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ABSTRACT Traffic flow is crucial for the efficient and safe operation of transportation systems. Understand-
ing and managing traffic flow can help alleviate congestion, reduce travel time, and enhance transportation
safety. In order to better identify traffic flow in a traffic network, we propose a new method that uses
roadside units (RSUs) for path flow reconstruction. Roadside units (RSUs) are vital transportation facilities
in cooperative vehicle infrastructure systems. They utilize modern communication technologies to exchange
information directly with intelligent connected vehicles and their influence on accurate path flow recon-
struction and average travel time are respectively analyzed. Considering the path flow uncertainty in traffic
networks, a two-stage stochastic model is formulated, which aims to balance RSU deployment cost and
value of reduced travel time. On the first stage, we solve a fully path flow reconstruction problem; On the
second stage, we calculates the reduction on average travel time under different scenarios. To effectively
handle the characteristics of the second stage model, we employ the integer L-shaped algorithm for solution.
Numerical experiments suggest that (1) Expanding the size of scenarios has little impact on experimental
results, which indicating that this model has good applicability; (2) some links play important roles in path
flow reconstruction.

INDEX TERMS Urban traffic, location decision, two-stage stochastic programming, roadside unit, path
flow reconstruction.

I. INTRODUCTION
In recent years, with the development of mobile commu-
nication technology, Vehicular ad hoc network (VANET)
has received great attention from the academic and industry.
Intelligent cooperative vehicle infrastructure systems(CVIS),
characterized by high reliability and low delay, are beneficial
for the efficient and safe operation of transportation systems
by reducing the reliance on people and improving the percep-
tion of global information.

In a VANET, each vehicle is defined as a node of the net-
work and is equipped with a unit of on-board communication
OBU (On-Board Unit), the function of which is to exchange
information with other vehicles or stationary access points
located on the roads called Roadside Units [1]. Furthermore,
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The nodes collect and transmit real-time road traffic infor-
mation through collision rules avoidance and safety warning
systems to improve the driver’s safe driving environment [2].
Roadside unit (RSU), a type of infrastructure, is a network
element located along the road or at the roadside. RSU
consists of wireless communication equipment, storage and
processing unit, power supply, and environmental monitoring
system. It is capable of providing real-time traffic informa-
tion, data transmission, and data storage services.

In the context of the Internet of vehicles (IoV) and the
cooperative vehicle infrastructure system(CVIS), the percep-
tion information of surrounding objects can be obtained by
various types of sensors or communication networks [3].
Thus, the perception scope of vehicles is defined by the
detection range of the various on-board sensors. These on-
board sensors can only collect local information, while RSUs
have the functions of long-range, blind area information
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sensing, and edge computing. It broadcasts the blind area
motion information to help vehicles respond proactively,
which improves the safety of vehicles and assists vehicles to
achieve a global view in the transportation system [4].
Using wireless network, RSUs can increase the con-

nectivity of the entire transportation system, but related
technologies have not yet matured, and the stability of remote
communication, reliability of signal connection, and resource
consumption must be further improved. Guerna et al. [5]
thoroughly categorized the literature based on the objectives
they addressed. These objectives included maximizing the
transmission coverage area, enhancing network connectivity,
and minimizing deployment costs. From our perspective, the
optimization of deployment with RSUs as crucial communi-
cation equipment has been examined through three primary
facets: enlarging the communication coverage range, improv-
ing the connectivity of transportation system and enhancing
the performance of RSU.

Enlarging the communication coverage range generally
refers to the coverage rate in a VANET. Xue et al. [6]
identified the potential locations of RSU with a modified k-
means clustering algorithm and proposed a multi-objective
optimization problem to maximize RSU connectivity and the
number of covered vehicles. Kim et al. [7]. investigated a
new strategy to maximize the spatiotemporal coverage of
RSU under a limited budget. Lehsaini et al. [8] adopted
genetic algorithm, standard version of simulated annealing
and their improved versions in order to reduce the number
of RSU by choosing locations at intersections that maxi-
mize the surface covered of the urban area and minimize
the area of overlapping zones. Anbalagan et al. [9] pro-
posed an efficient memetic-based RSU (M-RSU) placement
algorithm for Software-defined-IoV to reduce communica-
tion delay and increase the coverage area among IoV devices.
Magsino et al. [10] proposed an new scheme to capture and
share the environment data in the vehicular network. And
effective positions (EPs) are located based on the amount of
information of an area and the average road speed between
EPs to ensure urban-wide connectivity and wider coverage.
Guerna et al. [11] propose a new formulation of RSUs
deployment issue as a maximum intersection coverage prob-
lem through a graph-based modeling and developed an Ant
colony optimization system to discover the minimum number
of RSU intersections that ensures the maximum network
connectivity.

As for the second category, considering the uncer-
tainty of the selection of intersection control strategies,
Liang et al. [12] proposed a two-stage stochastic mixed-
integer nonlinear program which aims to minimize the sum
of the cost associated with RSU investment and the expecta-
tion of the penalty cost associated with V2R communication
delay exceeding a pre-determined threshold. Wang et al. [13]
proposed an analytical model for analyzing the connectivity
probability, taking into account the existence of the entry and
exit and the deployment of multiple RSUs. Fogue et al. [14]

proposed the genetic algorithm, which is capable of automat-
ically providing an RSU deployment suitable for any given
road map layout, in order to overcome the signal propaga-
tion problem and delayed warning notification time issues.
Ni et al. [15] investigated the RSU deployment scheme in
2-D IoV networks with limited capacity. Considering the
expected delivery delay requirements and task assignment,
they developed a utility-based RSU deployment problem and
proposed a linear programming-based clustering algorithm
to solve it. Ahmed et al. [16] investigated the problem of
RSU placement on a highway-like roadway and proposed
an integer linear programming model with the objective of
minimizing network latency that depicts the network under
consideration.

