
Received 27 August 2023, accepted 4 October 2023, date of publication 11 October 2023, date of current version 16 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3323273

TAKDSR: Teacher Assistant Knowledge
Distillation Framework for Graphics
Image Super-Resolution
MIN YOON , SEUNGHYUN LEE , (Associate Member, IEEE),
AND BYUNG CHEOL SONG , (Senior Member, IEEE)
Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea

Corresponding author: Byung Cheol Song (bcsong@inha.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT)
under Grant 2022R1A2C2010095 and Grant 2022R1A4A1033549; in part by the Institute of Information and Communications
Technology Planning and Evaluation (IITP) Grant funded by the Korean Government (MSIT), Artificial Intelligence Convergence
Innovation Human Resources Development, Inha University, under Grant RS-2022-00155915; and in part by the Development of
High-Definition CIS and High-Speed DVS Enabled AI SoC for Object and Motion Recognition under Grant 2022-0-00955.

ABSTRACT This paper presents a framework for effectively applying knowledge distillation (KD) to
super-resolution (SR) tasks for computer graphics (CG) images. Specifically, we propose TAKDSR, a KD
framework for SR using a teacher assistant (TA) network. Recently, the performance of SR models has
improved dramatically thanks to the development of deep learning. SR models have evolved into a form that
requires a considerable amount of computation and parameters while adopting a complex neural network
structure to improve performance. However, it is difficult to utilize conventional high-performance SR
models for real-time up-scaling in CG applications requiring high resolution and high frame rate. To solve
this, we employ an approach that applies KD to a lightweight SR model. At this time, if the high-resolution
(HR) image is used as input for the teacher to show superior performance to the student, a large performance
difference occurs between the two due to the excessive performance of the teacher. As a result, the teacher’s
knowledge has a significantly hard and complex nature, and when transferred to the student, the effect of
KD can be rather weakened. Therefore, we adopt a TA network to facilitate the propagation of knowledge
between teacher and student. At the same time, the distribution of compact features (CF), which are the
decoder input of the teacher, is discretized so that it is compatible with the input distribution of the student,
enabling effective KD. Experimental results demonstrate the proposed TAKDSR significantly improves the
performance of a given SR model on CG image datasets.

INDEX TERMS Convolutional neural networks, graphics image, knowledge distillation, single image
super-resolution.

I. INTRODUCTION
Single image super-resolution (SISR) is a computer vision
task that aims to restore a high-resolution (HR) image from
a given low-resolution (LR) image. It is useful because it
can be combined with various tasks such as medical imaging
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and object detection. Meanwhile, SISR is a typical ill-
posed problem in which multiple HR images can be restored
from the same LR image. Thus, numerous studies have been
conducted to solve this problem for a long time.

In early studies, methods based on interpolation or
reconstruction were mainstream. But, recent SISR stud-
ies are actively utilizing deep learning. Since SRCNN
[1], the first deep learning-based SISR using convolutional
neural networks (CNNs), was introduced, SR techniques
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(e.g. VDSR [2], EDSR [3], SAN [4], HGSRCNN [5])
that introduced wider and deeper CNN models have been
developed. Actually, they achieved groundbreaking quan-
titative/qualitative performance improvements compared to
SRCNN.

On the other hand, industries utilizing computer graph-
ics (CG) images such as virtual reality and metaverse are
rapidly developing, and as a result, the range of utilization
of CG images is gradually expanding. In addition, with the
development of digital display technology, the needs for ultra-
high resolution images are increasing. However, in order
to produce ultra-high-resolution CG (moving) images, huge
amounts of computation, time, and labor are required. The
computing power of the hardware is also inevitably consider-
able. Thus, applying SISR to low-resolution CG images can
be considered as a reasonable alternative to solve the problem
of insufficient hardware performance and enormous cost.
In fact, NVIDIA DLSS [6] and AMD FSR [7] are known as
similar approaches adopted by the industry.

