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ABSTRACT The dynamic resource block structure (D-RBS) allows for flexible allocation of radio resources.
This flexibility (potentially) enables efficient utilization of available resources and adaptability to changing
network conditions. In this context, managing resource contention and optimizing allocation decisions
become increasingly challenging. In this research paper, we introduce a new approach for D-RBS for re-
allocation of enhanced Mobile Broadband (eMBB) and massive Machine Type Communication (mMTC)
resource blocs (RBs) to URLLC users. Our scheme leverages artificial intelligence (AI) to support the three
main services of 5th generation networks. To efficiently allocate resources for eMBB/mMTC and URLLC
services, we propose an intelligent puncturing scheme. Additionally, we formulate an optimization problem
that aims tominimize resource and transmit power usagewhile meeting the requirements of all three services.
Since this problem is non-convex and involves multiple optimization variables, we utilize deep reinforcement
learning as a solution algorithm. We then compare our proposed intelligent allocation (IA) scheme with
two other schemes: random allocation (RaA) and overallocation (OA), which have lower complexity and
overhead. Performance and complexity analyses are conducted in a multi-cell scenario with interference.
Our results demonstrate that the IA scheme outperforms RaA and OA, achieving an energy efficiency gain
of 40% and 15% respectively. However, it is worth noting that IA has a 36.3% higher complexity in terms
of action selection compared to RaA and OA.

INDEX TERMS Dynamic RB structure, URLLC puncturing, eMBB and URLLC multiplexing, MA-DRL.

I. INTRODUCTION
ITU-R has categorized the network services into enhanced
Mobile Broadband (eMBB), massive Machine Type Com-
munications (mMTC), and Ultra Reliable and Low Latency
communications (URLLC) services [1]. eMBB services,
like video streaming, require high data rate connections
(higher than 100 Mb/s); mMTC services, like Internet of
Things (IoT), require large number of devices to connect
to the network which would only send small data payloads;
and URLLC services, like Tactile Internet (TI), require
communications of small payloads with low data rates
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(0.1-10 Mb/s) but extremely stringent latency (∼1 ms) and
very high reliability requirements [2] and [3]. Due to the
heterogeneous requirements of these services, the efficient
and dynamic Resource Allocation (RA) in the network is
the main challenge. The traditional Resource Block Structure
(RBS) definition with fixed time-frequency structure, e.g.,
as in Long Term Evolution (LTE) with 1 millisecond
Transmission Time Interval (TTI) and 15 kHz bandwidth,
is not able to support the network with these three types of
services [1]. The eMMB services require more frequency
resources to satisfy their data rate requirements whose latency
is not of importance, and hence, the time duration of the
allocated Resource Blocks (RBs) could be high, e.g., above
one millisecond. On the other hand, URLLC services have
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small packets which must be sent in short time intervals as
mini-slots with the duration of 0.1 to 0.5 milliseconds, with
high reliability. The mini-slot constitutes scalable numbers
of Orthogonal Frequency-division Multiplexing (OFDM)
symbols ranging from 14, 7, 4, and 2. In fifth generation
(5G), the RBs with different TTIs and bandwidths can
satisfy the data rate, latency, number of connections, and
reliability requirements of the services. The notion of RB
in 5G networks is defined as a time-frequency block with
different time durations and bandwidths. In other words, the
total time duration and bandwidth (i.e., Resource Grid (RG)),
e.g., T milliseconds time duration and W Hz bandwidth,
is partitioned into several RBs with different time durations,
e.g., T , T

2 , and
T
4 , and different bandwidths, e.g., W , W

2 ,
and W

4 . Note that different RBs with different time durations
and bandwidths can be used for different services based on
the service requirements. Although the size of the RBs is
different, the location of each RB is predetermined and fixed
in the RG.We call this structure as Static RBS (S-RBS) as the
location of the RBs is predefined and cannot be changed. Due
to the fixed location of RBs in RG, S-RBS does not provide
enough flexibility to satisfy different service requirements
in an efficient way. Moreover, multiplexing eMBB and
mMTC with URLLC services on the same channel is another
challenging problem. To overcome this challenge, 3GPP
standards propose a new RA scheme, in which an arriving
URLLC packet occupy the RBs that have already been
allocated to eMBBormMTCusers. In other words, someRBs
are punctured which may have negative impacts on eMBB or
mMTC users data rate [4]. Puncturing eMBB or mMTC RBs
for URLLC users at each mini-slot (with durations of 0.125-
0.250 msec) is efficient in terms of reducing the URLLC
latency, however, it may degrade eMBB and mMTC Quality
of Service (QoS). However, there are some works who
considered Dynamic RBS (D-RBS) for their framework [5],
[6], [7], [8], but they didn’t consider the interference caused
by puncturing RBs (or allocating them) for other users in
other cells. In other words, they only consider the single
cell scenario for their frameworks which is not practical in
real applications. Additionally, they only consider the user
QoS and the cost of resource usage is neglected, which
would impose high cost to the infrastructure if not managed
properly [9], therefore a framework should be considered
which can jointly support QoS of users and the efficiency of
the network resource usage so that it can be implemented in
network slicing architecture [10].
To tackle these drawbacks, we first propose a novel

AI-assisted D-RBS for 5G in multi-cell and multi-agent
scenario in which the RG of each cell is partitioned into
several Resource Elements (REs) of equal time duration
and bandwidth. Based on the service requirements, some
REs are aggregated to form one of the three types of RBs:
1) RB type-1 of shape 4 × 1, i.e., 4 REs in time domain
and 1 RE in frequency domain, 2) RB type-2 of shape 1× 4,
i.e., 1 RE in time domain and 4 REs in frequency domain,
and 3) RB type-3 of shape 2 × 2, i.e., 2 REs in time domain

and 2 REs in frequency domain. In other words, the allocated
RBs to each user can be constructed using one or more of
these REs which could be spanned over specific location in
the RG. Note that RB type-1, type-2, and type-3 are used
for eMBB, URLLC, and mMTC services, respectively. In our
proposed D-RBS, dynamicmeans that the location of the RBs
is not predefined and could be different in RG. Therefore,
there are optimal positions for each RB and our objective is
to find these optimal positions considering user requirements,
network resource usage and the inter-cell interference.

Then, we compare the proposed Intelligent Allocation
(IA) scheme with base line approaches, named Random
Allocation (RaA) and Over Allocation (OA) in terms of
performance and complexity. It is worth noting that we cannot
compare our proposed D-RBS method to the existing D-RBS
methods since they did not consider the inter-cell interference
in their framework. Also, our proposed optimization problem
is totally different from the exist D-RBS optimization
problems since we consider resource efficiency along with
QoS for users. In IA, we consider a Deep Reinforcement
Learning (DRL) method to RB assignment and transmit
power allocation for eMBB and mMTC users at each time
slot in order to satisfy their QoS requirements. Moreover,
our aim is to find the proper transmit power and position
of RBs to be punctured for the incoming URLLC users
in the current mini-slot so that the URLLC packet loss
probability and latency constraints are satisfied and the
negative impact of these puncturing on the eMBB andmMTC
users’ performance are minimized. Our general objective is to
jointly minimize the RB usage and transmit power. In RaA,
after allocating RBs and transmit power to eMBB andmMTC
users at each time slot, some of the already allocated eMBB
or mMTC RBs are reassigned to the incoming URLLC users
with uniform transmit power in the current mini-slot without
take into account the negative impact of these puncturing.
In OA, we consider extra minimum required rate for eMBB
andmMTC users while RaA is performed. In the OA scheme,
two weights are considered to hypothetically increase the
required rate of eMBB and mMTC users so that if puncturing
happens on eMBB RBs or mMTC ones, the minimum
required rate for these users remains satisfied. In this
approach, our objective is to find the optimum value of the
weights by DRL based methods so that by consuming more
network resources (RB and transmit power allocation), the
average user drop rate decreases remarkably. Most of the RA
puncturing problems are NP-hard due to the non-convexity of
the objective functions, multiple optimization variables, and
highly nonlinear constraints. Thus, it is very difficult to obtain
the optimal solution in an acceptable time by traditional
solutions, especially in large scale networks. In this paper,
we first utilize Single-agent (SA) DRL based methods for
dynamic RBs assignment and transmit power allocation.
Then, we extend our proposed solution to aMulti-agent (MA)
ones, in which the BSs as agents must interact and cooperate
with each other to learn and optimize the collaboration
policies and solve unstable learning problems.
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II. RELATED WORKS
A. STATIC RESOURCE BLOCK STRUCTURE
The RA problem among 5G network’s services has been
addressed in several works including [11] and [12]. The
authors in [11] study the Downlink (DL) dynamic multi-
plexing of URLLC and eMBB services in a single cell.
Thus, they do not consider the inter-cell interference. The
goal is to maximize the utility for eMBB traffic based on
the three different eMBB loss rate models, named linear,
convex, and threshold models with respect to URLLC service
requirement constraints. In [12], the authors study the DL
resource scheduling with a mini-slot in 5G networks for
URLLC services with the aim of achieving a good trade off
between spectral efficiency, latency, and reliability for each
link and service flow. However, resource scheduling with a
mini-slot can cause high signaling overhead due to sending
frequently the channel information. The dynamic scheduling
for mMTC and URLLC services is studied in [13] for New
Radio (NR) where the authors investigate the performance
of frameworks that are with/without feedback using RL-
based multi-armed bandit approach. In [13], normal feedback
transmission on Hybrid Automatic Repeat Request (HARQ)
retransmission and one-shot transmission with lower code
rate are considered. However, the authors consider the
constant code rate and do not focus on link adaptation and
a suitable Modulation and Coding Scheme (MCS) selection.
In [14], the authors optimize transmit power, bandwidth,
and the number of active antennas in a multi-cell scheme
to maximize the energy efficiency under QoS constraints of
URLLC users including End-to-end (E2E) delay and total
packet loss rate. However, they consider the perfect channel
gain for all types of users which impedes the real-time
implementation of URLLC services. Also, they illustrate
that both schemes are able to effectively deploy various
URLLC and mMTC services in NR. Recently, there are
several researches on RB design in wireless networks [11],
[15], [16], [17]. An overview of 5G deployment challenges is
provided in [15]. In [16], the authors provide a survey of key
techniques to overcome the new requirements and challenges
of mMTC applications. In [18], Coordinated Multi-point
(CoMP) is used to meet the delay and reliability requirements
of the URLLC users. In [17], the authors provide joint
power and sub-channel allocation for a sliced 5G network
with respect to both the inter-tier and intra-tier interference
constraints. In [19], the authors study orthogonal RA for
mMTC and eMBB users. The Uplink (UL) multiplexing of
URLLC, eMBB, and mMTC services is studied in [20].
In [21], the authors investigate DL transmission design for
URLLC services. Joint RA in UL and DL based on effective
bandwidth and effective capacity to ensure the QoS for
URLLC is considered in [22] and [23]. Joint UL and DL
bandwidth optimization with respect to delay constraints
to guarantee both packet loss constraints and E2E delay
requirement is considered in [23]. In [24], the authors propose
a packet delivery mechanism for URLLC. The goal is to
reduce the bandwidth required to guarantee the queuing

