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ABSTRACT To facilitate wireless sensor networks deployment in dense jungle environments, the challenges
of unreliable wireless communication links used for routing data between nodes and the gateway, and
the limited battery energy available from the nodes must be overcome. In this paper, we introduce the
Self-Organized Wireless Sensor Network (SOWSN) to overcome these challenges. To develop the traits
needed for such SOWSN nodes, three types of computational intelligence mechanisms have been featured
in the design. The first feature is the introduction of Multi Criteria Decision Making (MCDM) algorithm
with simple Additive Weight (SAW) function for clustering the SOWSN nodes. The second feature is the
introduction of the fuzzy logic ANFIS-optimized Near Ground Propagation Model to predict the wireless
transmission link quality and power transfer between transmitters. The third feature is the introduction of
the (Levenberg Marquardt artificial neural network (LM-ANN) for Adaptive and Dynamic Power Control
to further optimize the transmitter power levels, radio modulation, Spreading Factor configurations, and
settings of the employed SOWSN LoRaWAN nodes based on predicted wireless transmission link quality
parameters. The introduced features were extensively evaluated and analyzed using simulation and empirical
measurements. Using clustering, near-ground propagation, and adaptive transmission power control features,
a robust wireless data transmission system was built while simultaneously providing power conservation in
SOWSN operation. The payload loss can be improved using SAW clustering from 1275-bytes to 5100-bytes.
The result of power conservation can be seen from the reduction of transmission power in SOWSNnodeswith
the increase of transmission time (TOA) as its side effect. With the original power transmission at 20-dBm,
original TOA time at 96.832-milliseconds for all nodes, and SNR 3 as input, transmission power was reduced
to 12.76-dBm and the TOA increased to 346.78-milliseconds for all nodes.

INDEX TERMS Self organized WSN, cluster routing, ANFIS, transmit power control, SAW, routing.

I. INTRODUCTION
The Wireless Sensor Network (WSN) has been classified
as the next generation network in 2010 by ITU [1]. This
network contains interconnected sensor nodes that exchange

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Saleem .

sensed data using wireless technologies such as LoRa [2],
ZigBee [3], and many others [4]. Using its characteristics
solution which is node to node communication (adhoc net-
work) it has low cost for deploying it [5], and it can be
used everywhere from mountain [6], forest [7], cities [8],
even in underwater [9] application. Even though WSN has
many advantages, this network also has many disadvantages
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such as limited energy [10] and data transmission problem
such as interference [11], delay [12], packet loss [13], and
others [14].

To guarantee the quality of service in wireless data trans-
mission in Wireless Sensor Network, a lot of researchers
propose to employ a routing algorithm [15], which controls
the behavior of the network. The algorithm decides how every
node in Wireless Sensor Network should communicate with
each other. This algorithm has a single purpose which is to
deliver observation data using point to point node communi-
cation, from the farthest node to the base station closer node
withminimum error. Routing inWireless Sensor Network has
few methods, from direct routing to cluster routing. Direct
(flat) routing is defined when every node in the network will
send its observe data directly from the nodes to the sink node
(gateway) [16]. Cluster routing is defined when every node
will perform a cluster of nodes, select its cluster head node,
send its data to the cluster head node, and the cluster head
node will then send its children data node to the sink node
or another nearest cluster head node. Although direct routing
offers simplicity for its routing, however clustered routing is
preferred because it can save more energy, better network
communication, efficient topology management, and many
others [16], [17]. One of the many methods for clustering is
to use Simple Additive Weight (SAW) algorithm. SAW is a
Multi Criteria Decision Making (MCDM) algorithm that was
used as a foundation in many clustering algorithms such as
EMTARP [18], Enhanced GRP [19], EACO [20], and many
more.

For adaptive power transmission model in ultrahigh-
voltage (UHV) power substation, Sun uses linear quadratic
Gaussian (LQG) method to develop a path loss model based
on state-space model of wireless networks and use SNIR as
its measurable parameter [21]. Vidhya in his paper explains
the strategy to construct a classification-based Adaptive
Transmission Power control. The method uses RSSI, link
quality indicator, neighbor node distance, receiver power,
and non-linear models to maintain reliable communication
with minimal energy use [22]. Philip in his paper explains
the strategy for power reduction by varying the transmission
power of each node using distance between transmitter and
receiver from GPS Coordinates [23].
In this paper we propose to use algorithm such as SAW

to select Cluster Head (CH) routing in Self Organized
Network Routing. After SAW MCDM for CH selection,
we propose to model WSN environment in the jungle.
Based on those models we can build near ground prop-
agation model also adaptive and dynamic transmission
power control model to enhance power conservation. This
SOWSN Cluster routing in total can provide us an adaptive
and dynamic power control transmission based on wire-
less physical channel selection such as MATPoC [24], and
also provide a robust wireless transmission data transfer
throughout the WSN network. For easy understanding we
have provided a simplified diagram of this work as shown
in figure 1.