It is worth noting that real-time operation is essential
in a virtual reality or metaverse environment. This means
that SISR for CG images must pursue real-time inference.
However, most deep learning-based SISR models have been
developed so that they maximize restoration ability rather
than speed. As a result, existing SISR models require not
only a complex structure but also a significant amount of
computation and parameter scale. That is, conventional SISR
approaches generally have difficulty satisfying the real-time
inference constraint. In order to maintain high performance
while utilizing a small amount of computation and param-
eters, lightweight SR models such as IMDN [8], PAN [9],
RFDN [10], and RLFN [11] were proposed. However, the
above methods have a critical issue in that performance
highly depends on the structural specification.

In order to achieve lightweighting independently of the SR
model structure, attempts to apply universal lightweighting
techniques such as quantization and knowledge distillation
(KD) to SR models have recently been reported. For exam-
ple, PAMS [12], DAQ [13], and FQSR [14] are cases in
which quantization is grafted onto SR. However, quantization
has a fundamental disadvantage of being dependent on spe-
cific hardware. Therefore, we have focused on applying KD
(which is less dependent on hardware) to SR models. SRKD
[15], PISR [16], JDSR [17], and LSFD [40] are the examples
that apply KD to the SR domain. As an initial study case,
SRKD used feature distillation to learn the feature distribu-
tion of the teacher model so that the student model resembles
it. PISR, published after SRKD, used the high-frequency
information of the HR image, which is the ground truth (GT),
as privileged information to ensure that the teacher model had
superior performance than the student model. However, this
made the performance of the teacher model increase exces-
sively, resulting in a phenomenon in which the performance
gap between the teacher and student models increased, which
rather limited the performance improvement.

In fact, [18], where KD is applied to the image clas-
sification task, mentioned a problem that may arise when
the performance of the teacher model is excessively higher
than that of the student model. First, the teacher model has
complex knowledge, so even if the student model receives
the teacher’s knowledge, it does not have sufficient ability to
imitate the teacher. In addition, as the knowledge matched by
the student model approaches the hard target, the effect of KD
is weakened, and as a result, the performance of the student
model may not improve. To solve this problem, [18] pro-
posed TAKD in which the teacher assistant (TA) model was
embedded. Here, TA model has intermediate performance
between the teacher and student models, but has less complex
knowledge and soft target-type knowledge than the teacher
model. By adding an intermediate stage to the knowledge
transfer process from teacher to student, the student model
can receive more usable knowledge from the TA. DGKD
[19], which appeared after TAKD, adopted a strategy of
densely guiding teacher knowledge and the knowledge of all
TA models, rather than passing only the knowledge of TA,
which is the intermediately preceding step, when transferring
knowledge to the student model.

As mentioned above, we observed that the performance
gap between the teacher and student models increased as
the performance of the PISR teacher model increased exces-
sively, and experimentally analyzed that this tendency rather
limited the performance improvement. To solve this problem,
we present a new KD-based SR model by introducing the
TA model and dense guide strategy which were proposed in
TAKD and DGKD, respectively. As far as we know, the pro-
posed framework is the first attempt to improve performance
by applying the TA concept to a KD-based SRmodel. In addi-
tion, we experimentally found from the PISR framework that
the knowledge generated from the teacher model may not be
of full help to the student model because the compact feature
(CF), which is the input of the decoder of the teacher model,
and the LR image, which is the input of the student model,
have different distribution characteristics. To alleviate this
problem, discretization is applied so that the CF has a discrete
distribution like the LR image, and the input of the TA model
is defined using the discretized CF.

Contributions of this paper are summarized as follows:
• In order to compensate for the large performance gap
between the teacher and student models, a teacher assis-
tant model specialized for the SR task is introduced. The
teacher assistantmodel is positioned between the teacher
and the student to help the teacher’s knowledge transfer
smoothly to the student.

• A distribution transformation process is added so that
the components of the teacher model’s compact features
have the same discrete distribution as the LR image,
which is the input of the student model. In the end,
the student model utilizes the knowledge of the teacher
model more effectively, resulting in improved SR
performance.
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The structure of this paper is as follows: Section II intro-
duces the SISRmodel, lightweight SRmodel, KD techniques
in the SR domain, and existing studies on KD using TA.
Section III describes the details of the proposed framework.
Section IV provides various experimental results and ablation
studies.

