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ABSTRACT Data is one of the most valuable assets in the digital era because it may conceal hidden valuable
insights. Diverse organizations in diverse domains overcome the challenges of the big data value chain by
employing a wide range of technologies to meet their needs and achieve a variety of goals to support their
decision-making. Due to the significance of data-oriented technologies, this paper presents a model of the big
data value chain based on technologies used in the acquisition, storage, and analysis of data. The following are
the paper’s contributions: First, a model of the big data value chain is developed to illustrate a comprehensive
representation of the big data value chain that depicts the relationships between the characteristics of big
data and the technologies associated with each category. Second, in contrast to previous research, this paper
presents an overview of technologies for each category of the big data value chain. The third contribution
of this paper is to assist researchers and developers of data-intensive systems in selecting the appropriate
technology for their specific application development use cases by providing examples of applications and
use cases from prominent papers in a variety of fields and by describing the capabilities and stages of the
technologies being presented so that the right technology is used at the right time in the big data collection,

processing, storage, and analytics tasks.

INDEX TERMS Analytics, acquisition, big data technologies, information systems, storage.

I. INTRODUCTION

In today’s digital world, an exponential growth of data has
been triggered by the production of well-equipped portable
devices and availability of affordable smart mobile devices,
ubiquitous internet access provided by GSM companies’ cel-
lular networks, development and numerous usages of web
services in almost all sectors, accessibility of these services
through internet and dramatic changes in billion people’s
habits and daily activities. According to an infographic pro-
vided by DOMO Company [1], every minute of a single
day, enormous amounts of data have been generated by a
variety of sources [2], [3], [4]. For example, in every minute
of a single day, Twitter users send 575K tweets, Google
conducts 5.7 million searches, ZOOM hosts 856 minutes of
webinars, Netflix customers stream 452K hours of videos,
and YouTube users’ stream 694K hours of videos. These
examples represent just a small portion of data generated
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and managed by well-known companies worldwide [5], [6].
Moreover, the coronavirus pandemic has also forced people
to generate large amounts of data with performing activi-
ties online, such as working from home, distance education,
shopping, socializing through web platforms, playing games,
video conference meetings, academic conferences, or per-
forming medical operations. These examples indicate that
almost everyone around the world has been involved in the
generation of data.

Data is called the new oil [ 7] because it may contain hidden
valuable insights [8]. Thus, organizations of diverse domains
have been involved in collecting data from numerous sources,
storing it by utilizing more than four hundreds of data storage
technologies [9] that are relational database management
systems (RDBMS), NoSQL, NewSQL, and other storage
technologies, and analyzing data in motion with streaming
processing technologies or utilizing batch style processing
tools to analyze data at rest to accomplish a variety of
purposes in diverse domains. For example, in the business
world, companies collect their customer’s purchasing data,
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feedbacks, and comments on products to recommend a viable
product, predict future trends, and provide better services
for them to stay in the job market and compete with their
rivals. On the other hand, gleaning beneficial information and
insights out of the new oil does not come for free; therefore,
organizations must deal with numerous challenges associated
with collecting, processing, modeling, storing, managing, and
analyzing stages of big data to accomplish their goals.

In this paper, due to the importance of big data value chain
and technologies, a big data value chain-oriented perspective
is presented on big data technologies utilized in acquiring,
storing, and analyzing data. This paper first provides a back-
ground on presenting the concept of big data is by providing
definitions, characteristics, big data processing paradigms,
and data analytics types. And then, a comparative perspective
on selected technologies is presented regarding the big data
value chain, usage purposes, and capabilities. Last, use cases
of big data applications in diverse domains are presented to
exemplify usage of big data technologies in various domains.
This research aims to support researchers and developers of
data-intensive systems in their development efforts to use the
right technology at the right stage in the big data value chain
based on published research endeavors from academia and
industry.

The organization of the paper is as follows. In Section II,
definitions, characteristics, data processing paradigms, and
data analytics types of big data are presented. In Section III,
the methodology of this paper is presented. Section IV
provides a model of big data value chain. Section V pro-
vides comparative perspective on big data technologies
regarding the big data value chain. Section VI presents
related works. Section VII presents selected use cases of
big data application examples and usage purposes of various
domains. Section VIII provides a discussion and limitations.
In Section IX, a conclusion is provided by summarizing the
contributions of this paper.

Il. BIG DATA CONCEPTS AND TERMINOLOGY

This section provides a background on definitions and char-
acteristics of big data, data processing paradigms, and data
analytics types.

A. DEFINITIONS OF BIG DATA

Define abbreviations The big data term was initially intro-
duced in [10], to explain visualization challenges. According
to the authors, ‘“‘the visualization provides an interesting
challenge for computer systems as the - data sets are gen-
erally quite large, taxing the capacities of main memory,
local disk, and even remote disk.” This definition provided
insight into computer systems at that time but was insufficient
to handle big data challenges. Moreover, big data is con-
sidered ‘““massive data,” ‘‘heterogeneous,”’ ‘‘unstructured,”’
and ‘““very large data” [7] that cannot be handled by using
traditional technologies [11]. Following big data definitions
are presented from prominent publications:
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« InMcKinsey’s report: “Big data refers to datasets whose
size is beyond the ability of typical database software
tools to capture, store, manage, and analyze” [12].

o In IDC’s report: “big data technologies describe a new
generation of technologies and architectures, designed
to economically extract value from very large volumes
of a wide variety of data, by enabling high-velocity
capture, discovery, and/or analysis™ [13].

o “Too big, too fast, or too hard for existing tools to
process” [14].

o “Big data is where the data volume, acquisition veloc-
ity, or data representation limits the ability to perform
effective analysis using traditional relational approaches
or requires the use of significant horizontal scaling for
efficient processing” [15].

« “Big data is a term for massive data sets having a large,
more varied and complex structure with the difficulties
of storing, analyzing and visualizing for further pro-
cesses or results” [16].