FIGURE 1. Simplified work diagram.

II. METHODS AND MATERIAL
A. FIELD MEASUREMENT EQUIPMENT
To do measurement for WSN environment modelling,
we propose to use LoRaWAN radio transceiver in pair
(transmitter and receiver). The microcontroller was included
to control data transmission and pre-process data for the
transmitter and receiver. The microcontroller on the trans-
mitter side was programmed to allow it to instruct the LoRa
transceiver to broadcast a packet of data every 100 microsec-
onds. On the receiver side, the LoRaWAN transceiver was
instructed to read incoming packet data, extract RSSI and
SNR values, and transfer them directly to our laptop. Every
5 meters of measurement, from 5 meters to 100 meters,
the walk test method was employed (please see figure 2).
A pair of LoRaWAN transceivers were placed on top of
the ground. For a LoRaWAN transceiver pair, the maximum
antenna height above the ground was less than 30 cm. The
configuration details for measurement equipment can be seen
in table 1 and figure 2.

TABLE 1. LoRaWAN radio setting.

B. FIELD MEASUREMENT JUNGLE ENVIRONMENT
We chose a jungle site for our real-timemeasurement because
the WSN was usually used in those environments, one of
exampleWSN used in jungle such as illegal logging monitor-
ing [25], Forest Fire monitoring [26], and others. Overgrown
jungle vegetation covers a substantial portion of the land-
scape. Between the trees and larger plants in this jungle are
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FIGURE 2. Field measurement equipment.

several smaller plants. Humanmovement through or around a
jungle can occasionally bemade difficult or impossible due to
the extremely dense vegetation on the ground. This location
will prevent a radio signal from a LoRaWAN transmitter from
traveling directly to a LoRaWAN receiver, this small, thick,
and also massive density of tall trees will obstruct the radio
signal. The field measurement site at jungle can be seen in
figure 3 below.

FIGURE 3. Jungle field measurement environment.

C. SIMPLE ADDITIVE WEIGHT ALGORITHM
This algorithm is also known as weighted addition
method [27]. This algorithm concept is to see for all weighted
sum on each alternative on all attributes. This algorithm
was developed by Fishburn to show arranged product sets
using priority orderings and assignments [28]. In general, the
multi criteria decision problem (MCDM) is defined on set of
alternatives with set of decision criteria. If we assume that all
criteria are the benefit criteria, then the higher value is the
better alternative. Hence, Preference for each alternative was
given by:

A =

∑n

j=1
wjrij (1)

where:
wj = weighted value for alternatives j = 1,2,. . . .,n
rij = performance value of alternative A, i=1,2,. . . .,m, and

j = 1,2,. . . .,n

D. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)
ALGORITHM
Zadeh developed the foundation of fuzzy in 1975 based
on Linguistic Variable and its Application to Approximate
Reasoning [29]. The fuzzy rule was subsequently created to
model the qualitative elements of human knowledge (reason-
ing based on experience) [30] and address the issue using
those as its foundations. Even though fuzzy is typically
employed for control [31], including robot movement [32],
speed control [33], and many other [34], [35], however a
fuzzy system can be applied to anything from detection [36]
until forecasting [37]. In 1985, Takagi and Sugeno develop
fuzzy model using implications and reasoning for industrial
control [38]. The Fuzzy Sugeno equation can be seen from
equation 2 through equation 7.

Each output for step one, is indicated by O1
i which to

increase the degree of membership.

O1
i = µAi (x) and O

1
i

= µBi (x) , i = 1, 2 (2)

where:
i = each node of ANFIS architecture.
A, B = is the linguistic label.
x = is the input to node i. (such as small, large, etc.).
Every membership function type is usable in this stage.

