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ABSTRACT This paper addresses the multi-task allocation problem with complex constraints in the
multi-UAV system by presenting an extension to consensus-based bundle algorithm(CBBA). The presented
algorithm termed dynamic clustering consensus-based bundle algorithm(DCCBBA) provides an improved
bundle construction, a novel consensus strategy and a systematic way of grouping. DCCBBA features
different consensus methods for inner conflict resolution and outer conflict resolution. The inner conflict
resolution aims at handling the violated task assignment that belongs to the same cluster, while outer
conflict resolution guarantees conflict-free assignments in the overall UAVs. The proposed DCCBBA
coupled with Pythagorean Hodograph curves can significantly reduce the number of communication events
required to achieve consensus while preserving the robust convergence property of the baseline CBBA.
Numerical simulations on various cooperative reconnaissance and strike tasks demonstrate the reduction of
communication events compared with the baseline CBBA, the cluster-formed CBBA, the grouped CBBA
and Two-layer CBBA.

INDEX TERMS CBBA, communication network topology, heterogeneous UAVs, task allocation.

I. INTRODUCTION
Multi-UAV system has been increasingly drawing a wide
interest over a single UAV as it is more capable of
accomplishing difficult and complex missions in both civil
and military arenas, such as surveillance and reconnaissance,
search and rescue, smart agriculture and disaster response [1]
in an effective and efficient manner and it is more fault
tolerant [2]. Multi-UAV task allocation has become a
prominent area of investigation. In a task allocation problem,
a group of UAVs services a finite number of tasks to
optimize an overall system objective required by the mission.
In practical application, task allocation problem is becoming
increasingly complex due to the heterogeneity of UAVs, the
complexity of tasks, the limitations on communication and
the robustness of allocation algorithms [3], [4]. Besides, the
multi-UAV task allocation has been shown to be NP-hard
and a variety of approximate methods [5], [6] have been
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developed to efficiently produce solutions to the assignment
problem.

Depending on who solves the assignment problem, solu-
tions to task assignment problems fall under two broad
categories: centralized or decentralized. Centralized methods
involve all the UAVs sending relevant data to the central
control station which produces task assignments for all the
UAVs, the central control station sends out allocation results
to individual UAVs. Centralized methods fit easily into the
human centered model, where an operator manages the
team of UAVs. However, centralized methods suffer from
several weaknesses especially for complex situations. First,
consistent communication is required to produce conflict-free
assignments, which places a heavy communication burden
on the communication network. Second, the computational
demand is high as the computational operations are all placed
on the central control station, it may result in latency in
making allocation decisions. Third, if the central control
station is damaged, the whole task assignment structure in the
multi-UAV system will be destroyed. Centralized methods
are vulnerable to the single point of failure. In contrast, each
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UAV in the decentralized methods independently produces
a task assignment solution based on its own perceived
information, and then obtains the global solution for the
multi-UAV system through communication and negotiation.
Thus, decentralized task assignment methods have great
robustness and fault tolerance, which is suitable for solving
the cooperative multi-UAV task assignment problem with
complex constraints. The consensus based bundle algorithm
(CBBA) [7], which leads each agent to agree upon the plan
via a sequence of local communication, is a decentralized
method to resolve multi-agent task assignment problems.
CBBA consists of two phases: the bundle construction phase
that utilizes the sequential greedy algorithm (SGA) to build
task sequence, and the conflict resolution phase that uses the
consensus strategy to achieve global agreement.

At present, numerous versions of CBBA have been
proposed from different perspectives. Decentralized methods
for allocating heterogeneous tasks to a network of agents with
different capabilities are presented in [8], which increases
the cooperation constraints of robots and proposes a new
scoring mechanism. A new auction and consensus based
algorithm for fast task allocation in parallel with task
execution is proposed. Each robot only bids for the task with
the highest score in the auction phase to produce conflict-free
assignments in [9]. Combining the CBBAwith the ant colony
system, the bundle construction phase utilizes ant colony
optimization, but the algorithm has a higher complexity and a
longer running time in [10]. Asynchronous Consensus Based
Bundle Algorithm(ACBBA) extends CBBA to maximize
the flexibility in a distributed environment, it breaks the
synchronous assumptions of the CBBA while preserving the
convergence properties in [11] and [12]. A CBBA-based
method is used to solve the task assignment problem of
multi-UAVmaterial delivery, and a ‘‘closed-loop CBBA’’ that
considers returning to the take-off base after the completion
of tasks is proposed in [13]. Inspired by CBBA, a Perfor-
mance Impact (PI) algorithm is proposed, the key point to the
algorithm is to define a concept of significance, which is used
to measure the contribution of the task assigned to the robot to
the local cost of the robot in [14]. The above CBBA algorithm
and its extensions can only achieve convergence within a
limited time and obtain conflict-free task assignments when
UAVs are in fully connected networks.

Equally, communication constraints play an important role
in determining the capabilities of task assignments in CBBA.
As the number of UAVs or tasks in the network increases,
it inevitably leads to substantial communication costs and
may overflow the network bandwidth. To address this issue,
several extensions of the CBBA [15], [16], [17], [18], [19],
[20] have presented ways to reduce the communication
loads in the consensus process. Communication of the
system will be reduced if only a part of the UAVs is
involved in the communication. Based on the above ideas,
many scholars carry out task allocation work from the
perspective of clustering. Team CBBA (T-CBBA) [15] gives
a manageable architecture for large numbers of unmanned

agents through human centered operations if teams are
divided in advance, which encourages cooperation between
groups of agents on complex tasks. The cluster-formed
CBBA(CF-CBBA) [16] is designed to reduce the amount of
communication required to reach a conflict-free assignment
by partitioning the problem and processing in parallel.
A cluster-first strategy [17] which builds upon existing
consensus-based distributed task allocation algorithms is
proposed to solve task allocation problems in search and
rescue scenarios. The key point is that assigning a group of
tasks that are clustered to a robot is more likely to result in
an efficient schedule. A two-layer task assignment algorithm
based on feature weight clustering is presented in [18], the
UAV swarm and tasks are divided into multiple clusters to
get a conflict-free task assignment solution in real time. The
grouped CBBA(GCBBA) [20] provides a systematic way of
grouping the UAVs based on their task preference represented
by the initial bundle construction, which can improve the
communication efficiency by reducing the requirments for
propagating irrelevant bids while preserving the framework
of CBBA. In addition, references [12], [21], [22], [23], [24]
provide a variety of alternative CBBA improvement algo-
rithms to solve the tasks assignment problem.

II. DISCUSSION ON RELATED WORKS
CBBA using cluster algorithm has been shown, in compari-
son with baseline CBBA,to require less communication and
preserve the robust convergence property when allocating
tasks. There are methodologies mentioned above [15], [17],
[18], [20], but in most cases, the number of clusters is
specified in advance or always remains unchanged, which
may be affected by subjective factors and obtain locally
optimal solutions. Moreover, although the aforementioned
versions of CBBA have made some improvements to reduce
the communication loads, the computational complexity
of task allocation with complex constraints, such as time
window, task allocation with duo cooperation and hetero-
geneous UAVs is still a crucial problem. Finally, most
task allocation algorithms separate the task allocation from
path planning. Conflict-free assignments are produced in a
weak coupling manner, which results in a great difference
between the UAV voyage calculated by the task allocation
and the actual voyage. This paper presents a dynamic
clustering consensus-based bundle algorithm(DCCBBA),
which extends baseline CBBA with an improved bundle
construction, a different consensus strategy and a new
grouping policy to further reduce the communication between
UAVs so that conflict-free assignments can be produced in
time.

The main contributions of this paper are two-fold:
(i) bundle construction is improved, and different consensus
methods for inner conflict resolution and outer conflict
resolution are presented to resolve the multi-UAV collab-
orative task allocation problem with complex constraints
while preserving the robust convergence property of the base-
line CBBA. Numerical simulations have been performed to
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illustrate the performance of DCCBBA under different scales
of tasks, different communication topologies and different
communication network density. (ii) The proposed DCCBBA
strongly couples task allocation with path planning, fifth
order Pythagorean Hodograph curves are used in the task
allocation to obtain UAV paths, which are closer to flyable
paths.