« “Big data consists of extensive datasets - primarily in
the characteristics of volume, variety, velocity, and/or
variability- that require a scalable architecture for effi-
cient storage, manipulation, and analysis™ [17].

o Gartner’s glossary: “Big data is high-volume, high-
velocity and/or high-variety information assets that
demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision mak-
ing, and process automation™ [18].

Furthermore, a comprehensive list of big data definitions is
provided in [17], and each explanation is focused on different
aspects that are volume, velocity, variety, value, new data
types, big data engineering, analytics, bigger data, sampling,
data science, and cultural change.

B. CHARACTERISTICS OF BIG DATA

Regarding the preceding definitions, widely accepted char-
acteristics of big data are volume, velocity, variety, and
value [19], [20], [21]. Volume is about the size of
large amounts of data in Gigabytes, Terabytes, Petabytes,
Exabytes, Zettabytes, or Yottabytes [7]. Due to large volumes,
data cannot be stored, managed, and analyzed with traditional
computing and storage systems. Instead, contemporary tech-
nologies are utilized to collect, store, manage and analyze big
data. Velocity is the speed of incoming data from a source that
needs to be captured, processed, and transferred quickly [14].
Variety is about various types of data in different formats,
such as structured, semi-structured, and unstructured [3], [6],
[22]. Value is a vital characteristic of big data that is about
deriving beneficial information and hidden insight out of a
large amount of data using various data mining and machine
learning techniques and algorithms [23], [24].

Beyond the mentioned 4V’s of big data, veracity, variabil-
ity, and valance characteristics are also mentioned in big data
studies. Veracity is considered the messiness or trustworthi-
ness of data [6], [25]. Veracity impacts the result of various
analyses because of the quality, objectivity, credibility, and
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accuracy of data [23], [22], [26], [27]. Variability is about
dynamically and rapidly changing data flow at unpredictable
rates [3], [23]. Valance is about the connectivity of data [24].

C. DATA PROCESSING PARADIGMS

In the big data processing context, data processing paradigms
are classified under two categories that are batch and stream-
ing processing [28], [29], [30].

The batch processing paradigm aims to process stored data
(data in rest) to perform exploratory and detailed analysis
on complete datasets by processing every item in a dataset
to calculate answers for the analyst’s predetermined set of
questions via making use of statistical analysis, data mining,
and machine learning. Popular batch processing tools are
presented in Section V. Moreover, processing big data in
reasonable amounts of time with traditional ways is almost
impossible. To address this problem and decrease the time
amounts of data processing, the MapReduce programming
model was developed by Google to utilize parallelism in
multi-core and many-core clusters [31]. MapReduce pro-
gramming model enables programmers to create a map and
reduce functions. Multiple map functions are launched to
process large amounts of data in parallel. Each map function
receives a small portion of data in key-value pairs, performs
user-written operations, and produces partial (intermediate)
results. Reduce function is also user-defined and receives
intermediate results from the map function. Also, multiple
reduced functions can be utilized to consolidate intermediate
results. Due to its efficiency and ease of use, the MapReduce
programming model has created a basis for data processing
technologies [32] presented in Section V.

Stream processing aims to capture, manage, and process
data in motion (fast data) from data sources before per-
manently storing it [7]. This paradigm requires capturing,
filtering, and processing data in short amounts of time (sec-
onds, milliseconds) to take advantage of the freshness of data
that contains a potential value. Real-time or near real-time
analytics is crucial in today’s big data world to provide fast
answers for various domains [33]. Fig. 1 represents where
stream processing can be performed in big data processing
stages and which tools can be used to perform streaming
analytics that are explained in Section I'V.

D. DATA ANALYTICS TYPES

In big data analytics, data analytics can be classified under the
following categories: descriptive, diagnostic, predictive, and
prescriptive [4], [34], [35], [36], [37] that, are related to value
characteristics of big data and expected value increases mov-
ing from descriptive toward prescriptive analytics. In these
types of analytics, batch-oriented detailed exploratory analyt-
ics are performed on a large amount of previously collected
data to glean beneficial information.

Descriptive analytics focuses on the “What happened?”
question to glean information from previous activities and
events to figure out successes and failures and learn from
an organization’s history [34], making use of statistical
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techniques, dashboards, BI tools, and visual representations.
Moreover, descriptive analytics can be considered ‘‘hind-
sight” since it enables one to gain experience by learning
from past activities. For example, a company would like to
know the number of users who unsubscribed to their email
during the last five months.

Diagnostics analytics aims to answer the ‘“Why did an
event happen?”” question via detailed investigation and inter-
active data visualization tools to understand which factors
caused or triggered a particular event [35]. Diagnostic ana-
lytics can also be considered as “‘hindsight” since it aims to
figure out hidden insights from large amounts of data. For
example, a company would like to determine information
about its workers’ significant performance loss during sum-
mertime.

Predictive analytics strive to answer, “What will happen
in the near future?”” with the goal of predicting prospective
results of an action in advance. Predictive analytics provides
“insights’” before an event occurs, such as customer behavior
prediction, energy consumption, or amount of income or loss.
Moreover, predictive analytics utilizes machine learning, sta-
tistical methods, and data mining algorithms to forecast the
implications of a future event [4].

Prescriptive analytics tries to answer the “How can we
make it happen?” question using statistical optimization
techniques, artificial neural networks, simulations, expert
systems, and game theory [34]. Prescriptive analytics can
be considered ‘“‘foresight” since it recommends actions to
accomplish beneficial future results. For example, a company
would like to forecast about impact of their new product on
the sale market.

lil. METHODOLOGY
Big data processing, storage, and analytics technologies are
widely used in almost all domains. Due to various demands
and requests from diverse domains, a large number of tech-
nologies have been developed. Therefore, in the methodology
of this paper, at most five big data technologies are chosen and
presented in each stage of the big data value chain because
this paper aims to present technologies for each category of
the big data value chain, and some categories, such as storage
technologies, include more than four hundred technologies.
Thus, to accomplish the goal of presenting technologies from
each category, at most five carefully chosen technologies are
presented in each category. The selection criteria for chosen
technologies are becoming open source, freely available, and
utilized in a data-intensive system that appears in published
research works that are indexed in the Web of Science.
Moreover, demanded features from technologies of acqui-
sition, temporary storage, permeant storage, streaming ana-
lytics, and batch analytics are different from each other since
each stage has its own focus, requirements, and goals. There-
fore, features of big data technologies for each stage of the
comparison of the big data value chain are carefully selected
based on the requirements and goals of each category.
And then, a fair comparison is objectively provided on the
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FIGURE 1. Stages of big data value chain model, 5V’s of big data and utilized technologies.

capabilities of each technology, with the purpose of giving
insight and a feature overview of the presented technologies
for researchers and developers in data-intensive systems and
big data analytics.

