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ABSTRACT Existing work on Deep reinforcement learning-based visual navigation mainly focuses on
autonomous agents with ample power and compute resources. However, Reinforcement learning for visual
navigation on resource-constrained devices remains an under-explored area of research, primarily due
to challenges posed by processing high-dimensional visual inputs and making prompt decisions in real-
time scenarios. To address these hurdles, we propose a State Abstraction Technique (SAT) designed to
transform high-dimensional visual inputs into a compact representation, enabling simpler reinforcement
learning agents to process the information and learn effective navigation policies. The abstract representation
generated by SAT effortlessly serves as a versatile intermediary that bridges the gap between simulation
and reality, enhancing the transferability of learned policies across various scenarios. Additionally, our
reward shaping strategy uses the data provided by SAT to maintain a safe distance from obstacles,
further improving the performance of navigation policies on resource-constrained devices. Our work opens
up opportunities for navigation assistance and other applications in a variety of resource-constrained
domains, where computational efficiency is crucial for practical deployment, such as guiding miniature
agents on embedded devices or aiding visually impaired individuals through smartphone-integrated
solutions. Evaluation of proposed approach on the AI2-Thor simulated environment demonstrates significant
performance improvements over traditional state representations. The proposed method provides 84.18%
fewer collisions, 28.96% fewer movement instructions and 11.3% higher rewards compared to the best
alternative options available. Furthermore, we carefully account for real-world challenges by considering
noise and motion blur during training, ensuring optimal performance during deployment on resource-
constrained devices.

INDEX TERMS Collision detection and avoidance, reinforcement learning (RL), resource-constrained
settings, reward shaping, Sim2Real transferability, state abstraction, visual navigation.

I. INTRODUCTION
Visual navigation has become a crucial aspect of autonomous
systems, enabling a range of tasks including navigation,
positioning, mapping, and path-planning. Reinforcement
learning has emerged as a powerful approach for enabling
intelligent agents to learn navigation policies directly from
visual inputs without the need for explicit maps or pre-
programmed instructions. However, deploying such rein-
forcement learning-based systems on resource-constrained
devices presents unique challenges due to limited computa-
tional resources, memory constraints, and power limitations.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

This paper aims to propose an novel approach for enhancing
the performance of reinforcement learning-based visual nav-
igation tasks, explicitly designed to address the requirements
of resource-constrained devices.

One of the key strategies that can be adopted to make rein-
forcement learning feasible on resource-constrained devices
is dimensionality reduction. Our objective involves opti-
mizing the computational and memory requirements of the
reinforcement learning model by reducing the dimensionality
of visual input data. This dimensionality reduction allows
us to use the full potential of the model while overcom-
ing the limitations of resource-constrained environments.
To reduce dimensionality, researchers have explored tech-
niques like image downsizing [1], graph representations [2],
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distance-based state representation [3], and latent represen-
tations [4], [5]. However, these techniques, while effective,
still exhibit some degree of dependency on the training data.
This dependence can impact the model’s efficiency when
applied to new and unseen environments. To address this
dependency challenge associated with data dimensionality
reduction, we introduce a State Abstraction Technique
that abstracts the captured images into low-dimensional
alternative representations that are independent of the training
data. Moreover, smaller state spaces promote faster and more
efficient learning in RL models.

While our primary focus has been on achieving dimen-
sionality reduction for resource-constrained devices through
the State Abstraction Technique, an interesting outcome of
our approach is its seamless sim2real transferability. This
transferability, crucial in bridging the gap between simulated
and real-world environments, is often a significant challenge
faced by most RL systems trained solely in simulation. Tech-
niques such as domain randomization [6], domain adaptation
and policy distillation [7] have been introduced in literature
to address this issue. Although these techniques are effective
in addressing sim2real transferability challenges, they often
require substantial effort in data collection, fine-tuning, and
parameter tuning. In contrast, our method inherently captures
the sim2real transferability feature, allowing the reinforce-
ment learning model to generalize effectively to real-world
scenarios without the need for explicit domain adaptation
or extensive domain randomization. This seamless transition
from simulation to reality, combined with the advantages of
dimensionality reduction for resource-constrained devices,
highlights the robustness and practicality of our proposed
approach in real-world visual navigation applications.

To further enhance the adaptability of our approach to
real-world scenarios, we address the challenge of reward
modeling in visual navigation tasks. Typically, agents in such
tasks rely on distance measurement units, which are essential
for constructing reward models that penalize the agents for
approaching or colliding with obstacles and reward them
for successful target achievement [8], [9], [10], [11], [12],
[13]. However, it’s crucial to note that without access to
distancemeasurement units, these rewardmodeling strategies
become ineffective. In response, our proposed method offers
a solution by using information from the abstracted state
to estimate distances to nearby obstacles. This innovative
approach enables effective distance-based reward modeling
even in scenarios where explicit distance measurements
are unavailable. Yet, another significant challenge in this
domain is the sparsity of rewards. Given that collisions with
obstacles are infrequent occurrences in visual navigation,
agents often find themselves engaged in aimless exploration
during training, which hinders their ability to gainmeaningful
task-related insights. To address this problem, the proposed
method uses reward functions that bestows agent with smaller
but more frequent rewards for demonstrating collision-
avoidance behaviors, thereby significantly improving their
learning efficiency.

In visual navigation, captured images often contain
noise and redundancy, presenting challenges in extracting
relevant information for effective navigation. As a response,
researchers have explored alternative inputs such as depth
images and semantic segmentation maps. These alternate for-
mats reduce the dimensionality of the data while preserving
the important details about the image. The proposed system
for visual navigation uses semantic segmentation images
of the captured frames, that provide high-level information
about objects and their spatial locations in the scene while
reducing noise and redundancy compared to RGB images.
We introduce the State Abstraction Technique as a method
to condense semantic segmentation images into a more
compact format. This approach not only boosts the learning
process of the RL policy network but also enhances the
overall performance of the navigation system. By using SAT,
we aim to address the limitations of high dimensionality
while enhancing the transferability of learned policies from
simulation to real-world environments. We summarize our
contribution as follows.
• We propose an innovative State Abstraction Tech-
nique that simplifies complex observations of dynamic
environments into a simple, intuitive format, making
it compatible with any reinforcement learning-based
visual navigation task.

• We introduce a novel Reward Shaping module that
uses the extracted state information to enforce collision
avoidance and safe navigation behaviors in a Reinforce-
ment Learning agent.

• We thoroughly analyze different parameters to under-
stand their impact on the effectiveness of the proposed
SAT approach, providing insights for fine-tuning and
optimization to achieve optimal results in real-world
scenarios.