delay based on a statistical multiplexing queuing model.
The network slicing based on orthogonal and non-orthogonal
radio RA in the UL is considered for the three types of
services of 5G in [25]. In [26], the authors optimize power
and bandwidth allocation across radio access network slices
and users which have heterogeneous QoS requirements. The
goal is to maximize both throughput and energy efficiency
in the sliced radio access network. In [13] and [27], the
authors investigate the dynamic DL RA for eMBB and
URLLC services on the same time/frequency resources. The
impact of the 5G frame structure on URLLC performance
is investigated in [28]. The performance of flexible TTI
to support higher traffic load is investigated in [29] and
[30]. A 5G frame structure design is considered in [12]
to support user’s service requirements. Reference [31]
explores the multiplexing of eMBB and URLLC services in a
wireless-powered communication network. A hybrid access
point manages wireless energy transfer and information
reception. Preemptive puncturing is utilized to multiplex
URLLC traffic onto eMBB transmission. The objective is
to jointly allocate subcarriers, time, and energy to maximize
the uplink eMBB sum rate while considering URLLC
latency, user battery capacity, and subcarrier availability.
[32] examines the use of statistical channel knowledge
in point-to-point URLLC transmission, exploring various
hybrid automatic repeat request schemes and SNR feedback
from failed packets to enhance transmission efficiency. The
problem is framed as a long-term power minimization issue
under URLLC requirements. A DRL agent utilizing proximal
policy optimization is employed to dynamically regulate
transmit power and coding rate to address the problem.
In [33], the authors suggest a method for sub-channel
allocation and power control to enable massive access
in NOMA-URLLC networks. The problem is modeled
as a multi-agent reinforcement learning problem, and a
DQN-MARL algorithm is proposed to ensure reliability and
latency requirements of URLLC services.

In all the previous works, the authors have considered a
static structure for RBs that does not have enough flexibility
to respond to different service requirements. Indeed, they
do not consider both outage and bit error rate constraints
that are critical for new emerging services in 5G. Since the
traditional framing, RA, and user association schemes are not
flexible enough and do not consider various service types
requirements in their optimization problems, they are not
appropriate for 5G services.

B. DYNAMIC RESOURCE BLOCK STRUCTURE
In [6] and [8], the authors consider flexible two dimensional
resource allocation in order to maximize the overall system
energy efficiency and to minimize the adverse impact of
puncturing on eMBB users in a single-cell scenario with
eMBB and URLLC users. However, these works assume that
the BS knows the Channel State Information (CSI) and do not
considermulti-cell scenario as well. They also didn’t consider
the inter-cell interference for RB allocation (puncturning)
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which extremely important for real applications [34]. Also,
in network slicing arcitectures, the resource efficiency must
be considered for the resource allocation mechanisms [35]
which is neglected on the existing D-RBS schemes. In our
scheme, in accordance on a realistic assumption, the BS
should schedule the URLLC users immediately and can
not wait to acquire the CSIs. Joint optimization of RA
for eMBB and URLLC users based on the flexible frame
structure in considered in [7]. However, this work does
not utilize puncturing mechanisms to share resources, and
instead considers the dedicated RA for URLLC users which
can degrade the system performance. In [36], the aim is to
maximize the data rate of eMBB users while guaranteeing
the latency of URLLC users by user selection and power
allocation in a coexistence problem based on a puncturing
technique. The authors utilized a Difference of Convex
(DC) programming and a Successive Convex Approximation
(SCA) to solve the scheduling problem of power allocation
and user selection, respectively. In [37], the authors proposed
a spectrum partition scheme for maximizing the eMBB data
rate and satisfying the URLLC latency and reliability. In [38],
the authors proposed a precoding design in order to minimize
the transmit power of a Base Station (BS) while satisfying the
QoS of eMBB and URLLC users based on imperfect CSI.
Joint Transmission (JT) and Orthogonal Transmission (OT)
modes were investigated for satisfying the Block Error Rate
(BLER) and data rate of URLLC and eMBB, respectively
in [39]. To do this, a low-complexity algorithm was proposed
to jointly select the group of BSs and their MCSs in order to
meet both URLLC and eMBB requirements.

C. MACHINE LEARNING BASED SOLUTIONS
In [40], the authors use Deep-Q-networks (DQNs) to find
optimal policies to jointly allocate sub-carriers and transmit
power for a vehicle-to-vehicle communication. The DRL
approach is used to maximize the energy efficiency by
jointly solving sub-channel assignment, transmit power
allocation, and user scheduling [41]. Dynamic sub-channel
assignment problems are modeled as a Markov Decision
Process (MDP) in [42] and [43] or as Partially Observable
MDP (POMDP) in [44]. In these works, the authors use
different RL approaches to solve their proposed problems.
Also, DQN is applied to maximize the network utility,
or to minimize the blocking probability of services in [44],
[45], and [46]. In [45], the authors apply a multi-agent
RL algorithm to their decentralized multi-user system in
which a static channel is considered. A comparison between
single-agent RL and multi-agent RL is provided in [47].
Note that cooperative multi-agent systems can be used to
solve many complex problems, such as control of multiple
robots [48] and multi-player games [49]. In these systems,
multiple agents collaborate to achieve common goals [50].
As one of the most well known approaches, several agents
are independently trained to maximize their reward and
treat others as part of the environment [50]. However, due
to the changing policies of other agents, the environment

is not fully observable to the agents [51]. The approach
in [52] provides the coordinated behavior of multiple agents,
however, it is not scalable to larger systems because the
number of actions increases exponentially with the number
of agents. To overcome the challenge of non-Markovian and
non-stationary environments during learning, the centralized
training of decentralized policies can be considered for
efficient training of multiple agents and access additional
state information of other agents [53]. In general, RA policies
should be designed based on system features, e.g., channel
gains and users arrivals, to provide user’s satisfaction and
QoS requirements. In practice, these features are unknown
and generally time-varying. For instance, the number of
user arrivals and the value of channel gains can vary over
time because mobile users may change their locations over
time. Therefore, with limited resources, it is essential to
learn how to optimally update the decision policy given the
observations of system features. Recently, the DRL-based
approach is introduced as a powerful tool to deal with
decision-making in dynamic environments [40] and [47].
This technique learns to eventually find the optimal policy in
order to enhance long-term performance through interactions
with the environments.

