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ABSTRACT Automatic recognition of illegal substations is of great importance, since most of the leakage
electricity in Turkey is due to the use of these substations in agricultural fields. One of themost effective ways
to detect illegal substations is to employ remote sensing images and machine learning techniques together.
Because, thanks to remote sensing images, it is possible to analyze illegal substations on huge agricultural
lands in a short time. In this study, illegal substations on the agricultural fields in the southeast Anatolian
region, which is one of the regions where leakage electricity are most common, have been detected with
the aid of Landsat-8 OLI images and machine learning algorithm. The proposed study has been carried
out in several stages, respectively. In the first stage, the locations of 42 substations and 21 non-substation
objects on the pilot area have been recorded with the help of GPS and these coordinates have been later
transferred to the Landsat-8 OLI image dated on 14 June 2019. In the second stage, an image analysis
has been performed by calculating the spectral band parameters from the Landsat-8 OLI images. In the
next stage, relationships among illegal substations and non-substation objects have been set by utilizing the
statistical metrics of obtained spectral band parameters. In the last stage, by utilizing LSTM (Long Short-
TermMemory) method, which is a recurrent neural network model that has gained popularity in both remote
sensing and various scientific disciplines in recent years and the Logit-Boost method, which is one of the
popular boostingmachine learning algorithms, automatic recognition of substations has been performedwith
an average accuracy of 88.89% for Logit-Boost method and 84.21% for LSTM method. It is notable from
this study that the Logit-Boost Algorithm yields more proficient results than the LSTM model.

INDEX TERMS Substation recognition, image analysis, landsat-8, Logit-Boost algorithm, LSTM.

I. INTRODUCTION
Object identification with the help of remote sensing images
is a fundamental challenge in the field of satellite imaging
and their analysis. However, object detection has gained great
attention in recent years and plays an important role in a wide
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range of applications [1]. Identification of objects on large
areas with traditional methods and modern measurement
techniques requires a lot of expense, time and labor intensity
[2]. These difficulties in determining objects over the lands
can be overcome by employing remote sensing technologies.

In this context, with the recent development of medium
or high spatial resolution satellite images and the easy pro-
duction of spatial and spectral information, less costly results
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can be obtained in a shorter time on large areas without
requiring much workload [3]. In the literature, many stud-
ies have been carried out using remote sensing data. These
studies are generally discussed under two main headings as
active (Sentinel-1, Radarsat-1, Radarsat-2, etc. . . ) and pas-
sive (Sentinel-2, Landsat-8, MODIS, etc. . . ) systems. Some
of the most studies using passive remote sensing systems
with image processing or machine learning techniques are
summarized as follows.

Acar and Altun proposed a system in order to classify
agricultural crops (Lentil and Wheat) by utilizing Support
Vector Machine (SVM) technique and Landsat-8 Normalized
Difference Vegetation Index parameters. As a result, a high
overall accuracy was observed for crop classification [4].
Balogun et al. employed multispectral Landsat 8-OLI image
and machine learning models (Support Vector Machine and
Random Forest) to determine the effects of oil spills over
coastal wetland and vegetation. Moreover, they monitored
the recovery pattern of polluted wetland and vegetation in
a coastal city, Malaysia [5]. Sekandari et al. recommended
an approach in order to identify Zn-Pb mineralization in
the Kashmar–Kerman Tectonic Zone and the Central Iranian
Terrane by utilizing different satellite images (Sentinel-2,
ASTER, Landsat-8 and WorldView-3) and Principal Com-
ponent Analysis (PCA) based fuzzy logic modeling. The
results indicated that spectral data obtained frommulti-sensor
remote sensing images can be widely employed to generate
remote sensing-based probability maps for the research of
Pb-Znmineralization in manymetallogenic provinces around
the worldwide [6]. Vanhellemont investigated the land and
water surface temperature by employing the performances of
the Thermal Infrared Sensor (TIRS) single-band reuptakes in
Landsat-8. As a result, a very temporal terrain method was
demonstrated based on images obtained from the Landsat-8
and it was determined that it would be possible to pro-
vide precise absolute surface temperature [7]. Beiranvand
Pour et al. proposed a system for mineral prospecting and
mapping of hydrothermal alteration in the Inglefield Land,
Northwest Greenland with the aid of various satellite images
(ASTER, Landsat-8 andWorldView-3) and image processing
techniques (Directed Principal Components Analysis, Lin-
ear Spectral Unmixing, Adaptive Coherence Estimator). The
result showed that the differentiation of lithological units
and zones include high concentration of clay minerals, iron
oxides/hydroxide in the Inglefield Mobile Belt were accom-
plished by utilizing Landsat-8 image at the regional scale
[8]. Golhani et al. suggested a system in order to detect
orange spotting disease in oil palm by employing Red Edge
and four spectral indices (simple ratio, red edge normalized
difference vegetation index, two-band enhanced vegetation
index 2 and chlorophyll index red edge). Moreover, they
implemented multilayer perceptron neural network to build
a nonlinear correlation among selected each spectral index
and spectral bands. As a result, a highest correlation was
observed between two-band enhanced vegetation index 2 and