• We deploy and test our proposed system as a smart-
phone app for navigation in both indoor and outdoor
environments, highlighting its real-world applicability
and potential for practical usage in resource-constrained
settings.

The remainder of the paper is structured as follows.
Section II introduces the Related Work in Reinforcement
Learning based Visual Navigation. The Proposed Method-
ology is described in detail in Section III. We discuss
the details of the important Design Decisions made in the
proposed work in section IV. Section V describes Training
and Experimentation in detail. The Results and Analysis of
the proposed system performance are presented in section VI.
Finally section VII concludes the paper.

II. RELATED WORK
The Related Work section provides an overview of exist-
ing research about Reinforcement learning-based Visual
Navigation. The section covers three principal areas of
focus. Firstly, we explore the reward modeling approaches
employed by various reinforcement learning techniques to
effectively tackle collision avoidance and target-reaching
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FIGURE 1. Proposed system for navigation guidance.

tasks. Additionally, we explore the efforts made to address
the challenges posed by high-dimensional visual inputs in
reinforcement learning. Furthermore, we discuss the existing
work on Sim2Real transferability, which aims to bridge the
gap between simulated and real-world environments.

A. REWARD MODELING IN AUTONOMOUS NAVIGATION
Reinforcement learning uses a system of rewards and penal-
ties to encourage desired behavior and discourage harmful
behavior. Accordingly, approaches in obstacle avoidance [8],
[9], [10], [11], [12], [13] assign a penalty to agents when
it goes near an obstacle or collides with an obstacle,
indicating that the behavior is not desirable. Ye et al. [14]
employ supervised learning and RL to learn the membership
functions of fuzzy rules for the task of obstacle detection.
These rules are then used to classify objects as obstacles.
Goal-based navigation agents [15], [16], [17], [18] are more
focused on reaching the goal and with the shortest trajectory.
In addition to the penalty issued for collision with obstacles,
these agents are generously rewarded for reaching their goal.
To encourage shorter trajectories, the penalty issued to the
agent is increased as it moves away from the goal and reduced
as it moves toward the goal point. Reinforcement learning is
used to enforce a desirable behavior to ensure that the agent
is penalized when the behavior deviates from the expected
behavior. Huang et al. [4] encourage optimal driving behavior

by rewarding/penalizing the agent based on on-road/off-road
traits and for maintaining a safe driving speed.

The current approaches to reward modelling for collision
avoidance mainly depend on distance measurement mech-
anisms, involving the continuous monitoring of both agent
and object positions as well as their orientations. However,
when considering scenarios involving navigation assistance
that exclusively relies on visual inputs, the conventional
methods prove to be inadequate. In response to this limitation,
we introduce the State Abstraction Technique, which extracts
comprehensive state information from the environment. This
technique provides useful insights into the positions of
objects and their likely distance approximations, all derived
exclusively from visual information.

B. DIMENSIONALITY REDUCTION
To deal with high dimensional inputs in visual navigation,
Raudies et al. [3] compute distances to objects in multiple
directions using optical flow or stereo vision, and replace
visual images with these distances as the state information.
Cornel et al. [19] transform visual inputs into an abstract
tabular model to reduce the state space. Eysenbach et al. [2]
represent observations and distances as nodes and edges
of a graph to find the shortest trajectory, in an attempt
to reduce the dimensionality of the state space.
Huang et al. [20] fuse information from multiple cameras to
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compensate for partial observation from a single monocular
camera and then use a Borderline network and attention
network to reduce the state space and retain important
information only. Liu et al. [21] also use temporal
attention to reduce the dimension of state-action pairs.
Huang et al. [4] propose a semantic encoder module (SEM)
to extract low-dimensional driving representations from raw
image observations. Several attempts have been made to
reduce the dimensionality of visual inputs in resource-
constrained settings. Schoettler et al. [1] scale down the
visual inputs to 32×32 grayscale image to accommodate the
requirements of industrial Insertion tasks. Shah et al. [5] use
low dimensional ResNet features as compact representations
that capture salient features of visual inputs. Zhu et al. [22]
employ Variational Autoencoders to convert real-world
visual inputs into corresponding low dimensional latent
representations that can be easily processed by RL models.

Existing techniques rely on methods to generate
reduced-dimensional representations of the given training
data. This facilitates efficient training of reinforcement
learning models. However, these methods tend to retain
some dependency on the training data causing the models’
performance to drop when confronted with novel and
unfamiliar scenarios. In contrast, the proposed method
performs 2 levels of abstraction on training data resulting in
compact state representations with a remarkable autonomy
from the specifics of the training environment. As such,
the model that undergoes rigorous training on a small set
of scenarios gains an exceptional level of adaptability. This
enables the model to seamlessly adapt to completely novel
and previously unseen virtual and real-world environments.

C. SIM2REAL TRANSFERABILITY
Reinforcement learning models are typically trained using
historical experience data or in a simulated environment,
after which the knowledge is applied to similar real-
world situations. However, training the agent in a specific
environment increases the model’s reliance on the train-
ing environment and reduces its transferability, resulting
in mediocre performance in new and unseen scenarios.
To reduce the dependency of the model on the training
environment, Wu et al. [23] captures prior knowledge of
the scenes from the training environment and represent the
relation between the locations inside the scene as a Prob-
abilistic Relational Graph. This abstract knowledge about
the environment could be easily transferred to similar envi-
ronments in virtual and real environments. Devo et al. [24]
attempt Sim2Real transferability by assigning the task
of learning target-driven visual navigation to 2 separate
networks, one that attempts to locate the target, and another
learns to explore the environment to move towards the
target. By breaking down the task into simpler tasks, the
authors attempt to increase the generalization ability of the
model in new environments. Policy distillation techniques [7]
extract the policy of a reinforcement learning agent and

train a new network that performs at the expert level,
while being smaller and more efficient. This technique
consolidates multiple task-specific policies into a single
policy. Domain randomization [6] involves training the agent
in a variety of simulated environments that differ in many
ways (e.g., lighting, textures, object appearance) to help it
learn more robust policies that can generalize to real-world
environments. Semantic segmentation is often used as an
intermediary format to effectively bridge the gap between
simulation and reality [4], [25], [26]. The use of semantic
segmentation can also help to reduce the dimensionality of
the input space, resulting in more efficient and effective
model training. However, the variations and inconsistencies
in the real world may not always be fully captured by the
simulated environment used for training. Therefore, although
semantic segmentation can be used to bridge the gap between
virtual and real environments, it does not solve the Sim2Real
problem entirely.