The third class of literature concentrates on the efficiency
or energy consumption. Yang et al. [17] proposed an energy
harvest roadside unit (EHRSU) deployed on the roadside
with a dynamic service radius and formulated a model taking
into account the stochastic properties of the traffic flow, the
energy harvesting process and the energy consumption of the
EHRSU. For flexible deployment, energy-saving operation
and low-latency services, Zhang et al. [18] proposed a cache-
enabled green RSU which can store popular contents locally
and harvest renewable energy as power source and developed
a model to minimize network deployment cost, under the
constraints of quality of service requirements and limited
backhaul capacities. Shareeda et al. [19] provided the basic
simulation environment of this work, such as OSM to down-
load real map data, GatcomSUMO to generate car mobility,
SUMO to simulate road traffic and so on. Then they chose
genetic algorithm to find an optimal or near optimal location
of RSU, which proves to enhance the reception of basic
safety message delivered from the vehicles. Heo et al. [20]
investigated the performance-cost tradeoff and viability of
using buses as mobile RSUs (mRSUs). They also show how
mRSUs can replace static RSUs while maintaining the same
level of throughput, contact time, and inter-contact time.
Lee et al. [21] considered the environment with densely
deployed mobile RSUs (mRSUs), in which multiple active
mRSUs generate lots of control messages to form the mRSU
backbone network. And they propose a mechanism in which
each mRSU adaptively and effectively determines its own
state, active or inactive, according to the states of its neigh-
boring mRSUs and vehicles.

The above-mentioned studies demonstrate a strong neces-
sity for the construction of IoV environment based on the
features of RSUs. However, some studies also focus on the
improvement of the overall efficiency of the traffic system,
and propose the optimizationmethod for the location of RSUs
in terms of social benefits. Li et al. [22] used a calculation
method on travel time regarding the communication range of
RSUs and developed a network equilibriummodel tomeasure
the influence of RSUs on travelers’ route choice. Actually in
the traffic system, the path flow is of particular important.
On the one hand, the path flow itself contains information
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on road segment flow and OD pair flow, which is of vital
importance for traffic management and control and is the data
basis for a number of traffic applications. For example, the
path flow information can improve the accuracy of highway
tolls.

To measure the path flow in the road network, that is,
the path flow reconstruction problem, most of the existing
studies assumed the usage of automatic vehicle identification
(AVI) sensors. Fu et al. [23] used both passive and active AVI
sensors to solve path flow reconstruction problem. Passive
sensors simply count vehicles, while active sensors can rec-
ognize vehicle plates but are more expensive. Considering the
dynamic nature of the mobility and the uncertain knowledge
of traffic conditions, Fu et al. [24] propose a scenario based
two stage stochastic programming framework and Álvarez-
Bazo et al. [25] proposed a genetic algorithm to determine
the deployment of AVI sensors on a traffic network. AVI
sensors can identify vehicle plates or infrared tags attached
to vehicles, and they can use this information to provide
travel times for specific paths in addition to data on the speed
and flow of traffic [26]. Once the vehicle passes through the
device, this detector is enabled to identify the vehicle and
obtain the traffic flow, vehicle speed, and other data. The
roadside unit differs from the AVI sensors in that, in addition
to the above functions, the RSU is allowed to be notified of the
intelligent connected vehicle’s travel origin, historical travel
trajectory, and possible routes to the destination through
CVIS technology [27], [28], [29]. As the vehicle is within the
communication range of RSU and completes the information
interaction, the RSU is empowered to capture the complete
driving trajectory of the vehicle from the origin to the current
position. This also means that if RSU is installed near the
vehicle destination, the path of the vehicle can be identified
as precisely as possible, thus improving the accuracy of path
flow reconstruction.

As for the end users, traffic information would largely
influence travelers’ routes and improve the average travel
time of each road segment; for governments, traffic man-
agement is the key to the efficient and safe operation of the
transportation system, and vehicle path flow reconstruction
will bring more traffic flow information to effectively guide
optimal decision-making.

In this paper, we develop a deterministic model and a
stochastic model to find the optimal RSU locations. This
work provides several theoretical contributions. First, this
study aims to make balance between deployment cost and
value of reduction on average travel time, on the basis of
fully path flow reconstruction. Second, this study explores the
reduction of average travel time under the uncertainty of path
flow in a mixed traffic flow. Thus, a two-stage stochastic pro-
gramming formulation is proposed and the integer L-shaped
method is employed for solution. Third, this study analyses
the influence of unit price of RSU, value of time, uncertainty
in path flow and penetration of intelligent connected vehicles
on optimal deployment of RSU. Numerical experiments not

only demonstrate the results of proposed model but also
present the role of different links in path flow reconstruction.

The remainder of this paper is organized as follows.
In Section II, we present an illustrative network to demon-
strate the influence of RSUs on path flow reconstruction.
We calculate the average travel time within and outside the
range of RSUs in a mixed traffic flow scenario. In Section III,
we provide a description of both the deterministic model
and the stochastic model that address the problem at hand.
Section IV outlines the integer L-shapedmethod, which is uti-
lized to solve the two-stage stochastic programming model.
In Section V, we present the numerical results obtained by
applying the stochastic model to two example networks.
Finally, in Section VI, we conclude the paper by summarizing
the key highlights and major findings of this research.