III. TASK ALLOCATION PROBLEM
The upmost objective of heterogeneous task allocation is
certainly, given a list of NT tasks with complex constraints
and a list of Na UAVs of different types, to complete all
the mission requirements and it is desirable to maximize or
minimize some goal reward in an as efficient as possible
manner. The key symbols used hereafter are listed in
TABLE 1. In addition, UAVs can exhibit different capabilities
and capacities. Different constraints such as, time windows,
types or urgency are considered as well in the task allocation.
Multiple-UAV task allocation problem and the key procedure
of baseline CBBA are briefly described in the section.

A. PROBLEM STATEMENT
The paper focus on the decentralized cooperative multi-UAV
task assignment in the reconnaissance and strike scenarios,
especially task allocation with duo cooperation and time
window constraints. The objective is to obtain a feasible and
conflict-free task assignment solution. The allocation prob-
lem of heterogenous tasks of the aforementioned category can
be expressed as formula (1) and formula (2).

max
Na∑
i=1

NT∑
j=1

cij · xij (1)

subject to 

NT∑
j=1

xij ≤ Li

Na∑
i=1

xij ≥ numj

Na∑
i=1

NT∑
j=1

xij ≤ Nmin
1
= {NT ,Na · Li}

tj ≥ tstartj

tj + 1tj ≤ tendj

di ≤ Dlimiti

(2)

where Na,NT denote the number of UAVs and tasks
respectively, xi = {0, 1}NT is the decision vector, xij = 1
represents that task j is assigned to UAV i, cij represents
the reward UAV i would obtain by performing task j,
Li is the maximum number of tasks UAV i can perform, numj
is the number of UAVs required to complete task j, tj is the
time to perform task j, [tstartj , tendj ] is the time window of
task j, 1tj is the time required to complete task j, di is the
flight distance of UAV i required to complete the assigned
tasks, Dlimiti is the maximum flight distance of UAV i.

TABLE 1. Symbol definition.

B. BASELINE CBBA
This section briefly summarizes the CBBA [7], [25].
CBBA can obtain feasible and conflict-free assignments
through iterations between two phases: a bundle building
phase and a conflict resolution phase. First, each UAV
greedily generates an ordered bundle of tasks based on
the local situation awareness in the bundle building phase.
Then, each UAV gets the global situation awareness and
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FIGURE 1. Flow diagram of CBBA.

conflicting assignments are identified through mutual com-
munication. These two phases are repeated till convergence.
The schematic diagram of CBBA is shown in Fig. 1.

1) BUNDLE CONSTRUCTION PHASE
In the bundle construction phase, UAVs bid on a task and
a marginal score is calculated to decide whether a new task
should be assigned to the bundle. The bid lists of UAV i can
be expressed as follows:

(1) bundle list bi represents assigned tasks ordered for
UAV i based on the greedy task selection.

(2) path list pi is the order where UAV i performs tasks.
(3) winning bid list yi represents the highest bid for task j

based on local situation awareness of UAV i.
(4) winning UAV list zi is the corresponding UAV in yi.

zij = 1 represents the UAV i has the highest bid for task j.
Otherwise, zij = 0.

In the bundle construction phase, SGA is used to add tasks
to bi and pi. Then, yi and zi are updated according to pi. The
implementation steps of bundle construction are presented in
Algorithm 1.

In line 3-5 of algorithm 1, the task that has been selected by
the UAV i is eliminated to avoid duplicate tasks in a bundle.
In line 7, Spii is the total reward for UAV i performing the tasks
along pi, pi⊕n {j} denotes the operation that inserts task j right
after the nth element of pi. In line 8,G is the indicator function
that is unity if the argument is true. In line 11, Cj and nij are
intermediate variables.

2) CONFLICT RESOLUTION PHASE
In the conflict resolution phase, the winning bid list yi and
winning UAV list zi described in the bundle construction

Algorithm 1 Bundle Construction Phase for UAV i at
Iteration t
Input : bi(t − 1), yi(t − 1), pi(t − 1), zi(t − 1)
Out : bi(t), yi(t), pi(t), zi(t)
1 : bi(t) = bi(t−1), yi(t) = yi(t−1), pi(t) = pi(t−1), zi(t) =

zi(t − 1)
2 : for j = 1 : NT
3 : if j ∈ bi
4 : cij = 0
5 : xij = 0
6 : else
7 : cij = maxn≤|pi|S

pi⊕n{j}
i − Spii ∀j /∈ bi

8 : xij = G(cij > yij)
9 : end if
10 : while |bi(t − 1)| < Li
11 : Cj = argmaxj(cij · xij)

12 : nij = argmaxnS
pi⊕n{Cj}
i

13 : bi = bi ⊕end
{
Cj

}
, pi = pi⊕nij

{
Cj

}
14 : yiCj = ciCj , ziCj = i
15 : end while
16 : end for

phase are communicated for consensus. In addition, si which
represents the time stamp of the last information is needed to
find the latest allocation information. Based on communica-
tion with UAV k , there are three possible actions UAV i can
take on task j [7].Update : yij = ykj, zij = zkj

Reset : yij = 0, zij = ∅

Leave : yij = yij, zij = zij
(3)
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FIGURE 2. The process of DCCBBA.

If a bid is changed as an outcome of communication, each
UAV checks whether there are tasks that need to be updated or
reset in their bundles, and if so, release them and tasks added
after them. Through the conflict resolution phase, yi and zi of
UAVs will be consensus, and violated tasks can be released
from their local bundles.

IV. THE PROPOSED ALGORITHM
The communication required to reach a conflict-free assign-
ment increases exponentially with the increase of AUVs
or tasks [8], [14]. If only a part of UAVs participate in
the communication, communication between UAVs may be
reduced. Inspired by the above idea, the presented DCCBBA
coupled with path planning focuses on bringing parallelism
to CBBA to reduce the amount of communication, it retains
the robustness of distributed task allocation. In addition,
the bundle construction phase and conflict resolution phase
are redesigned to solve the collaborative task allocation of
heterogeneous UAVs with complex constraints. The process
of DCCBBA is presented in Fig. 2.

As shown in Fig.2, UAVs are grouped randomly and
a vital communication node is selected according to vital
communication node model in each cluster. Then, the bundle

construction phase and inner-loop consensus phase that
consider task allocation with duo cooperation processes
in a cluster are presented. Finally, outer-loop construction
requires conflict resolution between clusters, which guaran-
tees a conflict-free assignment.

A. GENERATION OF CLUSTERS
Clustering is a fundamental tool in unsupervised learning,
used to group objects by distinguishing between similar and
dissimilar features of a given data set [26]. Themain objective
using cluster analysis is to reduce useless communication,
and preserve the robust convergence performance. Repeated
shuttling in the battlefield greatly increases the danger and
exposure probability. Thus, it is natural that a closer task has
a more reward to an UAV and the K-means algorithm is used
to generation of UAV clusters.

The K-means algorithm requires a predetermined cluster-
ing center, some UAVs are randomly selecting as initial clus-
tering centers. However, uncertain initial clustering centers
may result in inconsistent grouping and it is necessary to
set determined initial clustering centers. Instead of randomly
selecting initial values for all cluster centers as is the case
with most global clustering algorithms, a new cluster center
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FIGURE 3. The initial cluster center distribution of K = 4.

selection method is presented as in formula (4).
Ck
x =

r
2

+
r
2

· sin[(k − 1) ·
2π
K

+ β]

Ck
y =

r
2

+
r
2

· cos[(k − 1) ·
2π
K

+ β]
(4)

where Ck
x ,C

k
y represent the coordinates of the kth initial

clustering center Kk , r = min(Xmax ,Ymax) and Xmax ,Ymax
represent the range of map, K is the number of clusters,
β =

π
3 .