III. MAIN CONTRIBUTIONS
Although there are many D-RBS frameworks which are
proven to be more efficient compared to S-RBS schemes
in terms of QoS of the 5G triple services such as [5], [6],
[7], and [8], they didn’t consider the multi-cell scenario
with inter-cell interference in their formulation which dras-
tically influence on the resource allocation (puncturning)
mechanism. In addition, resource efficiency is another
important and challenging issue specially in network slic-
ing architectures [35], which is neglected in the exisitng
D-RBS structures. In this paper, we present a new dynamic
RB structure for multi-cell networks in the 5G resource
grid. Unlike previous works focused on single-cell networks,
our design addresses the challenge of inter-cell interference.
We consider both latency and reliability requirements for
eMBB, mMTC, URLLC services. We propose an IA scheme
to multiplex these services, ensuring URLLC’s stringent
latency and reliability constraints while supporting eMBB
and mMTC QoS requirements. We compare our scheme with
two low complexity schemes, RaA and OA, analyzing the
performance trade-off between network resource usage and
user satisfaction. We formulate the D-RBS method as three
optimization problems, aiming to minimize network resource
usage while satisfying eMBB and mMTC QoS requirements
and meeting URLLC’s latency and reliability constraints.
Due to the complexity of the optimization problems, we uti-
lize a DRL method to optimize transmit power allocation
and RB assignment in single-agent andmulti-agent scenarios.
Considering the afformentioned challenges, our contributions
are as follows:

• We design a new dynamic RB structure in multi-cell
network with inter-cell interference as D-RBS for
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5G resource grid so that the RBs for each eMBB,
mMTC, and URLLC services are constructed based
on their requirements with different shapes that can
be located anywhere in the resource grid, in order to
adapt to the dynamic nature of the network and satisfy
heterogeneous requirements of different users.

• Furthermore, we propose a novel IA scheme as IA for
multiplexing eMBB, mMTC, and URLLC users in order
to handle URLLC stringent latency and reliability along
with supporting eMBB and mMTC QoS requirements
and compare this scheme with two Low complexity
and overhead schemes, named RaA and OA. Then,
we analyze the performance gain of these three schemes
which comprehensively indicates the trade-off between
network resource usage and user’s satisfaction.

• We formulate our proposed D-RBS method with
puncturing schemes as three different optimization
problems in which the objectives are minimizing the
network resource usage along with satisfying the eMBB
and mMTC QoS requirements, while the URLLC
latency and reliability constraints are satisfied. Since
our optimization problems are nonlinear non-convex
with multiple discrete and continuous variables, we use
DRL method to optimize the transmit power allocation
and RBs assignment in single-agent and multi-agent
scenarios and show that the proposed framework scales
well with a large number of RBs, BSs, and users.

• We further investigate our proposed schemes from
the convergence and computational complexity per-
spectives. Finally, we study the performance of the
proposed schemes and compare it with S-RBS base-
line approach using simulations for different network
parameters.

The remainder of this paper is organized as follows.
System model and descriptions regarding 5G services and
requirements along with problem formulation and solution
algorithms are presented in Section IV. In Section V, we pro-
vide a near-optimal solution by a multi-agent approach.
In Sections VI and VII, we provide the convergence proof and
the computational complexity of our scheme, respectively.
Simulation results are provided in Section VIII. And finally,
Section IX concludes this work.

IV. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we describe the system model in which
BSs dynamically allocate the RBs and transmit power to
each user. With considering URLLC puncturing scheme, our
aim is to jointly minimize the total transmit power of the
network and the number of allocated RBs under constraints of
different users’ requirements. We consider a multi-small cell
DL OFDMA network, where there is one macro BS (MBS)
and B BSs in B small cells (i.e., a BS at each small cell). The
set of BSs is denoted by B = {b1, b2, . . . , bB} with |B| = B,
indexed by b, and |.| denotes the number of elements in a set.
In each cell, the BS employs the available radio resources

TABLE 1. Main parameters and notations.

(i.e., total bandwidth and power budget) for serving users
located in its circular region with radius db. Within each cell
coverage, there are three types of randomly distributed users
which request different types of services. In BS b, the sets
of active users which request eMBB, mMTC, and URLLC
services are denoted by Ke

b, K
m
b , and K

u
b, respectively, with

|Ke
b| = K e

b , |K
m
b | = Km

b and |Ku
b| = K u

b . The set of all users
in BS b is denoted byKb = Ke

b
⋃
Km
b
⋃
Ku
b, withKb = |Kb|.

The set of all users in the proposed system is denoted by
K =

⋃
b∈B Kb, indexed by k and K = |K| denotes the total

number of users in the proposed system. Themain parameters
and notations are summarized in Table 1.
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A. RESOURCE BLOCK STRUCTURE
We assume that time is slotted into T time slots with equal
duration δ, denoted by T = {t1, t2, . . . , tT }, indexed by t .
The radio resources are scheduled among eMBB and mMTC
users at beginning of each time slot. We assume that the
duration of each time slot δ is relatively short, such that
mobile users can be considered quasi-static during a single
time slot. At each time slot, a time-frequency resource of
δ seconds and W Hz is used by each cell. Each time slot
is divided into J mini-slots of duration χ for scheduling
URLLC users. The radio resources are scheduled among
URLLC users at beginning of each mini-slot. In other words,
in the proposed frame structure, the time-frequency resource
is divided into REs with the time duration χ and frequency
size ϑ . Therefore, at each time slot, all the REs could be
shown by a matrix [A]I×J with dimension J =

δ
χ
and I =

W
ϑ
,

where each element of matrix, aij denotes RE at (i, j) position
of time-frequency domain (i.e., RG). The set of REs in each
BS at each time slot is denoted by I ×J where I and J are
the sets of REs in frequency and time domains, respectively,
with |I| = I , and |J | = J . We consider three types of ϑ ×χ

shaped RBs: 1) RB type-1 of shape 4 × 1, 2) RB type-2 of
shape 1 × 4, and 3) RB type-3 of shape 2 × 2, see Fig. 1(a).
Each RB type consists of four adjacent REs. For example,
in Fig. 1(b), I = 8, J = 4, hence there are 4×8 = 32 REs. Let
oftij = 1 if the RB f includes RE (i, j) at time slot t , otherwise

oftij = 0. Placing these types of RBs at all possible positions

of the RG, we generate the set of all candidate RBs for RBs
type-1, type-2 and type-3 which is denoted by Fu, Fe, and
Fm with |Fu

| = Fu, |Fe
| = Fe, and |Fm

| = Fm,
respectively. We assume that the arrival services are assigned
to the three types of RBs. The set of possible RBs at each BS
(or cell) are denoted by FTot

= Fu
∪ Fe

∪ Fm. We assume
that RBs of type-2 and 3 can be placed at all possible positions
of the RG, while RBs type-1 can be only placed at certain
positions, 5u.1 For example, on RG in Fig. 1 (b), for each
mini-slot, there are5u

= 2 possible positions for RBs type-1,
i.e. first four REs and the last four REs. One or more RBs
can be assigned to eMBB or mMTC user at a time slot. Let
the binary variables ξ ftbk ∈ {0, 1} denote whether RB f is
assigned to user k at BS b at time slot t . In other words,
the binary-valued RB-association factor ξ ftbk represents both
RB and BS assignments for user k of BS b on RB f at
time slot t , i.e., ξ ftbk = 1 when BS b allocates RB f to
user k , and ξ ftbk = 0, otherwise. In order to avoid intra-
cell interference, i.e., interference between different eMBB
and mMTC RBs, no RE can be assigned to more than
one RB. To satisfy that there is no overlap among the
chosen REs, the following orthogonality constraint must

1For IA, all types of RBs can be placed at all possible position, however
for OA and RaA, all types of RBs can be placed at certain positions where
RBs do not have any overlap with each others, because in OA and RaA, we do
not have any control over RB design.

be met: ∑
f ∈F e∪Fm

∑
k∈Ke∪Km

oftijξ
ft
bk ≤ 1,∀b, i, j, t. (1)

Therefore, for user k in cell b, the assigned RB is constructed
by aggregation of one or more REs. Therefore, all users
are multiplexed in an orthogonal fashion to the RBs. Note
that the eMBB/mMTC users are allocated in orthogonal
fashion which holds with (1) and the punctured RBs of
eMBB/mMTC, are orthogonally allocated between URLLC
users with the variable ξ ftmbk , which is a binary variable for
the puncturing the already allocated RB f at mini-slot tm
for URLLC user k in BS (cell) b. Similarly, to satisfy that
there is no overlap among chosen URLLCRBs, the following
orthogonality constraint must be met∑

f ∈Fu

∑
k∈Ku

oftmij ξ
ftm
bk ≤ 1,∀b, i, j, tm. (2)

The URLLC user’s packets are randomly generated at each
mini-slot. Therefore, the number of URLLC users at each
time slot is random.