However, to offer maximum equal to 1 and minimum equal
to 0, generalized bell types were employed. hence:

µAi (x) =
1

1 +

(
x−ci
ai

)2∗bi (3)

where:
a,b,c = is the parameter set.
By multiplying the two input signals, the second step

contributes to the firing strength of fuzzy inference. The is
represented by each node.

O2
i = µAi (x) .µBi (x) , i = 1, 2 (4)

The following phase involved applying normalization for
each fuzzy inference firing.

O3
i = W i =

Wi

W1 +W2
, i = 1, 2 (5)

where:
W = is the firing strength of the node.
W = is the normalized firing strength of the node.
The following phase involved a calculation based on the

parameters of the rule consequent in the following phase:

O4
i = W i.Fi = W i. (Pix + Qix + Rix) , i = 1, 2 (6)

where:
P,Q,R = is the parameter set
The final phase computes the overall output by adding up

all of the input signals:

Output = O5
i =

∑n

k=0
W i.Fi =

∑n
k=1Wi.Fi∑n
k=1Wi

(7)
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Jang Jyh Shing Roger created Adaptive Neuro Fuzzy Infer-
ence System (ANFIS) in 1993 [39] based on fuzzy Takagi
Sugeno’s if-then rules. The fuzzy inference system can adapt
organically using the ANFIS approach based on its training
data. The Takagi-Sugeno fuzzy inference system serves as
the foundation for the artificial neural network technique that
makes up ANFIS [40]. This method can combine the benefits
of fuzzy logic and neural networks into a single framework.
A collection of fuzzy IF-THEN rules that can be learned
to estimate nonlinear functions govern how this inference
system operates. Consequently, ANFIS is regarded as a Uni-
versal Estimator (universal assessor). Equations 2 through 7
make up the core algorithm used by ANFIS, which uses
a fuzzy Sugeno algorithm. Jang then used gradient descent
and chain rule to optimize its parameter. However, to do
this, we must be aware of the error rate for data training for
each node output, since ANFIS learns through chain rule and
gradient descent. The ANFIS architecture can be seen from
figure 4 and ANFIS algorithm can be seen from equation 8
through equation 13:

FIGURE 4. ANFIS architecture based on Jang [40].

If the data training sets have P numbers of inputs and the
i-th position node outputs define Oi, then the error function
may be calculated as follows:

Ep =

∑#L

m=1
(Tmp−OLmp)

2
(8)

where:
Ep = is the error measure which the sum of squared errors.
Tmp = is the m component from the P output target vector.
OL
mp = is the m component from the actual output vector

that has been delivered by the P input vector.
Hence, the error rate can be calculated as:

∂Ep
∂Oki p

=

∑#k+1

m=1

∂Ep
∂Ok+1

mp

∂Ok+1
mp

∂Okip
(9)

where 1 ≤ k ≤ L-1 is the error rate of an internal node. it is
expressed as the linear combination error rate of nodes in the
next step. Therefore, for all 1 ≤ k ≤ L and 1 ≤ i ≤ #(k),
we can find ∂Ep

∂Okip
, using mathematical equations (8) and (9).

Thus, we have α as a parameter of the adaptive network:
∂E
∂α

=

∑
o∗∈S

∂Ep
∂O∗

∂O∗

∂α
(10)

where:
S = shows the set of nodes whose output depends on α.
Derivative for overall error measurement E concerning α

is:
∂E
∂α

=

∑p

p=1

∂Ep
∂α

(11)

Therefore, we can write the updated mathematical equations
for generic parameter α as follows:

1α = −η
∂E
∂α

(12)

where:
η = is a learning rate.
The learning rate can be written as:

η =
k√∑

α (
∂E
∂α

)
2

(13)

where:
k = is the step size or length of each gradient transition in

the parametric space.