II. PROBLEM DESCRIPTION
This study makes RSU location decisions with two objec-
tives: to realize accurate path flow reconstruction and to
balance the RSU deployment cost and the overall traf-
fic capacity of the transportation system. For path flow
reconstruction, in contrast to AVI sensors, RSUs can iden-
tify vehicle’s historical trajectories via V2I communication.
To increase the overall traffic capacity of the transportation
system, RSUs can reduce the travel times of intelligent con-
nected vehicles by providing remote information perception.
Next, we will elaborate on these two objectives.

A. PATH FLOW RECONSTRUCTION
Using a wireless network, RSUs can obtain information about
historical trajectories and future possible routes of intelligent
connected vehicles via V2I communication. After collect-
ing vehicle data, RSUs positioned at different locations can
integrate these data to identify vehicle paths. However, when
faced with complex traffic conditions, it is highly probable
that the driver of an intelligent connected vehicle may deviate
from the preset route. As a result, the future routes of intelli-
gent connected vehicles are inherently uncertain. Given this
context, this subsection focuses solely on the capability of
RSUs to identify historical vehicle trajectories, which greatly
contributes to path flow reconstruction. To further explain the
role of RSUs, we assume four origin-destination (OD) pairs
in an illustrative network, each containing a path, as shown in
Figure 1.

FIGURE 1. Illustrative network.
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TABLE 1. OD pair and path information for the illustrative network.

The specific path information is shown in the following
Table 1.

Now, the following assumptions are made for the problem
of path flow reconstruction:

1) In practice, RSUs are generally installed along road
segments.

2) On each path, there is at least one segment that has an
RSU.

With these assumptions, there are two ways to distinguish
different paths:

1) If at least one RSU is installed in a non-shared road
segment of any two paths, this RSU can identify these
two paths. For example, for paths 1-3-4-5 and 1-3-4-6,
segment 4-5 is a part of path 1-3-4-5 but not of path 1-3-4-6.
Thus, it is not shared by these two paths. If an RSU is
installed here, it can monitor the traffic flow of path 1-3-4-5,
and the undetected traffic flow corresponds to path 1-3-4-6.
Likewise, for paths 2-3-4 and 2-3-4-5, if an RSU is installed
in nonshared segment 4-5, it can distinguish these two paths
(σ p,p

′

l = 1).
2) If an RSU is installed in a shared segment of any two

paths, there should be at least one nonshared segment in
front of this shared segment. Otherwise, this RSU cannot
identify these two paths. For example, segment 3-4 is shared
by paths 1-3-4-5 and 2-3-4. After an RSU is installed in this
segment, since this RSU can identify the historical trajectory
of each vehicle, it knows that the traffic flow of segment 3-4
is from segment 1-3 or 2-3, and it can thus identify these
two paths. Likewise, for paths 1-3-4-5 and 2-3-4-5, there
are two nonshared segments in front of segment 3-4 or 4-5,
i.e., segments 1-3 and 2-3. An RSU installed in shared
segment 3-4 or 4-5 can obtain the historical trajectories of
vehicles to identify these two paths.(ρp,p

′

l = 1)

B. EFFECT OF RSUS ON SEGMENT TRAVEL
In addition to obtaining the historical trajectories of vehicles,
RSUs can shorten the overall travel time of the transporta-
tion system, thereby improving its overall traffic capacity.
As shown in Figure 2, using vehicle sensors, intelligent con-
nected vehicles can only sense the vehicles nearby. RSUs
can also detect vehicles in the distance and in blind spots
from a global perspective to obtain information on vehicles
in the distance. To ensure the safety of intelligent connected
vehicles, the manufacturer often sets a long safe distance.
Nevertheless, wireless networks make real-time communi-
cation between RSUs and intelligent connected vehicles

FIGURE 2. Illustration of the function of RSU.

possible. Then, the information on vehicles in the distance
is transmitted to the intelligent connected vehicles to direct
them to quickly respond to changes in the traffic flow. There-
fore, the use of RSUs can reduce the original safe distance
of intelligent connected vehicles while ensuring safety to
improve road capacity.

To further assess the effects of RSUs on road capacity
and travel time, we make the assumption that intelligent
connected vehicles and regular vehicles are uniformly dis-
tributed within the traffic flow. This enables us to consider
four distinct car-following scenarios, which are illustrated in
Table 2.

TABLE 2. Four Car-following scenarios.

In Table 2, p denote the ratio of intelligent connected
vehicles to all vehicles in a mixed traffic flow; then, the ratio
of regular vehicles to all vehicles in the mixed traffic flow
is 1 − p. When an intelligent connected vehicle is within
the range of RSU, it can obtains traffic information about
vehicles in the distance. In such situations, the critical head-
way between an intelligent connected vehicle and the regular
vehicle in front can be shortened, resulting in an increase
in the link capacity. However, when intelligent connected
vehicles are not within the range of an RSU, direct communi-
cationwith regular vehicles is not feasible. Hence, tomaintain
the safety of intelligent connected vehicles, manufacturers
often prescribe a longer safe distance, whichmeans LA > LU .
When an intelligent connected vehicle follows another intel-
ligent connected vehicle, they can exchange information
directly via V2V communication rather than V2I communi-
cation, which allows a relatively closer safe distance. On that
basis, we assume LA≥LR > LU > LC (Milanés and
Shladover [30]).

