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ABSTRACT Mechanical ventilation (MV) is a critical life-supportive technique for saving patients with
acute respiratory failure. Abnormal ventilation happens frequently due to patient-ventilator dyssynchrony
(PVD), condensation in the circuit, increased airway resistance, and so on. The previous studies that only
rely on time-domain features fail to provide high identification accuracy. In this study, we develop a machine
learning method to detect abnormal ventilation from ventilator waveforms. This method includes not only
multi-modal features, but also time-domain, time-frequency, and entropic features in machine learning.
We apply three classical machine learning models (random forest, support vector machine, and k-nearest
neighboring) to detect five types of abnormal ventilation, including three types of PVD (missed triggering,
double triggering, and prolonged cycling), circuitry condensation, and the flow expiration limit caused by
high airway resistance. The results show that the optimal F1 scores for detecting prolonged cycling, double
triggering, missed triggering, circuitry condensation, and expiratory flow limit are 97.56%, 92.26%, 96.46%,
89.18%, and 96.05%, respectively, which are superior to the results using purely time-domain features.
In conclusion, the fusion of multi-modal features is beneficial to the identification of abnormal ventilation.
It is promising to promote the application of machine learning models to detect abnormal ventilation in real
clinical settings.

INDEX TERMS Patient-ventilator dyssynchrony, condensation, expiratory flow limit, multi-modal features,
random forest.

I. INTRODUCTION
Mechanical ventilation (MV) is a critical life-supportive
technique for saving patients with acute respiratory fail-
ure. The MV should be closely monitored to ensure the
optimal match between the ventilator and the patients [1].
In real clinical settings, however, several types of abnormal
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MV occur frequently. First, the mismatch between the
patients and the ventilator leads to patient-ventilator dyssyn-
chrony (PVD), which is associated with poor clinical out-
comes, such as prolongation of weaning, and increased
incidence of ventilator-induced lung injury (VILI) [2].
Second, condensation in the circuit of MV will increase
the circuitry resistance and thus limit the gas delivery
to the patients [3]. It will also trigger the ventilator to
deliver an inspiration without spontaneous effort, namely
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auto-triggering [4]. Third, expiratory flow limit, which is
often observed in chronic obstructive pulmonary disease
(COPD), indicates increased airway resistance and thus
requires appropriate ventilation settings. Timely detection of
these types of abnormal ventilation and adjust the ventilation
settings properly could make the patients more comfortable,
and probably benefit the treatment.

The abnormal ventilation can be observed at the bedside
by inspecting the waveforms displayed on the ventilator.
For example, the ineffective inspiratory effort during expi-
ration (IEE), a type of PVD, is characterized by an increase
in the flow-time waveform accompanied by a drop in the
pressure-time waveform. Double triggering (DT), another
typical PVD, is characterized by a very short interval between
the first and the second inspirations. When condensation is
present in the circuit, the waveform will manifest significant
fluctuations. The expiratory flow limit is characterized by
low peak expiratory flow and long expiration. However, the
recognition ability of the clinicians is diverse [5]. Most junior
clinicians are not able to recognize these abnormal ventilation
waveforms. As a result, computerized algorithms for the auto-
matic detection of abnormal ventilation are highly necessary.

Previous studies on automatic analysis of mechanical ven-
tilation waveform mainly focus on the identification of PVD
cycles. The early rule-based approaches are mostly based on
finding characteristic notch and setting thresholds to iden-
tify specific types of PVD [6], [7], [8], [9], [10], [11]. The
accuracy is susceptible to the quality of the signals and the
selection of thresholds. In recent years, machine learning and
deep learning emerge as promising approaches in this field.
Although deep learning can obtain superior classification per-
formance over conventional machine learning and rule-based
approaches [12], [13], [14], it requires a large number of
annotated samples. In contrast, conventional machine learn-
ing models, such as random forest (RF) and support vector
machine (SVM), can achieve satisfactory performance in
the detection of PVD using a small number of training
samples [15], [16], [17].
Feature extraction is the key step for a well-performed