E. LEVENBERG MARQUARDT ARTIFICIAL NEURAL
NETWORK (LM-ANN) ALGORITHM
A computational intelligence called ANN (Artificial Neural
Network) imitates the organic neural network behavior of liv-
ing things. Numerous issues, including control [41], detection
[42], forecasting [43], [44], and more, have been resolved
using ANN approaches. The technique operates by analyz-
ing and computing previously approved data training [45].
Artificial neurons (ANN) are a group of nodes that mimic
the neurons found in the biological brain. Like in a biological
brain, each neuron has synapses that allow it to communicate
with other neurons. The signal is received by neuron receiver,
which then processes it before using a synapse attached to
it to signal the next neurons. Neurons serve as processing
components in ANN. Bias and weights govern these neurons
that are coupled to other neurons. Its signal calculation is then
used to generate an output after being fed via an activation
function [46]. A simple equation can be used to represent one
layer of an ANN neuron:

ai = fi(IW ip+ bi) (14)

where:
IWi = Scalar weight.
p = Scalar input.
bi = Scalar bias.
fi = Transfer Function
The neural network can be constructed with numerous

layers to enable it to approximate any function within a lim-
ited number of discontinuities, serving as a general function
approximator. Feedforward networks are the name given to
these several layers. An introductory weight and bias are used
in this network training. In order to consider the optimum
network behavior, it also requires a set of examples (such
as network inputs p and target outputs). This set example is
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a loss function, according to Erickson, which is a function
that assesses the discrepancy between the actual outcome
and the planned output [47]. To reduce the network, mean
square error, the weights and biases of the network are
repeatedly changed during training (performance function).
Equations 15 through 24 show the Levenberg-Marquardt
algorithm.

E (n) =
1
2

∑m

k=1
e2k (n) ; ek (n) = dk (n) − yk (n) (15)

where:
n= is a training epoch.
m= number of outputs.
d = desired (target) output.
yk = actual ANN output.
E = mean-squared error surface.
The weight update can be written as:

W (n+ 1) = W (n) + 1W (n) (16)

Thus,

1W (n) = −η
∂E (n)
∂W (n)

= −η∇E (n) (17)

where:
W = is weight update.
η = is a training rate.
Due to the inherent inaccuracy of serial computation,

including layer-by-layer base calculation, every technique
that uses the straightforward steepest descent minimization
based on first-order minimization is extremely slow [48].
Thus, the weight update must be carried out utilizing com-
binatory approaches, such as adaptive learning rate η∗ and
momentum term α, to prevent oscillation around a local
minimum and to speed up the training.

1W (n) = −η ∗ ∇E (n) + α1W (n− 1) (18)

By averaging the gradient locally, the momentum approach
will attempt to obtain some information regarding the error
surface’s curvature. The second approach then employs opti-
mization methods that use a second-order derivative of the
performance index or cost function J(w) to minimize the
error E(n).

1J (Wn+1) = J (W ) + 1W∇J (w) +
1
2
W∇

2J (w) (19)

where:

∂E (n)
∂ (W (n))

= ∇J (w) = g (20)

Which is the index of the gradient of performance, and

∂2E (n)
∂2 (W (n))

= ∇
2J (w) = H (21)

Without having to compute the Hessianmatrix, this algorithm
was created to approach the second-order training speed [49].
The hessian matrix can be expressed as follows where the

performance function is the sum of squares, as in training
feed-forward networks:

H (n) = JT (n) J (n) (22)

and the gradient can be written as:

g (n) = JT (n)E (n) (23)

where:
J= is the Jacobian matrix that contains the first derivatives

of the network errors concerning the weights and biases.
In comparison to computing the Hessian matrix, com-

puting the Jacobian matrix can be done using a normal
backpropagation method. This approximate representation of
the Hessian matrix [48] is then used by the LM-ANNmethod
in the Newton-like update formula that follows.

W (n+ 1) = W (n) −

[
J (n)T J (n) + µI

]−1
JT (n)E (n)

(24)

where:
µ = is a nonnegative scalar, that controls both magnitude

and direction.
I = is an identity matrix.
This is exactly like Newton’s approach when the scalar is

zero. This transforms into a gradient descent with a tiny step
size, though, when is large. Newton’s approach is renowned
for achieving minimum mistakes with more accuracy and
speed. As a result, the goal of this method is to transition as
rapidly as feasible to Newton’s method. As a result, it drops
following each improvement in performance function (imag-
ine a step that is successful) and only increases when a
tentative step would improve performance function. By doing
it this way, the algorithm’s performance function will always
be decreased. This made the algorithm one of the quickest
techniques for training feed-forward neural networks of a
moderate size (up to several hundred weights) [49], [50].
The block diagram for Levenberg–Marquardt algorithm
training can be seen in figure 5 below.