As shown in Fig.3, with the center of the map as the center
of the circle, the initial cluster centers are evenly distributed
around the circle [27].

To address the K-means problem, the simplest approach
named Lioyd’s algorithm [26] is presented. Once cluster
centers are initialized, each point is alternatively assigned
to its closest center, and then cluster centers are updated
to alternatively minimize the variables in formula (5) until
convergence.

minE =

K∑
k=1

∑
d∈Ck

||d − µk ||
2
2 (5)

where D = {d1, d2, · · · dNa} is sample set of UAV
coordinates, C = {C1,C2, · · ·CK } is the cluster grouping of
UAVs, E is square error of a cluster, µk =

1
|Ck |

∑
d∈Ck

d is the

mean vector of Ck .

B. SELECTION OF VITAL COMMUNICATION NODES
The communication topology in a distributed system is
usually represented by a graph Gn = (V ,E), V =

{v1, v2, · · · vn} represents the set of nodes in Gn, E =

{(vi, vj)|vi, vj ∈ V } represents the set of edges in Gn, and
|V | = n = Na, |E| = m. A is the adjacency matrix of Gn.

Aij =

{
1 (vi, vj) ∈ E
0 otherwise

(6)

where Aij = 1 represents that there is an edge connection
between UAV i and UAV j. In other words, the communica-
tion distance between UAV i and UAV j is 1-hop. Otherwise,
Aij = 0.

Recognition of vital nodes in complex networks retains
great importance in the improvement of network’s robustness
and vulnerability [28]. The prevalently used centrality mea-
sures are degree centrality (DC) [29], betweenness centrality
(BNC) [30], closeness centrality(CNC) [31] and eigenvector
centrality (EVC) [32]. To reduce communication loads, vital
communication nodes should cover as many communication
nodes as possible within 1-hop communication distance.
Based on the indicators mentioned above, a calculationmodel
of UAV vital communication nodes is proposed.

BNC(vi) =

∑
s̸=t ̸=vi∈V

σst (vi)
σst

CNC(vi) =
n− 1∑
j̸=i
dij

DC(vi) =

n∑
j=1

Aij

EVC(vi) =

n∑
j=1

Aijce(vj)

λ

(7)

where BNC(vi) is betweenness centrality of UAV i,
σst denotes the number of shortest paths from s ∈ V to
t ∈ V . σst (vi) denotes the number of shortest paths from s
to t that vi lies on. CNC(vi) is closeness centrality of UAV i,
dij denotes the distance between vi and vj.DC(vi) is the degree
centrality of UAV i, EVC(vi) is the eigenvector centrality of
UAV i, ce(vj) is the principal eigenvector and λ is the main
eigenvalue.

In the DCCBBA, the importance of communication nodes
can be expressed as the normalized mean of the above
indicators.

Y (vi) =
BNC(vi)√
n∑
i=1

BNC(vi)

+
CNC(vi)√
n∑
i=1

CNC(vi)

+
DC(vi)√
n∑
i=1

DC(vi)

+
ENC(vi)√
n∑
i=1

ENC(vi)

(8)

where Y (vi) is the importance value of node vi. The UAV
with the highest importance value is selected as the vital
communication node in a cluster. Besides, if the importance
values of two UAVs are the same, the UAV with a smaller
label is selected as the vital communication node.

In this paper, the exchange of information between
different UAVs through the shortest path is recorded as
effective communication. Take Fig.4 as an example, the
number of communication events from UAV 1 to UAV 6 is 3,
and the number of communication events from UAV 1 to
UAV 2 is 1. Therefore, the communication scale is defined
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FIGURE 4. An example of calculating the number of communication
events.

as the total communication events required for the collective
to reach a viable solution, which is an important indicator for
measuring the occupation of communication resources in the
battlefield [33].

C. BUNDLE CONSTRUCTION PHASE
The proposed DCCBBA is revised based on the baseline
CBBA to solve the decentralized task allocation problem
with duo cooperation and heterogeneous UAVs. SGA that
sequentially finds a sequence of UAV-task pairs that render
the largest score values given prior selections has been ana-
lyzed in [7]. In the bundle construction phase of DCCBBA,
SGA is applied to add tasks to bi and pi. In addition, Zi and
Yi are carried to find a conflict-free assignment with complex
constraints, which can be expressed as follows.

(1) Zi represents the winning UAV matrix, which is a
Na×NT matrix. The element zikj = 1 in Zi denotes that UAV i
consider UAV k the winner for bidding task j. Otherwise,

zikj = 0. Furthermore,
Na∑
k=1

zikj is the total number of UAVs

considered as winners for bidding task j by UAV i.
(2) Yi represents the winner bid value matrix, which stores

the bidding values from the perspective of UAV i. Each
element in Yi corresponds to Zi one by one. The element
yikj = 1 in Yi denotes that the bid value of UAV k for task j
considered by UAV i.

In the bundle construction phase of DCCBBA, tasks are
added to UAV i’s bundle until UAV i is incapable of adding
any other task. If numj = 1, the task j can be accomplished
by a single UAV and assignment of additional UAV is
unacceptable. Otherwise, the task j must be accomplished by
cooperation of multiple UAVs. When the number of UAVs

bidding for task j has met the requirement, that is,
Na∑
k=1

zikj =

numj, the UAV i compares cij with the minimum winning
bid value min(yikj) for task j. If cij > min(yikj), ∀k ∈ Na,

UAV i can bid for task j, otherwise UAV i abandons task j.
The procedure of UAV i’s bundle construction of DCCBBA
is presented in Algorithm 2.

Algorithm 2 Bundle Construction Phase of DCCBBA for
UAV i at Iteration t
Input : bi(t − 1), yi(t − 1), pi(t − 1), zi(t − 1)
Out : bi(t), yi(t), pi(t), zi(t)
1 : bi(t) = bi(t−1), yi(t) = yi(t−1), pi(t) = pi(t−1), zi(t) =

zi(t − 1)
2 : for j = 1 : NT
3 : if j ∈ bi
4 : cij = 0
5 : xij = 0
6 : else
7 : cij = maxn≤|pi|S

pi⊕n{j}
i − Spii ∀j /∈ bi

8 : if numj >
Na∑
k=1

zikj
9 : xij = 1
10 : else
11 : if cij > min(yikj)
12 : xij = 1
13 : else
14 : xij = 0
15 : end if
16 : end if
17 : end if
18 : if constraints in eqs. ( 2) are satisfied
19 : while |bi(t − 1)| < L i

20 : Cj = argmaxj(cij · xij)

21 : nij = argmaxnS
pi⊕n{Cj}
i

22 : bi = bi ⊕end
{
Cj

}
, pi = pi⊕nij

{
Cj

}
23 : yiCj = ciCj , ziCj = 1
24 : end while
25 : end if
26 : end for

In lines 4-5 of algorithm 2, if the task j is already inclu-
ded in bi, it provides no additional improvement in the reward.
In lines 8-16, whether UAV i can participate in the bidding
for task j is considered. In line 18, only UAVs that are
capable of performing and simultaneously satisfying the task
precedence constraint in eqs.(2) can bid for task j.

D. INNER CONFLICT RESOLUTION PHASE
In the inner conflict resolution phase, the consensus strategy
is improved to handle the violated task assignment between
UAVs that belongs to the same cluster. The UAVs in a
cluster only need to communicate with the corresponding
vital communication node through the shortest path, thus
total communication can be reduced compared with the
baseline CBBA. As shown in Fig.5, UAV 1 is selected as
the vital communication node in a cluster, UAV 2, UAV 5
and UAV 6 can communicate directly with UAV 1, while
UAV 3 and UAV 4 can communicate with UAV 1 through
UAV 2.
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FIGURE 5. Internal communication diagram in a cluster.