We sequentially place RSUs on the segments while con-
sidering the communication range of RSUs. Adjacent RSUs
are placed at a fixed distance from each other to prevent
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overlapping coverage and avoid wastage of resources.
We assume there is an uniform traffic flow and that RSUs
only affect the critical headway for an intelligent connected
vehicle following a regular vehicle (Li et al [22]). In this
scenario, we can divide the segment into two sub-segments
based on whether the segment falls within the communica-
tion coverage range of an RSU. Since the distances between
RSUs are fixed and only influenced by the communication
coverage range, the starting point of an RSU does not affect
the total communication coverage length of the segment.
The calculation of travel time is solely dependent on the
communication coverage length of RSUs. Therefore, the
starting point of an RSU does not impact the travel time.
Assuming that the starting point of an RSU coincides with
a node on the segment, we can easily understand the division
of the segment into two sub-segments based on whether
they fall within the communication coverage range of
an RSU.

We let dl denote the length of link l, H denote the commu-
nication range of the RSUs, xl denote the number of RSUs
installed on link l. Therefore, the length of the segment within
the communication range is xlH , and that of the segment
without the communication range is dl − xlH . Then, the
capacity of the segment without communication range can be
represented as follows (Chen et al [31]):

q1 =
vM

(1 − p)LR + p2LC + p(1 − p)LA

=
1

(1 − p)hR + p2hC + p(1 − p)hA
(1)

where vM denotes the critical speed, which does not change
regardless of whether the segment is covered by RSUs, and
hR =

LR
vM

refers to the critical time headway in corresponding

car-following conditions; the other quantities are defined sim-
ilarly. Equation (1) is used to calculate the capacity of link l.
The numerator represents the critical speed of vehicles, which
is treated as a constant in this paper. The denominator rep-
resents the average distance between vehicles, as detailed in
Table 2. Therefore, dividing the numerator by the denomina-
tor allows us to determine the maximum number of vehicles
that can pass through the link per unit of time.

Noting that capacity is distinct from density, road capacity
refers to the maximum number of vehicles that a road or
a specific road segment can handle during a specified time
period. It is typically measured in terms of vehicles per hour
(veh/h) or vehicles per day (veh/day). Road capacity repre-
sents the ability of the roadway infrastructure to efficiently
and smoothly accommodate traffic flow, ensuring optimal
utilization of the road.

Likewise, the capacity within the RSU communication
range can be represented as follows:

q2 =
vM

(1 − p)LR + p2LC + p(1 − p)LU

=
1

(1 − p)hR + p2hC + p(1 − p)hU
(2)

In order to calculate the travel time of one link, we assume
it follows Bureau of Public Road (BPR) function.

ti = ti0(1 + α(
U
Q
)β ) (3)

where ti0 denotes free-flow travel time, U denotes traffic
flow, Q denotes capacity, α and β are regression coefficients
depending on traffic condition.

By BPR function and equation (2), we can calculate the
travel time of a link l without RSU.

tl − tl =
αuβ

l xlH

v0
[((1 − p)hR + p2hC + p(1 − p)hA)β (4)

where v0 denotes the free-flow speed and ul indicates the
traffic flow on link l.

If xl RSUs are installed on link l, the whole link can be
regarded as two segments, within andwithout communication
range of RSU. Therefore, the travel time of link l is the sum
of the travel time of these two segments.

tl =
dl − xlH

v0
(1 + α(ul((1 − p)hR + p2hC + p(1 − p)hA))β )

+
xlH
v0

(1 + α(ul((1 − p)hR + p2hC + p(1 − p)hU ))β )

(5)

Back to Table 2, it can be seen that RSU only influence the
critical headway when intelligent connected vehicles follow
regular vehicles, which means the reduced travel time only
occurs within the communication range of RSU and can be
calculated as follows:

tl =
dl
v0
(1 + α(ul((1 − p)hR + p2hC + p(1 − p)hA))β )

− ((1 − p)hR + p2hC + p(1 − p)hU )β ] (6)

III. MATHEMATICAL MODEL
The model notations are defined in Table 3.

A. DETERMINISTIC MODEL
Via V2I communication, RSU can not only identify the his-
torical trajectories of intelligent connected vehicles but also
reduce the travel time on specific links by increasing the
capacity. However, in a particular link with less traffic flow,
RSU can barely improve the overall capacity of transportation
system. Deploying costly RSU on these links may cause
a waste of resources. Moreover, path flow reconstruction
imposes new requirements on RSU deployment. Therefore,
this paper focuses on balancing deployment cost and reduced
travel time based on path flow reconstruction.

