphs, where the latent positions
of nodes are assumed to follow piece-wise linear trajectories
in a latent space. Our work builds upon this model and
describes a Bayesian approach for estimating the latent
trajectories.

B. DYNAMIC GRAPH LAYOUT AND DIACHRONIC
EMBEDDING
Dynamic Graph Layout [30] aims to find embedding config-
urations that not only represent the structural information of
the graph but also maintain coherence over time. Similarly,
Goel et al. [8] propose Diachronic Embedding, which
enables embedding nodes from a knowledge graph into
a coherent sequence of latent embeddings for temporal
knowledge graph completion. As detailed in the method
section, we also enforce temporal coherence by specifying
a Gaussian Random Walk prior distribution over the latent
trajectories.

C. GAUSSIAN GRAPH EMBEDDING
Recent work has explored the idea of embedding nodes in
a graph as Gaussian-distributed points in a latent space,
with extensions to dynamic graphs [3], [31]. However, the
main focus of this line of research has primarily been on
forecasting in discrete-time temporal graphs. In contrast with
this, our work aims to provide a Bayesian dimensionality
reduction method specifically tailored for temporal graphs in
continuous-time.

D. POINT PROCESS MODELS FOR GRAPHS
Point Process Modeling of Temporal Graphs, particularly
using Hawkes Process models, has emerged as a vibrant field
of research [1], [12], [24], [32]. These models characterize
the changing rates of events in a network based on latent
representations. However, the interaction rates in existing
models are typically modulated by static representations of
the nodes. Few efforts have been dedicated to combining
these Point Process decoders with continuous-time represen-
tations, which is a key aspect here.

E. TEMPORAL GRAPH NEURAL NETWORKS
Automatically learning time-varying node feature vectors
from time-stamped relational data through encoder-decoder
architectures is a very active field of research [11], [15], [28].
Such architectures are evaluated on two classes of tasks.
Interpolation aims at reconstructing past events, and is
mostly evaluated on knowledge graphs at a typically low
time-resolution. On the other hand, Temporal GNNs are
typically evaluated on their ability to extrapolate to the
future. In contrast, the method proposed in this paper is a
dimensionality-reduction method aimed at capturing both the
structure of the graph at a user-specified resolution, along
with uncertainty on the latent node representations.
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TABLE 1. Notation summary.

III. PRELIMINARIES
In this section, Temporal Networks are defined from a Point
Process point of view. Then the Poisson Process is defined: a
particular type of point process that is used in this paper as a
generative distribution of the data. Finally, we summarize the
Continuous Latent Position Model (CLPM) in light of this
theoretical background.

A. NOTATIONS
1) CONTINUOUS-TIME TEMPORAL NETWORKS
Let U denote a set of nodes, and E ⊂ U × U a set of
possible edges. In the current work, a Temporal Network
is defined as a time-ordered sequence of relational events
T ([0, 1]) = {wm = (im, jm, tm)|m = 1, . . . ,M}, where
M is the number of events, 0 < t1 < · · · < tM < 1
is an ordered sequence of pairwise distinct, positive time
stamps, and im and jm are the source and destination nodes
respectively. The time-stamps are normalized to the interval
[0, 1]. For any node pair i, j ∈ E , and for any 0 ≤ a <

b ≤ 1, we denote Tij([a, b]) the set of interaction times
between i and j that occur in the interval [a, b]. For each
(i, j) ∈ E we define the function t 7→ Y ij(t) ∈ N that
counts the number of interactions between i and j before
time t . We assume that the edge-level counting functions are
samples from simple point processes, and we will denote
t 7→ Yij(t) the counting process generating the time function
t 7→ Y ij(t).

2) POISSON PROCESSES
A Poisson Point Process on the interval [0, 1] is a random
variable that, when sampled from, yields a set of arrival times
t1, . . . , tm. Such a random variable is governed by its rate
function λ : [0, 1] 7→ R∗

+, defined such that for any interval

[a, b] ⊂ [0, 1], the expected number of arrival times that fall
into [a, b] is given by the rate measure:

3([a, b]) 1
= E[Y(b) − Y(a)] =

∫ b

a
λ(s)ds.

In other words, λ(t) can be viewed as the expected number
of events occurring in the interval [t, t + dt[. For a given
rate function λ : [0, 1] → R∗

+, we will write Y ∼ PP(λ)
to express that Y follows a Poisson Process distribution with
rate function λ. The likelihood of observing the arrival times
t1, . . . , tm under a Poisson Process of rate function λ is:

p({t1, . . . , tm}; λ) = exp(−3([0, 1]))
m∏
i=1

λ(ti).