II. RELATED WORKS
A. SINGLE IMAGE SUPER-RESOLUTION MODELS
In the meantime, most SISR studies have been conducted
on natural images. SRCNN [1], which is an early study of
deep learning-based SISR, achieved significant performance
improvement compared to conventional SISR approaches by
utilizing three convolution layers and ReLU. Since then,
methods utilizing residual learning or deeper CNN mod-
els with increased number of layers have been developed,
such as very deep super-resolution network (VDSR) [2] and
enhanced deep super-resolution network (EDSR) [3]. SISR
based attention mechanism like second-order attention net-
work (SAN) [4] has also been reported. Most recently, SISR
models using a vision transformer structure, such as image
restoration using swin transformer (SwinIR) [20] or hybrid
attention transformer (HAT) [21], have appeared.

B. LIGHTWEIGHT SUPER-RESOLUTION MODELS
On the other hand, so-called lightweight SR models, aim-
ing to reduce the number of parameters and FLOPs while
maintaining performance, is actively being studied [8], [9],
[10], [11], [22], [23], [37], [38], [39]. For instance, FSR-
CNN [22] utilized deconvolution layers to achieve faster
processing speed compared to SRCNN. Cascading resid-
ual network-mobile (CARN-M) [23], based on a cascading
network architecture with techniques like group convolu-
tion, is known for being a lightweight SR model with high
accuracy. Information multi-distillation network (IMDN) [8]
employs a progressive refinement module to hierarchically
extract features step by step. Pixel attention network (PAN)
[9] is a model that utilizes an effective pixel attention
scheme for restoration. Residual feature distillation network
(RFDN) [10] refines the structure of IMDN. In other words,
RFDN replaces IMDN’s information distillation mechanism
(IDM) with feature distillation connections and employs
shallow residual blocks, achieving a good balance between
lightweight cost compared to IMDN and high performance.
Residual local feature network (RLFN) [11] simplifies the
feature aggregation process by using three CNN models,
thus enhancing the balance between the performance and
inference time of the RFDN model.

Note that all the afore-mentioned techniques focused on
natural images. As far as we know, RenderSR [24] is the
only SISR algorithm targeting CG images. RenderSR is
a lightweight SR model designed for upscaling rendered
images in mobile game environments, consisting of three
convolutional layers and a sharpening filter. RenderSR can
be called a so-called bandwidth aware SR network that

adjusts the number of channels of the model according to
the buffer size of the layer, which is a challenging factor in
the bandwidth of mobile SoC. However, as mentioned above,
conventional lightweight SR models pursue weight reduction
through sophisticated structural design.

C. KNOWLEDGE DISTILLATION IN SR DOMAIN
Knowledge distillation is a concept first proposed by
Buciluă et al. [26] and Ba et al. [27] and then made famous
by Hinton et al. [25]. Thanks to the advantage of being
widely applied to various computer vision tasks such as image
classification and semantic segmentation, KD has become
the most active topic in the field of model compression. The
goal of KD is to extract knowledge from a large, pre-trained
teacher model and transfer it to a small, untrained student
model so that the student model emulates the teacher model.
So KD is a technique for condensing deeper and larger model
knowledge into a single computationally efficient neural
network.

Since Hinton et al.’s paper [25], KD has evolved into
a method of transferring knowledge by using logit, which
corresponds to predicted probability, as a soft target [18],
[28], [29], or by using an intermediate feature of a model to
directly transfer [32], [33], or by using correlation [30], [31].

The first study case applying KD to the SR domain is
SRKD [15]. Among the afore-mentioned distillation meth-
ods, SRKD adopted a distillation strategy that directly
transfers features. That is, by focusing on the feature distri-
bution of the model, the student model mimics the features of
the teacher model.