To further ease the communication traffic in the inner
conflict resolution phase, communication with all adjacent
UAVs is not necessary. For example, the communication
between UAV 2 and UAV 5 will not produce any useful
information, but also cause a certain degree of communi-
cation redundancy in Fig.5. Besides, multiple UAVs, which
are not in conflict with other UAVs participating in the
communication may increase network load. For instance,
the baseline CBBA requires UAV 1 and UAV 6 to conduct
two-way communication on each task, including the task
information that UAV 1 does not need. In the DCCBBA,
UAV 1 serves as the receiver to save the information of
UAV 6 if UAV 1 is not in conflict with UAV 6 for a task.

The phase of inner conflict resolution is summarized and
detailed in Algorithm 3.

In algorithm 3, Ti is a collection of UAVs. First, UAV i
compares the winning bid information for task j with UAV k
tomake sure its information is up to date (lines 2-5). skm > sim
indicates that the information of UAV k is latest (line 4).
UAV i updates zikj and y

i
kj based on the comparison results

(line 5). Second, if the number of UAVs bidding for tasks j
considered by UAV i has not met the requirement, zikj and
yikj are updated in lines 7-9. Otherwise, UAV i compares
min(yinj∀n ∈ Ti) with ykmj to update the information of UAV n

and UAV i in lines 9-15. Finally, UAV i serves as the receiver
to save the information of UAV k if UAV i is not in conflict
with UAV k for tasks j in lines 18-22.

E. OUTER CONFLICT RESOLUTION PHASE
Conflicts in a cluster can be reduced in the inner conflict
resolution phase, but it does not guarantee conflict-free
assignments in the overall UAVs. Each vital communication
node in a cluster exchanges messages with vital a com-
munication node which belongs to another cluster and is
connected. The external communication diagram between
clusters is shown in Fig.6.

In this process, consensus for the entire UAVs can be
achieved by exchanging messages between vital commu-
nication nodes. After the outer conflict resolution phase,

Algorithm 3 Inner Conflict Resolution Phase of DCCBBA at
Iteration t
UAV k sends yk (t − 1), zk (t − 1), sk (t − 1) to UAV i while
UAV i
is the vital communication node in the cluster Ci,
Ti = Ti ∪ { k} Ti ⊂ Ci
Input : yk (t − 1), zk (t − 1), sk (t − 1)
Out : yi(t), zi(t), si(t)
1 : for ∀j ∈ NT
2 : if zimj = 1 ∀m ∈ Ci
3 : if zkmj = 1
4 : if m = k & skm > sim
5 : zikj = 1, yikj = ykmj
6 : else

7 : if
Ti∑
m=1

zimj < numj

8 : zikj = 1, yikj = ykmj
9 : else
10 : if min(yinj∀n ∈ Ti) < ykmj
11 : zinj = 0, yinj = 0
12 : release task n and tasks added after it
13 : zikj = 1, yikj = ykmj
14 : end if
15 : end if
16 : end if
17 : end if
18 : else
19 : if zkmj = 1
20 : zikj = 1, yikj = ykmj
21 : end if
22 : end if
23 : end for

each key communication node broadcasts task assignments to
other UAVs in the same cluster. Therefore, each UAV shares
the same situation awareness and conflict-free assignments
can be guaranteed. The phase of outer conflict resolution is
described in Algorithm 4.

In lines 2-6 of algorithm 4, UAV i compares the winning
bid information for task j with UAV k to make sure its
information is up to date. In lines 8-11, if the number of
UAVs bidding for tasks j considered by UAV i has not
met the requirement, zimj and y

i
mj are updated when UAV k

consider UAV m(m ̸= i) perform task j while UAV i believes
UAV m does not execute task j. Otherwise, UAV i compares
min(yinj∀n ∈ Ci ∪ Ck ) with ykmj to update the information of

UAV n and UAV i in lines 12-16.

F. PATH PLANNING BASED ON PH CURVES
Pythagorean hodograph curves (PH curves) have a number
of advantages over other splines commonly used in planar
robot path planning [34], [35], [36]. A brief introduction of
the PH path is given in the section, the detailed one can be
found in [34]. In this paper, a fifth order PH curve is used
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FIGURE 6. External communication diagram between clusters.

Algorithm 4 Outer Conflict Resolution Phase of DCCBBA
for UAV i at Iteration t
UAV k sends yk (t − 1), zk (t − 1), sk (t − 1) to UAV i while
UAV i
and UAV k are the vital communication nodes in cluster Ci
and cluster Ck
Input : yk (t − 1), zk (t − 1), sk (t − 1)
Out : yi(t), zi(t), si(t)
1 : for ∀j ∈ NT
2 : for ∀m ∈ Ci ∪ Ck & zimj = 1
3 : if k = m & skm > sim
4 : zimj = zkmj, y

i
mj = ykmj

5 : end if
6 : end for
7 : for ∀m ∈ Ci ∪ Ck & zkmj = 1
8 : if m ̸= i & zimj = 0 & skm > sim

9 : if
Ci∪Ck∑
m=1

zimj < numj

10 : zimj = zkmj, y
i
mj = ykmj

11 : else
12 : if zkj ̸= 0 & ykj ̸= 0
13 : if min(yinj∀n ∈ Ci ∪ Ck ) < ykmj
14 : zinj = 0, yinj = 0
15 : release task n and tasks added after it
16 : zimj = zkmj, y

i
mj = ykmj

17 : end if
18 : end if
19 : end if
20 : end if
21 : end for
22 : end for

as it has inflection points that provide sufficient flexibility.
A fifth order Bernstein-Bȩzier polynomial can be expressed
as formula (9)-(11).

r(q) =

5∑
k=0

bk

(
5
k

)
(1 − q)(5−k)qk (9)(

5
k

)
=

5!
5!(5 − k)!

(10)

s(q) =

∫ q2

q1
r(q)dq q1, q2 ∈ [0, 1] (11)

where bk is the kth control point k ∈ [1, 2, 3, 4, 5], whose
vertices define the control polygon or Bȩzier polygon. r(q) is
the path point, q ∈ [0, 1] is the normalized path parameter,
s(q) is the length of the carve.

The four control points of the Bȩzier polygon can be
calculated by the first order Hermite interpolation while the
initial and final positions and directions are considered [37].

b0 = (xs, ys)

b5 = (xf , yf )

d0 = M (cosφs, sinφs)

d5 = N (cosφf , sinφf )

b1 = b0 +
1
5
d0

b4 = b5 −
1
5
d5 (12)

where (xs, ys) is initial position, (φs, βs) is the initial
orientation, (xf , yf ) is final position, (φf , βf ) is the final
orientation, d0 and d5 are initial and final direction, M and
N are positive constants.
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It is assumed that UAVsfly at a fixed altitude, the kinematic
model of the UAV can be expressed as formula (13)

·
x
·
y
·
χ

 =

 cosχ 0
sinχ 0
0 1

 [
v
ωχ

]
(13)

where
·
x,

·
y represent the velocity in the x and y directions

respectively, v is the flight speed, χ is the heading angle,
·
χ is

the angular velocity of heading angle.

V. PERFORMANCE ANALYSIS OF DCCBBA
A. COMMUNICATION LOAD ANALYSIS
To keep the collective up to date, an increase in the number
of participating UAVs or tasks leads to an exponential
communication events in baseline CBBA [7]. Moreover, each
UAV sends local assignment information to other UAVswhile
receiving information from them. If the network between
UAVs is fully connected, the number of communication
events in baseline CBBA can be expressed as follows [16].

Tb = Cb · Na · (Na − 1) (14)

where Tb is the total communication events in CBBA, Cb is
the number of baseline CBBA rounds required for UAVs to
reach a viable solution.

Compared with the baseline CBBA, the proposed DCBBA
can significantly reduce the number of communication events
required to achieve consensus with fully connected. The
number of communication events in DCCBBA can be
expressed as formula (15).

Td = Cd · (2(Na − K ) + K · (K − 1)/2) (15)

where Td is the total communication events in DCCBBA,
Cd is the number of DCCBBA rounds, Na − K repre-
sents the communication events between UAVs and vital
communication nodes in inner conflict resolution phase,
K (K − 1)/2 represents the communication events between
vital communication nodes in outer conflict resolution phase.
To share the same situation awareness between UAVs,Na−K
communication events are needed after the outer conflict
resolution phase in a round.