Remark 1: This can also be written in the following
exponential family form:

p({t1, . . . , tm}; λ) = exp
(∫ 1

0
log λ(s)dY (s) − 3([0, 1])

)
,

where Y (t) =
∑m

i=1 1ti<t is the counting function
representing the arrival times and

∫ 1
0 log λ(s)dY (s) is the

Stieltjes integral of the log rate with respect to Y . While the
natural parameter of this exponential family is the function
s 7→ log λ(s), Y can be interpreted as the sufficient statistics.
Thus the canonical link function is the log in that case. The
second term in the exponential is in turn the log-partition
function of the distribution. This exponential form makes the
Poisson Process a natural candidate as a generative model
in a continuous-time extension of the Latent Space Distance
Model [10].

B. THE CONTINUOUS-TIME LATENT SPACE MODEL
1) GENERAL SUMMARY
The Continuous-time Latent Space Model (CLPM) can be
summarized as follows. Let M be an embedding space
(typicallyM = Rd with d a small latent space dimension),
Z = C([0, 1],M) the set of continuous trajectories in that
latent space and C([0, 1], R∗

+) the set of positive continuous
functions on [0, 1]. Let pz be a prior distribution over
Z , and f : Z × Z → C([0, 1], R∗

+) be a similarity
functionmapping any pair of trajectories z, z′ to a positive rate
function f (z, z′) = (t 7→ fz,z′ (t)). The model supposes that
the edge-level interaction times are generated independently
conditioned on the latent trajectories, according to the
following generative process:

∀i, zi ∼ pz,

∀i, j,Yij|zi, zi ∼ PP(f (zi, zj)),

Examples of such a model include the distance model, where
the similarity function is given by fz,z′ (t) = exp(β − ||zi(t)−
zj(t)||2) and the dot product model corresponding to fz,z′ (t) =

exp(β +
〈
zi(t), zj(t)

〉
).

2) A PIECEWISE LINEAR ASSUMPTION
Rastelli and Corneli [27] propose to constrain the trajectories
to be piece-wise linear to make the model tractable. The
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FIGURE 1. Probabilistic Graphical Model summarizing the CLPM. T (k) 1
= T (Ik ) is the history of interactions happening in the time interval

Ik = [ηk−1, ηk ]. z (k) are the snapshots of latent positions at time ηk . The chunks of history T (k) are conditionally independent given the latent
positions at the boundaries of the interval Ik (z (k−1) and z (k)).

observation interval [0, 1] is partitioned into a set of K
intervals I1, . . . , IK with Ik = [ηk−1, ηk ], resulting in K +

1 changepoints 0 = η0 < η1 < η2 . . . < ηK = 1. The latent
trajectories are then assumed to be linear on each interval Ik .
Formally, for each node i, interval k and coefficient s ∈ [0, 1],
the latent position zi at time t = (1 − s)ηk−1 + sηk ∈ Ik is:

zi((1 − s)ηk−1 + sηk ) = (1 − s)zi(ηk−1) + szi(ηk ).

Thus, the i-th trajectory is fully determined by its successive
positions at the changepoints {zi(ηk )|k = 0, . . . ,K }, which
means that only (K + 1)× d variables are needed to describe
it. The positions at the changepoints are referred to as critical
points in the following, and denoted z(k)i

1
= zi(ηk ).

3) LOG-LIKELIHOOD OF THE CLPM
For each node pair (i, j) and each interval Ik , let Y

(k)
ij be

the number of interactions between i and j that occur in
the interval Ik . The associated random variables Y(k)

ij are
independent across node-pair and intervals, conditioned on
the latent trajectories. Moreover, Y (k)

ij only depends on the
latent positions of i and j at the boundaries of the interval Ik ,
namely {z(k−1)

i , z(k)i , z(k−1)
j , z(k)j }. The independence structure

of the CLPM is summarized in Figure 1. The negative
log-likelihood conditioned on the latent positions thus
decomposes as follows:

log p(Y |z)

= −

∑
i̸=j

K∑
k=1

log p(Y (k)
ij |z(k−1)

i , z(k)i , z(k−1)
j , z(k)j ).

The terms in this decomposition are the following Poisson
Process log-likelihoods:

− log p(Y (k)
ij |z(k−1)

i , z(k)i , z(k−1)
j , z(k)j )

= 3ij(Ik ) −

∑
tij∈Tij(Ik )

log(λij(tij)). (1)

Note that while we describe the log-likelhood in the directed
case here, the undirected log-likelhood can be obtained by
dividing the log-likelihood by 2, as each interaction for an

undirected edge i, j would be accounted for twice in the
expression above.

While the second term in 1 can be calculated directly from
the parameters, the cumulative rate3ij(Ik ) is more difficult to
evaluate. We describe two options for calculating this term:
the closed form already described in [27], and an approximate
form based on a Riemann sum.

4) CLOSED FORM [27]
In the particular case of the Euclidean Distance model, the
cumulative rate adopts the following closed form:
Theorem 1: Let
• 1ij(ηk ) = zi(ηk ) − zj(ηk ) be the vector difference
between the embeddings of node i and j,

• 8 : t 7→
1

√
2π

∫ u
−∞

e−
u2
2 du be the standard Normal

N (0, 1) cumulative distribution function,
• σ =

1
√
2||1ij(ηk )−1ij(ηk+1)||

,

• µ =
⟨1ij(ηk ),1ij(ηk )−1ij(ηk+1)⟩

||1ij(ηk )−1ij(ηk+1)||
,

• a = ||1ij(ηk )||2 −
⟨1ij(ηk ),1ij(ηk )−1ij(ηk+1)⟩2

||1ij(ηk )−1ij(ηk+1)||2
.