The deterministic model built on this basis is as follows:

min
∑
l∈L

cxl −
γ

3600

∑
l∈L

(t l − tl) (7)

s.t.
∑
l∈L

θ
p
l xl ≥ 1∀p ∈ P (8)∑

l∈L

σ
p,p′

l xl+
∑
l∈L

ρ
p,p′

l xl ≥ 1 ∀p, p′
∈ P (9)
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TABLE 3. Set, parameters, and decision variables.

t l =
dl
v0
(1 + α(

∑
p∈P

θ
p
l up((1 − p)hR + p2hC

+ p(1 − p)hA))β ) ∀l ∈ L (10)

tl =
(dl − xlH )

v0
(1 + α(

∑
p∈P

θ
p
l up((1 − p)hR + p2hC

+ p(1 − p)hA))β ) +
xlH
v0

(1 + α(
∑
p∈P

θ
p
l up((1 − p)hR

+ p2hC + p(1 − p)hU ))β ) (11)

0 ≤ xl ≤

⌊
dl
H

⌋
, int ∀l ∈ L (12)

t l, tl ≥ 0 ∀l ∈ L (13)

where Equation (7) is the objective function, which mini-
mizes the total cost of RSU minus the value of reduced travel
time; Equation (8) ensures that for each path, at least one
link deploys a RSU; Equation (9) ensures that for arbitrary
two paths p and p′, at least one RSU is installed in the non-
shared link l (σ p,p

′

l = 1) or on a non-shared link before link l

(ρp,p
′

l = 1); Equations (8) and (9) express the precondi-
tions of fully path flow reconstruction (Salari et al [26]);
To address the difficulty in understanding the parameters
involved in equation (9), this paper introduces two methods
for distinguishing different paths in Section II Description,
specifically in A. Path Flow Reconstruction, through illus-
trative examples. The content of this section contributes
to a better comprehension of equation (9). Equation (10)
calculates the link travel time without RSU; Equation (11)
calculates the link travel time considering the deployment of
RSU; Equations (12) ensures that the communication range
of RSUs is not redundant and (13) ensure that the link travel
time is non-negative.

B. TWO-STAGE STOCHASTIC PROGRAMMING MODEL
For a given origin-destination (OD) pair, there are multiple
paths available for selection and the uncertainty comes from
the path flow volume, which may be variant for a determinis-
tic path combination. Although we can utilize roadside units
to identify different paths through vehicle data, drivers have
the possibility to change their original path and opt for an
alternative one during their journey because of the dynamic
traffic environment. In such cases, the roadside units are still
capable of distinguishing between different paths and there
is no uncertainty with historical trajectories identification.
However, the traffic volume for each path changes, thereby
affecting the traffic flow on the links. Due to the variable
nature of the path flow, it becomes challenging to predict
the definite benefits derived from the installation of RSUs
by equation (6). To better describe and address the path flow
uncertainty, this paper further builds a two-stage stochastic
programming model for RSU functions.

The two-stage mathematical optimization model is
expressed as follows:

min
∑
l∈L

cxl + Eω [Q(x, ω)] (14)
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Such that (7)-(10) and (12)

Q(x, ω) = min−γ (
∑
l∈L

t l(ω) − tl(ω)) (15)

t l(ω) =
dl
v0
(1 + α(

∑
p∈P

θ
p
l up(ω)((1 − p)hR + p2hC

+ p(1 − p)hA))β ) ∀l ∈ L ∀ω ∈ � (16)

tl(ω) =
(dl − xlH )

v0
(1 + α(

∑
p∈P

θ
p
l up(ω)((1 − p)hR + p2hC

+ p(1 − p)hA))β )

+
xlH
v0

(1 + α(
∑
p∈P

θ
p
l up(ω)((1 − p)hR + p2hC

+ p(1 − p)hU ))β ) ∀l ∈ L ∀ω ∈ � (17)
t l(ω), tl(ω) ≥ 0 ∀l ∈ L ∀ω ∈ � (18)

In this two-stage stochastic programming model, the first
stage, in which integer optimization is performed, is designed
to minimize the total RSU installation cost in path flow
reconstruction, and the second stage is built for linear pro-
gramming. Under any scenario ω, after the model determines
the RSU locations in the first stage, the model calculates the
reduced vehicle travel time and then converts it to benefits
in the second stage. In particular, the compressed expression
form Eω[Q(x, ω)] of Equation (14) is a recourse function,
which addresses the path flow uncertainty by calculating
expectations for different scenarios ω.

Equation (14) represents the minimized total RSU installa-
tion cost from the first stage of the model and the expectation
of the objective function value from the second stage of the
model; Equation (15) provides the shortened vehicle travel
time after maximizing the RSU location decision from the
first stage of the model, and to be formally consistent with
the first stage, the objective function is multiplied by (−1)
to transform the maximization problem into a minimization
problem; Equation (16) represents the vehicle travel time in
the original road segment under scenario ω; Equation (17)
represents the vehicle travel time under scenario ω after
installing the RSUs; and Equation (18) ensures that the vehi-
cle travel time is nonnegative.

IV. SOLUTION ALGORITHM
This paper employs the L-shaped algorithm [32] to solve the
two-stage stochastic programming model presented above.
During the solving process, SP denotes the subproblem, and
MP refers to the master problem. For simplicity, this paper
uses a simplified mathematical version to represent SP:

Q(xv, ω) = min qT y(ω) (19)

s.t.Wy(ω) = h(ω) − T(ω)xv (20)

y(ω) ≥ 0 (21)

Theorem 1: For any feasible solution x of the master prob-
lem, at least one feasible solution y can be found in every
subproblem. Thus, it is unnecessary to add a feasibility cut to
the master problem.