B. CONVERGENCE ANALYSIS
In this section, the convergence of DCCBBA is presented,
where convergence means producing an assignment in finite
time with all constraints in eqs.(2) being satisfied. As point
out in [7], CBBA converges to a conflict-free assign-
ment scoring scheme satisfied the diminishing marginal
gain(DMG) property.

Consider the DCCBBA process with synchronous conflict
resoluction over a static network with diameterD for the case
that every UAV’s scoring scheme is DMG. The following
holds.

(1)The time required for inner conflict resolution for
cluster Ci, ∀i ∈ K is bound by DCi , DCi is the network
diameter of Ci.

FIGURE 7. An example to illustrate the worst-case performance in inner
conflict resolution.

(2)The convergence time of outer conflict resolution is
bound by K · D.

Proof for (1)
If the inner conflict resolution is assumed to be synchro-

nized, i.e, each UAV in a cluster exchanges messages with
the vital communication node through the shortest path in the
tth iteration simultaneously. In this case, the time can be
defined as the shortest time where all UAVs in a cluster
exchange information with vital communication node. The
maximum communication time required for the baseline
CBBA isNmin ·D,Nmin = min(NaLi,NT ), i ∈ [1,Na]. Apply-
ing this result to the inner conflict resolution of DCCBBA,
the convergence time of the inner resolution is DCi . The
worst-case performance in inner conflict resolution can be
shown in Fig. 7.

In Fig.7, take chain communication network as an
example, UAV 1 is vital communication node in a cluster,
the network diameter DCi is defined as the longest of all the
shortest path lengths from UAVNc to UAV 1.
Proof for (2)
Outer conflict resolution phase can guarantee conflict-free

assignments in the overall UAVs. The time for the outer
conflict resolution phase in a round is bounded by the diam-
eter D. To find conflict-free assignments, the outer conflict
resolution phase should be repeatedly performed between
vital communication nodes. The worst-case performance is
that all vital communication nodes bid on the same tasks
in every round. All vital communication nodes except one
vital communication node will release those tasks in a round.
A maximum of K times is required to perform the outer
conflict resolution repeatedly to eliminate conflicts between
vital communication nodes. Therefore, the convergence time
of outer conflict resolution is bound by K · D.

C. COMPLEXITY ANALYSIS
In this section, the computational complexities of different
algorithms generated by the DCCBBA are analyzed, demon-
strating its performance from the theoretical perspective.
Simple instructions in each algorithm are omitted, which
do not really affect the computational complexity of the
algorithm [10]. For clarity, each algorithm is elaborated
separately.

1) GENERATION OF CLUSTERS
Predetermined clustering clusters of K-means algorithm
are produced using equation (4) in section IV-A. The
standard K-means algorithm has a computational complexity
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of O(n · k · l) [38] because of the iterative nature, where l is
the number of iterations, k is the number of clusters and
n is the number of data-points. Therefore, the computational
complexity of this algorithm is O(Na · K · Cd ).

2) SELECTION OF VITAL COMMUNICATION NODES
This algorithm contains one elementary instruction. The
UAV with the highest importance value is selected using
equation (8) as the vital communication node in a cluster.
Therefore, the computational complexity of this algorithm
is O(1).

3) BUNDLE CONSTRUCTION PHASE
As shown in Algorithm 2, bundle construction phase contains
two blocs of nested loops and several elementary instructions.
It starts at line 2 and ends at line 26. The worst-case
computational complexity is O(NT · L i).

4) INNER CONFLICT RESOLUTION PHASE
As shown in Algorithm 3, inner conflict resolution phase
contains two blocs of nested loops and several elementary
instructions. The bloc starts at line 1 and ends at line 23.
Its computational complexity is O(NT ).

5) OUTER CONFLICT RESOLUTION PHASE
As shown in Algorithm 4, outer conflict resolution contains
one bloc of nested loops. The bloc is presented in lines 1-22.
It contains two blocs of nested loops and several elementary
instructions. The worst computational complexity of the
first bloc is O(NT ), which starts at line 2 and ends at
line 6. Similarly, the worst computational complexity of
other block shown in lines 7-21 is O(NT ). Therefore, the
worst computational complexity of outer conflict resolution
is O(NT · (NT + NT )).
In conclusion, the worst computational complexity of

DCCBBA is O(Na · NT 3). According to [10], it is worth
pointing out that approximately one second is taken to
perform f (1000) operations by a CPU, which can execute one
billion of operations per second.(f is a given algorithm).

VI. SIMULATIONS
The simulation results for DCCBBA are presented in this
section to illustrate its effective and outstanding performance.
To describe the performance of the proposed DCCBBA, the
baseline CBBA [7], CF-CBBA [16], G-CBBA [20] and Two-
layer CBBA [18] are introduced as the compared methods.
Numerical simulations are conducted comparing with the
existing methods. In this paper, the locations of the tasks and
UAVs are given at the beginning and no dynamic changes
during the whole process. Monte-Carlo simulations are run
for six different scenarios.

All the simulations are adopted in Matlab environment
on a PC equipped with Intel (R) Core (TM) i7-8700
CPU@3.20GHZ, the memory is 16.0 GB, and the system is
Windows 11 Professional system.

TABLE 2. Parameters of heterogeneous UAVs.

TABLE 3. Parameters of tasks.

A. FEASIBILITY OF DCCBBA
In the scenario, there are Na = 10 tasks marked T1 − T10
and NT = 4 heterogeneous UAVs marked U1 − U4 within
a 10 kmx10 km rectangular area. The three task types are
reconnaissance, strike, integrated reconnaissance and strike
task (R&S). T1 − T2 are reconnaissance tasks, one UAV
with reconnaissance capability is required to accomplish a
reconnaissance task. T3 − T5 are strike tasks, two UAVs
with strike capability are needed to accomplish a strike
task simultaneously. T6 − T8 are R&S tasks, which require
one UAV with reconnaissance capability first and one UAV
with strike capability when the reconnaissance subtask j is
finished. Besides, tasks are set with a time-discounted score
in the form of c = 1000 · exp(−0.01 · t). The initial positions
of all tasks are generated in a random manner and all tasks
have a time window [0,300] s.

Moreover, it is assumed that the collective network is fully
connected mesh. Parameters of heterogeneous UAVs and
tasks are exhibited in TABLE 2 and TABLE 3.

The task schedules of UAVs are shown in Fig. 8
As shown in Fig. 8, the red line, green line, blue line and

black line represent the performing sequence of U1 − U4
respectively, while the square and circle marks separately
represent tasks and UAVs. The performance of DCCBBA
presented in Fig. 8(a) meets task allocation requirements
and the paths are closer to flyable paths due to PH
curves. In contrast, regarding the task assignment solution
without considering path planning in Fig. 8(b) satisfies the
constraints, the paths are not smooth at all, which will lead
to the inconsistency between the route cost obtained from
the task allocation and the actual route cost. The difference
of total path length between Fig. 8(a) and Fig. 8(b) in the
scenario is 9.03%.

The time schedules of UAVs are shown in Fig. 9.
In Fig. 9, task allocation results meet time window

constraints. Besides, UAVs can arrive simultaneously for
T3 − T5 by changing the velocity. According to Fig.8
and Fig.9, the task assignments for UAVs are exhibited
in TABLE 3.
As shown in TABLE 4, the task assignments are conflict-

free, which meet the constraints of the time window and
UAVs capabilities. The change of UAV clustering number is
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FIGURE 8. The task schedules of UAVs. (a) task assignments using
DCCBBA, (b)task assignments without considering path planning.

FIGURE 9. The task schedules and time schedules of UAVs using DCCBBA.

shown in Fig. 10 and communication events in each iteration
are exhibited in Fig. 11.

As shown in Fig.10 and Fig.11, the DCCBBA converges
after five iterations, the total number of communication
events in inner conflict resolution phase is 6 while the number
of communication events in outer conflict resolution phase
is 15. The number of communication events is consistent with
the analysis in section V. Generally speaking, conflict-free

TABLE 4. Task assignments for heterogeneous UAVs.