Then the cumulative event rate between i, j writes

3ij(Ik )

= (ηk−1 − ηk ) exp(β − a)
√
2π
[
8(

1 − µ

σ
) − 8(−

µ

σ
)
]

While a proof of this theorem is provided in previous
work [27], in the supplementary material we provide an
alternative proof that can be reproduced for any case where
the log of the rate can be expressed as a second-order spline in
time, i.e. such that its expression on each subsequent interval
is a second-order polynomial.

5) RIEMANN APPROXIMATION OF THE CUMULATIVE RATE
In the case where the rate function is not a second-order
spline, we propose to approximate it simply using a Riemann
sum:

3ij(Ik ) =

∫ ηk

ηk−1

λij(s)ds ≈
1
R

R∑
r=1

λij(ηk−1 +
r − 1
R

ηk )
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where R is a pre-specified resolution parameter. This approxi-
mation allows implementing an inference procedure agnostic
to the type of similarity function used. For instance, using
this approximation makes it easy to consider different latent
geometries such as hyperbolic or spherical embeddings.

IV. METHOD
In this section, we provide an overview of the proposed
TGNE approach for performing Bayesian inference on the
latent critical points, given a history of interactions.

A. PRIOR DISTRIBUTION
To reflect time continuity in the latent trajectories of the
CLPM, a prior distribution is needed. The Gaussian Random
Walk prior introduced in [27] biases the inference towards
time-coherent and reasonably scaled configurations, promot-
ing slowly evolving trajectories while faithfully representing
the network’s structure. This prior is defined for any node i ∈
{1, . . . , n} and time step k ∈ {0, . . . ,K }, as the cumulative
sum of independent Gaussian increments:

zi(ηk ) = τ0ϵ0 +

k∑
l=1

√
ηl − ηl−1τϵl,

where ϵi ∼ N (0, Id ). The initial scale τ0 controls the overall
spread of the latent trajectories in the embedding space. The
transition scale parameter τ governs the amount of allowed
variation between consecutive time steps. Additionally, the
variance of the Gaussian increments increases linearly with
the step size ηk+1 − ηk . Note that by taking infinitely small
step sizes, this prior converges to a Brownian Motion in
the embedding space. In our implementation, we choose a
constant step size ηk+1 − ηk =

1
K , where K is the number

of steps. Moreover, we select an initial scale equal to the
transition scale: τ0 = τ . This yields two hyperparameters:
the scale τ and the number of changepoints (ticks) K .

B. VARIATIONAL INFERENCE ON THE CRITICAL POINTS
The objective of TGNE is to evaluate the intractable posterior
distribution p(z|Y ) ∝ p(Y |z)p(z) given the data Y . To achieve
this, we use a mean-field variational approach, where we
define the following variational distribution that factorizes
over nodes and changepoints as a product of independent
Normal distributions:

qφ(z) =

n∏
i=1

K∏
k=0

N (z(k)i ; µ
(k)
i , (σ (k)

i )2Id ),

We aim to minimize the Kullback-Leibler divergence
KL(qφ ||p(.|Y )) between the variational distribution and the
posterior. This is equivalent to minimizing the negative
Evidence Lower Bound (ELBO):

L(φ) = KL(qφ ||p(.|Y )) − Ez∼qφ [log(p(Y |z))],

The KL Divergence term can be written as shown in
Theorem 2, and proved in Appendix D.

Theorem 2:

KL(qφ ||p(.|Y )) =

n∑
i=1

[
||µ

(0)
i ||

2

2τ 20

+ d
K∑
k=0

(
log(

σ
(k)
i

τ
) +

τ 2

(σ (k)
i )2

−
1
2

)

+

K∑
k=1

||µ
(k)
i − µ

(k−1)
i ||

2
+ (σ (k−1)

i )2

2τ 2

]
.

Following common practices in variational inference, the
expected log-likelihood term is approximated using a single
Monte-Carlo sample z̃ ∼ qφ :

Ez∼qφ [log(p(Y |z))] ≈ log(p(Y |z̃)).