In addition, in the context of big data and analytics, hun-
dreds of papers have been published. However, the papers
cited in this work and included in the related works section
were chosen based on the following criteria: including “‘big
data value chain,” ‘“big data technologies,” ‘acquisition
technologies,” “‘storage technologies,” and ‘‘analytics tech-
nologies” terms on a Web of Science search, and focusing on
big data technologies that are utilized stages of the big data
value chain.

Finally, this paper aims to present a comparative study of
frequently utilized big data technologies in the generation,
acquisition, storage, and analytics stages of the big data value
chain. This paper is written to answer the following research
questions, each of which is addressed in the upcoming
sections:

e RQI1: How can a big data value chain model be created
with the purpose of presenting characteristics of big
data, usage of big data processing tools, and relations
between generation, acquisition, storage, and analytics
stages of the big data value chain?

e RQ2: What are the significantly important features to
compare various technologies used in stages of the big
data value chain?

e RQ3: How can we provide a comparative perspective
on big data technologies used in stages of the big
data value chain to support researchers in big data and
analytics?
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IV. BIG DATA VALUE CHAIN MODEL

In this section RQ1 is addressed. Regarding notable big
data research work [7], [19], [38], [39], big data value
chain is typically represented under generation, acquisition,
storage, and analytics stages. These stages are generally
represented separately but these stages of the big data
value chain should not be strictly separated from each
other. Thus, Fig. 1 is depicted to represent the relations
among stages of the big data value chain, characteristics
of big data, and stage-related popular technologies and
tools. Moreover, to the best of my knowledge, character-
istics of big data are generally represented standalone in
big data research [34], [40], [41]. However, in Fig. 1, the
big data value chain and 5V’s of big data are represented
all in one place to indicate the relationship among each
other.

Generation is about creating data in different types,
diverse formats, and speeds from various sources. Data
generation is supported by machines, humans, and orga-
nizations [24]. First, machines generate data by physical
devices and linked software systems such as sensors, video
and image capturing cameras, audio recording devices, satel-
lites, smart portable devices (phones, watches, and wearable
technologies), computers, cloud systems, transportation sys-
tems (airlines, trains, and bus), GPS, IoT devices, and
servers. Second, humans around the globe trigger gener-
ation of data through various activities with the aid of
sources such as social media microblogging services (Twitter,
Facebook, LinkedIn, YouTube), news sites, blogs, Internet
forums, scientific experiments, education, telecommunica-
tion services, customer relationship management (CRM)
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systems, e-commerce, user feedback, and review pages.
Third, organizations generate data through various services
such as governmental institutions, healthcare organizations,
business services, industrial tasks, manufacturing and retail
sector, banking system, and finance. Also, the generation
stage introduces 5V’s of big data, and the following stages
inherit characteristics of big data, but the priority of these
characteristics can be different for each stage. For example,
velocity challenge is directly connected and related to the
acquisition stage which is shown with a flat line with and
given number is 1 in Fig. 1.

Acquisitioninvolves collecting, transmitting, and pre-
processing data created in the generation stage. Thus, this
stage deals with data in motion (fast data). The main con-
cerns are acquiring data generated by various sources without
losing, pre-processing acquired data to eliminate redundancy
and noise to prepare data for storage, and making data
available for future analytics. Regarding 5V’s of big data,
the most important two characteristics in the acquisition
stage, as shown in Fig. 1, are velocity (speed of incom-
ing data) and volume (size of incoming data) since both
are very important in capturing and transmitting data. The
capabilities of selected acquisition technologies are explained
in Section V-B.

Storage focuses on properly storing data in diverse for-
mats received from acquisition tools. In traditional practice,
data is permanently stored in RDBMS; however, in the con-
temporary big data world, in-memory NoSQL data stores
and queuing technologies are paramount to store data tem-
porarily before permanently storing data that is a critical
role in answering user demands in short times. One of the
essential concerns for storage technologies is choosing a
proper one or multiple data storage systems out of more
than four hundreds RDBMS, NoSQL, and NewSQL tech-
nologies [9]. Choosing a proper data storage system for
the job is crucial because it is not only about storing data
but also easing future demanded analytics on the stored
data.

Analyticsinvolves getting insights and beneficial infor-
mation out of data. The primary purpose of collecting
tremendous amounts of data is not just increasing volumes in
petabytes but also gleaning beneficial information out of data
to take meaningful and profitable actions at the right time and
in the right place [42]. Thus, in the current view of the big
data value chain, streaming and batch data analytics should
be considered as represented in Fig. 1. Batch data processing
is crucial to perform exploratory data analysis via various
statistical, data mining, or machine learning tools. On the
other hand, streaming data analytics can be carried out right
after acquiring data from various sources to perform real-time
analytics by using streaming analytics and temporary storage
tools. Fig. 1 provides data processing tools utilized in each
stage of the value chain, and these technologies and their
features are explained next. Also, Fig. 1 includes examples of
visualization, searching, data mining, NLP, ML and statistical
tools.
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V. BIG DATA VALUE CHAIN AND TECHNOLOGIES

There are many technologies utilized in each stage of the
big data value chain, and due to space limitations, only a
few selected technologies are presented for each stage. The
inclusion of each technology is decided based on their usage
in notable published research works that are cite. This section
addresses the RQ2 and RQ3.

A. HADOOP ECOSYSTEM

Apache Hadoop is an open-source framework and defacto
standard that was developed by Doug Cutting in 2006 to
handle the volume challenge of big data via storing data in
distributed thousands of nodes using commodity hardware
and providing distributed computing and analysis [3], [34].