Proof 1: t̄l(ω) in the subproblem is independent of x. The
road length is dl > 0; therefore, t̄l(ω) > 0. If any feasible
solution x of the master problem satisfies constraints (7) and
(10), then dl − xlH ≥ 0. In the subproblem, dl − xlH ≥ 0;
therefore, for any feasible solution x, feasible t̄l(ω) and tl(ω)
can always be found in the subproblem. It is unnecessary to
add a feasibility cut.
Q(xv, ω) = maxπT (ω)(h(ω) − T(ω)xv) In the classic

L-shaped algorithm, the dual form of the subproblem repre-
sented by DP is required. According to strong duality from
duality theory, the optimal value of the dual problem is the
same as the optimal value of the original problem. Hence,
the objective function is still represented by Q(x, ω). DP is
expressed as follows:

πT (ω)W ≤ q (22)

s.t.∀ω ∈ � (23)

π (ω)free (24)

The form of MP is

min cT x + θ (25)

s.t. Ax = b (26)

Eℓx + θ ≥ eℓ, ℓ = 1, . . . . . . , s (27)

xl ≥ 0, int (28)

where constraint (27) is called an optimality cut, which can
be generated from the solutions of SP and DP. The generation
method is as follows:

Eℓ =

∑
ω∈�

p(ω) · πT (ω)T(ω) (29)

el =

∑
ω∈�

p(ω)πT (ω)h(ω) (30)

π (ω) in constraints (22)-(24) and constraints (29)-(30) is
the optimal solution of DP. Thus, to generate an optimal-
ity cut, xv must be specified so that corresponding optimal
solution can be found for any subproblem. According to
Theorem 1, an optimality cut will be definitely generated.

In MP, an artificial variable θ is used to replace the
recourse function Eω[Q(x, ω)], and the constraint on the arti-
ficial variable θ is strengthened by adding an optimality cut.
The pseudocode of the L-shaped algorithm is presented in
Algorithm 1.

V. NUMERICAL EXPERIMENT
To analyze the performance of the model, this paper uses
the parallel highway network and Nguyen-Dupuis network,
which are frequently used in studies to conduct experiments.

In numerical experiments, we analyze the following items:
1) Effects of the value of time and the unit price of RSU

on objective value and total number of RSU.
2) Effect of the unit price of RSU on the deployment

scheme.
3) Effect of the penetration rate of intelligent connected

vehicles on objective value.
4) Effects of the number of scenarios on objective value,

the total number of RSU, and the deployment scheme.
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Algorithm 1 L-Shaped Algorithm
1: We define r = s = v = 0.
2: We set v = v + 1. The master problem (MP) is solved to
obtain the optimal solution (xv, θv).
3: If there is no constraint (27), then θv is set to −∞, and it
is not used to calculate xv.
4: For ∀ω ∈ �, the dual problem (DP) is solved to obtain the
optimal solution under scenario ω, namely, πv(ω).
5: Es+1 and es+1 are calculated via Equations (29) and (30).
6: We set wv = es+1 − Es+1xv. If θv ≥ ωv, the algorithm
is terminated, and the optimal solution xv is obtained; other-
wise, we set s = s + 1, impose constraint (27) and return to
step 2.

TABLE 4. The setting of parameters.

Experiments are conducted on both networks for Prob-
lems 1 and 2. The Problem 3, the effect of penetration rate
of intelligent connected vehicles, is relatively easy to ana-
lyze, so we just conduct the experiment on parallel highway
network. As for Problem 4, due to the small size of the
parallel highway network, the experiment is only conducted
on the larger network, namely, the Nguyen-Dupuis network.
In experiments, we refer to the settings of Li et al [22] for the
parameters associated with vehicle travel time, as shown in
Table 4. In the BPR (Bureau of Public Roads) function, the
values of α and β are often set as α = 0.5 and β = 4. These
values are commonly used and have been found to provide
a reasonable approximation of traffic flow behavior in many
transportation studies. However, it’s important to note that the
specific values of α and β can vary depending on the specific
characteristics of the road network and the study context.
Adjustments to these values may be made based on empirical
observations, calibration, or the specific requirements of the
analysis being conducted.

A. EXPERIMENTAL DESIGN FOR THE PARALLEL
HIGHWAY NETWORK
The Parallel Highway network contains a total of 9 nodes
and 14 links, as shown in Figure 4. The length of links in
the network is presented in Table 5.

FIGURE 3. Parallel highway network.

TABLE 5. Length of links in the parallel highway network.

FIGURE 4. Results for parallel highway network: (a) Optimal objective
value; (b) Optimal number of RSU.

The information of OD pairs and paths for the Parallel
Highway network is shown in Table 6 below (Fu [24] et al.).
It is noteworthy that the paths presented in Table 5 are gen-
erated by k-shortest path algorithm with k=4, so there exists
some other path, e.g. 2-8-23-10, not appearing in correspond-
ing OD flow.

1) SENSITIVITY ANALYSIS OF THE VALUE OF TIME AND THE
UNIT PRICE OF RSU IN PARALLEL HIGHWAY NETWORK
This section examines the effect of value of time (γ ) and
unit price of RSU(c) on the value of the objective func-
tion, as shown in Figure 4(a). Numerically, the step in both
experiments is 10% of initial value, respectively 10000$ for
unit price of RSU and 50$/h for value of time. As value of
time increases, the objective function value decreases; as unit
price of RSU decreases, the objective function value also
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TABLE 6. Paths in the parallel highway network.

decreases. When unit price of RSU is high or value of time is
low, the relationships between these two factor and objective
value are both approximately linear. However, as unit price
of RSU decreases and value of time increases, the objective
value decreases substantially, which implies the deployment
scheme of RSU changes greatly.