III. MODEL BASED ON FIELD MEASUREMENT
In this section we would like to present field measurement
result, continue with clustering SAW Clustering Model that
use field measurement result data, then we present the ANFIS
Near Ground PropagationModel for power transfer and wire-
less link quality, and Neural Network model for adaptive and
dynamic transmission power control.

A. FIELD MEASUREMENT RESULT
54 distinct LoRaWAN radio configurations were used in the
measurement at this jungle location. The GPS coordinates
for the site were 6◦21′28.2′′ South 106◦54′16.4′′ East (East
suburban Jakarta). Themeasurement results such as RSSI and
SNR parameter can be seen in figure 6 and figure 7 based on
different LoRaWAN configurations, such as frequency,range,
bandwidth, and spreading factors.
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FIGURE 5. Block diagram for training using Levenberg–Marquardt
algorithm according to Yu and Wilamowski [51].

FIGURE 6. RSSI measurement in jungle location with frequency (top)
433 MHz, (middle) 868 MHz, (below) 920 MHz.

B. SAW CLUSTER ROUTING MODEL
The simulation was done in matlab to simulate in area
200 × 200 meter, with 20 WSN nodes that placed randomly.
The routing protocols first step would be selection of cluster
head using SAWMCDMalgorithm and to find howmany CH
children node follower. Because we are using simulation, the
ANFIS near ground propagationmodel was used to determine

FIGURE 7. SNR measurement in jungle location with frequency (top)
433 MHz, (middle) 868 MHz, (below) 920 MHz.

the RSSI and the SNR value that we have based on each nodes
position. However, in the real world where we don’t know
the exact location of each node’s position, we can get the
RSSI and the SNR value just by receiving the data packet
of each nodes wireless data transmission. However, in this
simulation we are using the maximum value for each param-
eter for cluster head selection. The initial parameter would
be 100 meter maximum range, 500 KHz bandwidth, 20 dBm
for power transmission, and 7 Spreading factor. This first step
then continues with calculation Cluster Head selection with
the highest score. The criteria for this would be the quantity
of node follower with weight 0.1, the connection with other
cluster head or gateway with weight 1, and minimum RSSI
level at −100 dBm would be weight 1. Hence the SAW
Cluster Routing Model can be seen on equation 25:

A =

∑n

j=1

(
1 rij + 1rij + 0.1 rij

)
(25)

where:
rij = performance value of alternative A, i=1,2,. . . .,m, and

j =1,2,. . . .,n.
Ai = Selection Node output value.

C. ANFIS FOR ENVIRONMENTAL MODELING POWER
TRANSFER AND WIRELESS LINK QUALITY NEAR
GROUND PROPAGATION MODEL
Levenberg Marquardt Artificial Neural Network only created
an adaptive and dynamic transmission power control model.
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FIGURE 8. ANFIS for Power Transfer (RSSI) Near Ground Propagation
Model in jungle Environment, function of (a) Frequency 433 MHz,
868 MHz, and 920 MHz (b) bandwidth 125 KHz, 250 KHz, and 500 KHz,
(c) Spreading factor from 7 to 12, (d) Distance from 5 meter to 100 meter.

To provide the same environmental simulation, we need
another method. This environmental simulation will create
RSSI and SNR value with specific configurations for spread-
ing factor, bandwidth, power transmission, and distance. This
environmental simulation can be modelled using ANFIS.
Once assisted by ANFIS algorithm, then we can make Power
Transfer andWireless LinkQuality Near Ground Propagation
Model in jungle environment. For Power TransferModel, The
RSSI in field measurement data in figure 6 will act as data
training for ANFIS. Thus, using generalized bell function
in equation 3 we present the fuzzification of RSSI field
measurement on figure 8 and table 2.

FIGURE 9. ANFIS for Wireless Link Quality (SNR) Near Ground
Propagation Model in Jungle Environment SNR Model(a) Block Diagram
(b) function of bandwidth 125 KHz, 250 KHz, and 500 KHz, (c) function of
Spreading factor from 7 to 12, (d) function of range from 5 meter to
100 meter.

For Wireless link quality model, The SNR in field mea-
surement data in figure 7 will act as data training for ANFIS.
Thus, using generalized bell function in equation 3we present
the fuzzification of SNR field measurement on figure 9 and
table 2.