FIGURE 10. The change of UAV clustering number.

FIGURE 11. Communication events in each iteration.

assignments can be obtained with all constraints in eqs.(2)
being satisfied, indicating that the DCCBBA can solve the
UAV task allocation problem with complex constraints.

B. ALGORITHM VALIDATION
To illustrate the superiority of the proposed DCCBBA, the
baseline CBBA, CF-CBBA, GCBBA are introduced as the
compared methods in this section. Scenario of increasing
number of tasks using eight homogeneous UAVs with fully
connected network is presented. The NT = 8 heterogeneous
UAVs and tasks are randomly generated in the designed
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area, the maximum number of tasks each UAV can perform
Lt = 10. What is more, the performances of algorithms are
analyzed by running one hundred Monte-Carlo simulations
for each scenario. The results of the comparisons between
DCCBBA and baseline CBBA, CFCBBA, GCBBA are
shown in Fig.12.

Fig.12(a) shows the communication events of the four
methods. As the number of tasks increases, the total
communication events required to drive task allocation to
convergence increases slightly. The CF-CBBA requires the
least number of communication events due to the simple
algorithm structure. However, the CF-CBBA gives the
lowest performance in total reward presented in Fig.12(b)
and the highest allocation failures presented in Fig.12(c).
Conversely, DCCBBA shows benefit for allocation failures
and little difference in total reward with baseline CBBA
and GCBBA. The reason is that the number of clusters is
randomly generated between 1 and Na, and the dynamic
clustering method is adopted in DCCBBA, which enables
sufficient consistency processing between UAVs. Therefore,
the number of DCCBBA failures is significantly lower in
Fig.12(c). What’s more, compared with baseline CBBA and
GCBBA, the number of communication events of DCCBBA
is significantly lower due to the fact that each UAV only
need to communicate with the vital communication node
in the same cluster. Apart from that, communication events
between vital communication nodes are needed while each
UAV needs communicate with all the UAVs theoretically in
the baseline CBBA.

The number of communication events in DCCBBA is
shown in Fig.13.

As the number of tasks increases, the communication
events in inner conflict resolution and outer conflict reso-
lution have an increasing tendency for agreement between
UAVs. The reason is that more communication hops are
required to obtain conflict-free assignments between UAVs,
which is consistent with the analysis in section V.

C. DIFFERENT COMMUNICATION TOPOLOGIES
The section presents the simulation results of the DCCBBA
to illustrate that the proposed method is applicable to
different communication networks. Given the nature of
the distributed task allocation, six basic communication
topologies [24], [39] with ten heterogeneous UAVs varying
a number of R&S tasks between 5 to 30 are tested for the
proposed DCCBBA. The shape of communication networks
are shown in Fig.14. Besides, the maximum number of
tasks each UAV can perform Lt = 10, UAVs and tasks
locations are randomly generated in the design area. The
performance of algorithms are analyzed by running one
hundredMonte-Carlo simulations for each scenario. For each
set of examples, the communication events and number of
clusters are compared and analyzed. Other parameters of
heterogeneous UAVs and tasks are the same as those in
section VI-A.

FIGURE 12. Results of the comparisons between DCCBBA and compared
methods. (a) total communication events, (b) total reward, (c) number of
allocation failures, (d) number of clusters.

For every case when NT remains unchanged, it should
be noted that the task assignment result is the same. Task
assignment result in Na = 10, NT = 15 is shown
in Fig. 15.
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FIGURE 13. The number of communication events in DCCBBA.
(a) communication events in inner conflict resolution, (b) communication
events in outer conflict resolution.

According to the Fig.15 and Fig.16, the communica-
tion events of fully connected network required to find
a conflict-free matching of coupling tasks to UAVs are
significantly lower while the communication events of chain
network is the highest. This is due to the fact that all UAVs
can communicate with vital communication nodes within
one hop in fully connected network. As the number of tasks
increases, the mean communication events in inner and outer
conflict resolution increases slightly in Fig.16, because the
resolution of conflicts between UAVs increases. The average
range number of clusters generated randomly in [1,10] is
[5.2,5.8] in the scenario, which satisfies the requirement.

D. DIFFERENT COMMUNICATION DENSE
To further illustrate that DCCBBA can effectively reduce
communication events between UAVs in different commu-
nication networks, the baseline CBBA,GCBBA, Two-layer
CBBA are introduced as compared methods in this section.
Supposed that Na = 10 heterogeneous UAVs are assigned
to perform NT = 20 R&S tasks, Other parameters of
heterogeneous UAVs and tasks are the same as those in
section VI-C. In this paper, the ratio of non-zero elements in

FIGURE 14. Shape of communication networks. (a) Full, (b) Ring, (c) Star,
(d) Tree, (e) Chain, (f) Dense.

the adjacency matrix Aij to Na(Na − 1) is used to judge the
density of the communication network [40]

ρ =

∑
Aij

Na(Na − 1)
(16)

where ρ is the communication network density. In the sce-
nario, five communication network structures with different
density are selected in Fig. 17.

Fig. 18 shows the one hundred Monte Carlo results
under different network density. This is the case that the
network density increases 0.2 to 1.0, and the number of
tasks and the number of UAVs are constant. First, with
the increase of communication network density, the total
communication events are reduced. This result is expected
because the fewer communication hops are required to arrive
at a solution between UAVs in a communication network
with higher density. Second, compared with the baseline
CBBA, DCCBBA can effectively reduce communication
events by at least 48%, and it could be up to 80%. The benefit
tends to be more significant when the network density is
higher, which is due to the fact that the UAVs in a cluster
only need to communicate with the corresponding vital
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FIGURE 15. Na = 10 heterogeneous UAVs perform NT = 15 R&S tasks.
(a) total communication events, (b) communication events in inner
conflict resolution, (c) communication events in outer conflict resolution,
(d) number of clusters.

communication node. Apart from that, communication with
all adjacent UAVs is not necessary, which can further ease the
communication traffic in DCCBBA. Therefore, DCCBBA

FIGURE 16. Na = 10 heterogeneous UAVs perform NT ∈ [5, 30] R&S tasks.
(a) total communication events, (b) communication events in inner
conflict resolution, (c) communication events in outer conflict resolution,
(d) number of clusters.

has better comprehensive performance than baseline CBBA
and Two-layer CBBA under this circumstance.

VOLUME 11, 2023 112465



S. Yan, Y. Xia: Research on Collaborative Task Allocation of Heterogeneous UAVs With Complex Constraints

FIGURE 17. Different network density. (a) ρ = 0.2, (b) ρ = 0.4, (c) ρ = 0.6,
(d) ρ = 0.8, (e)ρ = 1.0.

FIGURE 18. Total communication events with different network density.

Fig.19 shows the communication events in inner and outer
conflict resolution of DCCBBA for different network density.
It can be seen that communication events required to find
conflict-free assignments significantly decreases, especially
when the network density is lower. The reason for Fig.19 is

FIGURE 19. Communication events of DCCBBA with different network
density. (a) communication events in inner conflict resolution,
(b) communication events in outer conflict resolution.

thatmore communication hops are requiredwhen the network
density is lower.

E. DIFFERENT NUMBER OF CLUSTERS
To further analyze the performance of DCCBBA with differ-
ent number of clusters, one hundredMonte-Carlo simulations
are implemented, utilizing the same communication networks
described in section VI-C. Scenario of varying a number
of clusters between 1 and 10 is presented. Supposed that
Na = 10 heterogeneous UAVs are assigned to perform
NT = 20 R&S tasks. Besides, other parameters of hete-
rogeneous UAVs and tasks are the same as those in section
VI-C. The mean performance of DCCBBA under one
hundred Monte-Carlo simulations is compared and presented
in Fig. 20.