Accordingly, we decompose the RA problem in two
different steps: 1) the first step is the eMBB and mMTC
RB and transmit power allocation that is performing at the
beginning of each time slot, and 2) the second step is the
URLLC puncturing decision at each min-slot in which we
consider our proposed scheme and compare it with two
low complexity and overhead schemes as RaA and OA.
In the following, three schemes named IA scheme, RaA,
OA scheme are proposed. In IA scheme, we allocate RBs
to eMBB and mMTC users at each time slot and reallocate
(puncture) of eMBB or mMTC RBs to URLLC users at each
mini-slot. Our aim is to minimize the negative impact of
URLLC puncturing on eMBB or mMTC users’ data rate and
provide the reliability and latency requirement for URLLC
users. In other words, after allocation eMBB and mMTC
types of RBs to eMBB and mMTC users, respectively,
at time-slots, URLLC RBs will be intelligently punctured
form allocated eMBB and mMTC RBs at mini-slots of
each time-slot so that it satisfies the reliability and latency
requirement for URLLC users and has the least negative
effect on eMBB or mMTC users’ data rate. Although IA
scheme provides near-optimal performance for our proposed
system, it has complexity and signaling overhead. Therefore,
we proposed two low complexity and low signaling overhead
schemes named RaA scheme and OA scheme. In RaA
scheme, URLLC RBs are randomly punctured from eMBB
or mMTC allocated RBs. Although this scheme satisfies low
latency constraint for URLLC users, it is not necessarily
satisfying the eMBB and mMTC users’ requirement. In other
words, these puncturing may have negative effect on eMBB
or mMTC users’ data rate. Therefore, there is a trade-off
between the complexity cost and user satisfaction for service
providers. To compensate for negative effect of URLLC
puncturing on eMBB or mMTC users’ data rate in RaA
scheme, we proposed another scheme named OA scheme,
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FIGURE 1. a) Three types of RBs structure: 1) RB type-1 of shape 4 × 1. 2) RB type-2 of shape 1 × 4, and 3) RB type-3 of shape 2 × 2, b) Total RBs structure
at cell 1: with I = 8 and J = 4, there are 4 × 8 = 32 REs, for each mini-slot, there are 5u = 2 possible positions for RBs type-1, i.e. first four REs and the
last four REs. c) Total RBs structure at cell 2: with I = 8 and J = 4, there are 4 × 8 = 32 REs.

where more RBs are allocated to eMBB and mMTC users so
that if these allocated RBs are punctured by URLLC users,
the rates of eMBB and mMTC users do not decrease. This
scheme in addition to providing low complexity and signaling
overhead, minimizes the negative effect on eMBB or mMTC
users’ data rate.

B. INTELLIGENT ALLOCATION
In this method, in addition to RA of eMBB and mMTC users
at each time slot, we also consider allocation of URLLC RBs
and re-allocation of eMBB or mMTCRBs to URLLC users at
eachmini-slot in order to 1)minimize the total transmit power
and the number of allocated RBs, 2) satisfy the requirement
of eMBB and mMTC users, 3) minimize negative impact of
URLLC puncturing on eMBB or mMTC users data rate, and
4) provide the reliability and latency requirement for URLLC
users.

1) URLLC RELIABLE TRANSMISSION AND DATA RATE BASED
ON FINITE BLOCK-LENGTH CODING
With carrier and slot aggregation capability, already in
use [54], we can aggregate radio carriers (in the same band
or across disparate bands) and slots of different small blocks
to construct RBs to meet the requirements of users. The
achievable rate of URLLC user k ∈ Ku in RB f ∈ Fu

at mini-slot tm with finite block length can be accurately
approximated as follows [55] and [56]:

RURLLC,ftmbk (εfbk )

≈
χ

ln 2

4ϑ ln
(
1 + γ

ftm
bk (p, ξ , g)

)
−

√
ν
ftm
bk

ψ
2−1
Q (εfbk )

 ,
∀b ∈ B, k ∈ Ku, f ∈ Fu, tm, (3)

where

γ
ftm
bk (p, ξ , g)

= pftmbk g
ftm
bk /

( ∑
b̄∈B\{b}

∑
k̄∈Ku

b̄

ξ
ftm
b̄k̄
pftm
b̄k̄
gftm
b̄k

+

∑
b̄∈B\{b}

∑
k̄∈Ke

b̄
∪Km

b̄

∑
f̄ ∈F e∪Fm

∑
i,j∈f

ξ
f̄ t
b̄k̄
oftmij o

f̄ t
ij

pf̄ t
b̄k̄

Lf
gftm
b̄k

+ 4ϑN0

)
, (4)

in which
∑

b̄∈B\{b}
∑

k̄∈Kb̄
ξ
ftm
b̄k̄
pftm
b̄k̄
gftm
b̄k

is interference
from other BSs that allocate the same URLLC RB f
to their serving URLLC users at mini-slot tm, and∑

b̄∈B\{b}
∑

k̄∈Ke
b̄
∪Km

b̄

∑
f̄ ∈F e∪Fm

∑
i,j∈f ξ

f̄ t
b̄k̄
oftmij o

f̄ t
ij
pf̄ t
b̄k̄
Lf
gftm
b̄k

is

interference form other BSs that allocate eMBB or mMTC
RBs to their serving eMBB or mMTC users which have
overlap with URLLC RB f . Note that the transmit power
of a RB is equally distributed over the frequency domain.
Therefore, for example for each URLLC RB which occupies
four REs in the frequency domain, to find the power of a
RE, the transmit power at each RB, Pu is divided by 4.
Therefore, Lf = 4 if f ∈ Fu

b , Lf = 2 if f ∈ Fm
b , and

Lf = 1 otherwise. 2−1
Q (.) is the inverse of the Gaussian-

Q function, νftmbk = 1 −
1

(1+γ ftmbk (p,ξ ,g))2
, and εfbk denotes the

decoding error probability for user k assigned to BS b on
RB f at mini-slot tm. g = [g1111, . . . , g

ftm
bk , . . . , g

ft
bk , . . . , g

FT
BK ]

T ,
p = [p1111, . . . , p

ftm
bk , . . . , p

ft
bk , . . . , p

FT
BK ]

T , and ξ =

[ξ1111 , . . . , ξ
ftm
bk , . . . , ξ

ft
bk , . . . , ξ

FT
BK ]

T denote the channel gain,
the power allocation, and RBs assignment vectors. pftbk and
pftmbk are the transmit power of BS b to user k on RB f at time
slot t and mini-slot tm, respectively, g

ftm
bk is the channel power

gain between BS b and user k on RB f at mini-slot tm, and
N0 is the single-sided noise power-spectral-density (PSD).
For each RB, the channel gain depends on the position of RB
and its corresponding REs, and is determined by averaging

over gains of its REs as gftmbk =
∑

i,j∈f o
ftm
ij g

ij,ftm
bk /4, where
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gij,ftmbk is the channel power gain between BS b and user k on
RE (i, j) of RB f at mini-slot tm.
The number of symbols in the block is ψ = χϑ .

When transmitting κ bits from BS b to user k in the short
block-length regime, by setting χRURLLC,ftmbk = κ , the
decoding error probability over Rayleigh fading channel can
be obtained from (3) as follows:

ε
f
bk

≈ Eg

{
2Q

(√
ϑ

ν
ftm
bk

[
ln
(
1 + γ

ftm
bk (p, ξ , g)

)
−
κ ln 2
χϑ

])}
,

∀b ∈ B, k ∈ Ku, f ∈ Fu, (5)

where E(x) denotes the expected value of x.
The following constraint should be satisfied to ensure

that the packet loss probability of user k in RB f is equal or
below the threshold value εmax,f

bk at mini-slot tm:

Eg

{
0(γ ftmbk (p, ξ , g)

}
≤ ε

max,f
bk ,∀tm, b ∈ B, k ∈ Ku

b. (6)

Note that the average is taken at each time slot over the
small-scale channel gains conditioned on large-scale channel
gains. It is also worth noting that we assume we have the
probability density function (pdf) of the URLLC channel
gains and based on the given large-scale channel gains, the
decoding error probabilities is only depend on small-scale
channel fading [25], [57].

2) eMBB AND mMTC DATA RATE BASED ON SHANNON
CAPACITY MODEL
eMBB and mMTC data rates affect by puncturing URLLC
traffics. In IA method, we perform resource allocation for
URLLC users at each mini-slot, hence we know the position
of URLLC puncturing by reallocating them the eMBB or
mMTC RBs. Therefore, the eMBB or mMTC instantaneous
transmission rate between BS b and user k on RB f at time
slot t is defined as:

ReMBB/mMTC,ft
bk (p, ξ , g)

=

Z t∑
j=1

4χϑ

1 −

∑
k̄∈Ku

b

∑
i,j∈f ξ

ft
bk̄
oftij

Z t


× log2

(
1 +

∑
f ∈F

∑
k∈K ξ

ft
bkp

ft
bkg

ft
bk

I ftbk (p, ξ , g) + ϑN0

)
, (7)

where
∑

k̄∈Ku
b

∑
i,j∈f ξ

ft
bk̄
oftij is the number of punctured

mini-slots from the RB f of user k at time slot t and
I ftbk (p, ξ , g) denotes interference form other cells on RB f at
time slot t which can be expressed as:

I ftbk (p, ξ , g) =

∑
b̄∈B\{b}

∑
k̄∈Kū

∑
i,j∈f

ξ
ftm
b̄k̄
oftmij

pftm
b̄k̄

Lf
gij,ftm
b̄k

+

∑
b̄∈B\{b}

∑
k̄∈K̄

∑
i,j∈f

ξ
ft
b̄k̄
oftij
pft
b̄k̄

Lf
gij,ft
b̄k
, (8)

where the first term denotes the interference form URLLC
users of other cells which have overlap with RB f and second
term denotes the interference form eMBB or mMTC users of
other cells which have overlap with RB f . For user k which
requests eMBB service, the following constraint should be
satisfied to ensure that the average data rate of eMBB user
k ∈ Ke

b is equal or above the required minimum data rate:

Eg

 1
T

∑
t∈T

∑
f ∈F

ξ
ft
bkR

ft
bk (p, ξ , g)

 ≥ Rmin,e
bk ,∀b ∈ B, k ∈ Ke

b,

(9)

where Rmin,e
bk denotes the required data rate of eMBB user k

at BS b. The mMTC users require fixed, typically low,
transmission rate and PER on the order of 10−1 [1]. However,
to guarantee the mMTC users data rate requirements, the
following constraint should be applied:∑

f ∈F

∑
t∈T

ξ
ft
bkR

ft
bk (p, ξ , g) ≥ Rmin,m

bk ,∀b ∈ B, k ∈ Km
b . (10)

3) UBIQUITOUS CONNECTIVITY FOR mMTC USERS
In order to satisfy ubiquitous connectivity for mMTCdevices,
we aim to maximize the number of allocated RBs for mMTC
users. Let cmk be a binary indicator variable to define whether
the mMTC user k is connected to the BS or not, where
cmk = 1 if the data rate of mMTC user k is equal or greater
than the minimum data rateRmin,m

bk . In order to satisfy the QoS
of mMTC service, the following constraint must be met:∑

f ∈Fm

∑
k∈Km

b

∑
t∈T

ξ
ft
bkcmk ≥ C th

M , ∀b ∈ B, (11)

where C th
M is the threshold value of the minimum number of

connected mMTC devices.

4) PROBLEM FORMULATION
For IA scheme, we aim to jointly minimize the total transmit
power and the number of allocated RBs along with satisfying
the URLLC reliability an latency constraint which can be
formulated as follows:

min
p,ξ

lim
T→∞

1
T

∑
t∈T

∑
k∈K

∑
f ∈F

∑
b∈B

(
ϱi2ξ

ft
bkp

ft
bk + ϱi3ξ

ft
bk

)
,

(12a)
s.t. pftbk ≥ 0, ξ ftbk ∈ {0, 1},∀f ∈ F , t ∈ T , b ∈ B, k ∈ K,

(1), (2), (6), (9), (10), (11), (12b)

where ϱi2 and ϱi3 are the weights which act as balancing
parameters of our objective function. It is worth mentioning
that equation (6) is for ensuring the reliability of the URLLC
users. Unlike RaA and OA schemes, where upon arriving
the URLLC packets at each mini-slot, the BSs randomly
punctures some of the already allocated RBs to the arrived
URLLC services. On the other hand, in the IA optimization
problem, the BSs intelligently puncture the already allocated
RBs to the URLLC services to satisfy the eMBB,mMTC, and
URLLC constraints, i.e. (1), (2), (6), (9), (10), and (11).We do
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not consider constraint (6) for the RaA and OA problems to
decrease the complexity of the optimization problem as well
as decrease the signaling overhead of the whole system.

C. LOW COMPLEXITY AND OVERHEAD SCHEMES
1) RANDOM ALLOCATION
In addition, the URLLC service requires low-latency and
very high reliability transmission with packet loss probability
lower than 10−7 [1]. This imposes transmission of each
URLLC user without waiting to acquire the CSI and its RB
should be spanned only on a single mini-slot but can have
multiple frequencies. The CSI acquisition requires some time
and leads to a significant increase in the latency of URLLC
users. Therefore, due to the lack of CSI, no transmit power
or rate adaptation is possible for the URLLC users and the
BSs should allocate the transmit power and RBs among the
URLLC users without knowing the CSI. Hence, we consider
the equal power allocation for each URLLC RB, Puf ,
∀f ∈ 5u

f . We assume that the data rate of all URLLC users is
relatively low which can be guaranteed by one URLLC RB.
Therefore, at each mini-slot, one 1×4 shape RB is randomly
punctured from eMBB or mMTC allocated RBs and will be
reallocated to the arrived URLLC user with constant transmit
power equal to Puf . Although with this puncturing method,
we do not have any control for eMBB and mMTC service
constraints, its complexity cost is low and acceptable and the
latency constraint for URLLC users are satisfied. In other
words, there is a trade-off between the complexity cost and
user satisfaction for service providers. We model the number
of URLLC users arriving per mini-slot j of time slot t at
BS b by a Poisson process with rate λ̄. In the majority
of prior literature, specifically [58], [59], the modeling of
delay-sensitive wireless multimedia and vehicle control in
scenarios such as V2X has been conducted. In these works,
the time-critical traffic is not periodic, and thus, the authors
have employed a Poisson process to model the behavior. This
process involves URLLC users either transmitting over the
RBs allocated to eMBB users or punching them. The Poisson
process is a widely used model for traffic modeling in various
communication systems, including URLLC. The rationale
behind utilizing the Poisson process for modeling URLLC
traffic is that it assumes events occur independently of each
other. This assumption is reasonable for many types of traffic,
such as packet arrivals in a network [60], where the arrival of
one packet does not significantly impact the arrival of others.
Despite the assumption of independence, the Poisson process
can still capture bursty behavior [61]. The process allows
for variations in the arrival rate over time, which can reflect
the burstiness observed in real-world traffic. We assume that
there are5u URLLCRBs for eachmini-slot of each time slot.
For each mini-slot j at time slot t , the probability of URLLC
user assignment to RB f ∈ 5u is calculated as follows:

P ft
bj =

5u
−1∑

k=1

P{Xu
bjt = k}

(
5u

−1
k−1

)(
5u

k

) +

∞∑
k=5u

P{Xu
bjt = k},

∀b, j, t, f ∈ Fu, (13)

where P{Xu
bjt = k} =

λ̄ke−k
k! ,∀k ∈ Ku is used for finding

the probability of a number of arriving URLLC users in
a mini-slot.2

For eMBB and mMTC users, the instantaneous transmis-
sion rate between the bth BS and the k th user on RB f at time
slot t is defined as

R̃eMBB/mMTC,ft
bk (p, ξ , g)

=

Z t∑
zut =1

4χϑP{Y u
bt = zut }

(
1 −

zut
Z t

)

× log2

(
1 +

∑
f ∈F

∑
k∈K ξ

ft
bkp

ft
bkg

ft
bk

Ĩ ftbk (p, ξ , g) + ϑN0

)
, (14)

where zut is the number of punctured mini-slots at time slot t ,
Z t is the number of mini-slots in time slot t . P{Y u

bt =

zut } denotes the probability that the number of punctured
mini-slots is zut in a time slot which can be calculated as

P{Y u
bt = zut } =

(
Z t

zut

)
(P ft

bj)
zut (1 − P ft

bj)
Z t−zut , (15)

where Ĩ ftbk (p, ξ , g) denotes the interference from other cells
on RB f at time slot t over user k at the bth BS which can be
expressed as

Ĩ ftbk (p, ξ , g) =

∑
b̄∈B\{b}

∑
k̄∈K̄

∑
i,j∈f

P ft
bjξ

ft
b̄k̄
oftij
Pu

Lf
gij,ft
b̄k̄

+

(
1 − P ft

bj

)
ξ
ft
b̄k̄
oftij
pft
b̄k̄

Lf
gij,ft
b̄k̄
. (16)

In (16), in the first term, the probability of URLLC user
assignment to RE (i, j) is multiplied by the transmit power of
URLLC RE and channel gain.3 For eMBB and mMTC users,
the following constraint should be satisfied:

Eg

 1
T

∑
f ∈F

∑
t∈T

ξ
ft
bk R̃

eMBB/mMTC,ft
bk (p, ξ , g)

 ≥ Rmin,e
bk ,

(17)∑
f ∈F

∑
t∈T

ξ
ft
bk R̃

eMBB/mMTC,ft
bk (p, ξ , g) ≥ Rmin,m

bk . (18)

We aim to jointly minimize the total transmit power and the
number of allocated RBs. Therefore, for RaA scheme, the
optimization problem can be formulated as follows:

min
p,ξ

lim
T→∞

1
T

∑
t∈T

∑
k∈Ke∪Km

∑
f ∈F e∪Fm

∑
b∈B

(
ϱr2ξ

ft
bkp

ft
bk + ϱr3ξ

ft
bk

)
,

(19a)

s.t. pftbk ≥ 0, ξ ftbk ∈ {0, 1},

(1), (11), (17), (18), (19b)

2We assume that the statistic of URLLC arrival changes very slow such
that we can consider this static over a block of time slots. Additionally, note
that the arrival of URLLC users at each mini-slot is assumed to be an i.i.d
process and Poisson distributed.

3The probability of URLLC user assignment to RE (i, j) belongs to RB f
is equal to the probability of URLLC user assignment to RB f .
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where ϱr2 and ϱr3 are the weights which act as balancing
parameters of our objective function.