Reparameterization [18] allows backpropagating through
the latter sampling operation, by mapping standard
Normal-distributed samples to the latent space through an
invertible function of the variational parameters. It is used
here to obtain the following differentiable loss, which can be
optimized using standard gradient descent algorithms such as
ADAM [17]:

L(φ)

≈

Calculated using a single sample z̃ ∼ qφ︷ ︸︸ ︷∑
i,j

K∑
k=1

3ij(Ik ) −

∑
tij∈Tij(Ik )

log(λij(tij))

+

n∑
i=1

[
||µ

(0)
i ||

2

2τ 20
+ d

K∑
k=0

(
log

(
σ
(k)
i

τ

)
+

τ 2

(σ (k)
i )2

−
1
2

)

+

K∑
k=1

||µ
(k)
i − µ

(k−1)
i ||

2
+ (σ (k−1)

i )2

2τ 2

]
. (2)

C. EFFECT OF THE HYPERPARAMETERS
The proposed method has four hyperparameters: the dimen-
sion d , the number of changepointsK , the initial scale τ0, and
the scale τ . The number of changepoints K controls the time
resolution of the latent trajectories. It should be adapted to
how frequently we expect the nodes’ states to change in our
dataset. The initial scale τ0 controls the scale of the initial
latent positions z(0)i . Finally, the scale τ is a temperature
parameter that controls the deviation of the latent positions
between frames, namely ||z(k+1)

i − z(k)i ||. To illustrate its
effect, in Figure 2 it can be seen that for τ = 50.0 the frames
are not constrained to be close to each other, and the latent
positions can change drastically between frames. On the other
hand, for τ = 1.0, the latent positions are constrained to be
close to each other, and the frames are more similar to each
other.

D. IMPLEMENTATION
We implemented our method in Pyro, a Pytorch-based
probabilistic programming language [2]. This effect
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handler-oriented programming language allows one to define
the model as a Python function. The execution trace of the
function can then be read and decorated by effect handlers,
allowing one to define high-level probabilistic operations
such as conditioning, or performing Stochastic Variational
Inference. To optimize the variational parameters φ and the
bias term β, we use the ADAM algorithm [17] with learning
rates γ = 0.01 and γ = 0.00001 respectively.

E. SCALABILITY
We discuss two strategies to scale the method to networks
with a large number of nodes: node-batching and negative
sampling.

As the log likelihood term is a sum of terms over all source
nodes, node-batching can be implemented by computing the
loss and gradients on a subset of the nodes at each iteration,
and then averaging the gradients over the whole dataset.

The log-likelihood decomposes as a sum of contributions
from positive node pairs (interacting at least once) and
negative node pairs that never interact. However, most of
the node pairs in the network never interact, and thus the
information conveyed by the negative pairs is redundant.
This opens up the possibility of negative sampling which
may dramatically speed up inference on networks with
many nodes. We propose the following strategy, akin to the
case-control approximate likelihood introduced in [26]: for
each node i, we sampleK nodes j such that (i, j) never interact
in the network. We denote P(i) the set of nodes that connect
with i at least once in the event history, and N (i) a random
subset of the set of nodes that never connected with i. The
log-likelihood can be approximated as:

log(p(Y |z̃))

≈

∑
i∈U

 ∑
j∈P(i)

∫ 1

0
λij(s)ds−

∑
τ∈Tij

log(λij(τ ))


+

|U \ P(i)|
|N (i)|

 ∑
j∈N (i)

∫ 1

0
λij(s)ds


V. EXPERIMENTS
We performed various experiments to answer the following
research questions. First, we evaluate the uncertainty of the
latent positions on simulated data, and on real-world datasets.
Next, we try to understand qualitatively how the parameters
of the model affect the resulting latent positions. Finally,
we try to understand to what extent the TGNE method allows
reconstructing the events of unobserved edges, based on the
event history of the observed edges. All the experiments were
run on an Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz,
with 1TB RAM.
Datasets: In our experiments, we used a simulated dataset,

as well as four real-world datasets, for which we provide
a brief description below. The HighSchool dataset [7] is a
contact network of student in a French preparatory class High
School in Marseille. Their interactions were recorded using

TABLE 2. Statistics on the Datasets, and associated runtime of TGNE for
500 epochs.

wearable devices over 9 days. The resulting embeddings are
shown in Figure 3. The MIT Reality Mining Dataset [6]
is a dataset of face-to-face contacts between participants of
an experiment ran by members of MIT media Lab. The
data was collected over the course of around 9 months,
between 2004 and 2005. The obtained embeddings for this
dataset are shown in Figure 3b. The Workplace dataset
is a dataset of face-to-face contacts between employees
in a workplace [9]. Their interactions were recorded on
11 days (2013/06/24 to the 2013/07/05). In this work we
focus on the first day of interactions. The UCI dataset is a
Facebook-like, unattributed online communication network
among students of theUniversity of California at Irvine, along
with timestamps with the temporal granularity of seconds.
We used the preprocessed version from the recent DGB
Benchmark [25]. A summary of the datasets is shown on
Table 2, along with the associated runtimes of the TGNE
method.