After SRKD, PISR [16] and JDSR [17] were developed.
PISR uses the high-frequency components of the HR image
as privileged information to generate a high-performance
teacher model, and then transfers knowledge from the teacher
model to the student model by measuring the feature differ-
ence between the teacher and studentmodels in an embedding
space with Gaussian or Laplacian distribution. However,
as mentioned above, in the case of PISR, as the performance
of the teacher model is considerably higher than that of
the student, the knowledge of the teacher model is exces-
sively complicated, and KD does not operate properly. JDSR
improved the internal representation of the SRmodel through
mutual learning and self-distillation using a peer model.
Nevertheless, JDSR showed performance improvement sim-
ilar to PISR. Therefore, we adopt the PISR framework as a
benchmark KD-based SR technique.

D. TA-BASED KNOWLEDGE DISTILLATION
In order to compensate for the large performance gap between
teacher and student models, a methodology for adding a
teacher assistant (TA) model with medium size and medium
performance has been developed in the field of image classi-
fication. TAKD [18] is the first introduction of the TA model.
[18] presented the evidence that TA model helps improve
performance and analyzed the effect of TA configuration on
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FIGURE 1. Overview of the proposed TAKDSR framework.

performance. Beyond TAKD, which had a single TA model
due to memory limitations, DGKD [19] expanded the number
of TA models to two or more. In addition, to solve the
error avalanche problem of TAKD, they proposed a densely-
guided method using dense connection when transferring the
knowledge of the teacher and TAmodels to the studentmodel,
resulting in higher performance improvement.

III. PROPOSED METHOD
This paper tackles two critical problems in the process of
applying KD to the SR task. First, PISR, which is the
representative SOTA algorithm using KD, suffers from an
excessively complex problem in order for the knowledge

of the teacher model to properly propagate to the student
model due to the large performance difference between the
teacher model and the student model, as mentioned above.
Second, the difference in distribution characteristics between
the compact feature of the teacher model and the LR image
of the student model also hinders the smooth transfer of
knowledge.

As a solution to the first problem, we propose a framework
that mitigates the performance gap between the two mod-
els by inserting a teacher assistant (TA) model between the
teacher model and the student model. A solution to the second
problem is the discretization of the CF of the teacher model.
This process makes the difference in the characteristics of the
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inputs of the two models mitigate, which eventually leads to
smooth knowledge transfer.

Figure 1 shows the framework of knowledge distillation-
based SR using TA (TAKDSR). The TAKDSR framework
consists of teacher, TA and student models. The teacher
model has an hourglass structure composed of an encoder
and a decoder. Note that the CF of the teacher model is
generated by the discretization process. In addition, the TA
model and the student model have a structure in which only
a decoder exists without an encoder and are designed to have
an appropriately reduced number of blocks compared to the
decoder of the teacher model. This allows the TA model to
have the effect of performance control and induces a fast
inference speed of the student model.

A. DETAILS OF THE PROPOSED TAKDSR
In the PISR framework, the teacher model receives the HR
image (Y) corresponding to GT as input so that the teacher
model has superior performance than the student. Then,
the CF

(
X̂T

)
is generated by an encoder

(
ET

)
. And the

decoder (DT) receives the CF and outputs a super-resolved
image

(
ŶT

)
. TAKDSR has two major differences from

PISR. First, the TA model is added between the teacher and
student models, and the second is to transform the distribu-
tion characteristics of CF. Figure 1 describes the proposed
TAKDSR in detail.

TAKDSR’s teacher model consists of an encoder
(
ET

)
and

a decoder (DT). ET is a CNN model composed of strided
convolutional layers with a stride of s and skip connections.
Here, s means the scale factor of SR. As a DT , various
backbone SRmodels can be employed. In this paper, PAN [9],
RFDN [10], and RLFN [11] known as lightweight SRmodels
are adopted as decoders. For example, RLFN was used as a
decoder in Figure 1. Note that the so-called discretization is
applied to CF

(
X̂T

)
, i.e., the output ofET . Let the discretized

CF be X̂ ′
T
. The purpose of discretization is to ensure that

the LR image and CF of the student model have similar
characteristics. It is discussed in detail in Section III-B, and
experimental evidence is given in Section IV.
The specific process of discretization is as follows: First,

the range of the CF components is limited by applying the
clipping operation to X̂T

. That is, by clipping to [0, 255],
the CF components have the same range as the LR image.
Then, as shown in Eq. (1), they are transformed into integers
through rounding.