conventional machine learning model. The step extracts
hand-crafted features to characterize the distinct properties
among the different categorical samples. The reported stud-
ies on MV waveform analysis examined features mainly
in the time-domain, such as cycle duration, level of air-
way pressure, and flow velocity [15], [16]. Little attention
was put to the time-frequency or entropic features, which
are recognized as important features for other biomedical
signals [18], [19]. In this study, we examine the effective-
ness of fusing multi-modal features in detecting abnormal
ventilator waveforms, including PVD events, circuitry con-
densation, and expiratory flow limit. First, we establish a
dataset of ventilator waveforms annotated by clinical profes-
sionals. Five types of abnormal ventilator waveforms (three
types of PVD events, circuitry condensation, and expiratory
flow limit) are labeled. Then, multi-modal features, includ-
ing time-domain, time-frequency, and entropic features, are

extracted from each breath cycle. Third, we use a minimum
redundancy maximum relevance (MRMR) algorithm [20] to
select important features. Finally, the selected features were
fed to machine learning models for identifying the abnormal
ventilator waveforms. The experimental results illustrates
that the optimal F1 scores for detecting prolonged cycling,
double triggering, missed triggering, circuitry condensation,
and expiratory flow limit are 97.56%, 92.26%, 96.46%,
89.18%, and 96.05%, respectively, which are superior to the
results using purely time-domain features.

II. MATERIALS AND METHODS
A. OVERVIEW
The schematic diagram of the method is illustrated in
Figure 1. The ventilator flow waveform was obtained
and three categories of features, i.e., time-domain, time-
frequency, and entropic features were extracted from the
waveform. In total, 37 potential features were used for each
machine learning model. These features were ranked by an
MRMR feature selection approach. The selected 12 features
were fed to a classifier for identifying the type of breath.
Random forest (RF), k-nearest neighbors (KNN), and sup-
port vector machine (SVM) were adopted as the classifiers.
Five types of abnormal ventilation were examined, including
prolonged inspiration, DT, missed triggering, expiratory flow
limitation, and condensation.

FIGURE 1. Schematic diagram of the proposed algorithm for
identification of abnormal ventilation.

B. DATA COLLECTION AND ANNOTATION
The clinical data were collected from an ICU in the Second
Affiliated Hospital, Zhejiang University School of Medicine
between June and July 2020. The study is approved by the
ethics committee of the Second Affiliated Hospital, Zhejiang
University School of Medicine (No. 20220570). The patients
were ventilated with Servo-i (Maquet, Sweden), PB840
(Covidien, U.S.), or Evita 4 (Draeger, Germany) ventilators.
The ventilator waveform data was recorded using a ventila-
tor information system (RespCareTM, ZhiRuiSi, Hangzhou,
China). The system output ventilator waveforms (including
airway pressure and flow velocity) and parameters through
the RS-232 serial port on the ventilator, and transmitted the
signals to a central station via a local area network. The
central station stored all the raw data for further analysis.
The sampling frequencies were 50 Hz for both the Servo-i
and PB840 ventilators, and 62.5 Hz for the Evita 4 ventilator.
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The patient demographics were obtained from the electronic
medical recording system of the hospital.

Three clinicians with professional knowledge of mechan-
ical ventilation annotated the data. Five types of abnormal
ventilator waveforms were considered in the study, includ-
ing prolonged inspiration, DT, missed triggering, expiratory
flow limitation, and condensation. Examples of abnormal
ventilator waveforms are shown in Figure 2. The prolonged
inspiration indicates that the preset inspiratory time is too
long that the patients start to exhale before the inspiratory
time is up. DT occurs because the inspiration continues after
the delivery of the ventilator stops, and triggers a second
delivery of gas before the inspired gas of the first breath is
exhaled. Missed triggering is characterized by weak inspira-
tory efforts (mostly during expiration) which fail to trigger
the ventilator. Expiratory flow limitation is mainly due to
the high resistance of the expiratory airway. It is character-
ized by prolonged and sometimes incomplete expiration. The
clinicians were educated to annotate the waveform according
to the waveform characteristics of each PVD type. A spe-
cialized software was developed to show the ventilation
waveform as well as the ventilator settings to assist the
annotation.

FIGURE 2. Examples of abnormal ventilator waveforms. The upper panels
plot the airway pressure and the lower panels plot the flow rate.
(A) missed triggering. (B) double triggering. (C) prolonged cycling.
(D) condensation. (E) expiratory flow limitation.

C. FEATURE EXTRACTION
Three categories of features were extracted from the flow
velocity waveforms, i.e., time-domain, time-frequency, and
entropic features. All the features are listed in Table 1.
Detailed descriptions of these features are described below.