A. EXAMPLE ON DATA SIMULATED USING A STOCHASTIC
BLOCK MODEL
We evaluate the estimated uncertainty of the interactions in
an example simulated using a Stochastic Block model(SBM),
where one node changes community over time, while all the
other nodes stay in the same community. This data generation
procedure is adapted from [27], but here we focus on the
uncertainty aspect. A detailed explanation of the simulation
procedure is provided in the Appendix. The resulting
Gaussian Embeddings are shown in Figure 2a and 2b, for
two sets of hyperparameters. Using a low scale parameter, the
positions are located with more precision, and the trajectories
evolve in a smoother way between time stamps. This is
to be expected since the regularization term is stronger in
that case. However, the estimated uncertainty is uniform
across nodes in that case. In the high-scale regime, the
trajectories evolve more freely between frames, as in that
case, the between-frame regularization is weaker. However,
the uncertainty (defined as in subsection V-C) of the node
that changes community is higher than the uncertainty of the
other nodes, as expected. On Figure 2c we show the evolution
of the uncertainty of the node that changes community over
time, for different value of the scale parameter.

B. UNCERTAINTY EVALUATION
1) NODE-LEVEL UNCERTAINTY
The TGNE method outputs a Gaussian distribution for each
node at each individual time stamp. Thus, the uncertainty
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FIGURE 2. Resulting latent positions on synthetic data generated from the Stochastic Block Model. Uncertainty is represented by the size of the markers.
From frames 0 to 4, the nodes are divided into two communities (Circles and crosses). Then from frames 5 to 9, node 0 becomes a triangle and forms its
own community. During that transition, node 0’s uncertainty increases, especially when using a less informative prior (τ = 50.0). Finally, from frames
10 to 15 node 0 becomes a cross.

around the latent positions can be naturally measured through
the scale of the variational Normal distribution. While there
are multiple potential sources of uncertainty, we empirically
assess the impact of the node degree on the uncertainty of
the latent positions. Namely, for each node i and each sub-
interval Ik , we measure the uncertainty of node i on interval Ik
by calculating u(i, k) =

σ
(k)
i +σ

(k+1)
i

2 and conversely calculate
the number of interactions N i(Ik ) of the node on this interval.
Moreover, we relate the uncertainty associated with a node
on a given interval to the average Euclidean distance to its
neighbors on the same interval. In order to display how
these different values are related, in Figure 4 we represent
the average uncertainty u(i, k) as a function of the average
distance to the neighbors within the same interval. A first
observation is that higher degree node-interval pairs have less
uncertainty. This property is typical of Latent Space Model,
and reflects the fact that estimating the latent position is easier
for nodes that have more interactions. Stated differently, for a
given node pair (i, j) and an interval Ik , there are many more
embedding configurations compatible with the fact that i and
j do not interact in the interval Ik than with the fact that they

interact many times in Ik . Thus, it is natural for the posterior
distribution of a node i to be less concentrated when this node
has fewer interactions. Edge-level uncertainty.
The uncertainty about the node’s latent positions can

be propagated into a notion of uncertainty on the dis-
tribution generating the temporal graph, materialized by
the posterior predictive distribution defined by the Poisson
ProcessesPP(λ̃ij) with the random variable λ̃ij being defined
as:

λ̃ij(t)
1
= E[λij(t)|z]

Note that here we get a distribution over the set of joint
Poisson Process distributions. While evaluating this posterior
predictive distribution is intractable, we can approximate it
by sampling B i.i.d. samples from the variational distribution,

i.e. z(b)
iid
∼ qφ for b = 1, . . . ,B. Then for each sample

z(b) we denote λ
(b)
ij (respectively 3

(b)
ij (Ik )) the rate function

(respectively the cumulative rate) obtained by plugging z(b)

into the similarity function defined in III-B. We measure
the uncertainty associated with edge (i, j) on interval Ik ,
and denote it u(i, j, k) by calculating the empirical standard
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FIGURE 3. Latent Positions obtained on the Highschool Dataset and the MIT Reality Mining Dataset.

deviation of the cumulative rate over the B samples. In our
experiments, we found out that the model uncertainty on
3ij(Ik ) decreases with the number of interactions for i, j
in Ik , that we denote here N ij(Ik ). In Figure 4c, we observe
that the linear regression slope decreases with the prior
scale, suggesting that a less informative prior leads to a
stronger correlation between uncertainty and the number of
interactions.

There is no generic best choice of the regularization
parameter, it will depend on the task. It may for example be
trained using cross-validation for predictive tasks, while for
unsupervised tasks it may be less straightforward to choose
it well. Its effect is nonetheless evident: it introduces a bias-
variance trade-off between concentrating the trajectories in
the latent space over time (which would increase the bias)
and modeling the observed interactions in time more closely
(thus increasing the variance).

2) RELATIONSHIP BETWEEN THE UNCERTAINTY AND THE
POISSON RATE
In order to visualize the relationship between the Poisson
Rate and the learned notion of uncertainty, we use structured
negative sampling: we select one negative event (i, j′, t)
for each positive event (i, j, t), by swapping the destination
node j with a random node j′, distinct from i and j.
Then we calculate the Poisson Rate for each positive event
and associated negative event, and compare it with the
uncertainty propagated from the latent positions to the rate

function. The results are shown in Figure 5. In general,
more extreme Poisson Rates seem to be associated with less
uncertainty.