Apache Hadoop aims to achieve scalability (vertical and
horizontal), availability, fault tolerance, and flexibility. Var-
ious big data tools have been developed to integrate with
the popular Apache Hadoop environment to achieve pur-
poses. For example, managing, monitoring, provisioning, and
securing Hadoop Cluster via Ambari, collecting/ingesting
data into Apache Hadoop from multiple sources with Flume,
Sqoop, and Chukwa, and querying data stored in Hadoop
without changing data structures by Hive, Impala, Tajo, and
Drill, performing searching demands with Solr, and Lucene,
coordinating workflow schedules with Zookeeper, and Oozie,
processing data with Pig, Mahout, Spark, Tez, and Flink and
storing data in Cassandra, or HBase [2], [43], [44], [45], [46].
Table 1 is formed to provide a comparison among Apache
Hadoop versions based on essential features [47]. On the
other hand, beyond the open-source versions of Apache
Hadoop, commercial Hadoop distributions are also provided
by Cloudera, MapR, and Hortonworks.

Due to Apache Hadoop’s development purpose, it is not
suitable to perform real-time data processing analytics. For
example, credit card fraud analytics, network fault prediction,
or security threat prediction cannot be detected quickly [48].
Thus, to handle the limitations of Apache Hadoop, various
technologies have been developed to provide real-time data
analytics and streaming processing that can be integrated with
Apache Hadoop environment [2].

B. ACQUISITION TECHNOLOGIES

The main concern in the acquisition stage is collecting, pre-
processing, and transmitting data generated from various
sources. Thus, acquisition technologies are also considered
stream processing tools. This section provides open-source
acquisition technologies that are utilized in industry and aca-
demic research works.

Acquisition technologies deal with small chunks of contin-
uously incoming data at unknown rates, primarily utilize the
underlying machine’s limited memory, taking advantage of
parallel computations, and performing on the fly operations
to provide results of analytics in very short amounts of time in
seconds or milliseconds [49]. This time restriction is required
in finance, banking, network, and traffic monitoring, fraud
detection, or emergency management applications to perform
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TABLE 1. Comparison of apache hadoop versions.

Features Hadoop 1.x Hadoop 2.x Hadoop 3.x
HDFS, MapReduce (Batch HDFS, MapReduce 2 (Batch HDFS, MapReduce 2,
Components processing and Resource processing), YARN 1 (Resource
YARN 2
Management) Management)
Port Range Linux ephemeral port range Linux ephemeral port range Moved out ephemeral port range

Data Balancing HDES balancer

HDFS balancer Intra-data node balancer

Fault-tolerance Replication (3x)

Replication (3x) Erasure coding

Aliyun OSS, Azure Data Lake

File System Local file system, HFTP, Amazon Azure Storage Blobs, OpenStack .
s . . Storage, Tencent COS, and previous
Compatibility S3 Swift, and previous file systems
file systems
License and Release Year Apache 2.0, 2011 Apache 2.0, 2012 Apache 2.0,2017
Cluster Size 4,000 nodes <=10,000 nodes > 10,000 nodes

Namespace Management Single Name Node

Single Name Node Multiple Name Node

OS Support Linux

Windows, Linux, MacOS Windows, Linux, MacOS

Storage Overhead 200%

200% 50%

the right actions at the right time. A fair comparison of five
well-known acquisition technologies is provided in Table 2.

Apache Spark is one of the most popular open-source
data processing engines initially developed by Matei Zaharia
in 2009 [50] at UC Berkeley AMPLab and then moved to
Apache Software Foundation in 2013 [51]. Apache Spark
enables streaming and batch data processing and analytics
performance. Resilient Distributed Dataset (RDD) is the fun-
damental abstraction utilized to manipulate ingested data
from various sources and formats [23]. The main reason
behind the fast data processing capability of Apache Spark is
efficiently using distributed in-memory data structure (RDD)
and providing less expensive data shuffles [2]. Thus, the
popularity of Apache Spark has dramatically increased since
its development, and the demand for using Apache Spark will
continue to grow in the future due to its community support,
capabilities, and features [52]. Apache Spark also provides
libraries for machine learning, fast SQL querying, and data
analytics.

Apache Storm is a real-time data processing engine orig-
inally developed by Nathan Marz in BackType in 2011 and
then open-sourced by Twitter. Apache Storm is a low
latency distributed real-time stream processing framework
that enables performing analytics before storing the data [23].
Apache storm allows the transformation of one stream to
new streams reliably, and it utilizes components spout (emits
tuple stream) and bolt (process tuple and emits a new stream)
[53]. A storm cluster can execute one or more worker
processes using spouts and bolts. Apache Storm can han-
dle data velocities of tens of thousands of messages every
second and is designed to integrate with existing queuing
and bandwidth systems. Also, Apache Storm is utilized for
real-time analytics, online machine learning, and continuous
computation [54].

Apache Kafka is a distributed message system developed
at LinkedIn in 2010 to handle streaming activity to pro-
cess millions of messages per second and then open-sourced
by Apache Software Foundation. Apache Kafka provides
zero message loss, exactly one processing, and guaran-
teed ordering; therefore, it is used for mission-critical
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applications, streaming analytics, and high-performance data
pipelines [55]. Apache Kafka’s main components are topic
(stream of messages), producer (publish messages to a
particular topic), brokers (stores published messages), and
consumers (gets messages from brokers). Apache Kafka is
explicitly distributed, and multiple producers, brokers, and
consumers are supported based on usage. All data in Kafka
is immediately written to a persistent log on the file system,
and each message is addressed by its logical offset in the log
without an explicit message ID [23].

Apache Flink is a unified stateful streaming and batch
data processing framework developed in 2009 and then incu-
bated in Apache Project in 2014 [53]. The main components
of Apache Flink are stream and transformations [2], [23],
[56]. Apache Flink uses a stream-first approach and Kappa
architecture (true streams used) to provide automatic par-
titioning and caching. Moreover, Apache Flink is mainly
utilized for event-driven (fraud and anomaly detection, rule-
based alerting, business process monitoring), data pipelining
(Continuous ETL), and data analytics applications [57].