spectral bands [9]. Fan et al. utilized Landsat-8 Operational
Land Imager (OLI) Surface Reflection (SR), Visible Infrared
Imaging Radiometer Suite and MODIS methods to detect
earthquake damage areas. The data in the methods were
applied to the Nepal earthquake with a magnitude of 7.8 in
2015 and they determined that there was not much differ-
ence between the obtained results and the estimated damaged
pixels [10]. He et al. employed Landsat-8 satellite data to
classify the effect of temperature on improving or reduc-
ing land surface temperature in Shenyang, China, at seven
temperature levels and evaluated the relationship between
land covers and their use [11]. Fang et al. compared deep
learning methods and traditional machine learning methods
using convolutional neural network (CNN)-based Landsat-8
satellite images to identify man-made global reservoirs [12].
Kuhn et al. compared Landsat-8 and Sentinel-2 reflectance
products on rivers to indicate the relationship between satel-
lite recovery on rivers, absorption and scattering properties of
river water with remote sensing reflection [13]. Lamqadem et
al. proposed an approach for mapping the amount of deserti-
fication in middle Draa Valley, Morocco by utilizing Spectral
Index Techniques and Sentinel-2 image. The result showed
that the proposed system is effective for mapping desertifi-
cation with high accuracy [14]. Sameen et al. recommended
a system for classifying aerial photographs into seven classes
(grassland, road, building, waterbody, barren land, dense veg-
etation and shadow) with the help of convolutional neural
network. Their proposed work demonstrated that CNN-based
approaches can be utilized efficiently for land cover classi-
fication using aerial photographs [15]. Man et al. examined
seven land classes utilizing high spatial resolution Landsat-
8 satellite images by creating time series composite images
fromfive supervised classifiers and usingmerging techniques
to obtainmaps of land cover types. As a result, they found that
the resulting composite images were 20% more successful
than the first images [16]. Arslan applied different image
processing techniques (such as minimum noise fraction, con-
volution filters) to Landsat-8 bands in the detection of oil
spill areas formed when a ship ran aground in Ildır Bay,
İzmir. Finally, they obtained successful results by analyzing
oil spill areas with the location of the ship [17]. Wang et al.
analyzed radiation anomalies in a Gaussian Mixture Model
with a new ship object detection method in the ocean using
Landsat-8 satellite imagery as the long wavelength infrared
band. As a result, they found the ship detection accuracy of
this method with higher recall, unlike other classical methods
[18]. Barnes and Hu determined an underwater coral reef area
longer than 15 km using Landsat-8 satellite data for island
construction in the South China Sea between 2013 and 2015,
and evaluated water turbidity using MODIS data [19]. Avdan
and Jovanovska developed a new algorithm using Landsat-8
thermal infrared sensor Band 10 data on land surface tem-
perature. Then, to determine the accuracy of this algorithm,
they compared the temperatures near the land surface and
the air and found that the deviation was low [20]. Wieland
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and Pittore evaluated the effect of Landsat-8 satellite data
on SVM performance to define settlement type classification
and urban building types based on the images of 43 settle-
ments in Central Asia. As a result, they stated that these data
used were sufficient and satisfactory for the classification
tasks [21]. Jagalingam et al. determined bathymetry mapping
by utilizing the blue and green bands of the Landsat-8 satellite
due to open and free access to detect the bathymetry of the
coasts in India and a good correlation was obtained between
the results obtained and the hydrographic sounding values
[22]. Acar tried to detect the EDTs on agricultural lands
in Diyarbakir by using the Sentinel-1 SAR satellite data by
machine learning method. He used ELM (Extreme Machine
Learning) in his study and achieved an accuracy rate of
85.47% [23].