Fig. 20 shows how communication events change as K
increases while Na and NT stay the same. The results show
several interesting things about DCCBBA. First, as seen in
Fig. 20(b) and Fig. 20(c), when K varies from 1 to 10,
the inner communication events decrease gradually while
the outer communication events increase significantly, this
is because that outer communication events are exponen-
tial with K and inner communication events are linear
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FIGURE 20. The number of clusters K ∈ [1, 10] when Na = 10
heterogeneous UAVs perform NT = 20 R&S tasks. (a) total
communication events, (b) communication events in inner conflict
resolution, (c) communication events in outer conflict resolution.

with K in equation (15). Specially, total communication
events are equal to inner communication events because
communication events only exist within the cluster when
K = 1 in Fig. 20(c). Similarly, inner communication
events are not required when K = Na in Fig. 20(b).
Second, the total communication events required to find
conflict-free assignments increase on the whole. It is easy
to understand because a high value of K indicates that the
outer communication events have a more impact on the total
communication events. Furthermore, the communication
events of fully connected network are significantly lower
than chain networks, which is consistent with the analysis in
section VI-C.

F. DIFFERENT NUMBER OF UAVS
To illustrate the impact of increasing number of UAVs,
suppose that there are Na ∈ [5, 20] UAVs with different

FIGURE 21. Na ∈ [5, 20] UAVs perform NT = 20 reconnaissance tasks with
different communication topologies. (a) Full, (b) Ring, (c) Star, (d) Chain.

communication topologies performing NT = 20 reconn-
aissance tasks in this considered scenario. Other param-
eters of UAVs and tasks are the same as those in
section VI-A and section VI-C. In addition, the baseline

VOLUME 11, 2023 112467



S. Yan, Y. Xia: Research on Collaborative Task Allocation of Heterogeneous UAVs With Complex Constraints

CBBA is conducted to compare with DCCBBA to illustrate
its efficiency. The performances of algorithms presented
here are analyzed by running one hundred Monte-Carlo
simulations. The mean performances of DCCBBA with
different number of UAVs are presented in Fig. 21.

It can be seen that, with the increasing number of partici-
pating UAVs, an exponential rise in the total communication
events required to keep the collective up to date is presented in
baseline CBBA process while the total communication events
of DCCBBA increase slightly as shown in Fig. 21, which
results from that total communication events of baseline
CBBA are exponential with Na in equation (14) and total
communication events of DCCBBA are linear with Na in
equation (15). In addition, compared with baseline CBBA,
the number of communication events required to produce
conflict-free assignments of DCCBBA is significantly lower,
this is because that each UAV only needs to communicate
with the vital communication node in the same cluster.
Meanwhile, as the number of UAVs increases, the difference
of communication events tends to be more significant when
communication topology is a chain in Fig. 21(d). The reason
is that more communication hops are required to obtain
conflict-free assignments between UAVs.

VII. CONCLUSION
This paper presents a dynamic clustering consensus-based
bundle algorithm, which improves bundle construction and
consensus methods to bring parallelism to baseline CBBA to
reduce the amount of communication in the conflict resolu-
tion phase. What is more, DCCBBA retains the robustness of
distributed task allocation. Numerical simulations have been
performed to illustrate the performance of DCCBBA under
different scales of tasks, different communication topologies,
different communication network density, different number
of clusters and different number of UAVs. The simulation
results have demonstrated the feasibility and reliability of
DCCBBA compared with the baseline CBBA, CF-CBBA,
GCBBA and Two-layer CBBA.

The framework presented in this paper suffers from
some limitations. First, the DCCBBA is only guaranteed
to converge in situations where all the bidding schemes
satisfy the DMG property [7], as is the case for the baseline
CBBA. Second, the locations of the tasks and UAVs are
given at the beginning, further researches are required to
improve the applicability of DCCBBA in dynamic and
uncertain environment. In future work, methods of extending
the application scenarios of the proposed DCCBBA and
decreasing the computational complexity will form an
element of future work to be undertaken. Furthermore,
experimentations in both static and dynamic environments
are considered to empirically validate the results presented
in this paper.

ACKNOWLEDGMENT
The authors would like to thank the editors and reviewers for
constructive comments.

REFERENCES
[1] H. Studiawan, G. Grispos, and K.-K.-R. Choo, ‘‘Unmanned aerial vehicle

(UAV) forensics: The good, the bad, and the unaddressed,’’Comput. Secur.,
vol. 132, Sep. 2023, Art. no. 103340.

[2] T. B. Shahi, C.-Y. Xu, A. Neupane, and W. Guo, ‘‘Recent advances in crop
disease detection using UAV and deep learning techniques,’’ Remote Sens.,
vol. 15, no. 9, p. 2450, May 2023.

[3] S. Poudel and S. Moh, ‘‘Task assignment algorithms for unmanned aerial
vehicle networks: A comprehensive survey,’’ Veh. Commun., vol. 35,
Jun. 2022, Art. no. 100469.

[4] J. Tang, G. Liu, andQ. Pan, ‘‘A review on representative swarm intelligence
algorithms for solving optimization problems: Applications and trends,’’
IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1627–1643, Oct. 2021.

[5] J. C. Amorim, V. Alves, and E. P. de Freitas, ‘‘Assessing a swarm-GAP
based solution for the task allocation problem in dynamic scenarios,’’
Expert Syst. Appl., vol. 152, Aug. 2020, Art. no. 113437.

[6] J. Tang, X. Chen, X. Zhu, and F. Zhu, ‘‘Dynamic reallocation model of
multiple unmanned aerial vehicle tasks in emergent adjustment scenarios,’’
IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 2, pp. 1139–1155,
Apr. 2023.

[7] H.-L. Choi, L. Brunet, and J. P. How, ‘‘Consensus-based decentralized
auctions for robust task allocation,’’ IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, Aug. 2009.

[8] H.-L. Choi, A. K. Whitten, and J. P. How, ‘‘Decentralized task allocation
for heterogeneous teams with cooperation constraints,’’ in Proc. Amer.
Control Conf., Jul. 2010, pp. 3057–3062.

[9] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera, ‘‘A fast
distributed auction and consensus process using parallel task allocation
and execution,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
San Francisco, CA, USA, Sep. 2011, pp. 4716–4721.

[10] F. Zitouni, S. Harous, and R. Maamri, ‘‘A distributed approach to the
multi-robot task allocation problem using the consensus-based bundle
algorithm and ant colony system,’’ IEEE Access, vol. 8, pp. 27479–27494,
2020.

[11] L. Johnson, S. Ponda, H.-L. Choi, and J. How, ‘‘Improving the efficiency
of a decentralized tasking algorithm for UAV teams with asynchronous
communications,’’ in Proc. AIAA Guid., Navigat., Control Conf., 2010,
p. 8421.

[12] R. Chen, J. Li, Y. Chen, and Y. Huang, ‘‘An agent-related asynchronous
consensus method for fast scheduling of UAV swarm,’’ in Proc. Amer.
Control Conf. (ACC), May 2023, pp. 490–496.

[13] X. Zheng, F. Zhang, T. Song, and D. Lin, ‘‘Heterogeneous multi-UAV
distributed task allocation based on CBBA,’’ in Proc. IEEE Int. Conf.
Unmanned Syst. (ICUS), Oct. 2019, pp. 704–709.

[14] W. Zhao, Q. Meng, and P. W. H. Chung, ‘‘A heuristic distributed task
allocation method for multivehicle multitask problems and its application
to search and rescue scenario,’’ IEEE Trans. Cybern., vol. 46, no. 4,
pp. 902–915, Apr. 2016.

[15] M. Argyle, D. W. Casbeer, and R. Beard, ‘‘A multi-team extension of
the consensus-based bundle algorithm,’’ in Proc. Amer. Control Conf.,
Jun. 2011, pp. 5376–5381.

[16] D. Smith, J. Wetherall, S. Woodhead, and A. Adekunle, ‘‘A cluster-based
approach to consensus based distributed task allocation,’’ in Proc. 22nd
Euromicro Int. Conf. Parallel, Distrib., Netw.-Based Process., Feb. 2014,
pp. 428–431.