Because ANFIS model was based on fuzzy rule reason-
ing. Therefore, the fuzzy ANFIS rule was in general form,
and it can be used for ANFIS near ground propagation for
power transfer and wireless link quality model. Therefore, for
ANFIS Rule can be seen on table 3 below:
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TABLE 2. ANFIS near ground propagation model, fuzzification input for
power transfer (RSSI) and wireless link quality (SNR) model.

And for fuzzy constant output for ANFIS near ground
propagation power transfer and wireless link quality model
can be seen in table 4 below:

Thus, the mathematical model for ANFIS near ground
propagation for power transfer (RSSI) and wireless link
quality (SNR) model as can be seen in equation 26
below:

Bi =

∑n
k=0

1

1+
[(

x−ci
ai

)2bi] +
1

1+
[(

x−ci
ai

)2bi]FPA∑n
k=0

1

1+
[(

x−ci
ai

)2bi] +
1

1+
[(

x−ci
ai

)2bi] (26)

where:
x = Input variables such as frequency, bandwidth, spread-

ing factor, and range.
aibici = parameter of generalize bell function such as

ai Describe the broadness, of the membership function
input of frequency, bandwidth, spreading factor, and range,
while bi describe the form of the curve on either side of
the middle of frequency, bandwidth, spreading factor, and
range, and while ci describe the center of the member-
ship function of frequency, bandwidth, spreading factor, and
range.

FPA = Defines the output variables constant Level gen-
erated automatically by ANFIS based on number of fuzzy
rules/inferences. in this case the output variable would be
RSSI and SNR.

n = Total summation of ANFIS Inference/Rule firing
Strength index.

Bi = output such as RSSI or SNR.

D. LM-ANN FOR ADAPTIVE AND DYNAMIC
TRANSMISSION POWER CONTROL
Assisted with Levenberg Marquardt Artificial Neural Net-
work algorithm then we can make adaptive and dynamic
transmission power control model in jungle environment. The
RSSI and the SNR in field measurement data in figure 6

TABLE 3. ANFIS near ground propagation model, inference/rule for firing
strength power transfer and wireless link quality model.

and figure 7 will act as data training for it. The proposed
LM-ANN model is shown in equation 27 below.

Ci = purelin(IW i,n

∑ni

i=1
(tansig(

∑ni

i=1

(IW i,npi + bi)))+bi) (27)

where:
IW i = Scalar weight.
p = Scalar input such as frequency, RSSI, and SNR.
bi = Scalar bias.
Ci = Scalar output such as Power transmits, bandwidth,

and spreading factor.
In this model we have 3 input and 3 output. The frequency,

RSSI, and SNR are proposed as input elements, while Power
transmits, bandwidth, and spreading factor are proposed for
output element.
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IV. SOWSN ROUTING MODEL EVALUATION
In this section, the evaluation of each SOWSN Feature model
will be presented. The first model would be SAW cluster-
ing model, the second would be ANFIS near ground model
together with LM-ANN adaptive and dynamic transmission
power control model.

A. EVALUATION USING PAYLOAD PARAMETER
In this evaluation we have used 20 WSN nodes placed ran-
domly in 200-meter square. Using equation 25 then we can
see the evaluation result from clustered routing in figure 10
below:

FIGURE 10. 20 WSN node cluster Simulation. (a) Random Node
placement. (b) Clustering using SAW Model.

As we see from figure 10 above, the SAW Cluster Routing
Model has managed to cluster against all nodes. It shows us
that this model has created 2 main clusters with node 18 and
10 acting as cluster head, and node 7 acting as subcluster
head. The blue line indicates normal transmission link, and
red line indicates backbone transmission link.

Theoretically, according to the LoRaWAN datasheet the
maximum payload was 255 bytes for single transmis-
sion [52]. Thus, we can calculate how many payloads will be
dropped or will be succeed using this routing model. WSN
Transmission Payload success was a cumulative from total
transmission from all nodes in this network. hence, we can
see the payload success in wireless transmission can be seen
on figure 11 below:

As we see from figure 11 above, before clustering with
SAW model, because of their range that exceeds almost
200 meter (example from node 14 that send data to node 1

TABLE 4. ANFIS near ground propagation model, constant output power
transfer and wireless link quality model.

FIGURE 11. Wireless sensor network Transmission Payload success in
effect of SAW SOWSN clustering routing.

gateway) it will cause payload to be lost or missing. By clus-
tering with just using SAW model, we manage to improve
this condition from just receiving 1275 bytes and in the end,
we have received 5100 bytes from all nodes.