In this study, an image analysis has been performed by
calculating the spectral band parameters from the Landsat-
8 OLI images and relationships among substations and
non-substation objects have been set by utilizing the statisti-
cal metrics of obtained spectral band parameters. Moreover,
one of the most popular boosting algorithms and LSTM
method have been employed in order to recognize illegal
substations.

This study has two main contributions. One of these con-
tributions is that a comparative image analysis has been
performed by calculating the spectral band parameters from
the substations and non-substation objects thanks to the sta-
tistical metrics of obtained Landsat-8 OLI spectral band
parameters. Another contribution is that illegal substations in
agricultural fields, which cause huge energy losses in Turkey,
have been recognized automatically with the help of feature
vectors to be created from the Landsat-8 OLI spectral band
parameters, Logit-Boost Algorithm and LSTM.

The rest of the manuscript is organized as follows: the
image pre-processing steps is detailed in Section II. After-
ward, the experimental results on determining of the spectral
band parameters are presented in Section III. A comprehen-
sive discussion is given in Section IV. Finally, the proposed
approach is summed up in Section V.

II. MATERIALS AND METHODS
A. THE EXPERIMENTAL AREA
In this study, the area where the substations and
non-substation objects are located within the boundaries of
Sason district of Batman province was chosen as the pilot
region. The location of the experimental area and different
samples (the dots in the satellite image) in this area are shown
in Fig.1.

B. LANDSAT-8 OLI DATA ACQUISITION
Landsat-8 was launched on February 4, 2013 from Van-
denberg Air Force Base, California. In this study, one
LANDSAT/LC08/C01/T1 (Landsat 8, Collection 1, Tier 1)
OLI satellite image courtesy of the U.S. Geological Survey
belonging to 14 June 2019was obtained by employing google

FIGURE 1. The position of the experimental area with the different
substations (red points) and non-substation (yellow points) samples.

FIGURE 2. The color Landsat-8 OLI image obtained covering the study
area.

earth engine code editor platform (https:// code. earthengine.
google. com). Google Earth Engine is a cloud-based plat-
form that performs it effortless to access high-performance
computing facilities for processing numerous wide geospatial
datasets [24]. The color image obtained by combining three
different bands (Band 2+ Band 3+ Band 4) of the Landsat-8
OLI image covering the study area is shown in Fig. 2.

C. GROUND DATA COLLECTION
At this stage, the geographical coordinates of 42 different
substations and 21 non-substations were recorded with the
help of GPS device and then these data were imported to
LANDSAT/LC08/C01/T1 OLI image with the aid of Google
earth engine code editor as shown in Fig. 3.

D. FEATURE EXTRACTION FROM LANDSAT-8 OLI IMAGE
The Landsat-8 OLI data is the atmospherically corrected sur-
face reflectance from the Landsat 8 OLI/TIRS sensors. This
image includes 9 spectral bands which are 2 thermal infrared
(TIR) bands, 2 short-wave infrared (SWIR) bands and 5 vis-
ible and near-infrared (VNIR) bands. The pixel resolution
for Landsat-8 OLI Image is 30 m. The detailed information
about the Landsat-8 OLI spectral band parameters are given
in Table 1 [25].
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FIGURE 3. Importing of the geographical coordinates of 42 different
substations (red points) and 21 non-substations (yellow points) into the
color Landsat-8 OLI image.

TABLE 1. Landsat-8 OLI spectral band parameters.

At this stage, the pixel values of the substation and
non-substation samples corresponding to seven different
spectral bands (B1-B7) of the Landsat-8 OLI data were
calculated. However, (B10- B11) spectral bands were not
evaluated because they are obtained using the Landsat 8 TIRS
sensor. Consequently, feature vectors of seven-unit lengths
were created for each sample point and this procedure is given
in detail in the section III.

E. LOGIT-BOOST ALGORITHM
Logit-Boost is one of the popular boosting algorithms in
machine learning and it is formulated by Jerome Fried-
man, Trevor Hastie, and Robert Tibshirani. This algorithm
can be derived from the Ada-Boost algorithm because
both are similar in the point of performing an additive
logistic regression. The difference between them is that.
Ada-Boost diminishes exponential loss, while Logit-Boost
reduces logistic loss. Moreover, the Logit-Boost algorithm
is more convenient in order to handle the noisy data on the
widely employed Ada-boost algorithm [26]. The Logit-Boost
algorithm includes the following stages, respectively.