2) OVERALLOCATION FOR eMBB AND mMTC USERS
We consider coefficients cek ≥ 1 and cmk ≥ 1 for
overestimating the minimum required rate of eMBB and
mMTC users, while for incoming URLLC users at each mini-
slot, like the previous method, an RB from allocated eMBB
or mMTC users is randomly punctured. In this method,
we imagine that there is no URLLC users to puncture eMBB
or mMTC RBs and by this assumption, we reconstruct the
constraints (17) and (18) as follows:∑

f ∈F

∑
t∈T

ξ
ft
bk R̂

eMBB/mMTC,ft
bk (p, ξ , g) ≥ cekR

min,e
bk ,

∀b ∈ B, k ∈ Ke
b, (20)∑

f ∈F

∑
t∈T

ξ
ft
bk R̂

eMBB/mMTC,ft
bk (p, ξ , g) ≥ cmk R

min,m
bk ,

∀b ∈ B, k ∈ Km
b , (21)

where

R̂eMBB/mMTC,ft
bk (p, ξ , g)

= 4χϑ log2

(
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∑
f ∈F

∑
k∈K ξ

ft
bkp

ft
bkg

ft
bk

Î ftbk (p, ξ , g) + ϑN0

)
,

∀b ∈ B, k ∈ Ke
b ∪Km

b , f ∈ Fe
b ∪ Fm

b , t, (22)

where Î ftbk (p, ξ , g) can be expressed as

Î ftbk (p, ξ , g)

=

∑
b̄∈B\{b}

∑
k̄∈Ke

b̄
∪Km

b̄

∑
i,j∈f

∑
f̄ ∈F e

b∪Fm
b

ξ
f̄ t
b̄k̄
of̄ tij

pf̄ t
b̄k̄

Lf̄
gij,f̄ t
b̄k
. (23)

We set the coefficients in a way so that the imaginary data
rate required by the eMBB and mMTC users is considered
to be high enough so that by puncturing some of their
RBs, the required data rate by eMBB and mMTC users will
be provided. We aim to find the minimum value for the
coefficients. For OA scheme, we aim to jointly minimize the
total transmit power, the number of allocated RBs, and two
defined coefficients which can be formulated as follows:

min
p,ξ ,c

∑
k∈K

(
ϱ1cek + ϱ′

1c
m
k
)

+ lim
T→∞

1
T

∑
t∈T

∑
k∈K

∑
f ∈F

∑
b∈B

(
ϱo2ξ

ft
bkp

ft
bk + ϱo3ξ

ft
bk

)
,

(24a)

s.t. pftbk ≥ 0, ξ ftbk ∈ {0, 1}, cek ≥ 1, cmk ≥ 1,

∀f ∈ F , t ∈ T , b ∈ B, k ∈ K,
(1), (11), (20), (21), (24b)

where ϱ1, ϱ′

1, ϱ
o
2, and ϱ

o
3 are the weights which acts as

balancing parameters. In this method we formulate our
problem under two assumptions; 1) there is no URLLC

users that puncture the eMBB and mMTC RBS, and 2) the
eMBB and mMTC users need more data rate than their real
requirements. So whenever the RBs of eMBB and mMTC
are randomly puncture for the arrived URLLC users, the
minimum required data rate of the eMBB and mMTC users
are satisfied. The objective in this method is to find the
optimum value for the over estimation coefficients so that the
network resource usage is minimized.

V. REINFORCEMENT LEARNING BASED SOLUTION
An MDP is a mathematical framework used to model
decision-making problems in a stochastic (probabilistic)
environment. It consists of a set of states, actions, transition
probabilities, and rewards. MDPs are widely used in the field
of reinforcement learning and decision theory [62], [63].
Hence, we formulate the power allocation and RB assignment
for multiple users as an MDP. In this framework, BSs act
as agents, making decisions on power allocation for the
users who are in a known state. These decisions lead to a
transition in the environment involving both the users and
BSs, and in response, the agents receive feedback in the
form of rewards. Accordingly, we propose a single-agent
reinforcement learning method to solve our problem. Then,
we extend our solution to multiple agents. Fig. 2 depicts our
proposed single and multi-agent solution algorithms.

A. SINGLE-AGENT (CENTRALIZED)
We consider the BSs and users with their channel gains as the
environment and consider a global controller that manages all
BSs as shown in the left picture in Fig. 2. We define the state,
action, and the reward function for IA, OA, RaA schemes as
follows:

• State space: The state space at each time slot t is the
set of observation of the Macro Base Station (MBS)
from the environment. For the RaA and OA schemes,
It consists of the channel power gains of the eMBB
and mMTC users and the number of active eMBB
and mMTC users as S tr = S to =

[
{gt },Ke,t ,Km,t

]
,

where gt is the vector of all user channel power gains
and K x,t , x ∈ {e,m} is the total number of active
eMBB/mMTC users. For our proposed IA scheme,
in addition to the RaA state space, it consists of the
arrived URLLC users, so we define the state space of our
proposed OA scheme as S ti =

[
{gt },Ke,t ,Km,t ,K u,t

]
.

Note that all the values in the state space are continuous
variables.

• Action space: The action space for RaA scheme at
each time slot t consists of the transmit power and RB
allocation to the eMBB and mMTC users as At

r =

{ξ
ft
k , p

ft
k |ξ

ft
k ∈ {0, 1}, 0 ≤ pftk ≤ Pmax

}. For the OA
scheme, in addition to RaA action space, it consists of
the overestimation coefficients and can be defined as
At
o = {cek , c

m
k , ξ

ft
k , p

ft
k |ξ

ft
k ∈ {0, 1}, cek , c

m
k ≥ 1, 0 ≤

pftk ≤ Pmax
}. Finally, for our IA scheme, in addition

to the actions of RaA schemes, it consists of URLLC

114004 VOLUME 11, 2023



M. R. Abedi et al.: AI-Assisted Dynamic Frame Structure With Intelligent Puncturing Schemes

transmit power and RB allocation and can be defined
as At

i = {ξ
ft
k , ξ

ft
k , p

ft
k , p

u,ft
k |ξ

ft
k , ξ

ft
k ∈ {0, 1}, 0 ≤

pftk , p
u,ft
k ≤ Pmax

}. It is worth noting that the action space
of all schemes consist of both continuous and discrete
variables.

• Reward function: The reward function must be in a
way that can satisfy the objective of the problem as well
as supporting the respective constraints. We define the
reward, r t~ (∀~ ∈ {r, o, i}) as the objective functions of
the three IA, RaA, and OA optimization problems:

IA: r ti (s
t , at )

=


−

∑
f ∈F

∑
b∈B

∑
k∈K

(
ϱi2ξ

ft
bkp

ft
bk + ϱi3ξ

ft
bk

)
s.t. (1), (6), (17), (18), (2),
−∞ Otherwise.

(25)

RaA: r tr (s
t , at )

=


−

∑
f ∈F

∑
b∈B

∑
k∈K

(
ϱr2ξ

ft
bkp

ft
bk + ϱr3ξ

ft
bk

)
s.t.(1), (17), (18),
−∞ Otherwise.

(26)

OA: r to(s
t , at )

=



−

∑
k∈K

(
ϱ1cek + ϱ′

1c
m
k
)
−∑

f ∈F

∑
b∈B

∑
k∈K

(
ϱo2ξ

ft
bkp

ft
bk + ϱo3ξ

ft
bk

)
s.t.(1), (20), (21).
−∞ Otherwise.

(27)

B. MULTI-AGENT (DISTRIBUTED)
We consider each BS as an agent which only controls
its corresponding users in the coverage area as shown in
the right picture in Fig. 2. The agents have back haul
communication with the global controller (MBS) for their
training. The difference between the single-agent and multi-
agent here is, in multi-agent, each agent chooses its own
action individually and the trained by MBS. However,
in single-agent method, MBS itself chooses all actions and
the training performs by itself. So, in single-agent method,
we have centralized action selection and centralized training.
Conversely, in multi-agent method we have decentralized
action selection and centralized training. Since there is no
prior information about the time-varying channel conditions
and multiple users which want to access the network
simultaneously, the state transition function is unspecified
and the optimization problem cannot be solved directly.
To overcome this challenge, the reinforcement learning
methods, such as Q-learning can be utilized, which require no
prior information about the state transition function. Hence,
we reformulate our optimization problem using the concept
of Q-function. At each decision epoch t , for state st , after
selecting an action at based on the decision policy π : s → a,

the agent updates an action-value function (e.g., a Q-table) as
follows [64]:

Q(st , at ) = (1 − α)Q(st , at ) + α(r t+1
+ γ max

a′∈A
Q(st+1, a′)),

(28)

where Q(st , at ) denotes the expected value for state-action
pair (st , at ) at epoch t , γ and α are the reward decay and the
learning rate over the interval [0, 1], respectively. The agent
can select an action randomly or based on the action decision
policy such as ϵ-greedy policy. The optimal policy can be
obtained as [64]:

(π t )∗ = argmax
at

Q(st , at ). (29)