D. TIME-DOMAIN FEATURES
Five time-domain features including maximum value (Max),
minimum value (Min), standard deviation (SD), Kurtosis (K),
skewness (S) were calculated. Suppose the signal sequence
to be xn, N is the number of sampling points of the data, and
AM is the average value of the signal. Max, Min, SD, AM,
and MN represent the maximum and minimum, the standard
deviation, the average value, and the median value of the
signal, respectively. Kurtosis is a statistic that describes the
steepness of the distribution of all values in a population,

TABLE 1. The multi-modal features.

which is defined as

K =

∑N

n−1
(xn − AM )

4
(N − 1)SD4 (1)

Skewness is a measure of the direction and degree of skew-
ness of statistical data distribution, which is calculated as

S =

∑N

n−1
(xn − AM )

3
(N − 1)SD3 (2)

E. TIME-FREQUENCY FEATURES
The time-frequency features in this study are mainly based
on wavelet decomposition. A six-order wavelet decompo-
sition was performed using Daubechies-5 as the wavelet
basis function. Mean of the absolute value (MAV), average
power (AP), SD, and short-term/long-term standard devia-
tion from the Poincare plot (SD1/SD2) were calculated for
each wavelet sub-band. They are named as MAVDn, APDn,
SDDn, SD1Dn, and SD2Dn in this study, where n indicates
the order of the wavelet sub-band.

MAV and AP are calculated as

MAP =
1
N

∑N

n=1
|xn| (3)

and

AP =
1
N

∑N

n=1
x2n (4)

SD1 and SD2 are calculated from the Poincare plot,
in which each sampling point in a time series is plotted against
the next sampling point. It is widely used in analyzing heart
rate variability, as it is capable of extracting the nonlinear
features from the RR interval time series [21]. Calculation
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of SD1 and SD2 follows

d =
1

√
2

|xn − xn+1|1,n (5)

MSD1 =
1

N − 1

∑N

n=1
d1,n (6)

SD1

=

√(
d1,1−MSD1

)2
+

(
d1,2−MSD1

)2
+ . . . +

(
d1,n−MSD1

)2
N − 1

(7)

d
1

√
2

|xn + xn+1 − 2AM |2,n (8)

MSD2 =
1

N − 1

∑N

n=1
d2,n (9)

SD2

=

√(
d2,1−MSD2

)2
+

(
d2,2−MSD2

)2
+ . . . +

(
d2,n−MSD2

)2
N − 1

(10)

where SD1 and SD2 are the mean of d1,n and d2,n
respectively.

F. ENTROPIC FEATURES
Two commonly used entropic features, namely Fuzzy
Entropy (FE) and Approximate Entropy (AE) were adopted
in this study. Approximate entropy (AE) is a statistical param-
eter that can quantify the irregularity of a time series and
can calculate the regularity of the time series. AE uses non-
negative numbers to quantify the complexity of data and the
formation of information in time series. AE is often used to
classify emotions in ECG signals [22]. The AE is calculated
as follows

AE(n, l,N ) =
1

N − n+ 1

∑N−n+1

i=1
logCn

i (l)

−
1

N − n

∑N−n

i=1
logCn

i (l) (11)

where Cn
i (l) =

1
N−n+1

∑N−n+1
j=1 θ (l − xi − xj) is the correla-

tion integral, and l is 0.15 times the standard deviation of the
original data series.

Fuzzy entropy (FE) is a new measurement criterion for
measuring signal irregularity, and a complexity measurement
based on comparing adjacent values of time series. It can be
calculated as

FE = lim
N→∞

[ln8m(r) − ln8m−1(r)] (12)

In the formula, N is the sequence length, M is the phase
space dimension, and r is the similarity tolerance.