C. TEMPORAL NETWORK RECONSTRUCTION
1) SETUP
We evaluate TGNE on the task of reconstructing missing
interactions from a partially observed continuous-time tem-
poral graph. To do that, we split the edges in the network into
train, validation and test sets. Then for each split, and each
interval Ik , we predict whether each edge e = (i, j) interacts
in the interval Ik , i.e. whether there exists an interaction
(i, j, t) in history, such that t ∈ Ik . For each interval and each
positive edge we sample a single negative edge, thus casting
the problem into a binary classification task of the node-pair/
interval triplets (i, j, k). For the HighSchool dataset and the
UCI dataset we use 10 % of the edges as test edges, and
the rest as train edges. For the Workplace dataset we use
30 percent of the edges as test edges, and the rest as train
edges.

2) BASELINES
We compare four different approaches for scoring the triplets
(i, j, k). For our method, a score is calculated based on a fitted
TGNE model, as the expected amount of interaction on the
interval: score(i, j, k) = 3ij(Ik ). A first baseline is derived
by postulating a binary, Euclidean Latent Space Distance
Model (LSDM) [10] on the interactions occurring on each
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FIGURE 4. Relationship between the Node-level uncertainty u(i, k) and
Edge-level uncertainty u(i, j, k) and the number of interactions Ni (Ik ) and
Nij (Ik ) respectively, on the High School Dataset.

interval: score(i, j, k) = σ (β−||z(k)i −z(k)j ||
2), where the latent

positions z(k)j are optimized using Maximum Likelihood

FIGURE 5. Uncertainty vs Poisson Rate on the High School Dataset with
(K = 15, τ = 1.0). The Poisson Rate is calculated for each positive event
and associated negative event. For each event (u, v, t) we color it by the
number of interactions between (u, v ) in the interval Ik such that t ∈ Ik .
Events with extreme Poisson Rate values are associated with a low
uncertainty, while intermediate Poisson Rates are associated with a
higher uncertainty.

Estimation. A second baseline is popularity-based prediction,
also named Preferential Attachment (PA): score(i, j, k) =

deg(i, k) · deg(j, k) where deg(i, k) =
∑

j Nij(Ik ) is the
degree of node i on interval k . Finally, we include a Random
Baseline (Random), that calculates a random score for each
triplet. In order to discuss more precisely the regularizing
effect of the prior for Network reconstruction, techniques
such as tensor decomposition could have been explored,
however, since TGNE is derived from Latent Space Models,
we decided to stick with this class of models in this
work.

We leverage the probabilistic nature of the TGNE method
to analyze the model uncertainty.

3) RESULTS
The results are provided in Table 3. On the High School
Dataset, it can be seen that while a binary Latent Space
DistanceModel could be used to predict the presence/absence
of links, its resulting configuration of node embeddings
overfits the training data, and thus does not perform well
on the test data. In contrast, the embeddings obtained
using TGNE perform worse on the training set, but much
better on the test set. This showcases the benefits of
the regularization term on the predictive abilities of the
model.

VI. DISCUSSION AND FUTURE WORK
In this paper, we discuss the performances of TGNE and
its ability to capture the uncertainty on the estimated latent
positions and the ability of the obtained locations to predict
the occurrence of edges in successive intervals. However,
some open questions remain, which we detail here for future
work.

VOLUME 11, 2023 117979



R. Romero et al.: Gaussian Embedding of Temporal Networks

TABLE 3. AUC Results on the different datasets for K = 15 intervals.

A. ADAPT THE CHANGEPOINTS TO THE DENSITY OF
INTERACTIONS
The number K and the positions of the changepoints
η0, . . . , ηK are fixed in the TGNE. As all the interaction times
are re-scaled to be between 0 and 1, the constant step size is
fixed to ηk+1 − ηk =

1
K . However, adapting the step size to

the observed rate of events would naturally produce a more
fine-grained representation of the temporal network structure
in sub-intervals where more events happen. This appears as a
promising avenue to improve model efficiency.

B. IDENTIFIABILITY
In the high-scale regime (see for instance Figure 2b), there is
significant rotation of latent configurations from one frame
to the next. This is because the model fails to identify the
rotations of the configurations. Although this issue is partly
mitigated by the effect of the prior, it could potentially be
resolved through the use of a Procrustes transform applied
to the configurations of trajectories.

C. NODE INDUCTIVITY
The proposed model is transductive, meaning it is limited
to the set of nodes that are provided in advance and
cannot embed unobserved nodes. In contrast, an alternative
approach would be to use amortization, as in seminal works
such as [19], to map nodes and their context to Gaussian
parameters using a parametric function. This approach would
allow predicting trajectories for unobserved nodes, and allow
the resulting model to scale to millions of nodes.

D. TIME INDUCTIVITY
Asmentioned earlier, the TGNEmodel could be used to learn
dynamics (or distributions thereof) in the embedding space
instead of directly learning a sequence of latent distributions
in the latent space. This would enable extrapolating the
dynamic to future unobserved links. One-step ahead Link
Prediction would be a key metric to evaluate the success of
such an approach.