Policy distillation, domain randomization, and domain
adaptation require fine-tuning the model trained within
a simulated environment when transitioning to real-world
environments. However, even with this fine-tuning, themodel
might not achieve complete transferability to entirely new
environments due to its inherent reliance on the specifics
of the training environment and its variations. The two-level
abstraction introduced in the proposed method addresses this
challenge by enabling the model to seamlessly transition to
novel environments without the need of any additional fine-
tuning.

The proposed system aims to address the challenges
of high dimensionality and Sim2Real transferability in
reinforcement learning-based visual navigation through
State Abstraction Technique. This is particularly rele-
vant in resource-constrained settings, where computational
resources are limited. The goal is to reduce the dependency
of state information on the training environment, making
the extracted state applicable to any scenario in both virtual
and real environments. By focusing on resource-efficient
strategies, our approach offers a promising solution for
enhancing navigation performance in resource constrained
settings.

III. METHODOLOGY
Visual navigation is the task of analyzing visual inputs to find
and direct an agent along a walkable, obstacle-free path in an
environment. Traditional approaches rely on depth [27], [28],
[29], [30] and semantic segmentation [31], [32], [33] data for
estimating obstacle distances and road profiles, but they are
limited in their transferability to new domains due to their
dependence on specific datasets.

To address these challenges, we present an RL-based
visual navigation system that uses a novel State Abstrac-
tion Technique that extracts a compact navigation-specific
state information from the environment observations. This
extracted state information not only reduces dimensionality
but also enhances the system’s capability for seamless
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FIGURE 2. Semantic segmentation of the agent captured images. (a)Captured image, (b) Semantic segmentation image provided by the framework,
(c) Semantic segmentation image externally generated by a custom model, (d)Motion blur on the Captured image, and (e)Semantic segmentation of
blurred image.

transfer between simulated and real-world environments.
Additionally, it effectively highlights obstacle positions and
distances, serving as a valuable indicator for successful
navigation. The proposed system architecture comprises four
main components: a Perception module that extracts useful
information from images captured by an agent-mounted
camera, a SAT module that transforms this information into
abstract state representations, a Reward module that enforces
Obstacle avoidance behaviors of the agent in complex
environments, and an RL module that learns a policy for safe
navigation. Fig. 1 illustrates the architecture of the proposed
system. In this setup, the agent observation goes through
2-levels of abstraction: (i) Conversion of RGB images to
semantic segments in Perception module, and (ii) Conversion
of semantic segments into compact state information in the
SAT module. The Policy model receives this abstract state
representation as input and produces discrete, position-based
motion primitives as actions (e.g., move ahead, move left or
right, turn left or right). The proposed system, being an online
training setup, records the details of each agent interaction in
a Replay buffer and uses these historic observations to train
the Policy network.

The system uses a State Abstraction Technique to generate
an abstract, compact representation of the agent observations.
The state derived through SAT effectively tackles the
challenge of high-dimensional visual inputs and enhances
sim2real transferability. Moreover, this extracted state serves
as input to the reward-shaping module, contributing to the
formulation of efficient obstacle-avoidance strategies. The
components of the proposed work together to enable the safe
navigation of the agent in complex environments. Detailed
information on each component of the proposed system is
provided in the subsequent subsections.

A. PERCEPTION MODULE
Visual navigation involves using information in captured
images to perform navigation tasks. However, raw RGB
images can be overly detailed and redundant, leading to a
large state space. Larger state spaces demand a larger number
of interactions with the environment to learn an efficient
control policy.

To resolve this issue, smaller alternative representations,
such as depth maps and semantic segmentation maps are

often used for visual navigation tasks. Depth maps contain
information about the distance between objects in the scene
and can be used for obstacle avoidance and navigation
guidance tasks [34], [35], [36]. However, depth data only
provides distance information and discards other important
information that could otherwise be used to identify objects
for a better navigation experience. In contrast, semantic
segmentation maps provide a high-level representation of the
environment that can aid navigation by providing information
about the locations of objects and landmarks.

We chose semantic segmentation over depth represen-
tation as it provides a more detailed and comprehensive
understanding of the environment, enabling better navigation
decisions. The success of Sim2Real transferability of seman-
tic segmentation images [4], [25], [26], [34] serves as an
additional rationale for the selection of this representation for
our navigation guidance task.

The proposed system is trained for Navigation Guidance in
the simulated environment of the AI2-Thor framework [37],
which provides a fully functional 3D interactive environment
with access to semantic segmentation images at each
interaction. However, when deploying the proposed system
in the real world, a model is required for generating
semantic segmentation images from the captured images.
It should be noted that the quality of semantic segments
obtained from the virtual environment may contain more
detailed and refined information, which may not align with
the semantic segmentation images generated by state-of-
the-art deep learning models for semantic segmentation,
as illustrated in Fig. 2.

Moreover, the images captured by the agent in a simulated
environment are often visually appealing and do not capture
the imperfections of the real world, such as noise and motion
blurriness. To make the model adapt to real-world conditions,
we introduce motion blur to the captured images to reflect the
images captured by a moving agent in real-world scenarios.
This can be represented as a convolution of the input image I
with a motion blur kernel B(x, y), resulting in the blurred
image Iblurred (x, y) as shown in (1).

Iblurred(x, y) =
K∑

k=−K

L∑
l=−L

I (x + k, y+ l) · B(k, l) (1)
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Algorithm 1 Computation of State Space
1: m, n← predefined number of rows and columns for state space
2: Is← Semantic Segmentation of agent observation I
3: StateGrid ← State space grid around agent position (agentx , agenty)
4: StateMatrix ← Array(dimension:(m, n),Values: 0)
5: for each grid ∈ StateGrid do
6: segmentsgrid ← getSegmentClasses(grid)
7: segmentmax_strength← getSegmentWithMaxStrength(segmentsgrid)
8: if segmentmax_strength ̸∈ ⟨path segment⟩ then
9: StateMatrix[gridrow][gridcol]← 1
10: end if
11: end for

where K and L are the dimensions of the motion blur kernel,
I (x, y) is the intensity value of the input image at pixel
coordinates (x, y), and B(k, l) is the intensity value of the
motion blur kernel at kernel coordinates (k, l).

Fig. 2 illustrates the semantic segmentation images
obtained from the captured image and the image with motion
blur. It can be observed that that the semantic segmentation
generated from the blurred image (Fig. 2(e)) has inferior
quality compared to the framework-supplied images as
well as actual images, as shown in Fig. 2(b&c). However,
despite the reduced quality, introducing motion blur to the
captured images brings the agent one step closer to achieving
Sim2Real transferability. This approach helps the model to
better adapt to real-world conditions where images captured
by a moving agent may contain noise and motion blurriness.
The resulting semantic segmentation image with motion blur
is used in the subsequent steps of the processing pipeline,
enabling the proposed system to better generalize to real-
world scenarios.