G. FEATURE SELECTION
Feature selection is an important step for conventional
machine learning. It reduces the amount of calculation
required to train the classifier and thus improves the classi-
fication performance. The Minimum Redundancy Maximum

Relevance (MRMR) algorithm [20], which is based on the
correlation and redundancy standards between features, was
adopted to select features. The relationship and redundancy
between the two features and the two categories are evalu-
ated by calculating the symmetrical uncertainty (SU) value.
The SU calculation method is based on entropy, which is a
non-linear correlation measurement method. The calculation
of SU is given as

SU (A,B) = 2[IG(A |B )/(H (A) + H (B))] (13)

IG(A |B ) = H (A) − H (A |B ) (14)

H (A) = −

∑
i
P(ai)log2(P(ai)) (15)

where A and B represent a characteristic or a pair of class
labels or any two characteristics. IG(A |B ) indicates the infor-
mation gain of A to B. P(ai) indicates the probability of the
variable ai.
Max-Relevance is used to calculate the average of all

mutual information values between individual feature xi and
class c. It is calculated as

max D (F, c) , D =
1

|F |

∑
xi∈F

I (xi;c) (16)

where F is a feature set with m features {xi}.
The features selected byMax-Relevance may be redundant

and strongly dependent on each other. When two features are
redundant, the output result of the classifier will not change
greatly by removing one of the features. Therefore, Min-
Redundancy is used to determine whether two features are
redundant.

min R (F) , R =
1

|F |
2

∑
xi,xj∈F

SU (xi, xj) (17)

The operator 8 (D,R) combining the Max-Relevance and
Min-Redundancy is considered to optimize the feature set.

max 8 (D,R) , 8 = D− R (18)

The effect of the features on the classification problem was
evaluated by increasing the number of features from one
to maximum. If we already have a feature set Fm−1 of
m− 1 features, then the next step is to select the mth feature
from the feature set {X − Fm−1}.

max
xj∈X−Fm−1

[
I
(
xj;c

)
−

1
m− 1

∑
xi∈Fm−1

SU
(
xj, xi

)]
(19)

H. CLASSIFICATION AND EVALUATION
Binary classifiers were developed for each type of abnor-
mal ventilator waveform. Three types of classical machine
learning models: support vector machines (SVM), random
forest (RF), and k-nearest neighboring (KNN) were adopted
in this study. In each classifier, the positive class represented
the specific type of PVD targeted for detection, while the
negative class encompassed all other normal and abnormal
samples. To ensure a balanced dataset for training and evalua-
tion, we randomly selected samples from the negative class to
match the number of samples in the positive class. A ten-fold
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cross-validation was carried out to evaluate the performance
of the classifier. In this process, we divided the balanced
dataset into ten equal parts. Nine of these parts were used as
the training dataset, while the remaining part was reserved for
testing. This process was repeated ten times, with each part
serving as the test set once, until all samples in the dataset
were used for both training and testing.

Sensitivity (Se), Specificity (Sp), F1 score (F1), and Accu-
racy (Acc) were calculated to evaluate their performance.
They were calculated as follows:

Se =
TP

TP+ FN
× 100% (20)

Sp =
TN

TN + FP
× 100% (21)

F1 =
2 × TP

2×TP+ FP+ FN
× 100% (22)

Acc =
TP+ TN

TP+ TN + FP+ FN
× 100% (23)

where TP is the number of true-positive samples, TN is the
number of true-negative samples, FN is the number of false-
negative samples, and FP is the number of false-positive
samples. All the algorithms were developed using Python
with the scikit-learn package and run on a desktop computer
(Windows 10, Intel(R) Core i5-2670QM 2.20 GHzmicropro-
cessor and 16 GB RAM).

The classifiers were compared with that using the
time-domain features reported by Sottile et al. [16]. The
features adopted for recognizing the three PVD types (missed
triggering, DT, and prolonged cycling) can be referred in the
supplementary materials of the literature [16].

III. RESULTS
In total, 158 hours of ventilation waveforms were obtained
from twenty-five subjects in the study. The ventila-
tion modes include volume-control ventilation (VCV) and
pressure-support ventilation (PSV). The number of annotated
cycles is given in Table 2. We observe that the number of
annotated PVD cycles and expiratory flow limit cycles are
from ∼800 to ∼3100. The number of annotated cycles with
condensation is ∼20000. All the cycles without a label of
abnormal ventilation are categorized as others.

We rank the features using the MRMRmethod. The top-10
features selected by the MRMR method are listed in Table 3.
It is observed that the time-frequency domain features occupy
6 to 7 in 10 for the detection of each type of abnormal
ventilation. In particular, the SD1 feature plays a more vital
role in comparison with others.

The dependence of the classification performance on the
number of features is shown from Figure 3 to Figure 7. The
features are involved according to their rank by the MRMR
method. Taking the F1-score as the index for comparison
between different classifiers, RF shows superior and rela-
tively stable performance over the other two classifiers. With
the elevation in the number of features, the performance of
RF increases significantly in the beginning and then reaches

TABLE 2. Number of samples for each type of abnormal ventilation cycle.