X̂ ′
T

= ⌊⟨X̂ ′
T
, 0, 255⟩⌉ (1)

where

X̂T
= ET (Y) (2)

⟨⟩ means clipping operation, and ⌊⌉ means round operation.
As a result, the final output ŶT

of the teacher model is

generated as follows.

ŶT
= DT

(
X̂ ′

T
)

(3)

The TA model of TAKDSR is located between the teacher
model and the student model as shown in Figure 1. It plays
a role in ensuring that the teacher’s knowledge is properly
propagated to the student. Note that the TA model has mixed
inputs

(
X̃

)
. The mixed input was adjusted so that the per-

formance of the TA model is close to the middle of the
teacher and student models. This follows the analysis of [18],
where TAKD was proposed. That is, [18] experimentally
showed that the performance of the student model is best
when a TA model with performance corresponding to the
middle of the teacher and student models is given. We also
obtained similar experimental results, which are given in the
ablation study in Section IV. Specifically, the mixed input

is a weighted sum of X̂ ′
T
generated in the learning process

of the teacher model and the input X of the student model
as in Eq. (4).

X̃ = λ1 · X̂ ′
T

+ λ2 · X (4)

where λ1 and λ2 are hyperparameters. Since they experimen-
tally showed the best performance at 0.3 and 0.7, respectively,
the mixed input set as such was used. The TA decoder
mode has a medium size. That is, the number of blocks
was reduced by half compared to the decoder of the teacher
model. Here, the decoder model size was determined for
the same reason as the mixed input design. Meanwhile,
the number of TA networks in TAKDSR can be one or
more, but in this paper, the number of TAs is fixed to one
as shown in Figure 1. The related ablation study is given
in Section IV.
Note that TAKDSR’s student model is a small size model

with the number of blocks limited to one. This enables very
fast inference speed. Unlike the student model of PISR, the
reason why the size of the student model can be drastically
reduced is due to the structure using the TAmodel. We exper-
imentally confirmed that reliable performance was achieved
even when the number of blocks of the student model was
reduced to one.

B. CONSIDERATION ON DISCRETIZED CF
When learning the teacher model in the PISR framework,
CF (X̂T

) is used as the input of the decoder corresponding
to the backbone SR model. CF means the result generated
by passing the HR image (Y) through the encoder (ET),
and has the same size as the LR image (X) but contains
the high-frequency information of the HR image. Here, the
components of CF are continuous values and have a cor-
responding distribution. On the other hand, the LR image,
which is the input of the student model, has an inherently dis-
crete distribution. In summary, the teacher and studentmodels
of PISR generate knowledge from inputs of continuous and
discrete distributions, respectively. This mismatch can be a
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factor in performance degradation when the knowledge gen-
erated from the teacher model is transferred to the student
model.

To solve this problem, we adopted a strategy to discretize
the CF of the teacher model as in Figure 1. That is, a CF
having a discrete distribution identical to the LR image can
be created. As a result, the student model can utilize the
knowledge of the teacher model more effectively. This leads
to improved performance of the student model. The perfor-
mance with and without discretization is evaluated in the
ablation study of Section IV.

C. LOSS FUNCTION DESIGN
The teacher model is learned by a reconstruction loss(
LT
recon

)
and an imitation loss

(
LT
im

)
, the same as the PISR

framework. LT
recon is the pixel-wise L1 loss between the GT

image and the SR image.

LT
recon =

1
HW

∑H

i=1

∑W

j=1

∣∣∣Yij − ŶT
ij

∣∣∣ (5)

Here, H andW mean the height and width of the HR image.
Similarly, LT

im is defined as the pixel-wise L1 loss between
LR image and discretized CF.

LT
im =

1
H ′W ′

∑H ′

i=1

∑W ′

j=1

∣∣∣Xij − X̂ ′
T
ij

∣∣∣ (6)

whereH′ andW ′ mean the height andwidth of the LR image.
The total loss for learning the teacher model is defined as
follows based on LT

recon and LT
im.

LT
total = LT

recon + λ
TLT

im (7)

where λ
T is a hyperparameter.