Any efficient state-of-the-art real-time semantic segmen-
tation model can be used in the Perception module. We use
the Topformer [38] model pretrained on ADE20k dataset in
the proposed system. TopFormer has achieved state-of-the-art
performance in benchmark datasets, capturing fine-grained
object boundaries, handling complex scenes, and showing
promising transferability. With its high-quality segmentation
maps produced in real time, TopFormer provides a detailed
understanding of the environment, making it a promising
choice for accurate scene understanding in navigation
applications.

B. PROPOSED STATE ABSTRACTION TECHNIQUE (SAT)
The Semantic segmentation obtained from the perception
module can still pose a large state space for RL models.
A bigger state space requires the agent to have a large number
of interactions with the environment to cover all possible
state-action combinations. To address the state space prob-
lem, solutions such as down-scaling images [1], extracting
ResNet features [5], generation of latent representation using
Autoencoders [4], [22] have been discussed in literature.

Although effective in reducing the state space, these
techniques keep the model dependent on the observations

FIGURE 3. Process of extraction of State information Black - obstacle
zone, White - obstacle free zone.

from the training environment and limit the generalization
capability of the model to new, unseen environments.
To address this challenge, we propose a State Abstraction
Technique that extracts a compact, abstract representation
of the environment observation O that is independent of
the training environment. The SAT can be represented as a
function fSAT : O → {0, 1}m×n, where m and n are the
dimensions of the state space. The SAT is implemented in
the State Abstraction Module shown in Fig. 1.
Given a semantic segmentation image, the entire image

content may not be relevant to the task of visual navigation.
Instead, a portion of the image that represents the immediate
neighborhood of the agent serves as the region of interest
as shown in Fig. 3. To define the state space, the region of
interest in the observation is divided into a grid of cells. Each
cell is assigned a binary value based on whether it contains
a path segment (road, floor, earth, sidewalk, ground) or an
obstacle segment. The state matrix S is then defined as a
binary matrix of size m× n, where

Si,j =

{
1 if (contains obstacle)
0 Otherwise

(2)

The proposed approach significantly reduces the Obser-
vation space while still capturing the relevant information
for the task at hand. Algorithm 1 outlines the process of
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Algorithm 2 Reinforcement Learning Module
Require: Replay buffer D with capacity N , Q-network parameters θ , Target network parameters θ ′, Discount factor γ ,

Minibatch size B, Learning rate α, Number of iterations T
1: Initialize Q-network with parameters θ

2: Initialize target network with parameters θ ′← θ

3: for t = 1 to T do
4: Observe state st
5: With probability ϵ select a random action at , otherwise select at = argmaxa Q(st , a; θ)
6: Execute action at and observe reward rt and next state st+1
7: Store transition (st , at , rt , st+1) in D
8: Sample minibatch B of size B from D
9: Set target for minibatch transition (s, a, r, s′) as y = r + γ maxa′ Q(s′, a′; θ ′)
10: Update Q-network parameters using gradient descent on loss L(θ ) = 1

B

∑
(s,a,r,s′)∈B(y− Q(s, a; θ ))

2

11: Every C steps, update target network parameters θ ′← θ

12: end for

generation of state information from the given semantic
segmentation image.

Fig. 3 highlights the significance of the abstraction process
in reducing the gap between the refined observations of
the simulated environment and the noisy blurred images of
the real-world conditions. It can be observed that, although
the semantic segmentation of the blurred image is noisy
and inconsistent, the state information produced by it is a
good approximation of the state produced by the semantic
segmentation image provided by the simulation environment.

C. PROPOSED REWARD MODULE
Navigation guidance in reinforcement learning requires a
reward system that provides feedback to the agent about
its actions in a given state. A reward is typically used to
encourage desirable behavior, while a penalty is used to
discourage undesirable behavior. The desirable behaviour for
collision avoidance in visual navigation can be enforced by
penalising the agent whenever it collides with an obstacle.
During environment interactions, the distribution of such
events of collision with obstacles can be quite sparse,
depriving the agent of ample opportunities for learning
efficient policies. A sparse reward system with a penalty for
collision and a reward for reaching the destination may not be
effective in teaching the agent to avoid obstacles. We need a
dense reward/penalty model that enforces the agent to stay
away from obstacles. Wenzel et al. [34] use the distance
to the obstacle in their reward function design to enforce a
policy that keeps the robot as far away as possible from the
obstacle. Huang et al. [4] set a reward system that encourages
the vehicle to drive as close as possible to the middle of
the road. However, in our context of pure visual navigation,
measuring the distance to the obstacle is not feasible. Instead,
we use the state information produced by the State model as
an alternative for proximity estimation.

During the training process, we adopt a reward shaping
technique inspired using the concept of repulsive potential
field to guide the agent’s behavior in avoiding obstacles.

The agent is rewarded for occupying obstacle-free walkable
states, while it is penalized as it moves towards obstacles.
To enforce the desired behavior of moving away from
obstacles, we designate a small neighborhood around the
agent as a penalty zone. This penalty zone represents
an immediate collision risk to the agent and should be
maintained as an obstacle-free region.

To create a repulsive effect that encourages the agent to stay
away from obstacles within the grid-based neighborhood,
we use aPenaltyMatrix, that represents the repulsive potential
values corresponding to the agent’s proximity to obstacles,
with the repulsive potential diminishing as the distance
increases. The Repulsive potential Rg at each position of the
grid is computed as shown in (3).

Rg(Si,j) = Si,j ∗ PenaltyMatrix[i][j] (3)

where the StateMatrix value Si,j represents the presence or
absence of obstacle in the corresponding location in the grid
and PenaltyMatrixi,j represents the repulsive potential value
associated with that location in the grid.

The navigation instruction set supported by the agent are
MoveLeft, MoveAhead, MoveRight, TurnLeft, and Turn-
Right. A desirable action a for the agent would be to lead
along a safe, walkable path with the fewest navigational
instructions possible. To discourage unnecessary navigation
instructions, a penalty Ra is served for certain actions as
shown in (4). Unnecessary issue of changing directions using
TurnLeft or TurnRight is avoided by assigning higher penalty
to those actions. This forces the agent to issue a TurnLeft
or TurnRight command only when absolutely necessary.
To encourage the agent to identify straight walkable path,
the agent is rewarded with a +Rahead for every MoveAhead
instruction.