Apache Samza is a scalable real-time data processing
engine that provides streaming and batch data process-
ing. Apache Samza was developed at LinkedIn and then
open-sourced by Apache Software Foundation in 2013.
Apache Samza manages data streams using streams and par-
titionsthat include ordered messages in key-value pairs [23].
Apache Samza provides flexible deployment options (run
anywhere), processing and transforming data from any
source, and it can be added as a client library in Java/Scala
applications. Apache Samza relies on Apache Kafka, which
is employed to develop stateful applications to process data
in real time, providing continuous computation [58].

C. STORAGE TECHNOLOGIES

This section presents storage technologies of big data value
chain and the presented technologies are included based on
cited research works and public comparisons of technolo-
gies provided by DB-ENGINES [9]. Storage technologies
are presented under two categories that are temporary and
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TABLE 2. Comparison of acquisition technologies.

Features Spark Storm Kafka Flink Samza
Batch Support Yes No Yes Yes No
Latency High Low Very Low Low High
Ordering DStream ordering Not guaranteed Partition order Not guaranteed Partition order
Z’;};eelssmg micro-batching micro-batching event-at-a-time event-at-a-time event-at-a-time
Processing exactly-once at-least-once, exactly- exactly-once exactly-once at-least-once
Guarantees once
Scala, Python, Java, . Java, C/C++, Go, Scala, Python, Java, Java,
PL Support R, C#, F# Use withany language  \1pp pyion’ Ruby SQL Scala
Recovery self-recovery Checkpoint Checkpoint Checkpoint Checkpoint
State Management stateless in-memory state Local state stateful stateless
stateful
Written in Scala Clojure, Java Scala, Java Java, Scala Scala, Java
Watermark Yes Yes No Yes No
Quality Attributes Fault tolerance, Scalability, Reliability, High Throughput, No data loss (Durability)
TABLE 3. Comparison of in-memory technologies.
Features Memcached Hazelcast Redis Ignite Riak
Consistency Eventual Immediate, Eventual Eventual Immediate Eventual
Durability No Yes Yes Yes Yes
Partitioning None Sharding Sharding Sharding Sharding
Released at 2003 2008 2009 2015 2009
) String, SQL types are Strings, hashes, lists, . . No predefined data
Supported data types Objects supported sets, sorted sets Binary objects types
SOL support No SQL-like querying No ANSI-99 No
Stored Procedures No Event Llsten?r, Yes Compqte grid and JavaScript, Erlang
Executor services cache interceptors
Triggers No Events Yes cache interceptors and Pre-commlt and post-
events commit hooks
Written in C Java C C++, Java, NET Erlang

permanent. Each category and related technologies are
explained next.

1) TEMPORARY STORAGE TECHNOLOGIES

Temporary storage technologies are considered in-memory
storage systems and queuing technologies (see Fig. 1). These
technologies play a crucial role in handling the velocity chal-
lenge of big data by temporarily storing data and supporting
real-time analytics.

In-memory stores (also called NoSQL key-value stores)
use a key-value model to create data collections in key-value
pairs [59]. Keys act like indexes [60] to retrieve associ-
ated values that can be any supported data type (string,
list, set, hash) by applied in-memory technology [61], [62].
The distinctive characteristics of in-memory data stores are
efficiently using disk and Random Access Memory (RAM)
of the underlying system via allocating a pre-determined
portion of RAM to keep temporary or frequently accessed
data to provide fast answers on demand. For example,
keeping temporary session information that is not needed
to be stored permanently or managing customers’ shop-
ping cart/purchase activities on e-commerce platforms are
handled by in-memory data stores [63]. According to
DB-ENGINES [9], the top five open-source in-memory
data storage systems out of 56 technologies are Redis,
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Memcached, Hazelcast, Ignite, and Riak. A technical com-
parison is provided in Table 3.

Queuing technologies are developed to handle the veloc-
ity of big data by allowing multiple clients concurrently to
insert a large number of requests into queues and retrieve
requests (or any queued data) from queues based on the
First in First Out (FIFO) convention [64]. Moreover, queuing
technologies enable partitioning, replication, and ordering
of acquired data from various sources, supporting multiple
programming languages to create reliable, durable (not losing
data), and persistent message queues [65]. In addition, queu-
ing technologies serve as a buffer between data sources and
consumer applications that manage backpressure from slower
downstream components to create a convenient environment
for data processing [66]. IBM MQ, Apache ActiveMQ, Rab-
bitMQ, ZeroMQ, and KubeMQ are open-source queuing
technologies utilized in streaming processing, and Table 4
provides a fair technical comparison of these technologies.

2) PERMENANT STORAGE TECHNOLOGIES

In this big data era, dealing with large volumes of various
types of structured, unstructured, and semi-structured data is
a challenging duty. Properly storing, modeling, managing,
and querying large amounts of data is crucial. Due to the
importance of adequately storing data, hundreds of database
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TABLE 4. Comparison of open-source queuing technologies.

Features IBM MQ ActiveMQ RabbitMQ ZeroMQ KubeMQ
Architecture Service-oriented Master-slave Master-slave Pub/Sub Message-based
AMQP,
Comm. Protocols MQTT STOMP AMQP fﬁfg g%ljg’
MQTT
Delivery Mode One-time One-time One-time Deliver all parts or At-least-once, at-most-
none once

Persistence Memory Disk Memory Disk Memory Disk Memory Memory, Disk

. Flexibility Reusability Reliability Reliability Scalability Flexibility Scalability
Quality Features Availability Scalability Availability Efficiency Performance
Released at 1993 2004 2007 2007 2017
Written in Not Available Java Erlang C++ Go

TABLE 5. Comparison of Rdbms technologies.
Features Oracle IBM Db2 MySQL MSSQL PostgreSQL
Complex Data Hstore, Array JSON,
Types No support No support No support No support UUID, XML
Partitioning Shardlngj ‘Holr izontal Sharding Shardmg, -Ho-rlzontal Shardmg,.Hm.'lzontal Partitioning by range, list, hash
partitioning partitioning partitioning