TA and student models are trained based on reconstruction
loss (LA

recon, LS
recon) and distillation loss LA

distill , LS
distill ).

Unlike the teacher model, the reconstruction loss here is
defined by considering not only the pixel-wise L1 loss
between the GT image and the SR image, but also the pixel-
wise L1 loss between the outputs of the higher-level model
and the output of the current-level model. That is, LA

recon and
LS
recon are each represented as follows.

LA
recon

=
1
HW

∑H

i=1

∑W

j=1

(∣∣∣Yij − ŶA
ij

∣∣∣ +

∣∣∣ŶT
ij − ŶA

ij

∣∣∣) (8)

LS
recon

=
1
HW

∑H

i=1

∑W

j=1

(∣∣∣Yij − ŶS
ij

∣∣∣+∣∣∣ŶT
ij −ŶS

ij

∣∣∣+∣∣∣ŶA
ij −ŶS

ij

∣∣∣)
(9)

Distillation loss is defined as the pixel-wise L1 loss
between the intermediate feature maps generated by the
current-level model and the higher-level models.

LA
distill =

1
CH ′W ′

∑C

i=1

∑H ′

j=1

∑W ′

k=1

∣∣∣f T
ijk − fA

ijk

∣∣∣ (10)

LS
distill =

1
CH ′W ′

∑C

i=1

∑H ′

j=1

∑W ′

k=1

×

(∣∣∣fTijk − fSijk
∣∣∣ +

∣∣∣fAijk − fSijk
∣∣∣) (11)

where C means the number of channels of the intermediate
feature map. Finally, the total loss for learning the TA model
and the student model is defined as follows.

LA
total = LA

recon + λ
ALA

distill (12)

LS
total = LS

recon + λ
SLS

distill (13)

where λ
A and λ

S are hyperparameters.

IV. EXPERIMENTS
A. DATASETS
Unfortunately, there is no publicly available dataset for SISR
of the CG images we target. So, we built a dataset by defining
high-resolution CG images that are used for purposes differ-
ent from ours as HR (GT) images. At this time, by defining
the image obtained by down-sampling the HR image with a
bicubic filter as an LR image, a CG image dataset for SISR
in the form of an LR-HR pair was obtained.

Specifically, the rendered images of the Spring [34] dataset
were used as a dataset for training and validation. The dataset
consists of a total of 47 scenes and 6000 images. Of these,
37 scenes and 5000 images were adopted as the train dataset,
and the remaining 10 scenes and 1000 images were used
as the validation dataset. BMFR [35] and Tungsten [36]
datasets were adopted as datasets for the test. The BMFR
dataset consists of 6 scenes and 360 images, respectively, and
the Tungsten dataset consists of 8 scenes and 750 images.
In this paper, quantitative and qualitative results for each
scene in the dataset are evaluated. As metrics for evaluation,
peak-to-noise ratio (PSNR) and structural similarity index
measure (SSIM), which are most widely used in SR tasks,
were adopted.

B. IMPLEMENTATION DETAILS
First, TAKDSR’s teacher model is learned based on Eq. (7).
If the learning of the teacher model is completed, the learning
of the TA model begins. Prior to learning the TA model, the
parameters of the TA model are initialized with the previ-
ously learned parameters of the teacher model. This is to
obtain a fast optimization effect during learning. TA model
is learned based on Eq. (12). At this time, the output of the
teacher model and the intermediate feature information of
the decoder are transferred to the TA model as knowledge.
If the training of the TA model is completed, the student
model is finally trained. Similar to the TA model, the stu-
dent model is initialized with the pre-learned parameters of
the teacher model. The student model is trained based on
Eq. (13). At this time, the knowledge generated from the
teacher model and the TA model is transferred to the student
model.

For training of each model, the number of epochs was set
to 100, and the Adam optimizer was used. The learning rate
was initially set at 10−3 and then reduced to 10−4 through
cosine annealing.

Also, in the learning process, the HR image was randomly
cropped with 192 × 192 patches, and then the LR image
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TABLE 1. PSNR results for tungsten dataset.

TABLE 2. SSIM results for tungsten dataset.