Ra(St ) =


−Rmove a ∈ (MoveLeft, MoveRight)
−Rturn a ∈ (TurnLeft, TurnRight)
+Rahead Otherwise

(4)
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The cumulative reward Rc across the state space can be
computed as shown in (5).

Rc(St ) = (
n∑
i=0

m∑
j=0

Rg(Si,j))+ Ra(St ) (5)

The reward Rg serves as an indicator of the proximity of
the agents to obstacles in the environment. The cumulative
reward Rc incorporates both this proximity information and
the desirable action executed by the agent. When the agent
successfully adjusts its path to avoid obstacles, resulting in
Rg = 0, a bonus reward Rsafe is granted. Otherwise, the agent
receives Rsafe − Rc points. The final reward computation is
summarized in equation (6), where the reward decreases as
the agent approaches the obstacle and increases as it moves
away.

reward = Rsafe − Rc (6)

D. REINFORCEMENT LEARNING MODEL
Vision-based navigation is a decision-making task in which
an agent learns to interact with its environment based on
feedback. The goal is to predict the desirable action for each
observation, with the intent of keeping the agent in a safe
state. This can be formulated as a Markov decision process
(MDP), which is defined by a tuple (S,A, π,R, γ ), where S
is the observation space, A is the action space, π is the policy
function used for state transition, R is the reward function,
and γ is a discount factor. The state space and reward data
are obtained from a State Abstraction Module and Reward
Module respectively.

1) ACTION SPACE
Five actions are defined in the action space for the navigation
of the agent namely: MoveLeft, MoveAhead, MoveRight,
TurnLeft, and TurnRight. Each action corresponds to a
motion command to be performed by the agent. The
MoveLeft and MoveRight actions inform the agent to shift
a bit to the left or right, respectively, as an attempt to
avoid collision with an immediate obstacle. The agent issues
a TurnLeft or TurnRight command when the path ahead
is blocked and the agent has to change direction. The
MoveAhead action instructs the agent to keep walking in the
current direction.

The learning process begins with exploration and gradually
progresses towards exploitation. Initially, the agent explores
every state-action pair in the environment by performing
random actions and learning without regard for the current
state. Eventually, the agent progresses to exploitation,
inwhich it employs the learned knowledge to guide the choice
of actions that maximise the reward of the current state. The
ϵ-Greedy is a hyperparameter used to balance exploration
and exploitation by choosing between exploration and
exploitation randomly.

2) POLICY FUNCTION
The task of the agent is to learn a policy, π : S → A, for
selecting the next action at , based on the current observed
state st ; i.e. π (st ) = at . The final reward assigned to the agent
serves as the driving force for the state transition function.
A higher reward encourages the agent to remain in the same
state, whereas a lower reward or penalty encourages the agent
to transition to a more desirable state. The agent’s optimum
course of action is to adopt a policy that maximizes its
cumulative reward in a particular environment, and one of the
key factors in determining this is the state transition function.

Algorithm 2 highlights the working of RL model for nav-
igation guidance. To enhance the navigation experience, it is
desirable for a solution not only to maximize episodic reward
but also to minimize the number of navigation instructions
required. This can be achieved through careful consideration
of the exploration-exploitation tradeoff. Specifically, the
ϵ-greedy strategy can be employed to encourage the agent
to initially explore all possible actions, while gradually
learning that certain actions, such as ‘Move Ahead’, are
more beneficial for successful navigation. By doing so, the
agent can learn an effective policy that achieves the desired
behavior with minimal instruction requirements.

E. NETWORK ARCHITECTURE
The Double Deep Q-Network (DDQN) algorithm uses two
neural networks: the primary Q-network and the target
Q-network. The primary Q-network is updated every iter-
ation, and it is used to choose actions and evaluate
their Q-values. The target Q-network is used to calculate
the target Q-values, which are used to update the primary
Q-network. The target Q-network is updated less frequently
than the primary Q-network, and it is used to provide a stable
target for the Q-value updates.

The update equation for the primary Q-network is:

Q(st , at )← Q(st , at )

+ α(rt+1 + γ max
a
Q(st+1, a)− Q(st , at )) (7)

where st and at are the state and action at time step t , rt+1 is
the reward received after taking action at in state st , α is the
learning rate, and γ is the discount factor.
The update equation for the target Q-network is:

Qtarget (st , at )← Qtarget (st , at )

+ β(rt+1 + γ max
a
Qprimary(st+1, a)

− Qtarget (st , at )) (8)

where β is the update rate for the target Q-network, and
Qprimary is the output of the primary Q-network.

1) NETWORK STRUCTURE
Each network consists of three fully connected layers with
64, 64, and 5 (action space) neurons respectively. The input
to the network is a state vector of size m × n representing
the current state space of the agent. The first four layers of
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FIGURE 4. System workflow in training and deployment phases.

the network use the rectified linear unit (ReLU) activation
function, while the last layer uses a linear activation function
to produce the Q-values for each possible action. The network
uses the Adam optimizer with a learning rate of 0.001 to
update the weights.

2) HYPERPARAMETERS
The DDQN algorithm involves several key settings that
influence training. Training is performed using batches
of 64 samples, leading to network updates after every
64 samples. The discount factor for calculating target
Q-values is set at 0.99, influencing the balance between future
and immediate rewards. Initially, exploration is encouraged
with an exploration rate of 1, which progressively reduces
linearly to 0.01 across 1 million steps. The target network
is updated every C steps, controlling how often target
Q-values are synchronized with current Q-values. These
hyperparameters, determined through prior experiments, aim
to strike a balance between exploration and exploitation and
stabilize the learning process.

F. TRAINING AND DEPLOYMENT PHASES
Fig. 4 provides an overview of the workflow for the proposed
system during both the training and deployment phases. In the
training phase, the agent captures environmental observations
in the form of monocular RGB images. Using the previously
discussed SAT technique, relevant state information is
extracted from these observations. Subsequently, this state
information is fed into the RL policy network to predict an
appropriate action. In cases where the agent’s action leads to
a collision within the environment, the episode is promptly
terminated, incurring a significant penalty to indicate an

undesirable event. In the absence of a collision, the agent
continues to explore the environment, further training the
policy network. During each interaction, the state information
and the predicted action are used to compute rewards for
the policy network’s training. All relevant details of each
agent-environment interaction are stored in a replay buffer,
from which historical information is sampled and used for
training the RL Policy Network.