Page Size 4 KB 4 KB 16 KB 8 KB 8 KB
Released at 1980 1983 1995 1989 1989
Stored . .
Procedures PL/SQL SQL Propriety syntax Transact SQL UDFs via PL/pgSQL
Written in C, C++ C, C++ C, C++ C++ C

management systems (DBMS) have been developed [9] to
handle storage-oriented challenges to accomplish numer-
ous user demands. DBMS play a critical role in providing
concurrent accessibility and security, allowing backup and
crash recovery, enabling data modeling capability and data
independence, minimizing data redundancy, enhancing data
integrity and consistency, increasing end-user productivity,
and allowing efficient data management [67]. This section
presents distinctive characteristics of RDBMS, NoSQL, and
NewSQL permanent storage technologies.

Since the 1980s, RDBMS became available for commer-
cial use [68], and today more than one hundred and sixty
RDBMS are actively used in various domains [9]. RDBMS
was developed based on ACID (Atomicity, Consistency, Iso-
lation, Durability) properties, making RDBMS more suitable
for storing atomic, structured, and not complex data. These
features are critical for banking, financial and enterprise
applications to accomplish immediate consistency, speed,
security, and integrity. According to DB-ENGINES [9], the
top five RDBMS out of 155 technologies are Oracle, MySQL,
Microsoft SQL Server (MSSQL), PostgreSQL, and IBM
Db2. Feature comparison of these RDBMS is provided in
Table 5. These five RDMBS share features supported by all
that are triggers, immediate consistency, ACID, concurrency,
durability, SQL querying support, foreign keys (referential
integrity), access methods (ODBC, JDBC), indexing mech-
anism is B-Tree, and primitive data types (number, date, and
string).

On the other hand, ACID characteristics of RDBMS force
centralized databases and do not enable replications of data in
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a distributed fashion. Also, RDBMS provides little or no sup-
port for storing large, complex, and diverse semi-structured
and unstructured big data. In addition, scalability support of
RDBMS is performed by scale up (vertical) that requires
changing existing hardware with vendor-dependent expen-
sive hardware. Therefore, to eliminate presented restrictions
of RDBMS and to handle the challenges of big data, NoSQL
data stores have emerged.

NoSQL stands for “Not Only SQL,” which explains there
exists a flexible schema but not restricted as RDBMS’s
schema. Milestone development in NoSQL has been trig-
gered by the development of Google’s Big Table [69] and
Amazon’s DynamoDB [70], [71]. NoSQL data stores provide
capabilities such as storing large amounts of big data in differ-
ent formats under a flexible and distributed schema, achieving
horizontal scalability on commodity hardware, distributing
copies of data across machines to increase availability and
performance, and eliminating a single point of failure [72].
NoSQL data storage systems have been developed based on
BASE (Basically Available, Soft State, and Eventual Consis-
tency) features to relax the restriction of ACID properties.
NoSQL data storage systems are presented under the follow-
ing categories that are key-value, document, wide-column,
and graph [73], [74], [75], [76]. Popular key-value stores are
presented in Section V/C/1.

Document stores allow storing semi-structured data.
A document is identified with a unique identifier and can
contain an arbitrary number of key-value pairs in any nested
form without schema restriction. Documents can be per-
sisted in BSON, JSON, and XML formats [77]. A document
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TABLE 6. Comparison of NoSQL document storage technologies.

Features CouchDB MongoDB Couchbase Databricks Realm
Consistency Eventual Eventl.lal EventL'lal Immediate Immediate
Immediate Immediate
Cloud based only No No No Yes No
. . . Mobile Desktop Cloud Smartphone Tablet
Device Support Mobile Desktop Mobile Desktop Embedded Support Desktop
Full Text Search No Lucene based No Using Elasticsearch Yes
. Reliability Scalability Versatility Scalability

Quality Features Scalability Availability Performance Scalability Performance Performance

Released at 2005 2009 2011 2013 2014

Stored Procedures View functions JavaScript Functions and timers UDFs and aggregates No

Triggers Yes Yes TAP protocol Yes Change Listener

Written in Erlang C++ C++, Erlang Based on Apache Spark C++

TABLE 7. Comparison of NoSQL wide-column storage technologies.

Features Cassandra HBase Accumulo ScyllaDB

Consistency Eventual Immediate Eventual Immediate Eventual Eventual Tunable

Map Reduce Yes Yes Yes No

Querying mechanism CQL Apache Drill Relies on HDFS CQL

/fxcz::f:l)al}ﬁty Scalability Scalability

Quality Features y Scalability Fault-tolerance Availability

Fault-tolerance Performance Performance
Reliability

Released at 2008 2008 2008 2015

Replication Replication factor Multi-source Automatic replication Replication factor

Stored procedures No Yes No Yes

Triggers Yes Yes Yes No

Written in Java Java Java C++

store can store any number of collections regarding avail-
able disk size. According to DB-ENGINES [9], MongoDB,
Databricks, Couchbase, CouchDB, and Realm are the top five
open-source NoSQL document stores out of 47 technologies,
and Table 6 provides a comparison of these data stores.

Wide-column (columnar or extensible record stores) [60]
stores are inspired by Google’s Big Table and aim to pro-
vide a flexible schema to store complex semi-structured or
unstructured large amounts of data in various formats [78].
Wide-column stores provide column families like flexible
tables but unlike RDBMS tables. A column family enables
the creation of row keys and associated columns. Each row
key is associated with many numbers of columns (keys)
that contains data (value). The columns associated with a
particular row key are stored together on a disk [79].

Moreover, data replication is performed based on row
keys on multiple nodes. According to [9], Cassandra, HBase,
Accumulo, and ScyllaDB are popular wide-column data
stores out of 13 wide-column stores. Table 7 provides a
feature comparison of these data stores. In addition, shared
features of presented data stores are open-source, access pro-
tocols (thrift), distributed nodes, concurrency, durability, and
no support for foreign keys.