❖ Assume that input dataset contains N samples with input
number of iterations K

N = {(x1, y1) , (x2, y2) , . . . , (xi, yi)} i = 1, 2, . . . ,N

(1)

Here, xi and yi represent input feature vectors and target,
respectively.

FIGURE 4. The schematic of long short-term memory.

❖ Start the weights wi = 1
N , probabilities estimates

P(xi) = 1
2 and initialize committee function F(x) = 0.

❖ Compute weights (wi) and working response (zi) by
repeating for k = 1, 2, . . . ,K

wi = P (xi) (1− P(xi)) (2)

zi =
yi − P(xi)

P (xi) (1− P(xi)
(3)

❖ Fit Fk(x) with a weighted least squares regression from
zi to xi by employing wi and then update the functions as
indicated in Equation-4 and Equation-5.

F (x)← F (x)+
1
2
Fk(x) (4)

p (x)←
eF(x)

e−F(x) + eF(x) (5)

❖ Finally, the output of classifier becomes:

sign [F (x)] = sign
[∑K

k=1
Fk(x)

]
(6)

Here, sign [F (x)] has two output classes as shown in
Equation-7.

sign [F (x)] =

{
−1 if F (x) ≥ 0
+1 if F (x) < 0

(7)

F. LSTM METHOD
The LSTM neural network is a variant of the Recurrent
Neural Networks (RNN) [27]. Compared to RNN, LSTM can
handle both long-term dependence problems and reduce the
possibility of gradient disappearance [28].
The core concept of LSTM is the cell state and the gate

structure, cell states can convey information and overcome
the effects of short-term memory. The LSTM has three types
of gate structures: input, forgetting, and output gates, each of
which has its unique role. The structure of LSTM method is
shown in Fig. 4 [29].

❖ The equations for the gates in the LSTM method are as
follows;

it = σ (wi + [ht−1, xt ]+ bi) (8)

ft = σ (wf + [ht−1, xt ]+ bf ) (9)

ot = σ (wo + [ht−1, xt ]+ bo) (10)

it = Represents the input gate.
ft = Represents the forget gate.
ot = Represents the output gate.
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σ = Represents the sigmoid function.
wx = Weight values for the corresponding gate(x)
neuron.
ht−1 = Represents the output of the previous LSTM
block.
xt = Input value to the current time loop.
bt = Threshold values for the corresponding gate(x)
neuron.

❖ The equations for cell state, candidate cell state and final
output in the LSTM model are as follows;

c̃t = tanh(wc ∗ [ht−1, xt ]+ bc) (11)

ct = (ft ∗ ct−1)+ (it ∗ c̃t ) (12)

ht = ot ∗ tanh(ct ) (13)

ct =Represents the cell state (memory) in the time loop.
c̃t = Represents the candidate cell state (memory) in the
time loop.
∗ =Multiplication process

G. STATISTICAL METRICS
In this phase, two statistical metrics, mean (µ) and stan-
dard deviation (σ ), were utilized to observe the relationship
between different spectral band parameters of substations and
non-substation samples. Equations of these metrics are given
below, respectively.

µ = 1/n
∑n

i=1
Xi (14)

σ =

√∑
(X − µ)2

n− 1
(15)

Here; Xi is the value in data distribution and n is the total
number of observations. Additionally, five performance met-
rics were computed for proposed system by employing the
following equations. Furthermore, confusion matrix, ROC
curve and Accuracy Graphs were used for demonstrating the
success of LSTM method.

Sensitivity =
TP

TP+ FN
(16)

Specificity =
TN

TN + FP
(17)

Precision =
TP

TP+ FP
(18)

F1-Score =
2TP

2TP+ FP+ FN
(19)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(20)

Here, TP, TN FP, and FN represent true positive, true
negative, false positive, and false negative numbers,
respectively.

III. RESULTS
In this section, spectral band images of the preprocessed
Landsat-8 OLI data are presented as below. Feature vectors
(spectral band parameters) were then calculated from pixels

TABLE 2. Obtaining B1 (ultra blue) spectral band parameters for
substations.

FIGURE 5. The image corresponding to the B1 (ultra blue) band of
Landsat-8 OLI data.

corresponding to substations and non-substation samples in
these spectral band images and relationships among substa-
tions were set by employing the statistical metrics of obtained
spectral band parameters. Moreover, one of the most popular
boosting algorithms and LSTM was utilized for recognizing
substations with the aid of obtained datasets.