The deployment phase is rather straightforward, making
use of the fully trained RL model for navigation decisions.
In this phase, the agent continues to capture environmental
observations as monocular RGB images. The state infor-
mation, extracted from the preprocessed observations using
the SAT technique, is then provided to the RL model to
generate an appropriate action for the current context. The RL
model outputs a probability distribution of the five possible
actions. The action with the highest probability is selected
and executed. In the event that this chosen action results
in a collision with the environment, an alternative action,
typically the next best action based on the RLmodel’s results,
is chosen and executed iteratively until collision avoidance is
achieved. The agent continues to navigate the environment by
capturing observations and determining suitable actions for
each new observation. The primary objective of the proposed
method is to design and train a Reinforcement Learning (RL)
model capable of minimizing the frequency of collisions
within the environment while ensuring a seamless and smooth
navigation experience.

IV. DESIGN CONSIDERATIONS
The performance of the proposed system is influenced by
certain design decisions. We have shortlisted the factors of
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influence into 4 important criteria: (i)online/offline training
(ii) the reinforcement learning technique used (iii)selection
of state space size and, (iv) selection of grid size. The
significance of these criteria and the details on design
decisions made are explained in the following sections.

A. ONLINE VS OFFLINE TRAINING
A design choice has to be made whether neural networks
are trained based on previously collected data (Offline
training) or using additional data collected during the learning
process (Online training). For large state spaces like the input
images in visual navigation, providing an exhaustive list of
historical data that covers all possible state spaces is not
practical. Online training provide opportunities for the agent
to explore the state space by continuous interaction with the
environment. However, facilitating rigorous online training
in real environments can be a challenging task. Hence most
algorithms resort to simulated environments for environment
exploration. The proposed system uses Online training on the
simulated environment provided by AI2-Thor. The AI2-Thor
simulation environment provide opportunities for the agent to
move around indoor spaces, collect new training tuple from
each interaction with the environment and develop obstacle-
avoidance expertise.

B. SELECTION OF REINFORCEMENT LEARNING
TECHNIQUE
Traditional reinforcement learning algorithms likeQ-learning
maintains a reference table mapping of states to actions.
However, this approach becomes less effective in scenarios
with dynamic environments where the model struggles
to respond to unseen or unfamiliar observations. Recent
techniques have replaced traditional 2D arrays with neural
networks to estimate the Q-value function. Neural networks
are robust to new inputs when compared to static 2D arrays
and hence produce reliable results. To determine an optimal
RL technique for the collision detection and avoidance task,
we experiment with DeepQNetwork (DQN), Double DeepQ
Networks (DDQN), and Deep Deterministic Policy Gradient
(DDPG). These neural network-based models are trained
on a subset of the samples(state, reward, action, next state)
recorded from the agent’s interaction with the environment.

• DQN (Deep Q-Network) uses a policy network to
learn an optimal policy and a target network to
stabilize the learning process by periodically updating
the parameters of the target network with the policy
network’s parameters.

• DDQN (Double Deep Q-Network) is an extension of
DQN that addresses the overestimation of action values
problem in traditional DQN networks. DDQN uses two
separate Q-value estimators, producing more stable and
reliable results.

• DDPG (Deep Deterministic Policy Gradient) is an
actor-critic algorithm that works well for tasks with
continuous action spaces. DDPG has two networks: an

actor-network that selects the best action for a given
state, and a critic-network that evaluates the policy
function estimated by the actor-network.

Fig. 7 (a) shows the performance of the models on
different scenes of AI2-Thor environment. An ideal method
for navigation guidance would provide efficient navigation
guidance with minimal collisions and fewer navigation
instructions. Higher rewards are given to the agent when
it diligently follows a safe, obstacle free path. Due to the
discrete nature of the action space, the DQN and DDQN
algorithms tend to outperform the DDPG algorithm in this
task. DDQN outperforms the other techniques in terms of
fewer collisions and movements and higher rewards.

C. STATE SPACE SIZE
The state space refers to the area surrounding the agent
that is observed in order to navigate successfully. Choosing
an appropriate size to represent the state space is crucial
for achieving optimal navigation guidance. Increasing the
size of the state space results in a larger observation area
around the user, which in turn can improve navigation
performance. To evaluate the impact of state space size on
navigation performance, an experiment was conducted on
20 scenes in the Ai2-thor environment using models trained
with state space sizes ranging from 4 to 11. The experiment
recorded and averaged the number of collisions encountered,
movement commands issued, and rewards earned by the
agent for each state space size. The details of the analysis are
shown in Fig. 7(b).

Contrary to the expectation that bigger state spaces yield
better navigation experience, the experiments revealed that
larger state sizes resulted in increased agent movement in
an attempt to avoid obstacles in the larger observation zone,
rather than improving navigation. The number of navigation
instructions is also a significant factor. A balance between
identifying potential obstacles and minimizing the number of
navigation instructions is necessary to provide effective guid-
ance. Fig. 7(b) illustrates the trade-off between the number of
collisions and the number of navigation instructions. It can be
observed that although state space of size 10 and 11 achieve
few collision and better rewards, they also tend to have
more navigational instructions issued which is undesirable
for a smooth navigation experience. Experiments conducted
in various environments using different state space sizes
indicate that a state space of size 6 provides optimal results
by identifying potential obstacles and minimizing navigation
instructions.

D. GRID SIZE
The grid size of the state space refers to the size of each grid
cell of the state space. The grid cell’s state value is determined
by its content. Therefore, selecting an optimal grid size is
crucial for the success of the model. Overly fine-grained
grids only inflate the size of the state space, adding little
to system performance. Conversely, the excessive details
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FIGURE 5. Effect of different design decisions on system performance.

contained in a larger grid may result in incorrect state values
being computed for the cells. To evaluate the effect of grid
size on performance, a series of experiments were conducted
on 20 distinct scenes within the Ai2-thor environment using
the DDQN model, where the state space size was set to
6 and grid sizes ranged from 3 to 15. The results of the
experiments are summarized in Fig. 7(c), which outlines the
performance metrics for each trial using different grid sizes.
The findings demonstrate that a grid size of 9 achieved the
optimal performance, with fewer collisions and navigation
instructions.

V. EXPERIMENTAL SETUP
In this section we describe the dataset, the training setup, and
the details of evaluation metrics and baseline techniques used
for comparison with proposed method.

A. DATASET
The AI2-Thor framework [37], an interactive 3D virtual
environment is used as a simulation environment for training
and testing the proposed system. AI2-Thor framework
consists of near photo-realistic 3D indoor scenes, where AI
agents can navigate in the scenes and interact with objects
to perform tasks. The framework provides 200+ custom
built high-quality scenes, 2600+ custom designed household
objects across 100+ object types. Each object is heavily
annotated and allows for near-realistic physics interaction.
The framework provides Multi-agent support, 200+ actions
for a wide range of interaction and navigation based
embodied AI tasks.It also provides support for many image
modalities(ego-centric RGB images, instance segmentation,
semantic segmentation, depth frames, normals frames, top-
down frames, orthographic projections, and third-person
camera frames) and camera adjustments (changing image
size and field of view). After each step in the environment,
there is a large amount of sensory data available about the
state of the environment. This information can be used to
build highly complex custom reward functions.