Graph data stores are another important NoSQL -cate-
gory that enables storing real-world entities and keeping
relations among these entities via a schema-free graph model.
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A graph model includes a network of nodes representing
real-world entities and directed edges for relations and prop-
erties to keep entity features in key-value pairs [80], [81].
According to DB-ENGINES [9], the top five open-source
out of 37 Graph NoSQL data stores are Neo4j, Virtuoso,
ArangoDB, OrientDB, and JanusGraph. Comparing these
storage technologies are presented in Table 8 using dis-
tinctive features. The shared features for these graph stores
are fault tolerance, concurrency, performance, durability, not
supporting Map Reduce, graph data model support, and sup-
porting ACID [73]. Another essential data store category is
NewSQL [70].

NewSQL databases are considered under RDBMS, keep-
ing ACID features of RDBMS and adding the flexibility of
NoSQL data stores. Popular open-source NewSQL databases
are VoltDB, NuoDB, and SingleStore [40], [82] and Table 9
compares these technologies. NewSQL databases provide
full ACID support, querying via SQL, horizontal scaling,
durability, concurrency, and high availability.

D. ANALYTICS TECHNOLOGIES

In Section V/B, five open-source streaming analytics tools
and feature comparisons are provided (see Table 2). In this
section, comparison of five open-source batch data process-
ing technologies that are Spark [52], Pig [83], Hive [84],
Drill [85], and Impala [86] presented.
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TABLE 8. Comparison of NoSQL graph storage technologies.

Features Virtuoso Neodj OrientDB ArangoDB JanusGraph
Consistency Immediate Casual Evf: ntual MVCC Eventual Immediate Eventual Immediate
Immediate
. . . Relies on storage
Partitioning Yes No Sharding Sharding backend
Query Language SPARQL Cypher SQL Like AQL Gremlin
Scalability L [ L
Quality Features Scalability Auvailability Rehgb}l}ty FleXIbl.h.ty Scalability
e Flexibility Scalability
Reliability
Released 1998 2007 2010 2012 2017
Stored Procedures Virtuoso PL UDFs and functions Java JavaScript JavaScript Yes
Triggers Yes Event Handler Hooks No Yes
Written in C Java Scala Java C++ Java
TABLE 9. Comparison of NewSQL storage technologies.
Features VoltDB SingleStore NuoDB
Consistency Transactional Immediate Immediate
S . A Dynamic
Partitioning Sharding Hash partitioning partition
Replication Multi-source Source-replica Source-replica On-demand replication
Released at 2010 2013 2013
labili .
:\(:Zi?;‘)t;i;:ty Performance Scalability
Quality Features 1abrity Fault-tolerance Availability
Reliability Simplicit Flexibilit
Performance phieity y
Stored Procedures Java UDFs Java, SQL
Triggers No No Yes
Written in Java, C++ C++, Go C++
TABLE 10. Comparison of selected batch processing technologies.
Features Pig Spark Hive Drill Impala
Analytics Exploratory HDF S Machine 1earn{ng, Process structured Automatic Fast data processing
support data analytics graph processing large datasets
Optimize Automatic Lazy evaluation Cost based Caching based Automatic
Processing . I MPP (Massively
Model Map- reduce Micro-batches Map-reduce Drillbit Parallel Processing)
Querying Pig . .
Language Latin Spark SQL HiveQL ANSI SQL HiveQL
. o Reusability Performance
%’;‘:i’g s E;‘f:;f;ﬁlllt‘ty Scalability Scalability Flexibility Scalability
i Y Flexibility Extensibility
Recovery code recovery Self-recovery Hive DR Recovery beforehand No recovery
Released at 2008 2009 2010 2014 2017

Supported
data types

Parquet, Text JSON,

All types of data ORC. CSV. Avro,

Parquet, ORC,
CSV/TSV

Parquet, Avro, Text,

Parquet, JSON, Text  p cpile, Sequence file

Table 10 provides a comparison of these technologies.
Shared features for these technologies are Apache tech-
nologies, ETL (Extract Transform Load) support, and UDF
(User-defined Functions) support.

VI. RELATED WORKS

In Table 11, a comparison of related works is provided
regarding technologies utilized in the acquisition, storage,
and analytics stages of the big data value chain. Unlike
other related works, this paper presents big data technologies
employed in all stages of acquisition, storage and analytics.
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In [7], the concept of big data is explained in terms of the
big data value chain. For each stage of the big data value
chain, related terminology and features are presented, as are
big data analytics methods, systems, and benchmarks. In [19],
[43], and [53], an overview of big data, big data-related tech-
nologies, the big data value chain, challenges, examples of big
data applications, the Hadoop ecosystem, and open research
questions are presented. In [23], a comprehensive survey on
big data concepts, systems, and technologies is provided in
MapReduce, NoSQL, ML tools, Hadoop technologies, and
data processing and querying tools.
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TABLE 11. Comparison of related works regarding big data value chain technologies.

Year Ref. Acquisition Temporary Storage Permanent Storage Analytics
Stream Processing In-memory | Queuing RDBMS | NoSQL | NewSQL Streaming | Batch
2014 [7] v - - v - v v
[19] - - - v v - - v
2016 [53] v - - - v’ - v’ v’
2017 [43] v - - v v - v v
2018 [23] v v v - v - v v
2019 [29] - v - - v - v v’
[37] v - - - v - v v
2020 [40] - v - v v v - -
[21] v - - - - - v v
2022 [46] v - - - v - v v
(87] v v - - v - v -
2023 This v v v v v v v v
work
The meaning of v is the reference presents a technology from given category and ‘-’ indicates it does not contain a technology in the given category

In [29], a CAP-based classification of data storage systems
is provided, and NoSQL data storage systems utilized in
streaming data processing are presented. In [37], big data
characteristics, data processing types, Hadoop clusters, chal-
lenges and success factors, applications in big data analytics,
and trends are presented. In [40], timelines, characteristics,
sources, and definitions of big data are provided. Also, a com-
parison of data storage technologies, the CAP theorem, and
the grand challenges of big data are presented. In [21], the
definitions, characteristics, and challenges of big data are
presented. A classification for big data, domains and data
sources, batch processing, stream processing, and big data
analytics techniques are provided.