TABLE 3. Performance comparison of teacher and student models.

was cropped with a patch with a size of 192/s ×192/s
corresponding to the position to proceed with learning.
Here, s corresponds to the scale factor of SR. For example,
when s is 2, the patch size of the LR image becomes 96 × 96.
For data augmentation, we used horizontal/vertical flipping,
random rotation, and RGB alpha blending. The hyperparam-
eters of loss functions were set as follows: λT

= 10−2,
λA

= 10−4, and λS
= 10−4. These hyperparameters are

the values that show the best performance in grid search on
the Spring dataset.

FIGURE 2. Avg. PSNR vs FLOPs plots of several student SR models with
TAKDSR framework for BMFR and Tungsten datasets. The proposed
framework shows similar performance to the high-performance SR
model, i.e., HGSRCNN even with an SR model that has a much smaller
amount of computation than HGSRCNN.

C. PERFORMANCE EVALUATION
First, we quantitatively evaluate the performance difference
of the predicted output between the teacher and student
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TABLE 4. PSNR results for BMFR dataset.

TABLE 5. SSIM results for BMFR dataset.

TABLE 6. Average inference time of each student model. All
measurements were made on an NVIDIA Quadro RTX 8000.

models through the actual test dataset. Table 3 shows the
quantitative performance between the teacher and student
models of each backbone SR model. This results from the
SanMiguel scene of the BMFR dataset, and shows the per-
formance when KD is not applied. Table 3 showed that a
large performance difference of about 5-7dB actually occurs
between the teacher and student models. Tables 1-2 and
Tables 4-5 show the quantitative performance for the BMFR

and Tungsten dataset, respectively. Here, PISR’ means the
case where the TA model is excluded from the proposed
TAKDSR and the discretized CF is not used. Note that the
TAKDSR framework is implemented with the PISR model
as a reference. Also, ‘_s’ in the model name means that
it is a small size student model and is the final target
model.

Looking at Tables 1-2 and 4-5, when the PISR’ framework
was applied, the performance improved the most was the ‘liv-
ingroom3’ scene of RLFN_s. At this time, PSNR and SSIM
were improved by 0.19dB and 0.017, respectively, compared
to the baseline. This is just a marginal improvement. On the
other hand, the improvement by TAKDSR was much larger.
In the same scene, the PSNR of RFDN_s is improved by
0.91dB by TAKDSR, and the SSIM of RLFN_s is increased
by 0.025. This proves that when the TAKDSR framework is
applied to SR models, it demonstrates superior knowledge
transfer capability than PISR′.
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FIGURE 3. Qualitative evaluation of PAN_s model.

TAKDSR achieves a good tradeoff between computa-
tion and performance. Figure 2 plots FLOPs vs. average
PSNR. For relative comparison, HGSRCNN, one of the high-
performance SR models, is also shown. We can observe that
while FLOPs are reduced by up to 44 times, PSNR degrada-
tion is not significant compared to HGSRCNN.

The actual inference time of TAKDSR is also significantly
smaller than that of HGSRCNN. Table 6 shows the average
inference time per frame for each student model. This exper-
iment was performed with the Tungsten dataset. As a result,
SR models applied with TAKDSR are 8 to 16 times faster
than HGSRCNN while providing reasonable visual quality,
and their inference time itself is absolutely small, so they can
be a suitable solution for CG applications that require real-
time operation.

Finally, the qualitative results for each backbone SRmodel
can be found in Figures 3-5. Qualitatively, it is demonstrated
that TAKDSR provides excellent visual quality. Specifically,
when KD is not applied, a lot of artifacts are generally
observed in the output images. In addition, scenes such as
BMFR’s classroom or Tungsten’s livingroom2 and staircase
show a phenomenon in which certain patterns are distorted.
The PISR’ framework shows less artifacts than this case when
KD is not applied. However, the degree of improvement is
weak, and the distortion of the pattern is not well improved.
On the other hand, we can observe that TAKDSR not only

TABLE 7. PSNR of student model according to TA performance.

significantly reduces artifacts but also significantly improves
pattern distortion.