B. ADDRESSING STATE IMBALANCE IN TRAINING
DATASET
In both real and virtual environments, certain states are
frequently observed, while others are encountered less often.

FIGURE 6. T-SNE visualization of state distribution observed during RL
agent training. Larger points with higher strengths represent frequently
visited states.

The t-SNE plot in Figure 6 provides a visual representa-
tion of the distribution of states as observed by the RL
agent during training. This visualization transforms complex
agent observations into a map of points, with each point
representing a state visited by the agent. The size and
strength of these points increase as the agent frequents those
states. In Figure 6, certain points that are larger, represent
states with obstacle-free paths, and their presence in dense
clusters in the plot signifies the agent’s preference for them
throughout the training process. In contrast, states that are less
frequently visited, and are likely associated with obstacles,
are shown as sparse and spread-out clusters of smaller points.
This observation implies that, due to the agent’s preference
for certain states, numerous states remain under-explored.
Consequently, this leads to imbalanced training data, which,
in turn, results in skewed outcomes in the navigation policy.

To address the imbalance in the exposed states within the
training dataset, we use a heuristic approach to assign sample
weights to different states based on their occurrences in the
training set. If S is the set of states in the training batch with
a total of n states (|S| = n), and number of possible actions
a, the weight wi for each state si in S is calculated as shown
in equation 9.

wi =
1
ci
×
n
a

(9)
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FIGURE 7. Learning curve of the RL model using different state representations.

where ci is the count of occurrences of si in S. By intro-
ducing these weights, the navigation policy can now take
into account the under-represented states, leading to more
balanced and effective training outcomes.

C. TRAINING SETUP
The reinforcement learning agent in this study underwent
training on randomly generated episodes within the AI2-
Thor environment. Each episode was restricted to a length
of 150 steps to accommodate the limited exploration space
within each scene. The AI2-Thor environment comprises
120 scenes, divided into four distinct categories. 80% of the
scenes, 20% from each category are used for training and the
remaining scenes are used for testing the agent. To ensure
maximum exploration of the environment, the agent was
made to navigate each scene five times, each with a different
starting point and orientation. This enabled the agent to
traverse the environment from different viewpoints and take
varied walks in the same environment. The agent perceived
the environment through a first-person camera view of a
300× 300 RGB image, and its action space consisted of five
distinct actions, namely MoveLeft, MoveRight, MoveAhead,
TurnLeft, and TurnRight. The model was trained to navigate
safely within the AI2-Thor environment by utilizing state
information along with a carefully designed reward system.

D. BASELINE AND EVALUATION METRICS
In this study, we evaluate the performance of reinforce-
ment learning algorithms using our proposed approach for
state representation, and compare it with alternative state
spaces such as plain semantic segmentation image, depth
image, as well as state as input features extracted using
state-of-the-art techniques such as Downsized Grayscale
image [1], ResNet [39], MobileNet [40], VGG16 [41]
and latent representation generated using Autoencoders [4].
The models are trained on 22 scenes of each category
provided by Ai2-thor. The depth and semantic segmentation
image modalities provided by the framework are used for

constructing the corresponding baseline models for depth and
semantic segmentation states. The proposed compact state
representation is derived from the semantic segmentation
image, as described in Algorithm 1.

The learning curve of the agent during the training process
is presented in Fig. 7. The rewards experienced by the agent
increase over the course of training episodes and gradually
converge to a stable value. Notably, the use of state input from
the proposed SAT yields a faster and stable learning curve
compared to alternative techniques. State information in the
form of Depth data and ResNet features also converge and
stabilize faster when compared to the other techniques.

To assess the performance of RL using different state
representations, we use rate of Collisions, Movements and
Rewards as the desirable metrics. Collision rate measures the
percentage of trials where the agent collides with an obstacle.
A lower collision rate indicates a safer and more effective
navigation strategy. The rich sensory data received after every
interaction of the agent in AI2-Thor environment can be used
to detect collisions in the environment. The computation of
collision rate is shown in (10).

C =
Nc
N

(10)

where N is the total number of steps taken and Nc is the
number of steps failed due to collision with objects.

An ideal navigation assistance solution facilitates safe
navigation with minimal navigation instructions. Too many
Move left, Move right, Turn left, Turn right orders might
be unpleasant during navigation. Any navigation command
other than Move Ahead is accounted for movement rate as
shown in (11).

M =
Mtotal −Mahead

Mtotal
(11)

where Mtotal is the total number of movement commands
given, and Mahead is the number of MoveAhead commands
issued during an episode.
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TABLE 1. Comparison of system performance across different scenes of AI2-Thor environment.

Rewards refers to the reward returned by the agent while
navigating in the environment as shown in (6). Higher
rewards correspond to navigation in obstacle free spaces.

VI. RESULTS AND DISCUSSION
We carry out experiments on the proposed RL-based visual
navigation and assess the performance of the proposed
system in comparison to baseline methods. In the virtual
environment testing phase, the agent navigates each scene
5 times with random start positions and orientations. The
performance is then averaged over the 5 runs for each scene.
Table 1 shows the performance of the agents across different
scene categories of AI2-Thor environment.

Our findings show that the proposed system performs
optimally across different scene types, with lower collision
and movement rates and higher rewards when compared to
the usage of image features extracted using state-of-the-art
techniques. While the remaining methods performed fairly
well on the scenes in the training set, their performance
decreased drastically in the unseen scenes of test dataset.
Themodel trained using downsized grayscale states exhibited
minimal learning, as it consistently generated ‘‘Moveahead’’
instructions regardless of the available state information.
While downsized grayscale images could have proven
effective in static industrial insertion tasks [1], the substantial
variations in the training data collected by a mobile agent
are likely to have hindered the agent’s learning capacity,
resulting in an underfitting scenario. The proposed method
of state extraction is able to generalize the state information
across different scene categories. A model that learns from
this abstract state representation is robust to changes in scene
types and also adapts itself seamlessly in new and unseen
virtual and real environments.