E. CONTINUOUS-TIME ENCODER
Finally, related to the previous point, one limitation of
the proposed approach is that it relies on a discrete time
encoder since each node is essentially mapped to a sequence
of Gaussian parameters. However, one alternative approach
would be to build on [5] to embed the nodes into parameters

of a joint stochastic process on the node state and the network
state, and using a Point Process Model as a decoder.

VII. CONCLUSION
In the present work, we introduce a principled approach
to Temporal Graph embedding that leverages Variational
inference to infer latent distributions on node trajectories
from an observed temporal network. This is in contrast with
traditional temporal graph embedding methods, where only
a trajectory of points per node is usually estimated. Our
results show that in the case where the prior distribution
is not restrictive enough, the uncertainty coming from this
greater degree of freedom in the latent space can be partially
captured back in the scale parameter of the estimated
normal distributions. On top of that, the reconstruction
experiment showcases the need for regularization in the case
of temporal graph embeddings, as it makes the obtained
trajectories more easily readable visually, but also leads to
better reconstruction results. Finally, we strongly believe
that model-based uncertainty estimation, a critical novelty
of TGNE, could not only enhance predictive performances
on Temporal Networks but also extend to applications like
anomaly detection and more interpretable visualizations.

ETHICAL STATEMENT
There are no ethical issues.

APPENDIX A
CODE
An implementation of TGNE is provided in the supplemen-
tary material.

The datasets can be downloaded from the following urls:
• The Reality Mining Dataset can be downloaded here.
The user needs to be authorized before being allowed
access to the data.

• The High School contact network dataset is publicly
available here.

• The Workplace dataset can be found here.
• The UCI dataset can be downloaded from here.

APPENDIX B
GENERATION PROCEDURE FOR THE SIMULATED DATA
The simulation procedure is a temporal version of the
Stochastic Block Model. In this simulation, a network
of 60 nodes (indexed from 0 to 59) is observed during
3 segments of time of equal duration, denoted I1, I2, I3:

• In the first segment, the nodes are split into two clusters:
the nodes from 0 to 29 go into cluster C0, while nodes
30 to 59 go into C1.

• In the second segment, node 0 goes into its own cluster
C2, while the other nodes stay in their respective clusters.

• In the third segment, node 0 goes into the clusterC1, thus
only two clusters are present at this time.

Based on these cluster assignments, the interactions are
generated using a Stochastic Block Model: we fix inter and
intra-cluster interaction rate, and proceed as follows. For each
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segments and each node pair (i, j), let r(i, j, s) be the rate
of interaction between i and j during segment s, as defined
by the SBM. We first generate a number of interactions
N (i, j, s) ∼ Poisson(r(i, j, s)), and then sample N (i, j, s)
timestamps uniformly distributed over the time segment Is.
Finally, the interactions obtained on the three segments are
concatenated and sorted by ascending timestamp.

APPENDIX C
CALCULATION OF THE CUMULATIVE RATE ON AN
INTERVAL WHERE THE TRAJECTORIES ARE LINEAR
Let’s calculate the integral

∫ ηk
ηk−1

λij(s)ds. Under the
piece-wise linear assumption, the trajectory of node i at time
s = ((1 − t)ηk−1 + tηk ) ∈ Ik (with t ∈ [0, 1]) can be written
as:
zi((1 − t)ηk−1 + tηk ) = (1 − t)zi(ηk−1) + tzi(ηk ). Based

on that, let’s rewrite the rate function in a way that makes it
easier to integrate.

The log of the rate writes:

logλij(s) = β − ||zi(s) − zj(s)||2

= β − γij(s)

where, denoting 1ij(ηk ) = zi(ηk ) − zj(ηk ), γij is defined as

γij((1 − t)ηk + tηk+1) = ||(1 − t)1ij(ηk ) + t1ij(ηk+1)||2.

(3)

In particular, γij is a second-order polynomial in t . Our goal
now is to express γij as the log of the density of a normal
distribution.

More precisely, let’s try to write it under the form

γij(s) = a+
(t − µ)2

2σ 2 (4)

for some coefficients a, µ, σ , where s = (1 − t)ηk−1 + tηk
On the one hand, developing the expression 3 yields:

γij(s)

= t2
[
||1ij(ηk )||2 + ||1ij(ηk+1)||2 − 2⟨1ij(ηk ), 1ij(ηk+1)⟩

]
+ t

[
−2||1ij(ηk )||2 + 2⟨1ij(ηk ), 1ij(ηk+1)⟩

]
+ ||1ij(ηk )||2

On the other hand, developing equation 4 yields:

γij(s) = a+ t2(
1

2σ 2 ) + t(−
µ

σ 2 ) +
µ2

2σ 2

Identifying the coefficients of the polynomial, we get the
following system of equations:

1
2σ 2 = ||1ij(ηk ) − 1ij(ηk+1)||2 (5)