D. ABLATION STUDY
First, by analyzing the performance of the student model
according to the TA performance targeting the RFDN model,
the configuration of the best TA for the TAKDSR framework
is determined. When configuring the mixed input, the perfor-
mance of the TA model was adjusted by the ratio between
discretized CF and LR images, that is, λ1 and λ2. Table 7
shows the performance of the student model according to
the performance of the TA model. For this experiment, the
SanMiguel scene from the BMFR dataset was used.

We can find that the PSNR of the student model is the best
when λ1 and λ2 are 0.3 and 0.7. At this time, referring to
Table 3, the PSNR of the TA model is closest to the median
of the teacher and student models. On the other hand, if the
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FIGURE 4. Qualitative evaluation of RLDN_s model.

TABLE 8. PSNR of the student model according to the number of TAs.

PSNR of the TA model is close to that of the teacher model,
as in the case of λ1 = 0.5 and λ2 = 0.5, or if the PSNR of
the TA model is close to that of the student model, as in the
case of λ1 = 0.1 and λ2 = 0.9, the performance of the student
model is slightly lowered. Therefore, similar to [18], the TA
model with performance corresponding to the median of the
teacher and student models can be said to be the best TA that
makes the best student model.

Next, let’s look at the performance of the student model
according to the number of TA models when constructing the
framework. In this experiment, the RLFN model was used.
As mentioned in Section III, the TAKDSR framework can be
composed of multiple TAs as well as a single TA. Table 8
compares the performance of the student model according
to the number of TAs. In this experiment, the SanMiguel
scene from the BMFR dataset was used. Since there was no
significant difference between the case where the number of
TAs was 3 or more and the case where the number of TAs
was 2, only the case of 2 is dealt with here. In addition,

TABLE 9. Performance comparison of student models before and after
applying CF discretization.

referring to the experimental result in Table 7, this experiment
was conducted by setting appropriate λ1 and λ2. According
to Table 8, multiple TA improves PSNR by about 0.1dB
more than single TA. However, an increase in the number
of TAs inevitably causes an increase in the time required for
learning. This means that the amount of resources used for
learning increases. Therefore, since there is little justification
for adopting multiple TAs, the number of TAs is fixed at 1 in
this paper.

Finally, to verify the effect of discretization, the perfor-
mance of the student model was compared when CF had a
continuous distribution and a discrete distribution, respec-
tively. For this experiment, the RLFN and RFDN models
were used, and the bedroom scene of the Tungsten dataset
was adopted. Table 9 shows that the discrete CF distribution
improves the PSNR by 0.13∼0.16 dB over the continuous
CF distribution. Therefore, in order to use the knowledge
of the teacher model more effectively, it is necessary to add
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FIGURE 5. Qualitative evaluation of RLFN_s model.

discretization so that the components of the CF can have the
same discrete distribution as the LR image.

V. LIMITATION
As mentioned earlier in the dataset section of Section IV,
there is no publicly available dataset composed of CG images
in the SISR field. The experiments in this paper also used
CG image datasets, which are used in other tasks other than
SR, for the experiments, and the amount of the datasets is
rather insufficient. Therefore, if more certified CG image
datasets for SISR are proposed, better algorithm design will
be possible.

In addition, when designing the distillation loss of the
TAKDSR framework, a simple comparison of the interme-
diate features of the two models with pixel-wise L1 loss
was adopted. However, there is still the potential for more
effective KD based on new metrics. We need to discuss this.
This will be our further work.

VI. CONCLUSION
In this paper, a new framework that applies knowledge dis-
tillation to a lightweight single image super-resolution model
for real-time inference is proposed. In order to alleviate the

problem of inconsistent knowledge transfer from teacher to
student model, a teacher assistant model specialized for SR
was introduced. In addition, a discretized CF is created so
that the student model can effectively utilize the knowledge
generated by the teacher model. Experimental results prove
the outstanding cost performance of the proposed method.
Also, the proposedmethod is expected to be applicable in var-
ious industries that require real-time SR inference of graphics
images. In particular, thanks to the drastically small amount
of computation of the student model, it can be used in low-
power devices such as mobile devices.
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