The percentage improvement in performance was com-
puted as

Current_best − Proposed
Current_best

(12)

The proposed method provided 84.18% fewer collisions,
28.96% fewer movement instructions and 11.3% higher
rewards compared to the best alternative options available.
Qualitative Analysis of Proposed System: Table 2 presents

a qualitative analysis of the proposed approach compared

TABLE 2. Qualitative analysis of proposed approach.

to the baseline models. The analysis focuses on several
important aspects of the models, including model size,
number of trainable parameters, and inference speed, both
in the original form and in the tflite format (optimized for
mobile deployment).

The proposed approach has the smallest model size (in
both original and tflite formats) which is significantly smaller
than the alternatives, making it more suitable for resource-
constrained environments, such as mobile devices or IoT
devices, where limited storage is a concern. The proposed
approach also has the fewest trainable parameters compared
to other models. This suggests that the proposed system has
a simpler and more compact model architecture resulting in
faster training and reduced risk of overfitting. The inference
speed of the proposed system is faster than the other models
and is even faster in tflite format. In conclusion, the proposed
approach shows promising results in terms of its smaller
model size, fewer trainable parameters, and faster inference
speed compared to the other models. These characteristics
make it a strong candidate for resource-constrained environ-
ments and real-time applications.

A. ABLATION STUDIES
In this section, we discuss the ablation experiments per-
formed to evaluate the contributions of each component of
the proposed approach. Specifically we conduct experiments
to understand the significance of State Abstraction Technique
and the Reward module. DDQN is used as a common
reinforcement learning algorithm for all the (state + reward)
combinations given below:
• Semantic Segmentation(semseg) + action rewards (Ra)
- In this setup, semantic segmentation of the captured
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FIGURE 8. Deployment of proposed system in the real world. Outdoor (top row) Indoors (bottom row).

image is given as input to the RL model. A reward setup
as described in (4) is used.

• Proposed SAT + no rewards - The proposed state
abstraction method is used to represent the state
information. The associated reward module is removed
from the setup.

• Proposed SAT + action rewards (Ra) - The proposed
state abstraction method along with action rewards is
used in this setup.

• Proposed SAT+ state grid rewards (Rg) - The proposed
state abstraction method along with state grid rewards as
described in (3) is used in this setup.

• Proposed SAT + state grid rewards (Rg) + action
rewards (Ra) - The complete proposed system with the
state abstraction and reward modules are used in this
setup.

Table 3 reflects the significance of the proposed SAT
and Reward modules. The results of the study showed
that the proposed state abstraction technique is a critical
component of the approach. Upgrading the state represen-
tation from semantic segmentation to the proposed state
abstraction technique resulted in a significant reduction in
the collision rate. This indicates that the proposed state
abstraction technique allows the RL model to better adapt
to new and unknown environments, resulting in a better
performance.

TABLE 3. Ablation study on proposed system in terms of collision rates,
number of movements and rewards.

The reward shaping components, Ra and Rg, were also
found to be crucial to the overall performance of the
approach. The movement rates and rewards are mostly
governed by reward shaping. Ra regulates the movement
commands, whereas Rg is concerned with collision avoid-
ance. Therefore, the movement and reward rates, which were
sub-optimal with SAT-only, were seen to be improved with
the introduction of reward shaping components Ra and Rg.
The results show that the proposed approach’s performance
was significantly improved when both Ra and Rg were used
with the proposed state abstraction technique.

In conclusion, the ablation study highlights the importance
of the proposed state abstraction technique and reward
modules in the proposed approach’s overall performance. The
results suggest that the proposed approach can be further
improved by optimizing these components to achieve better
performance in different scenarios.
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TABLE 4. Execution time of the modules in the proposed architecture.

B. SYSTEM PERFORMANCE
The execution cost of the proposed system’s component
modules is shown in Table 4. The total response time of
the system is 0.06 seconds. As such the system is highly
responsive and is able to provide feedback about obstacles in
near-real time. The major contributor of the system response
time is the semantic segmentation, that accounts for up to
99% of the system response time. This indicates that faster
segmentation models in the future will further improve the
performance of the system.

C. REAL WORLD DEPLOYMENT
Using semantic segmentation representation instead of RGB
image has the benefit of concealing the dissimilarities in
observations between real and virtual environments. The
proposed method involves processing the semantic segmen-
tation image to generate an abstract representation of the
state, thereby further enhancing the model’s generalization
capabilities. The reinforcement learning model was trained
and tested on the Ai2-thor environment, and eventually
deployed as a tflite model on an Android application for real-
world experience. While it is noteworthy that the semantic
segmentation produced by real-world models may not be as
precise as those in the Ai2-thor environment, the abstract
representation of the state can still be extracted effectively
from these imperfect semantic segment images to produce
reliable navigation guidance as illustrated in Fig. 8.
The proposed system was deployed on a smartphone to

test its usability in the real world. The smartphone chosen
for the research is the Samsung Galaxy A30s running on
Android v11 Operating System with a Exynos 7904 Octa-
core processor, 3GBRAM, 25MPmain camera, and 3808mV
Li-ion battery. Fig. 8 illustrates the effectiveness of the
proposed method in providing navigation guidance in the
real world. The figure shows that the model can success-
fully navigate through complex real-world environments
with narrow spaces and obstacles. The proposed method’s
ability to provide reliable navigation guidance in real-world
scenarios demonstrates its potential for deployment in various
applications, such as autonomous vehicles, robot navigation,
navigation assistance for the vision impaired, etc.

VII. CONCLUSION
The proposed study enhances RL based visual navigation in
resource constrained settings by introducing a State Abstrac-
tion Technique that brings with it the two-fold advantage

of Dimensionality Reduction and Sim2Real transferability.
The reduced state space helps in faster and efficient learning
of navigation policies using simple RL models. A key
aspect of our approach is the usage of motion blurred
pictures which ensures that the system is designed with
real-world deployment in mind. Our approach demonstrates
significant improvement in visual navigation and collision
avoidance when compared to policy learning done using
other state-of-the-art state feature extraction techniques. The
demonstrated improvements highlight the potential impact of
SAT in enablingmore efficient and reliable navigation in real-
world scenarios. The generic and environment-independent
state information generated by SAT further enhances the
transferability of our approach.

One aspect to consider in the proposed SAT approach
is that it relies on the current state of the environment
for collision detection and avoidance. In scenarios where
objects are moving towards the agent at higher speeds,
the proposed system may not be equipped to detect and
notify events on time to avoid collisions. To address this
limitation, future work could involve the addition of an
anticipation component to SAT, which would anticipate the
future positions of moving objects when performing collision
detection and avoidance. By incorporating predictions of
object motion, SAT could better adapt to dynamic envi-
ronments and enable more proactive collision avoidance
strategies.
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