A. OBTAINING B1 SPECTRAL BAND PARAMETERS
In this part, the image corresponding to the B1 (Ultra Blue)
band of Landsat-8 OLI data is shown in Fig. 5. Furthermore,
the spectral band parameter values of the pixels correspond-
ing to 42 substations (red points) and 21 non-substation
samples (yellow points) in this band with statistical metrics
(µ and σ ) are given in Table 2 and Table 3, respectively.
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TABLE 3. Obtaining B1 (ultra blue) spectral band parameters for
non-substations.

FIGURE 6. The image corresponding to the B2 (blue) band of Landsat-8
OLI data.

As seen in the Table 2, themean surface reflection values of
42 different substations in the B1 spectral bandwas calculated
as 543.12 and the standard deviation as 119.88.

As seen in Table 3, the mean surface reflection values of
21 different non-substation objects in the B1 spectral band
was computed as 474.57 and the standard deviation as 89.47.

B. OBTAINING B2 SPECTRAL BAND PARAMETERS
In this step, the image corresponding to the B2 (Blue) band
of Landsat-8 OLI data is indicated in Fig. 6 and the spec-
tral band parameter values of the different substations and
non-substation samples are given in Table 4 and Table 5,
respectively.

In the Table 4, the mean surface reflection values of dif-
ferent substations in the B2 spectral band was computed as
729.09 and the standard deviation as 166.45.

TABLE 4. Obtaining B2 (ultra blue) spectral band parameters for
substations.

FIGURE 7. The image corresponding to the B3 (green) band of Landsat-8
OLI data.

As seen in the Table 5, the mean surface reflection val-
ues of 21 different non-substation objects in the B2 spectral
band was calculated as 624.09 and the standard deviation as
117.12.

C. OBTAINING B3 SPECTRAL BAND PARAMETERS
In this stage, the image corresponding to the B3 (Green)
band of Landsat-8 OLI data is illustrated in Fig. 7 and the
spectral band parameter values of the different substations
and non-substation samples are presented in Table 6 and
Table 7, respectively.
As seen in the Table 6, the mean surface reflection values

of different substations in the B3 spectral band was calculated
as 1181.23 and the standard deviation as 235.28.
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TABLE 5. Obtaining B2 (ultra blue) spectral band parameters for
non-substations.

TABLE 6. Obtaining B3 (ultra blue) spectral band parameters for
non-substations.

As illustrated in the Table 7, the mean surface reflection
values of 21 different non-substation objects in the B3 band
was computed as 958.33 and the standard deviation as 188.60

D. OBTAINING B4 SPECTRAL BAND PARAMETERS
In this phase, the image corresponding to the B4 (Red) band
of Landsat-8 OLI data is indicated in Fig. 8 and the spec-
tral band parameter values of the different substations and

TABLE 7. Obtaining B3 (ultra blue) spectral band parameters for
non-substations objects.

TABLE 8. Obtaining B4 (ultra blue) spectral band parameters for
substations.

non-substation objects are tabulated in Table 8 and Table 9,
respectively.

As shown in the Table 8, the mean surface reflection values
of different substations in the B4 spectral band was computed
as 1439.14 and the standard deviation as 360.33.

When the values in Table 9 are examined, the mean surface
reflection values of 21 different non-substation objects in the
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FIGURE 8. The image corresponding to the B4 (red) band of Landsat-8
OLI data.

TABLE 9. Obtaining B4 (ultra blue) spectral band parameters for
non-substations objects.

B4 spectral band was calculated as 1141.47 and the standard
deviation as 390.21.

E. OBTAINING B5 SPECTRAL BAND PARAMETERS
In this step, the image corresponding to the B5 (Near Infrared)
band of Landsat-8 OLI data is shown in Fig. 9 and the
spectral band parameter values of the different substations
and non-substation objects are represented in Table 10 and
Table 11, respectively.
As illustrated in the Table 10, the mean surface reflec-

tion values of different substations in the B5 spectral
band was calculated as 3302.11 and the standard deviation
as 371.73.

When the values in Table 11 are evaluated, the mean sur-
face reflection values of 21 different non-substation objects
in the B5 spectral band was calculated as 2807.39 and the
standard deviation as 928.21.

FIGURE 9. The image corresponding to the B5 (near infrared) band of
Landsat-8 OLI data.