The agent selects the action corresponding to themaximum
Q-value with the probability of 1 − ϵ or selects the action
randomly with the probability of ϵ, where ϵ is equal to 1 at
the beginning of learning and decays with each iterations till
it gets to zero. The classic reinforcement learning methods
such as Q-learning can be used for obtaining the optimal
Q-function value for discrete and small state and action
spaces. However, for large state and action spaces, the Deep
Neural Networks (DNNs) are used as function approximators
to estimate the Q-function. On the other hand, our problem
consists of power allocation and RB assignment, which
needs continuous and discrete actions and the classical
DRL methods, such as Actor Critic (AC) and DQN can
not be used to obtain the optimal Q-function value and
it takes long time for the Q-function to be converged.
Therefore, we utilize the Compound Action Actor Critic
(CA2C) method proposed in [65] which consists of both
the AC and the DQN methods to handle continuous and
discrete actions. The environment of our problem consists
of multiple BSs with their corresponding users which have
diverse service requests, so considering the single-agent
DRL methods cause to increase the signaling overhead.
On the other hand, a single-agent has limited capacity
to solve the problem with large state and action spaces.
Accordingly, cooperation of multiple single-agents to solve
a common problem leads to jointly decrease the signaling
overhead and increase the capacity of learning to find the
near-optimal solution. Therefore, we use multi-agent DRL
as a solution for solving our proposed resource allocation
problem. In our multi-agent DRL method, each BS acts
as an agent and interacts with the environment and takes
its own action based on its observation independently of
each other. Since the BSs objective is common, they are
trained by a centralized critic network. In this approach,
agents do not need to acquire global information which can
reduce the signaling overhead [66]. Regarding to cooperative
multi-agent Deep Deterministic Policy Gradient (MADDPG)
introduced in [66], we consider CA2C instead of DDPG for
each agent and proposed the Multi-Agent-Compound Action
Actor Critic (MA-CA2C) method. The details of the MA-
CA2C algorithm are described in Algorithm 1. In Lines 1-3,
all variables including actor and critic parameters along with
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FIGURE 2. Our proposed system model considering: the single-agent (left), where both training and execution (i.e, resource allocation decisions)
stages are taken at single agent (centralized agent) consisting of both actor and critic networks located at MBS, and multi-agent (right) schemes,
where only training stage is performed centrally at a critic network located MBS and execution (i.e, resource allocation decisions) stages are
distributively taken at each actor network located at each BS.

the replay buffer size are initialized. The most outer loop
(Line 4) iterates based on the number of episodes. The middle
loop (Line 5) is for each training step, which defined here as
cycles. And the most inner loop (Line 6) iterates based on
the number of agents (BSs). From Lines 7-12, each agent
interacts with environment by performing action, receiving
reward, and saving these transitions into their experience
replay Db. In Lines 13 and 14, the training process is
performed. And finally, the neural network parameters are
updated in Lines 15-17. Note that to prevent the agents from
getting stuck in a bad local optimum trap near the initial point,
we add noise, Mt

b to the selected actions to ensure that all
actions are explored. In other words, we applied Ornstein-
Uhlenbeck process in order to generate noiseMt

b to be added
to the output action of actor network to ensure that all possible
actions are explored.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of our proposed algorithm
consists of two main parts:1) the action selection and 2) the
training process.

A. COMPUTATIONAL COMPLEXITY OF ACTION SELECTION
We assume that our neural network is a fully connected
neural network with fixed number of hidden layers and fixed
number of neurons in each hidden layer. The computational
complexity of calculating the output of such neural network
for an input is equal to the sum of the sizes of input and
output [67]. For our proposed algorithm, based on state
and action spaces, for each BS, the sizes of the inputs
of the critic and actor networks are RK + K and 2RK ,
respectively. K is the number of services and R is the
number of RBs. Thus, the computational complexity of
transmit power selection and estimation of the Q-function
value for a state-action pair is O(RK ). The estimation
of the Q-function values should be done at all B BSs,
thus, the computational complexity of action selection
is O(BRK ).

Algorithm 1MA-CA2C Algorithm
1. Initialize exploration parameter; critic network parameter
and actor network parameter randomly [64] for each BS b.
2. Initialize target networks parameters randomly [64] for
each BS b.
3. Initialize reply buffer length Db for each BS b.
4. for episode from 1 to number of episodes do

5. for cycle from 1 to number of cycles do
6. for b from 1 to B do

7. Receive initial state st .
8. With probability ϵ, select a random RB, and
otherwise select an RB by policy for agent b.
9. Determine the transmit power for the selected
RB.
10.Execute the agents actions, observe the reward
and transits to new state st+1.
11. if all the optimization problem constraints are
satisfied in state st+1

b then
12. Save transition stb, a

t
b, s

t+1
b , r tb in Db.

end
end
13. if number of transitions inDb is greater than batch
size then

14. Sample a random minibatch of M transitions
stb, a

t
b, s

t+1
b , r tb from Db

end
15. Update critic network by minimizing the loss
function.
16. Update the actor network by the sampled policy
gradient.
17. Update the target networks.

end
end

B. COMPLEXITY OF TRAINING PROCESS
The Q-function values of the K services should be calculated
and compared by the BSs before the training step. Based
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on previous section, the computational complexity of this
step is O(MBRK ) where M is the size of the training
batch. In addition, for a fully connected neural network in
which the number of hidden layers and neurons are fixed,
the back-propagation algorithm complexity is related to the
product of the input size and the output size. Based on the
state and action spaces, for each BS, the sizes of the inputs
of the critic and actor networks are RK + K and 2RK ,
respectively. Moreover, for each BS, the sizes of the outputs
of the critic and actor networks are 1 and 2, respectively. Thus,
the back-propagation algorithm complexity is O(MBRK ).
Finally, the training process complexity is O(MBRK ).

VII. CONVERGENCE ANALYSIS
The considered DRL algorithm, i.e., CA2C method, is an
extended version of Q-learning algorithm. For Q-learning
algorithm, if

∑
∞

t=0 α
t

= ∞ and
∑

∞

t=0(α
t )2 < ∞ are

satisfied and |r t (st , at )| is bounded, the Q-function converges
to the optimal Q-function as t → ∞ with probability 1 [68].
An effective approach to train neural networks is using the
inverse time decaying learning rate in which using a large
learning rate in the first training epochs prevents the network
from getting stuck in a bad local optimum trap near the
initial point [69]. Whereas, using a small learning rate in the
last training epochs converges the network to a good local
optimum and prevents the network from oscillation. We also
analyze the convergence of our proposed algorithm through
simulations in Section VIII.

VIII. SIMULATION RESULTS
In this section, the performance of our proposed frame
structure with IA scheme is compared with two low
complexity and overhead schemes using multi-agent and
single-agent of C2AC DRL methods, defined as MA-CA2C
and CA2C, respectively. It is worth noting that although there
are some existing works that considered D-RBS for their
framework, we are not able to compare their methods with
our proposed multi-cell and multi-agent D-RBS framework,
since we not only consider inter-cell interference for our
formulation, but also our optimization problem is completely
different. We evaluate the BSs cooperation to mitigate the
impacts of inter-cell interference, as well as the impact of
the URLLC packet arrival rate to the data rate of eMBB and
the number of connected mMTC users [58]. In addition, our
proposed IA method is also compared and evaluated. The
objective of our problem is to minimize the total transmit
power and the total number of allocated RBs. For simulation
parameters, we assume there are 10 eMBB users, 200 mMTC
users, and 5 URLLC users which are independently dispersed
under an uniform distribution over a circular area with a
1000 meters radius and change their position over time
according to the randomwalkmodel [1]. The trafficmodel for
eMBB and mMTC users is considered as full buffer traffic,
while for the URLLC arrival rate, it has 50 Bytes as the size
of each packet and arrives at each mini-slot based on Poisson
distribution [6], [58], [59]. Based on the size of URLLC

TABLE 2. Network parameters [58], [59], [60], [61].

packets, the BSs must allocate (puncture) 17 numbers of
1 × 4 resource blocks to ensure the URLLC requirements.
This would increase 5.18% overhead at each mini-slot. Since
we have 7 mini-slots at each decision epoch, therefore the
total overhead of IA compared to RaA andOA is 7×5.18% =

36.3%. The other simulation parameters are summarized in
Table 2.
The simulations were conducted using Python and Tensor-

Flow on a host PC equipped with an Intel Core i7 8th Gen
CPU operating at a clock frequency of 2400 GHz. The PC
had 12 GB of memory available for the simulations. Fig. 3
shows the average accumulated reward with oscillation areas
(the shaded blurred colors) for our proposed model compared
RaA and OA schemes in multi-agent (with -MA suffix) and
single-agent (with -SA suffix) frameworks.

In terms of reward performance, Fig. 3a demonstrates that
the IA approach exhibits faster convergence compared to
RaA and OA methods, requiring fewer training steps (around
25000 steps for the multi-agent algorithm and 27000 steps
for the single-agent algorithm). This faster convergence is
attributed to IA’s ability to strategically select the most
suitable RBs to fulfill the objective function, facilitating more
efficient progress. However, it is important to note that IA
incurs an overhead of 36.3% compared to RaA and OA due
to the additional processing involved in selecting the optimal
RB for URLLC users. When comparing the time complexity
between single-agent andmulti-agent algorithms, it is evident
that, in general, the single-agent algorithm requires more time
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to converge for all IA, RA, and OA approaches. However,
it achieves a higher reward. Specifically, when comparing
IA-SA and IA-MA, the single-agent algorithm exhibits a
convergence latency of approximately 2000 steps with a
reward that is approximately 36% higher.