µ

2σ 2 = ⟨1ij(ηk ), 1ij(ηk ) − 1ij(ηk+1)⟩ (6)

a+
µ2

2σ 2 = ||1ij(ηk )||2 (7)

Finally, solving the system for a, µ and σ yields:

σ =
1

√
2||1ij(ηk ) − 1ij(ηk+1)||

µ =
⟨1ij(ηk ), 1ij(ηk ) − 1ij(ηk+1)⟩

||1ij(ηk ) − 1ij(ηk+1)||2

a = ||1ij(ηk )||2 −
⟨1ij(ηk ), 1ij(ηk ) − 1ij(ηk+1)⟩2

||1ij(ηk ) − 1ij(ηk+1)||2

We can conclude by using two changes of variables:∫ ηk

ηk−1

λij(s)ds

=

∫ ηk

ηk−1

exp(β − γij(s))ds

= exp(β)(ηk − ηk−1)
∫ 1

0
exp(−

(
a+

(t − µ)2

2σ 2

)
)dt

× (s = (1 − t)ηk−1 + tηk such that ds = (ηk − ηk−1)dt)

= exp(β − a)(ηk − ηk−1)σ
∫ 1−µ

σ

−
µ
σ

exp(−
u2

2
)du

× Where we set u =
t − µ

σ
such that du =

dt
σ

= exp(β − a)(ηk−1 − ηk )σ
√
2π [8(

1 − µ

σ
) − 8(−

µ

σ
)].

APPENDIX D
KL DIVERGENCE BETWEEN A GAUSSIAN MARKOV CHAIN
AND A PRODUCT OF INDEPENDANT GAUSSIANS
Let x1, . . . , xT be some random variables and the two
distributions q and p defined as:

q(x) =

T∏
t=1

qt (xt )

p(x) = p(x1)
T∏
t=2

pt (xt |xt−1)

Then

KL(q||p) = KL(q1, p1) +

T−1∑
t=1

Ext∼qt [KL(qt+1||pt+1(.|xt ))]

(8)

In particular, when

qt (xt ) = N (xt ; µt , σ
2
t Id )

and

p(x) = N (x1; ν1, τ
2
1 Id )

T∏
t=2

N (xt ; xt−1, τ
2
t Id )

p1(x1) = N (x1; ν1, τ
2
1 Id )

and

pt (xt |xt−1) = N (xt ; xt−1, τ
2
t Id )
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Moreover, the KL Divergence between two d-dimensional
Gaussian distributions is given by:

KL(N (µ1, σ
2
1 Id )||N (µ2, σ

2
2 Id ))

=
||µ2 − µ1||

2

2σ 2
2

+ d

[
log(

σ2

σ1
) +

σ 2
2

σ 2
1

−
1
2

]
this yields:

KL(q1||p1)

=
||µ1 − ν1||

2

2τ 21
+ d

[
log(

τ1

σ1
) +

τ 21

σ 2
1

−
1
2

]
KL(qt ||pt (.|xt−1))

=
||xt−1 − µt ||

2

2τ 2t
+ d

[
log(

τt

σt
) +

τ 2t

σ 2
t

−
1
2

]
so

Ext−1∼qt−1 [KL(qt ||pt (.|xt−1))]

= d
[
log(

τt

σt
) +

τ 2t

σ 2
t

−
1
2

]
+ Ext−1∼qt−1

[
||xt−1 − µt ||

2

2τ 2t

]
= d

[
log(

τt

σt
) +

τ 2t

σ 2
t

−
1
2

]
+

1

2τ 2t
Ext−1∼qt−1

[
||xt−1 − µt−1||

2
+ ||µt − µt−1||

2
]

= d
[
log(

τt

σt
) +

τ 2t

σ 2
t

−
1
2

]
+

1

2τ 2t

[
||µt − µt−1||

2
+ σ 2

t−1

]

So finally we get

KL(q||p) =
||µ1 − ν1||

2

2τ 21

+ k
T∑
t=1

[
log(

τt

σt
) +

τ 2t

σ 2
t

−
1
2

]

+

T∑
t=1

||µt − µt−1||
2
+ σ 2

t−1

2τ 2t

APPENDIX E
NEGATIVE SAMPLING STRATEGY
In this section, we provide a detailed explanation of how to
calculate the loss using negative sampling. Each node i has
a set of neighbors in the graph, denoted P(i). Each node i
contributes a term to the loss function for both its positive
neighbors j ∈ P(i) and negative non-neighbors j /∈ P(i).
For instance with only 1000 nodes, this leads to around
1 million terms in the loss function, which is not feasible to
compute.What can be done for instance is to select r negative
neighbor per positive neighbor, leading to a number of terms

in the log-likelihood equal to
n∑
i=1

(1 + r)|P(i)|. Due to the

power-law degree distribution, this number is much smaller
thanU×(U−1). In our implementationwe use r = 1 negative
neighbors per positive neighbor.
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