B. EVALUATION USING TRANSMISSION POWER CONTROL
PARAMETER
In this section the reduction on the power transmitted in each
wireless sensor network node is presented. The parameter
input for this method would be using frequency, RSSI, and
SNR. In simulation we can get the RSSI and SNR value
using ANFIS model, while adaptive and dynamic transmis-
sion power control capability will be provided with LM-ANN
model. However, for frequency we are using 920 MHz only
because the regulation in Indonesia [53]. While we can keep
with the same RSSI values, however, we can change the
SNR value which in this example would be 3 and 9. The
power conservation result from each node can be seen from
figure 12 below:
As we see from figure 12 above, the the LM-ANN adaptive

and dynamic transmission power control model has managed
to do power conservation against all nodes. It shows us The
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FIGURE 12. Power conservation results using ANFIS near ground
propagation model and LM-ANN adaptive transmission power control
model for each node.

SOWSN has managed to do power conservation for all nodes.
If we are using SNR 3 then the smallest power transmit can
be reduced to become 13.71 dBm and if we are using SNR 9
then the smallest power transmit can be reduced to become
12.76 dBm.

C. EVALUATION USING WSN NODE LIFETIME PARAMETER
We can calculate power conservation for WSN node Lifetime
from this scenario below. The WSN application was built
for soil PH monitoring in precision agriculture 4.0 appli-
cation [53]. This application type doesn’t need continues
monitoring, it only needs just a few seconds for data col-
lection, data transmission, and the rest of the activity will
be sleep for all day long. We can use a minimize duty cycle
such as 0.1 % day active (86.4 second), that can be expressed
using:

D =
Tactive
Tperiod

(28)

where:
D = Duty Cycle
Tactive = Time where WSN node active
Tperiod = Total period Tactive + Tsleep
WSN node consumption can be modeled with battery

charge consumption, and according to Orrelana the bat-
tery charge consumption component was the number of
sleep and active charge consumption [54]. Then we can
express:

CCcycle = NsleepCCsleepTsleep + NactiveCCactiveTactive (29)

where:
CCcycle = Total charge consumption
Nsleep = Number of deep sleeps in 1 period
CCsleep = charge consumption on deep sleep mode
Nactive = Number of active in 1 period
CCactive = charge consumption on active mode
Tsleep = time sleep in 1 period
Tactive = time active in 1 period
The quantity of cycles that we can be done with a battery

capacity is given by:

Ncycle =
Battcap
CCcycle

(30)

where:
Ncycle = Number of cycle (days) can be performed
Battcap = Battery capacity
If we then substitute expressions 28 and 29 into expres-

sion 30, and in considering duty cycle only 0.1%where active
mode was 86.4 second for one day period. Therefore, we can
express the new charge consumption models:

Ncycle =
Battcap

NsleepCCsleep86313.6 + NactiveCCactive86.4
(31)

We can calculate how many days WSN network will be
running based on node 18 power profile. If we take node
18 the most far coverage, and current measurement is for
soil PH monitoring application [55] with battery capacity
at 3000 mAH, then we can calculated the WSN network
lifetime. The WSN network lifetime based on node 18 power
profile can be seen in figure 13 below:

FIGURE 13. WSN lifetime is based on Node 18 power profile.

Aswe see fromfigure 13 above, the LM-ANNadaptive and
dynamic transmission power control model has managed to
do power conservation. In the end, it has managed to increase
WSN node lifetime. This can be seen from node 18 that acts
as super CH (all trafficmust pass through here before going to
node 1 gateway) for this network. With 0.1 duty cycle, if we
just using just clustering model only, node 18 has managed
to operate until 32 months. If we combine all three-feature
model, node 18 has managed to operate until 42 months.

D. EVALUATION USING BIT ERROR RATE (BER)
PARAMETER
For Bit Error Rate (BER) we can calculate it using Dias
BER Rayleigh model. This was because we are do field
measurement in jungle environment where no direct line
for wireless data transmission caused by vegetation block-
ing, thus we get a Rayleigh environment. Dias solution for
LoRaWAN wireless transmission in Rayleigh environment
for BER parameter, was to model and calculate it using
SNR and spreading factor parameter [56]. The Dias BER
expression can be wrote:

Pb =
2SF−1

2SF − 1

1 −

0
(
2SF

)
0

(
2+

(
γ 2SF

)
1+(γ 2SF)

)
0

(
1+2SF+(γ 2SF)

1+(γ 2SF)

)
 (32)

where:
Pb = The average error bit probability.
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γ = SNR.
0 = Gamma function.
SF = Spreading factor.
Using expression 32 we can calculate BER for each nodes

wireless data transmission to their respective cluster head.
We can see the BER change caused by implementation on
SOWSN model in in each node in figure 14 below:

FIGURE 14. Nodes wireless data transmission BER in SOWSN
implementation.