TABLE 3. The top-10 features selected by the MRMR method for each
classifier.

a plateau despite the further elevation. The performance
of KNN is inferior to the RF, though its relationship with
the number of features is similar to that of RF. The SVM
shows poor and unstable performance. When the number of
involved features was below 10, the performance of SVM
is only slightly lower than RF and comparable with KNN.
However, when the number of features further increases, its
performance drops significantly for most of the classification
tasks.

Table 4 gives the comparison of our results with that
obtained using only the time-domain features. The results
are based on using the optimal number of features. It is
observed that the proposed feature extraction method was
superior to those purely time-domain features proposed by
Sottile et al., except for the detection of prolonged cycling
using RF. For the detection of all types of abnormal ven-
tilation, the RF gave the best performance, with an F1
score of 97.56%, 96.46%, 92.26%, 96.05%, and 89.18%
for prolonged cycling, missed triggering, double triggering,
expiratory flow limit, and condensation, respectively.

IV. DISSCUSSION
Mechanical ventilation attracts more and more attention in
the outbreak of the COVID-19 pandemic [23]. The ventilator
waveforms convey important information about the match-
ing between the ventilator and the patients. Correction of
the PVD could make the ventilation to the patients more
comfortable, and probably benefits the treatment. Timely
detection and processing of circuitry condensation in MV are
important for reducing airway resistance and the probability
of infection. Detection of expiratory flow limit may uncover
the condition of airway resistance, thus assist the clinicians to
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FIGURE 3. The accuracy, specificity, sensitivity, and F1 score of different
features using the SVM, KNN, and RF algorithm for missed triggering.
#features: number of features selected.

FIGURE 4. The accuracy, specificity, sensitivity, and f1 score of different
features using the SVM, KNN, and RF algorithm for DT. #features: number
of features selected.

improve the management of the airway. Our study provides
a solution for detecting these types of abnormal ventilation
with high accuracy.

Machine learning models have been adopted for detect-
ing PVD previously. Several studies adopted RF, AdaBoost,
Gaussian Bayesian classifier, and logistic regression to iden-
tify different types of PVD [15], [16], [17]. Sottile et al.
adopted 6, 5, and 31 time-domain features for identifying
DT, prolonged cycling, and IEE, respectively. However, most
of them only considered time-domain features, rather than
the time-frequency features and the entropic features that
have been widely applied in the analysis of biomedical sig-
nals, such as the electrocardiogram (ECG) [24], [25] and
electroencephalogram (EEG) [26]. Therefore, we propose
to apply the time-frequency features and entropic features
in the machine learning models to enhance their perfor-
mance. The experimental results show that the involvement

FIGURE 5. The accuracy, specificity, sensitivity, and f1 score of different
features using the SVM, KNN, and RF algorithm for prolonged cycling.
#features: number of features selected.

FIGURE 6. The accuracy, specificity, sensitivity, and f1 score of different
features using the SVM, KNN, and RF algorithm for condensation
detection. #features: number of features selected.

of the time-frequency and entropic features was helpful to
improve the F1 score of the classifiers. In particular, the
time-frequency features play a vital role in the classification,
as they occupy a high percentage in the top-10 features
selected by the MRMR method (Table 3). It is because the
wavelet decomposition allows for separating the signals with
different degrees of oscillation. Therefore, it is capable of
capturing the characteristics of the abnormal ventilation from
each level of sub-band of the signal.

The SD1 and SD2 features extracted from the Poincare plot
in combination with the wavelet analysis mainly reflect the
dynamic features of the ventilator waveforms. SD1 reflects
the point-by-point fluctuations whereas SD2 reflects the over-
all fluctuations of the sampling points. They mainly represent
the non-linear features conveyed in each sub-band of the
signal. The successful application of the multi-modal features
allows for the detection of not only PVD, but also circuitry
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FIGURE 7. The accuracy, specificity, sensitivity, and F1 score of different
features using the SVM, KNN, and RF algorithm for expiratory flow limit.
#features: number of features selected.

condensation aswell as expiratory flow limit, which are rarely
reported in previous literatures.