Based on the observations from Fig. 3b and Fig. 3c,
it is evident that when there are 5 URLLC users with a
packet arrival rate exceeding 3, the multi-agent OA (OA-MA)
approach fails to provide sufficient data rate for eMBB users
and connectivity for mMTC users. Similarly, the single-agent
OA (OA-SA) approach struggles to meet the needs of all
users when the packet arrival rate is 5. These findings
highlight the lack of scalability in the OA scheme, despite
some performance improvements it offers. In addition, the
RaA method is less scalable compared to the IA using
both single-agent and multi-agent algorithms, primarily due
to higher power and RB consumption required to cater to
a specific number of users across all three services. The
shaded blurred regions show the oscillation of actual reward
value for each method. For more clearance, we also plot the
moving average of each method’s reward (dashed lines for
SA and solid lines for MA). It is worth noting that since
our environment consists of both continuous and discrete
actions, we only apply C2AC DRL method as a solution for
our environment. As demonstrated, the single-agent method
outperforms the multi-agent ones for all schemes. The
superiority of the single-agent method over the multi-agent
has the signaling overhead cost. Considering single-agent
method, it can be concluded that our proposed IA-SAmethod
achieves higher accumulated reward compared to OA-SA and
RaA-SA methods with fewer training steps. This is similar
for multi-agent method and it is expected due to intelligent
puncturing of eMBB and mMTC RBs to URLLC users
that results to consume fewer RBs and transmit power to
satisfy the objective function. The lower reward for the RaA
scheme compared to OA ones, apart form considering the
single-agent or multi-agent methods, is because of constraint
violation by RaA method. Although, the OA and RaA
methods both puncture the already allocated eMBB and
mMTC RBs randomly, the OA satisfies eMBB data rate and
mMTC connected devices by overallocating more RBs to the
eMBB and mMTC users. Fig. 4 demonstrates a sample of RB
allocation for three different schemes.

As depicted, after allocation of the RBs to eMBB and
mMTC users, i.e., the peach and green color REs, the URLLC
packets arrived at the first, fifth, and sixth mini-slots. Then,
all three methods punctures the RBs for URLLC services.
Note that the IA scheme punctures the already allocated
RBs of eMBB and mMTC to URLLC more properly so that
the number of punctured RBs (the gray REs) is less than
that of RaA and OA schemes. It is also worth mentioning
that the OA and RaA methods consider the same puncturing
scheme (randompuncturing) for URLLC allocation. The only
difference between these two methods is that the OA method
allocates extra RBs to eMBB andmMTC users to compensate
the punctured REs. Fig. 3(b) shows the transmit power for

FIGURE 3. (a) The average accumulated reward for all puncturing
schemes with single-agent and multi-agent methods. (b) The average BSs
transmit power versus the URLLC arrival rate at each time slot. (c) The
average number of allocated RBs versus eMBB required rate.

different puncturing schemes versus the URLLC arrival rate
at each time slot. The best performance is for our proposed
IA with single-agent DRL method. The performance gain
for our proposed IA method with single-agent DRL method
is 18.7% and 30.4% compared to RaA and OA methods
with single-agent DRL method, respectively. In addition,
the performance gain of using single-agent DRL method
compared to multi-agent one for our proposed IA method
is 6%. This gain for RaA and OAmethods are 10% and 7.2%,
respectively. Similarly, the number of allocated RB to the
eMBB and mMTC for our proposed IA is the least for both
single-agent and multi-agent methods.
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FIGURE 4. A sample of RB allocation with the three puncturing schemes: a) In the IA scheme, eMBB (Orange color), mMTC (Green color),
and URLLC (black color) RBs are allocated intelligently among eMBB, mMTC, and URLLC users, respectively, where URLLC (black color) RBs
are punctured intelligently. b) In RaA scheme, URLLC RBs (Gray color) are punctured randomly. C) In the OA scheme, additional RBs are
allocated to eMBB (Dark orange color) and mMTC (Dark green color) users to compensate the negative effect of puncturing on data rates of
eMBB and mMTC users.

FIGURE 5. (a) The reliability versus the URLLC service packet arrival rate.
(b) Total number of connected mMTC devices. (c) The average eMBB data
rate.

Fig. 5(a) depicts the reliability of the URLLC services
versus the arrival of URLLC packets at each time slot. Please

FIGURE 6. (a) The energy efficiency versus the URLLC service packet
arrival rate. (b) The spectral efficiency versus the URLLC service packet
arrival rate.

note that the reliability is calculated as 1−8lost/8Transmitted ,
where 8lost and 8Transmitted denote the number of lost
URLLC packets and the number of transmitted URLLC
packets, respectively. As shown, the increasing of the
arrival packet rate at each time slot causes to decrease
the reliability. The point here is all methods, apart from
applying the single-agent or multi-agent method, satisfy the
reliability constraint for URLLC services. The number of
connected mMTC devices versus the URLLC arrived rate
is demonstrated in Fig. 5(b). As expected, the OA scheme
with single-agent method results in the maximum number
of the connected mMTC devices compared to IA and RaA
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TABLE 3. Performance and complexity of our proposed IA scheme versus
OA and RaA.

methods. This performance gain has come at higher transmit
power and the number of allocated RBs. We will later discuss
about te transmit power and allocated RBs for all methods.
The average data rate by eMBB users is depicted in Fig. 5(c).
Similar to Fig. 5(b), by increasing the URLLC arrival rate,
the average eMBB data rate decreases. Again, the OAmethod
achieves the highest average eMBB data rate compared to IA
and RaA methods. In addition, performance and complexity
of our proposed scheme are compared with both OA and RaA
schemes in Table 3.
Fig. 6(a) and Fig. 6(b) show the energy efficiency and

spectral efficiency (here we considered all data rate for all
types of users) versus the URLLC packet arrival rate. It is
concluded that the IA method with single-agent algorithm
has increased the energy efficiency by 15% compared to
IA with multi-agent one. This is with the cost of excessive
signaling overhead in single-agent algorithm. On the other
hand, our IA has increased the energy efficiency by 38%
and 40% compared to RaA and OA with multi-agent
algorithm, respectively. In addition, our IA approach has
increased the spectral efficiency by 4% and 3.8% compared
to RaAmethod with single-agent and multi-agent algorithms,
respectively. On the other hand, OA method has increased
spectral efficiency by 1.5% and 1.4% compared to IA
in single-agent and multi-agent algorithms, respectively.
Although the difference is not too high, this is with the cost
of excessive power and resource consumption at the BSs.

IX. CONCLUSION
In this paper, we devised a novel AI-assisted dynamic RB
structure abbreviated as D-RBS and introduced IA scheme
for multiplexing of eMBB, mMTC, and URLLC users
so that 5G networks can handle low latency traffics and
large fluctuations in data rates and support heterogeneous
services more efficiently. Unlike most previous works that
considered dynamic RB structure in a single cell network,
in this paper, we designed a new dynamic RB structure
in multi-cell network with inter-cell interference which is
one of main challenges in multi-cell. In addition, unlike
most previous works that only consider one of latency and
reliability constraints, in this paper, we consider both latency
and reliability multiplexing eMBB, mMTC, and URLLC
users. Furthermore, we compared this scheme with two low
complexity and overhead schemes, named RaA and OA.
We formulate our proposed D-RBS method with puncturing
schemes as three different optimization problems inwhich the
objectives are minimizing the network resource usage along
with satisfying the eMBB and mMTC QoS requirements,

while the URLLC latency and reliability constraints are
satisfied. We have formulated a joint transmit power and
RBs assignment problem to minimize the long-term energy
consumption and the number of allocated RBs.We developed
a DRL-based algorithm to solve our optimization problem
with both discrete and continuous actions. Simulation results
have verified our algorithms convergence and showed that
our proposed scheme, i.e., D-RBS, could achieve much
better performance than the traditional scheme, S-RBS. Since
our optimization problems are nonlinear non-convex with
multiple discrete and continuous variables, we used a DRL
method to optimize the transmit power allocation and RBs
assignment in single-agent and multi-agent scenarios and
showed that the proposed framework scales well with a
large number of RBs, BSs, and users. Then, we analyzed
the performance gain of these three schemes which compre-
hensively indicated the trade-off between network resource
usage and user’s satisfaction. We further investigated our
proposed schemes from the convergence and computational
complexity perspectives. Finally, we studied the performance
of the proposed schemes and compared it with S-RBS
baseline approach using simulations for different network
parameters. We showed that our proposed IA scheme
achieves a performance gain of 30% and 60% compared to
the RaA and OA schemes, respectively. However, IA had
36.3% complexity for action selection compared to both RaA
and OA.
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