Aswe see from figure 14 above, before the SOWSN imple-
mentation the BER for each nodes wireless transmission has a
minimum value with the smallest one at about 46×10−6 from
node 13 and node 18. However, after SOWSN implementa-
tion, for example if we are using SNR 3 then the BER for
each nodes wireless transmission has increased a lot, with the
smallest BER value 226×10−6 from node 3 and node 12 and
if we are using SNR 9 the BER for each wireless sensor
network node has decrease with the smallest BER value at
about 58 × 10−8 from node 2 and also node 3.

E. EVALUATION USING TRANSMISSION TIME ON AIR
(TOA) PARAMETER
Time on Air means a total transmission time for one time
transmission in LoRaWAN. This can be calculated using
LoRaWAN TOA expression as stated in their datasheet [57],
that can be seen from expression 33 below:

TPacket

=

(
(nPreamble + 4.25)

2SF

BW

)
+

(
(8 + max

(
ceil

(
8PL − 4SF + 28 + 16 − 20H

4 (SF − 2DE)

)
× (CR+ 4) , 0

)
2SF

BW

)
(33)

where:
TPacket = Total transmission time or TOA (Time On Air).
nPreamble = The number of Preamble Symbols.
BW = Bandwidth.
SF = Spreading factor.
PL = The number of Payload bytes.
H = 0 when the header is enabled and 1 when no header is

present.
DE= 1when the low data rate optimization is enabled 0 for

disabled.
CR = Is the coding rate from 1 to 4.

Before doing calculations, we need to do configuration for
LoRaWAN modem. The LoRaWAN Modem configuration
for this simulation such as, Header 1, Data Optimizer 0,
Coding Rate 4/5, LoRaWAN packet configuration such
as Payload Length 255 Bytes, and total Preamble Length
6.25 Symbols. Thus, we can get TOA for each WSN node
wireless transmission link in figure 15 below:

FIGURE 15. Wireless data transmission TOA in SOWSN implementation.

As we see from figure 15 above, before SOWSN imple-
mentation the TOA for each nodes wireless transmission has
minimum value with the smallest one at about 96.8 millisec-
ond for all nodes. After SOWSN implementation the TOA for
each nodes wireless transmission with SNR 3 has increased
with the smallest TOA value at about 346.78 millisecond for
node 13 and node 19. However, with SNR 9 the TOA has
increased more with the smallest value at about 654.7 mil-
lisecond for node 20.

V. CONCLUSION
In this paper, we present a SOWSN Cluster Routing to
enhance wireless sensor network operation. The simulation
of SOWSNCluster Routing was made by 3 different methods
such as SAW for Clustering, ANFIS near ground propagation
model for simulated environment, and Neural Network for
adaptive and dynamic transmission power control model.
Using these 3 methods we managed to create cluster routing
method while simultaneously creating power conservation in
wireless sensor network operation. To validate this claim,
the evaluation is conducted using Payload, WSN Lifetime,
BER and TOA parameter calculations. The payload loss
can be improved using SAW clustering from 1275 bytes to
5100 bytes. The power conservation used for transmission
power control parameter can be seen to be reduced from
20 dbm to just 12.76 dbm. This reduction in the endwill cause
an increase in WSN lifetime from 32 months to 42 months.
ANFIS provides amodel for environment simulation which is
power transfer and wireless link quality in near ground propa-
gation. The LM ANN provides power transmission reduction
effect by creating an adaptive and dynamic transmission
power control model. The BER parameter can increase or
decrease according to the SNR that we use, however the
TOA parameter will always increase because of adaptive
and dynamic transmission power control model. The original
TOA time for all node was at 96.832 millisecond. However,
with SNR 3 TOA time will increase starting from 346.78 mil-
lisecond and With SNR 9 TOA time will increase starting
from 654.7 millisecond.
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