We further analyze the effect of value of time (γ ) and unit
price of RSU (c) on the total number of RSU, as shown in
Figure 4(b). The trend is the same as the effect of value of time
and unit price of RSU on the objective value. When value of
time is high and unit price of RSU is low, the total number
of RSU goes up drastically. In that cases, the deployment
scheme of RSU changes which also reflects on the objective
value in Figure 4(a).

2) NUMBER OF RSU ON EACH LINK IN THE PARALLEL
HIGHWAY NETWORK
Unit price of RSU affects the number of RSU installed on
different links, so we present the deployment scheme of
RSU in Figure 5. Overall, as unit price of RSU increases
from 10000$ to 20000$, the number of RSU on most
links decreases. But it can be seen that RSUs are always
installed on link 1, 9, 12, 13 whatever the unit price
of RSU.

Recalling the intention of installing RSU, we would like
to not only achieve the fully path flow reconstruction but
also keep balance between deployment cost and value of
reduced travel time. With high unit price of RSU, benefits
of time cannot cover the expensive deployment cost, which
implies the remained RSUs are used for fully path flow
reconstruction.

FIGURE 5. Number of RSU on different links in parallel highway network
with γ = 50$/h.

3) EFFECT OF PENETRATION RATE OF INTELLIGENT
CONNECTED VEHICLES IN THE PARALLEL
HIGHWAY NETWORK
For deterministic model, the penetration rate of intelligent
connected vehicles influence the objective value, rather than
path flow reconstruction. Thus, with equation (6), we can
obtain the derivative of objective function with respective to
p on the basis of fixed xl .

f (p) = λβ[(2(hC − hA)p+ hA − hR)((1 − p)hR + p2hC
+ p(1 − p)hA)β−1

− (2(hC − hU )p+ hU − hR)((1 − p)hR + p2hC
+ p(1 − p)hU )β−1] (31)

where λ is negative and denotes the other parameters not
corresponding to p.

As p increase from 0 to 1, if f (p) < 0 the objective value
decrease and if f (p) > 0 the objective value increase. Figure 6
has proven that to some extent.

FIGURE 6. Objective Values For Different Penetration Rate of Intelligent
Connected Vehicles in Parallel Highway Network with c = 10000$ and
γ = 50$/h.

However the deployment scheme of RSU is not necessarily
fixed, which means xl maybe not remains. As the penetration
rate increase, the total number of RSU is shown in Figure 7.
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FIGURE 7. Total Number of RSU For Different Penetration Rate of
Intelligent Connected Vehicles in Parallel Highway Network with
c = 10000$ and γ = 50$/h.

FIGURE 8. Nguyen-Dupuis network.

TABLE 7. Length of links in the nguyen-dupuis network.

It might be confusing that when the penetration rate range
from 0.2 to 0.5, the objective values, deployment cost minus
value of reduced travel time, is relatively low. Recalling the

FIGURE 9. Objective value for different sizes of scenarios.

FIGURE 10. Number of RSU in different sizes of scenarios.

function of RSU discussed in Section II, only in the scenario
where Intelligent connected vehicles follow regular vehicles,
the critical headway can be reduced within communication
range of RSU, which consequently brings reduced travel
time. Therefore, a decrease in objective value depends on
mixed traffic flow. For RSU, it is noteworthy that the function
of reducing travel time is discussed in mixed traffic flow.
When the penetration rate is close to 1, there exists other
functions playing important roles, which otherwise is beyond
the scope of this paper.

B. NUMERICAL EXPERIMENTAL FOR THE
NGUYEN-DUPUIS NETWORK
The Nguyen-Dupuis network contains a total of 13 nodes
and 38 links, as shown in Figure 8. The dark node is the
start or end point of the OD flows, and the white node is the
intermediate node of the OD flows. And for the generation of
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FIGURE 11. Number of RSU on different links under different unit price of
RSU with γ = 50$/h.

paths in OD flows, the k-shortest path algorithm is employed.
In this experiment, k is set to be 4, which means that each OD
flow has at most four paths. The length of links in the network
is presented in Table 7. Considering the scale of Nguyen-
Dupuis network, writing all Path IDs will occupy too much
space, so that content is omitted.

1) INFLUENCE ON THE OBJECTIVE VALUE IN THE
NGUYEN-DUPUIS NETWORK
This section analyzes the influence of different parameters in
the N-D network and the size of scenarios on objective value,
presenting the trend of the objective function value under
different sizes of scenarios, as shown in Figure 9. The effect
of unit price of RSU and value of time on objective value on
N-D network is similar to experiments on P-H network, so it
is not repeated in this experiment. Considering the impact of
the size of scenarios on the objective value, the value of time
is set to take the range of 15 to 30 with a step of 1.5; the
unit price of RSU was made to take the range of 10000 to
20000 with a step of 1000. From Figure 9, it shows that
different sizes of scenarios have less impact on the trend of
objective value.

2) INFLUENCE ON THE TOTAL NUMBER OF RSU IN THE
NGUYEN-DUPUIS NETWORK
The influence of different parameters and size of scenarios
on the total number of RSUs in the N-D network is shown
in Figure 10. When value of time is small and the unit price

FIGURE 12. Number of RSU on different links under different sizes of
scenarios.

of RSU is large, the total number of RSUs is not sensitive to
them; As value of time increase or unit price of RSU decrease,
a surge in total number of RSU appears. A reason for that
is that there are several links with large traffic flow. When
the benefits from reduced travel time of these links surpass
the cost of an additional RSU, RSUs are recommended to be
installed until the communication range of RSU on these links
is large enough.