[17] X. Chen, P. Zhang, F. Li, and G. Du, ‘‘A cluster first strategy for
distributed multi-robot task allocation problem with time constraints,’’
in Proc. WRC Symp. Adv. Robot. Autom. (WRC SARA), Aug. 2018,
pp. 102–107.

[18] X. Fu, P. Feng, B. Li, and X. Gao, ‘‘A two-layer task assignment algorithm
for UAV swarm based on feature weight clustering,’’ Int. J. Aerosp. Eng.,
vol. 2019, Nov. 2019, Art. no. 3504248.

[19] Y. Zhang, W. Feng, G. Shi, F. Jiang, M. Chowdhury, and S. H. Ling, ‘‘UAV
swarm mission planning in dynamic environment using consensus-based
bundle algorithm,’’ Sensors, vol. 20, no. 8, p. 2307, Apr. 2020.

[20] K.-S. Kim, H.-Y. Kim, and H.-L. Choi, ‘‘A bid-based grouping method
for communication-efficient decentralizedmulti-UAV task allocation,’’ Int.
J. Aeronaut. Space Sci., vol. 21, no. 1, pp. 290–302, Mar. 2020.

[21] J. Chen, X. Qing, F. Ye, K. Xiao, K. You, and Q. Sun, ‘‘Consensus-based
bundle algorithm with local replanning for heterogeneous multi-UAV
system in the time-sensitive and dynamic environment,’’ J. Supercomput.,
vol. 78, no. 2, pp. 1712–1740, Feb. 2022.

112468 VOLUME 11, 2023



S. Yan, Y. Xia: Research on Collaborative Task Allocation of Heterogeneous UAVs With Complex Constraints

[22] W. Wu, H. Lu, J. Xu, and Y. Sun, ‘‘Hierarchical optimization method of
space patrol task assignment based on deep neural network and consensus-
based bundle algorithm,’’ Acta Astronautica, vol. 207, pp. 295–306,
Jun. 2023.

[23] S. Raja, G. Habibi, and J. P. How, ‘‘Communication-aware consensus-
based decentralized task allocation in communication constrained environ-
ments,’’ IEEE Access, vol. 10, pp. 19753–19767, 2022.

[24] K.-S. Kim, H.-Y. Kim, and H.-L. Choi, ‘‘Minimizing communications in
decentralized greedy task allocation,’’ J. Aerosp. Inf. Syst., vol. 16, no. 8,
pp. 340–345, Aug. 2019.

[25] L. Brunet, H.-L. Choi, and J. How, ‘‘Consensus-based auction approaches
for decentralized task assignment,’’ in Proc. AIAA Guid., Navigat. Control
Conf. Exhib., 2008, p. 6839.

[26] O. Dorabiala, J. N. Kutz, and A. Y. Aravkin, ‘‘Robust trimmed k-means,’’
Pattern Recognit. Lett., vol. 161, pp. 9–16, Sep. 2022.

[27] Z. Xiyu, X. Ziyu, and W. Jinghua, ‘‘Research on task allocation of
heterogeneous multi-robot based on cluster grouping algorithm,’’ (in
Chinese), J. Aero Weaponry, vol. 29, no. 4, pp. 100–109, 2022.

[28] A. Ullah, B. Wang, J. Sheng, J. Long, N. Khan, and Z. Sun, ‘‘Identifying
vital nodes from local and global perspectives in complex networks?’’
Expert Syst. Appl., vol. 186, Dec. 2021, Art. no. 115778.

[29] W. Maharani, Adiwijaya, and A. A. Gozali, ‘‘Degree centrality and
eigenvector centrality in Twitter,’’ in Proc. 8th Int. Conf. Telecommun. Syst.
Services Appl. (TSSA), Oct. 2014, pp. 1–5.

[30] M. Barthelemy, ‘‘Betweenness centrality in large complex networks,’’ Eur.
Phys. J. B, vol. 38, no. 2, pp. 163–168, 2004.

[31] K. Okamoto, W. Chen, and X.-Y. Li, ‘‘Ranking of closeness centrality
for large-scale social networks,’’ in Frontiers in Algorithmics. Berlin,
Germany: Springer, 2008, pp. 186–195.

[32] B. Ruhnau, ‘‘Eigenvector-centrality—A node-centrality?’’ Social Netw.,
vol. 22, no. 4, pp. 357–365, Oct. 2000.

[33] T.-H. Nguyen, H. Park, and L. Park, ‘‘Recent studies on deep reinforcement
learning in RIS-UAV communication networks,’’ in Proc. Int. Conf. Artif.
Intell. Inf. Commun. (ICAIIC), Feb. 2023, pp. 378–381.

[34] H. Bruyninckx and D. Reynaerts, ‘‘Path planning for mobile and hyper-
redundant robots using Pythagorean hodograph curves,’’ in Proc. 8th Int.
Conf. Adv. Robotics. Proceedings. ICAR, Jul. 1997, pp. 595–600.

[35] T. Su, X. Liang, X. Zeng, and S. Liu, ‘‘Pythagorean-hodograph curves-
based trajectory planning for pick-and-place operation of delta robot
with prescribed pick and place heights,’’ Robotica, vol. 41, no. 6,
pp. 1651–1672, Jun. 2023.

[36] B. Kalkan, D. F. Scharler, H.-P. Schröcker, and Z. Šír, ‘‘Rational framing
motions and spatial rational Pythagorean hodograph curves,’’ Comput.
Aided Geometric Design, vol. 99, Nov. 2022, Art. no. 102160.

[37] M. Shanmugavel, A. Tsourdos, R. Zbikowski, and B. White, ‘‘3D path
planning for multiple UAVs using Pythagorean hodograph curves,’’ in
Proc. AIAA Guid., Navigat. Control Conf. Exhibit, Aug. 2007, p. 6455.

[38] A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and
J. Heming, ‘‘K-means clustering algorithms: A comprehensive review,
variants analysis, and advances in the era of big data,’’ Inf. Sci., vol. 622,
pp. 178–210, Apr. 2023.

[39] F. Ye, J. Chen, Q. Sun, Y. Tian, and T. Jiang, ‘‘Decentralized task allocation
for heterogeneous multi-UAV system with task coupling constraints,’’
J. Supercomput., vol. 77, no. 1, pp. 111–132, Jan. 2021.

[40] Z. Tuo, D. Hanqiang, G. Jialong, and H. Jian, ‘‘Dynamic target assignment
of multiple unmanned aerial vehicles based on clustering of network
nodes,’’ J. Syst. Simul., vol. 35, no. 4, p. 695, 2023.

SHAOKUN YAN received the B.S. degree in
mechanical engineering and the M.S. degree in
weapons system from Northwestern Polytech-
nical University, Xi’an, China, in 2015 and
2018, respectively. He is currently pursuing the
Ph.D. degree with the School of Automation,
Beijing Institute of Technology. His research
interests include control and decision of unmanned
systems.

YUANQING XIA (Senior Member, IEEE) was
born in Anhui, China, in 1971. He received
the M.S. degree in fundamental mathematics
from Anhui University, Hefei, China, in 1998,
and the Ph.D. degree in control theory and
control engineering from the Beijing University
of Aeronautics and Astronautics, Beijing, China,
in 2001. From 2002 to 2003, he was a Postdoctoral
Research Associate with the Institute of Systems
Science, Academy of Mathematics and System

Sciences, Chinese Academy of Sciences, Beijing. From 2003 to 2004, he was
a Research Fellow with the National University of Singapore, Singapore,
where he researched on variable structure control. From 2004 to 2006, he was
a Research Fellowwith the University of Glamorgan, Pontypridd, U.K. Since
2004, he has been an Associate Professor with the School of Automation,
Beijing Institute of Technology, Beijing, where he has been a Professor
since 2008. From 2007 to 2008, he was a Guest Professor with Innsbruck
Medical University, Innsbruck, Austria. His current research interests include
networked control systems, robust control and signal processing, and active
disturbance rejection control.

VOLUME 11, 2023 112469