TABLE 10. Obtaining B5 (ultra blue) spectral band parameters for
substations.

FIGURE 10. The image corresponding to the B6 (shortwave infrared 1)
band of Landsat-8 OLI data.

F. OBTAINING B6 SPECTRAL BAND PARAMETERS
In this part, the image corresponding to the B6 (Shortwave
Infrared 1) band of Landsat-8 OLI data is indicated in Fig. 10
and the spectral band parameter values of the different sub-
stations and non-substation objects are given in Table 12 and
Table 13, respectively.
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TABLE 11. Obtaining B5 (ultra blue) spectral band parameters for
non-substations.

TABLE 12. Obtaining B6 (ultra blue) spectral band parameters for
substations.

As indicated in the Table 12, the mean surface reflec-
tion values of different substations in the B6 spectral
band was computed as 2848.11 and the standard deviation
as 399.50.

As illustrated in Table 13, the mean surface reflection val-
ues of 21 different non-substation objects in the B5 spectral
band was calculated as 2417.23 and the standard deviation as
836.60.

TABLE 13. Obtaining B6 (ultra blue) spectral band parameters for
non-substations objects.

FIGURE 11. The image corresponding to the B7 (shortwave infrared 2)
band of Landsat-8 OLI data.

G. OBTAINING B7 SPECTRAL BAND PARAMETERS
In this step, the image corresponding to the B7 (Shortwave
Infrared 2) band of Landsat-8 OLI data is illustrated in Fig. 11
and the spectral band parameter values of the different sub-
stations and non-substation objects are tabulated in Table 14
and Table 15, respectively.

As presented in the Table 14, the mean surface reflection
values of different substations in the B7 spectral band was
calculated as 3171.47 and the standard deviation as 405.21.

As seen in the Table 15, the mean surface reflection values
of 21 different non-substation objects in the B7 band was
computed as 1542.80 and the standard deviation as 558.50.

H. DETERMINING RELATIONSHIPS AMONG SUBSTATIONS
At this stage, a dataset corresponding to the all substations
were generated as presented in Table 15 and the correlations
of these substations are given in Fig. 12.
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TABLE 14. Obtaining B7 (ultra blue) spectral band parameters for
substations.

TABLE 15. Obtaining B7 (ultra blue) spectral band parameters for
non-substations.

I. DETERMINING RELATIONSHIPS AMONG
NON-SUBSTATION SAMPLES
At this stage, a dataset corresponding to the all-non-
substation samples were constituted as indicated in Table 17
and the correlations of these substations are given in Fig. 13.

J. RECOGNITION OF SUBSTATIONS BY EMPLOYING
LOGIT-BOOST ALGORITHM
At this stage, firstly, data sets belonging to two differ-
ent classes obtained from substations and non-substation
samples were combined. Training and test sets were then

TABLE 16. Generating a dataset for all substations.

FIGURE 12. The relationship among substations versus the spectral
bands with reflectance values.

created with the leave-one-out cross validation approach.
Finally, automatic recognition of substations was performed
using the Logit-Boosting algorithm and different spectral
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TABLE 17. Creating a dataset for all non-substation objects.

FIGURE 13. The relationship among non-substation samples versus the
spectral bands with reflectance values.

TABLE 18. Performance metrics for substation recognition by employing
Logit-Boost algorithm and different spectral band parameters.

band parameters. The performance metrics of the proposed
system are shown in Table 18.

K. RECOGNITION OF SUBSTATIONS BY EMPLOYING LSTM
In this section, Table 15 and Table 16 were combined to
create a data set. A ‘Class’ column was created in the data
set, containing the value 1 for the values in Table 15 and
0 for the values in Table 16. The success of the system was
measured by applying the LSTMmodel to this data set. Three

FIGURE 14. The test error graph for LSTM method.

FIGURE 15. The test accuracy graph for LSTM method.

figures containing the ROC curve, Accuracy and Loss Graph,
Confusion Matrix and Accuracy rate of the model are given
in Fig. 14, Fig. 15, Fig. 16 and Fig. 17, respectively.

As shown in Fig. 14, the error level of the system for the
LSTMmodel decreases with the number of epochs. However,
the error rate is stable at approximately 140-150 cycles. For
this reason, the number of epochs was chosen as 150.

As seen in Fig. 15, the accuracy level of the sys-
tem for the LSTM model increases with the number of
epochs. As in Fig. 14, it can be observed from this
figure that the optimum value for the number of epochs is
around 140-150.