As for the size of scenarios, it has obvious influence on
total number of RSU when the unit price of RSU is low and
value of time is high. However, the size of scenarios doesn’t
change the trend of total number of RSU.

3) INFLUENCE ON DEPLOYMENT SCHEME OF RSU IN
THE NGUYEN-DUPUIS NETWORK
The number of RSU on each link in the N-D network is shown
in Figure 11. It is expected that as the unit price of RSU
increases, the total number of RSU reduces. However, there
exists some links always with at least one RSU whatever the
unit price of RSU, e.g. link 2, which means these links play
an important role in path flow reconstruction. Furthermore,
when the cost of additional RSU far outweigh the benefit from
reduced travel time, this problem degenerate to achieve fully
path flow reconstruction with minimum number of RSU.
The length of links also restrict the installation of RSU.
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Considering the communication range of RSU, it is a waste
if too many RSUs are put on the same link.

To explore the influence of the size of scenarios on each
links, we set the unit price of RSU to 10000$, and the value
of time to 50$/h, and the size of scenarios from 20 to 50 with
step of 10, as shown in Figure 12. It shows that the number
of RSU on each link is less variable. As the size of scenarios
increases, the number of RSU on some links grows and tends
to be stable. The reason would be that the traffic flow on some
links increases in an average sense when considering more
OD flows, which leads to more RSUs.

VI. CONCLUSION
The cooperative vehicle infrastructure system in the IoV
environment provides a new solution to the problem of path
flow reconstruction. Based on the ability of RSU to obtain
historical trajectories of passing vehicles, this paper proposes
an RSU deployment optimization model for fully path flow
reconstruction. In addition, RSU can exchange information
with intelligent connected vehicles to shorten the security
distance from front cars, which consequently enlarge the
road capacity and finally reduce the average travel time.
On this basis, considering the uncertainty of path traffic flow,
a two-stage stochastic model is built to balance the deploy-
ment cost of RSU and the value of reduced travel time in
transportation system.

The achievements and contributions of this paper are as
follows: (1) The role of RSU in path flow reconstruction and
the balance between deployment cost and value of reduced
travel time are fully considered. (2) The uncertainty in path
flow are integrated into the calculation of average travel
time. Consequently a two-stage stochastic model is proposed.
(3) The importance of each links on path flow reconstruction
can be identified. (4) Expanding the size of scenarios has
little impact on experimental results, which indicating that
this model has good applicability.

The following considerations should be taken into account
when applying the findings of this paper to real-world trans-
portation networks:

(1)Model Verification: To ensure the accuracy and reliabil-
ity of our model, it is essential to establish strong cooperation
with local governments or traffic departments in order to
obtain the necessary data. The parameters required for the
model include the length of different links, path combinations
for specific OD pairs, free-flow speed of vehicles, the traffic
condition parameter in the BPR function, the proportion of
intelligent connected vehicles in the traffic flow, and the
path flow during various time periods. These critical data
will be utilized to run the model and conduct a compre-
hensive analysis of the deployment of roadside units. The
major output of the model is to determine where to install
the RSUs. The primary objective of this analysis is to verify
whether the reduced travel time predicted by the model aligns
with real-world observations. By comparing the model’s

outcomes with actual travel time measurements, we can
assess the model’s effectiveness and its potential for practical
application.

(2) Promotion of Public Policies: As this research focuses
on the installation of one or more roadside units on road
sections, effective communication with the government is
crucial to convey the research findings and the potential
benefits it may offer. The stochastic model provides two
key aspects in its outputs. Firstly, the model presents a
well-defined deployment strategy for RSUs, highlighting the
recommended locations and quantities for optimal installa-
tions across different links. This strategy aims to maximize
the efficiency and effectiveness of RSU deployment. Sec-
ondly, the model also predicts the extent of reduced travel
time in different links if the suggested RSUs are installed.
This reduction in travel time signifies the positive impact
that RSUs can have on enhancing transportation efficiency.
By effectively conveying these two aspects, we can fos-
ter understanding and support from the government, paving
the way for the adoption of public policies that promote
the widespread implementation of roadside units, thereby
improving overall transportation infrastructure and ensuring
a more seamless travel experience for the public.

This paper can be enhanced by addressing the following
aspects:

(1) Enhanced Path Randomness: To further enrich the
study, it is essential to consider the incorporation of more
sophisticated randomness in different paths within the OD
flow. Analyzing the impact of this randomness on flow
redistribution will provide a deeper understanding of traffic
patterns and aid in optimizing traffic management strategies.

(2) Mixed Deployment Strategy: To maximize the effec-
tiveness of traffic sensing, a mixed deployment strategy
involving different types of traffic sensors should be explored.
This approach can provide comprehensive and diverse
data inputs, enabling more accurate and robust traffic
analysis.

(3) I2I Communication Technologies: The inclusion of
new technologies like I2I communication (communication
between RSU and RSU) is worth exploring. Analyzing
and incorporating these advancements into the mathematical
models will enhance the capabilities of the proposed system,
leading to more efficient and reliable traffic management
solutions.

(4) High-Efficiency Algorithms: For large-scale networks,
the development of high-efficient algorithms is paramount.
These algorithms will ensure that the proposed models can
handle extensive data sets and complex traffic scenarios with-
out compromising computational efficiency.

By addressing these aspects, the paper will offer a more
comprehensive and sophisticated approach, ultimately con-
tributing to the advancement of traffic management systems
and fostering more efficient and sustainable transportation
networks.
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