Previous studies reported superior performance on PVD
detection using deep learning in comparison with conven-
tional machine learning and rule-based approach [13], [14].
However, their deep learning model has to be trained with a
large amount of data, which is difficult to obtain in the clinic.
In addition, the deep learning models are difficult to explain,
despite the efforts to highlight the parts that contribute to the
classification [14]. By contrast, our proposed algorithm was
capable of achieving satisfactory results based on a small
dataset. Also, it is feasible to analyze the features that con-
tribute most to the classification, which helps the clinicians to
trust the developed machine learning algorithms for clinical
application.

The comparison among the three typical classifiers shows
that RF exhibits the best performance concerning accuracy
and stability. The finding agrees with previous studies [15],
[16], suggesting that RF is a robust classifier for such kind
of problem. The SVM model, which is good at binary clas-
sification, shows highly unstable results when the number
of features varies. The SVM converts the nonlinear clas-
sification problem from a low-dimensional workspace to a
high-dimensional workspace using the kernel function. The
increase in the number of features requires a substantial
increase in training samples. Insufficient samples lead to a
significant reduction in classification accuracy. The KNN
exhibits moderate results. As it is a distance-based method,
its performance is highly dependent on the distance among
different classes. For the task of abnormal ventilation detec-
tion, the breaths of different categories may share similar
features, and thus bemixed in the Euclidean space. Therefore,
the distance-based method shows inferior performance in
comparison with the tree-based method.

The pressure waveform was not considered in the
study, because the abnormal characteristics manifest more

TABLE 4. Performance of the machine learning models on detecting the
five types of abnormal mechanical ventilation.

significantly in some types of abnormal ventilation, such
as for missed triggering and expiratory flow limit. For the
other types, the pressure and velocity waveforms convey
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similar information about the abnormal characteristics. Inclu-
sion of the pressure waveform indicates that the number of the
candidate features will be doubled, which requires more sam-
ples to guarantee the performance of the machine learning
models. In the future study, the effect of including pressure
waveform should be examined when there are more samples
available.

The performance for detecting condensation is below that
of the other four types of abnormal ventilation. While the
PVD and expiratory flow limit all exhibit distinct character-
istics in the waveform, the morphology of the waveforms
manifesting circuitry condensation is heterogeneous, as it
may include the features of other types of abnormal ventila-
tion. The results suggest that a robust circuitry condensation
detector should be trained by involving training samples with
more diverse ventilation modes, settings, and types of abnor-
mal ventilation.

For the detection of asynchrony between the patients and
the ventilators, a limitation is that the present study lacks
validation against the golden standards, such as the electrical
activity of the diaphragm (EAdi), or esophageal pressure
(Pes) monitoring. Utilization of these techniques allows for
more accurate recognition of PVD [27], [28], [29], par-
ticularly for some specific types of PVD, such as reverse
triggering [30], [31]. Also, the annotations for the condensa-
tion and the expiratory flow limit are based on the experience
of the annotators. In the future, these monitoring techniques
should be employed for better labeling of the samples for
machine learning. However, as EAdi or Pes are too complex
to be routinely applied in the clinic, the technique without
monitoring of EAdi or Pes for detecting PVD is still mean-
ingful for clinical routine.

The proposed algorithm is difficult to be applied at bedside
to assist the clinicians at present. However, recent advances in
ventilator monitoring systems [32] may shed a light to make
the developed algorithms applicable to the clinicians in the
near future. The systems are capable of collecting ventilator
waveforms in real time and allows for complex computation
at bedside. Alerts of the occurrence of PVD can be delivered
to the clinicians through user interface to improvemechanical
ventilation.

V. CONCLUSION
We explore the value of fusing multi-modal features in iden-
tifying PVD breaths and breaths with circuitry condensation
and expiratory flow limit in mechanical ventilation. The
results indicate that fusion of multiple categories of features
could enhance the recognizing ability of abnormal ventilator
waveforms. Such techniques are promising to remind the
clinicians to correct PVD, to clear the accumulated water,
or to provide proper treatment for the patients with high
airway resistance, to improve the management of ventilatory
support. The trained model can be embedded into a ventilator
information system [32], to remind the clinicians about the
occurrence of PVAor provide the statistics of PVAoccurrence
over time.

Future studies could focus on the outliers in the PVD
dataset, as the PVD shows high heterogeneity due to its
patient-ventilator interaction nature. Outlier detection meth-
ods are promising to further improve the performance of PVD
detection.
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