The ROC curve shown in Fig. 16 includes TPR and FPR
values. When the ROC curve is analyzed, it is observed that
the system is at an acceptable level.

When Fig. 17 is observed, themodel successfully predicted
16 out of 19 values of the test data correctly. Additionally,
as can be seen from the confusion matrix, the number of
samples for testing is 19. The total number of samples in the
data set is 63. This shows that 70% of the data is used for
training and 30% for testing. The success rate of the LSTM
method is 84.21%.

IV. DISCUSSION
At this stage, statistical analysis of different spectral band
parameters corresponding to substation and non-substation
samples was discussed and the effects of these band param-
eters on automatic substation recognition were examined
separately.
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TABLE 19. Performance metrics for substation recognition by employing Logit-Boost algorithm and different spectral band parameters.

FIGURE 16. The Roc curve for LSTM method.

When all the tables between Table 2 and Table 15 are
considered, it is seen that the mean and standard deviation
of the spectral values in each band of all substations are close
to each other. This situation is similar for all non-substation
samples between Table 2 and Table 15. The reason for this
can be explained as similar objects show similar reflection.
However, when the mean and standard deviations of the
spectral values in each band belonging to substations and
non-substations are compared with each other, it can be said
that objects belonging to these two classes differ from each
other depending on their reflectance values as illustrated in
Fig.12 and Fig.13.

Considering the performance metrics in Table 18, it was
observed that the highest average accuracy value was com-
puted as 88.9% by utilizing B6 band parameters and Logit-
Boosting algorithm. The confusion matrix for this scenario is
given in Fig.14. The reason for this may be that the reflection
values of different objects can be distinguished more sharply
at the Shortwave Infrared 1 wavelength. Because, this wave-
length is usually used for discriminating moisture content of
soil and vegetation.

FIGURE 17. The confusion matrix and accuracy rate for LSTM method.

As seen in Fig.14, Fig.15, Fig.16 and Fig.17, high success
rates were obtained by using the LSTM method in the pro-
posed approach. Due to the low number of data, deep learning
systems can sometimes give low success levels. In such
cases, the model layers should be well tuned and overlearning
should be avoided. The situation is different in data sets
with high amount of data. Overlearning rarely occurs. High
accuracy values can be achieved with fewer cycles. Although
the data in the data set obtained with the existing substations
in the studied area is limited, very successful results have
been obtained.

Considering the studies in the literature, there is no similar
study on recognizing substations with the help of passive
satellite image, machine learning approaches and LSTM
method. For this reason, while creating the comparison table
below, studies on the detection of different objects using
machine learning techniques, LSTM method and passive
satellite systems are included as seen in Table 19.
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V. CONCLUSION
The use of geographical information systems together with
remote sensing techniques is extremely important in the
determination of spectral band parameters of various objects.
In this study, different spectral band parameters of the
Landsat-8 OLI images have been determined in order to
determine relationships among the 42 substations and 21 non-
substation objects.

The proposed work consists of several stages. In the first
stage, the terrains on the Sason district of Batman province
were chosen as the study area. In the second stage, the
positions of the 42 substations and 21 non-substation objects
have been registered thanks to GPS equipment and the GPS
data have been then imported to the Landsat-8 OLI images
In the next stage, image analysis was performed to calculate
spectral band parameters from Landsat-8 OLI data. In addi-
tion, utilizing the statistical metrics of the obtained spectral
band parameters, the relations among the substations and
non-substation objects were established.

Therefore, the feature extraction step, which is essen-
tial for the automatic identification of substations, has been
accomplished to form datasets. In the last stage, automatic
recognition of substations has been performedwith high aver-
age accuracy by employing obtained dataset, Logit-Boosting
algorithm and LSTM method.

When compared with similar studies in the literature, this
study achieved high success rates and addresses a previously
unexplored subject. The models employed are some of the
most popular recently, and it was observed that the detection
of substations using Landsat-8 satellite can be done with
great accuracy through the LSTM model and Logit-Boost
algorithm. Of course, it is worth pointing out that these
success rates may increase further by using larger datasets.

As a continuation of this work in the future, it is planned to
detect the substations by different spectral band parameters
obtained from various satellite data with the aid of differ-
ent deep learning and machine learning methods With this
proposed study, it is thought to prevent illegal electricity
consumption.
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