In [46], recent big data analytics tools and their features
are presented. Data-driven industrial applications and the
challenges of big data analytics projects are discussed. The
strengths and weaknesses of the presented big data technolo-
gies are discussed. In [87], big data processing and storage
systems utilized in real-time data processing are presented.
Popular real-time data processing technologies and NoSQL
data storage systems used in real-time data processing is
provided.

Furthermore, beyond the presented related works, this
paper aims to provide a technology-oriented perspective for
all stages (see Table 11) of big data value chain to support
developers of data-intensive systems to choose the right tech-
nology in their jobs for a demanded stage of big data value
chain.

VII. APPLICATIONS AND USE CASES
Data is everywhere, and data processing and analytics are
crucial to accomplishing various purposes in almost all
diverse domains, such as education, transportation, health-
care, business, crisis informatics, etc. [46]. For example,
crisis informatics researchers in academia study crisis data
to explore public behaviors before, during, and after emer-
gencies and to investigate disaster-affected people during
emergencies to help and support crisis management [88].
Although each domain has its own requirements, pri-
orities, and purposes for performing data processing and
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analytics tasks, big data technologies are utilized in diverse
domains to handle various challenges and perform demanded
actions. Thus, this section includes example use cases listed
in Table 12 from different domains, focusing on the stages
of the big data value chain and related big data technologies.
These research works were selected during the search through
the terms mentioned in the related works section by focusing
on their relevance, recent publication, and technology use in
the stages of the big data value chain.

Table 12 presents a list of published research works in
emergency management, education, healthcare, construction,
and IoT for big data analytics. In addition, Table 12 provides
published application examples and insights for big data
technology use in stages of the big data value chain for big
data researchers to support their own research efforts and
developers to support their building tasks of data-intensive
systems.

Lastly, the technology selection can be based on require-
ments, priorities, user demands, and domain needs. There-
fore, one size doesn’t fit all; for example, one technology can
be used in different domains, such as Kafka or Spark, in the
acquisition stage. While one system can only utilize one data
storage system (MongoDB [90] or Cassandra [92]), another
system (reference [96]) requires the inclusion of multiple and
diverse data storage systems. Thus, one of the main con-
cerns is accomplishing demanded functionality and meeting
requirements while developing data-intensive systems.

VIil. DISCUSSION AND LIMITATIONS
In this big data era, various domains, diverse requirements,
various needs, evolving hardware devices, and constantly
changing software tools and environments create a variety
of challenges for developers of data-intensive systems [97].
Each one of these aspects triggers the development of various
tools and technologies to fulfill user needs, handle a variety
of challenges, and accomplish domain requirements.
Moreover, developers of data-intensive systems can learn
from the best examples of the usage of big data technologies
in diverse domains. Although each technology in the big data
value chain fulfills its duty in a data-intensive system, from
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TABLE 12. Use cases regarding big data value chain technologies.

Technologies of Big Data Value Chain

Reference Purpose & Domain
Acquisition Storage Analytics
. . Hadoop
[89] Waste analytics & Construction Flume Neod] Spark
[90] OpenStreetMap & Crisis Informatics Spark MongoDB Spark
Real-time tweet collection and analytics Redis, RabbitMQ,
o1 & Crisis Informatics Spark Cassandra Spark
[92] Real-time tweet anal‘ytlcs & Crisis Kafka Cassandra Spark
Informatics
. . . Hadoop, .
[93] Learning analytics & Education ETL SQL Server Hive
. Hadoop, HBase, .
[94] IoT & Transportation From Sensors to Cloud MySQL Pig
Social big data analytics & Social
[95] Media Analysis Kafka Cassandra Spark
. . MongoDB, Cassandra, Spark,
[96] Big data analytics & Kafka PostgreSQL, Redis, Hive,
Healthcare i
Hadoop Drill

the developing angle, developers must incorporate various
tools, utilize different programming languages, and come
up with feasible techniques to accomplish harmony in the
demanding system. Thus, carefully selecting the right com-
bination of big data technology is paramount. At this point,
this study supports developers of data-intensive systems in
their technology selection based on the presented technology
features and comparisons.

On the other hand, this paper does not include an example
of a specific application; however, it aims to share the cumu-
latively gained results of previously developed data-intensive
systems [78], [79], [91], [98], [99]. Therefore, the following
suggestions for researchers and developers of data-intensive
systems are paramount: having domain knowledge to under-
stand user needs; building a developer team that is eager
to learn, open for collaboration, and diligent in solving
unexpected issues; utilizing the right set of cutting-edge
technologies for acquisition, storage, and analytics; and
developing feasible techniques for analyzing data to accom-
plish a variety of purposes in different domains [78].

Additionally, there are potential limitations associated with
this paper. First, it is possible that additional studies exist
that were not included in this work because they did not
mention the big data value chain, did not focus on big data
technologies, or were not discovered through Web of Science
searches. There may be relevant documents that are not pub-
licly accessible or written in a language other than English or
Turkish. In addition, there are numerous papers on big data
analytics; however, in Section VII, the presented use cases
include the utilization of big data technology at all phases of
the big data value chain.

IX. CONCLUSION

In this paper, a comparative perspective on big data tech-
nologies is provided from the presented big data value chain
model. To conclude, first, in Section II, the concept of big
data is presented by providing definitions, characteristics, big
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data processing paradigms, and data analytics types; second,
a comparative perspective on technologies in each stage of
the big data value chain model is provided, and their usage
purposes and capabilities are presented. Thirdly, a selection
of applications and use cases for big data implementations in
various domains is presented. Finally, this study aims to assist
big data researchers and developers of data-intensive systems
by providing an overview of big data processing concepts,
comparing open-source technologies used in the acquisition,
storage, and analytics stages, and presenting example use
cases from valuable research works. In addition, this paper
also illustrates technology usage throughout the phases of
the big data value chain in order to give insight for future
data-intensive system development.
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