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ABSTRACT Driver behavior features extracted from the controller area network (CAN) have potential
applications in improving vehicle safety. However, the development of a classifier-based intrusion detection
system (IDS) for in-vehicle networks remains an open research problem. To address this challenge,
we incorporate novel n-fold cross-validation windowing techniques on two publicly available driving
behavior datasets. A driver classification-based IDS is proposed using the LSTM-FCN model that utilizes
the strengths of both fully convolutional network (FCN) and long short-term memory (LSTM) networks.
These modules allow the model to learn spatial and temporal features and utilize contextual information.
In addition, we combine three squeeze and excite (SnE) layers following FCN layers to incorporate adjacent
spatial locations and augment a scaled dot product attention mechanism into the LSTM to improve its
feature selection and extraction capabilities. Our proposed IDS uses hacking and countermeasure research
lab (HCRL) and test datasets, which achieve an improvement in accuracy of 4.18% and 13.99% respectively,
from the baseline LSTM-FCN model. The experimental results of our method exhibited an overall accuracy
of 99.36% and 96.36% for both datasets and outperformed various state-of-the-art methods.

INDEX TERMS Attention, anomaly detection, automotive IDS, controller area networks, driver
classification, FCN, in-vehicle networks, LSTM, squeeze and excitation.

I. INTRODUCTION
The automotive industry has made technological advances
that promise unprecedented levels of security, productivity,
and ecological benefits. This shift toward the acceptance
of novel technologies is accompanied by the rapid growth
of sensor technologies in autonomous vehicles [1]. Original
equipment manufacturers (OEMs) support these digital trans-
formations in smart/autonomous vehicles through distributed
processing techniques [2] such as zonal architectures and
electronic control units (ECUs) [3], which communicate
only through in-vehicle automotive networks supporting high
bandwidth and low latency, such as a controller area network
(CAN), a CAN with flexible data rate (CAN-FD), local
interconnect network (LIN), and Flexray [4]. Contrary to
this, the intelligent transportation system (ITS) incorporates

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino .

vehicle-to-everything (V2X), which includes vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) technolog-
ies to broaden the communication spectrum [5]. Furthermore,
the enhanced hardware complexity and advanced integrated
functionality have introduced a plethora of security vulner-
abilities and attack scenarios for the automotive sector [6],
[7]. Among the current security concerns in the automotive
industry, vehicle theft is a serious problem. Both hacking
and smart vehicles have advanced over time. By exploit-
ing vulnerabilities in a sophisticated vehicle system, car
thieves have advanced from stealing a physical car key to
gaining remote access [8]. In light of real-world vehicular
security, the industry has begun to develop automotive
security systems for futuristic vehicles as on-board computer
hacking-related vehicle thefts are becoming more prevalent.
In order to combat automotive theft and hacking, driver
identification can be used to authenticate drivers based on
their unique intrinsic characteristics [9]. Biometrics, among
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other methods, is no longer a futuristic technology for the
automotive industry. Nonetheless, it has been used for driver
identification systems in the past [10]. Currently, biometrics
in industry are associated with several challenges. These
challenges include the incorporation of biometric technology
into mobile authentication procedures and its integration into
large-scale programs, as well as the privacy of personal
biometric data against attack vulnerabilities. In addition, the
implementation of AI technology in biometrics presents a
significant challenge, such as face recognition and feature
extraction [11]. Biometric systems are based on human body
characteristics such as voice, fingerprints, the face, or the
iris that can be automatically analyzed. However, biometric
systems can have a high false positive rate (FPR) and are
frequently used in uncontrolled environments with sensor
noise and other factors that can easily compromise the
accuracy of the system [11]. Furthermore, if these factors are
not adequately addressed, biometric systems can be costly
to implement and maintain. Recently, driver profiling-based
intrusion detection has been the center of attention in the
research community. However, they have some limitations
that push the requirement for novel IDS using driver behavior.
Most methods [12], [13] use standard n-fold cross-validation
techniques to split the dataset from the same driving trip. This
leads to a high correlation if the driver continues to drive in
the same pattern. Many previously published schemes [14],
[15] confirm the reliability of their results when using a
single dataset. In order to address these issues, we have used
two publicly available driving datasets in the experiments
for generality [12], [16]. The CAN network allows multiple
connected ECUs to communicate multivariate data. In fact,
this temporal data when extracted from ECUs show high
correlation over timewhile accomplishingmutual operational
tasks. For example, the ECUs connected to brake mechanism
collectively generate spatiotemporal signals [17]. Therefore,
to obtain high detection accuracy, the spatial dependency
of multiple ECUs along the temporal dimension must be
considered during analysis. Motivated by these reasons,
this study seeks to enhance the classification performance
of CAN network-based IDS by reconfiguring an existing
network using the long short-term memory (LSTM) and
fully convolutional network (FCN) [18]. The proposed model
incorporates several modules, including queeze and excite
(SnE) and scaled dot product attention modules. The FCN
and LSTM modules extract spatial and temporal features,
allowing the model to learn both types of features. In order
to effectively utilize contextual information, SnE layers were
added after each FCN layer to aggregate information from
adjacent spatial locations. Additionally, a scaled-dot product
attention mechanism was introduced into the LSTMmodel to
effectively focus on important features, leading to improved
feature selection and extraction capabilities. Overall, the
integration of these modules enhances the model’s perfor-
mance by capturing both spatial and temporal features and
leveraging contextual information. The contributions of this
manuscript can be summed up as follows:

1) Previously published approaches used the standard
cross-validation technique [12], [13], [19]. Although
these methods attained high accuracy, the data gen-
erated by ECUs for different drivers remained highly
interrelated i.e., when the need for acceleration arises
during driving and the gas pedal is engaged, strongly
correlated signals are generated in the in-vehicle
network [20]. To address this issue, a novel data-
splitting algorithm that does not use training and
validation data from the same driving trip is used.
In order to reduce correlations between attribute values,
the first n− 1 trips covered by each driver are used for
training, while the final trip is devoted to validation.

2) Existing methods [21], [22] have not evaluated the
performance of their algorithms for various window
sizes. However, the authors in [23] showed that
usingwindowing techniques can improve performance.
Based on this, we present a thorough performance
analysis that considers various window sizes and shifts
using a temporally-based contingent windowing algo-
rithm tomaintain the integrity of the data segments. The
windowing algorithm generates overlapping windows
of size W and enhances accuracy by splitting the data
into smaller, more manageable sections.

3) Earlier methodologies may be limited in their ability
to generalize their results because they use a single
dataset [12], [13], [21]. However, this research adopted
two datasets [12], [16] that were openly accessible
to the public in order to generalize and validate the
authenticity of the proposed IDS.

4) We conducted extensive experiments (i.e., accuracy
and loss evaluation, confusion matrix, and classifi-
cation report) on two publicly available datasets to
evaluate the accuracy of the proposed IDS-based theft
detection. The results show that our proposed IDS
achieves an improvement in accuracy of 4.18% for
the hacking and countermeasure research lab (HCRL)
dataset and 13.99% for the test dataset from the
baseline LSTM-FCN model [18], [24].

The rest of this paper is structured as follows: Section II
presents the related work. Section III provides a dataset
description and an introduction to the methodology.
Section IV outlines and describes the performance evaluation
of the proposed methodology based on experimental analysis
as well as the results obtained. Section V compares the results
with the competing methodologies. Finally, Section VI
concludes our work and identifies gaps on which future
researchers can focus.

II. RELATED WORK
Classification-based IDS utilizes data acquired from driving
behavior and patterns. Recently, there has been a notable
surge in the widespread adoption of artificial intelligence
(AI) technologies, i.e., the utilization of machine learning
and deep learning methodologies for driver identifica-
tion and profiling. In the following section, the existing
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AI-based driver classification and profiling techniques are
discussed and broadly categorized into two groups: tradi-
tional machine learning-based approaches and deep learning-
based approaches.

A. TRADITIONAL MACHINE LEARNING BASED
TECHNIQUES
There are a plethora of studies that utilize several traditional
machine-learning techniques to classify driver behavior
[25], [26]. In a recent study, Misra et al. [27] analyzed
the data extracted from bio-signals and vehicular sensors
to classify drivers. The study applied multiple machine
learning algorithms to investigate the driving behavior
of 40 drivers in different scenarios. However, the study
included only young drivers who drove for a short period
of time for the dataset generation. Similarly, researchers
in another study [28] used bio-signals to assess driver
fatigue and explored various ensemble learning methods to
evaluate performance. However, their study lacks validation
across diverse datasets and hardware implementations, which
could limit the generalizability and practical applicability
of their findings. Deng and Söffker [29] developed an
improved prediction model for driver behavior by combining
a Hidden Markov Model (HMM) with fuzzy logic. The
results were validated for various driving scenarios and
with the participation of seven test drivers. However, further
optimization of the objective function in their model could
improve its performance. Furthermore, in [30] the study
used wearable sensor to non-invasively detect distractions
during driving. A progressive classifierwas used to categorize
driving gestures and generate HiddenMarkovModel (HMM)
databases to identify disruptive sequences. However, their
approach requires data from a wider range of driving
scenarios to be generalizable.

Researchers in [31] successfully addressed a classification
problem pertaining to aggressive and normal driving styles.
Their approach utilized a modified support vector machine
(SVM) that mitigated the need for an extensive amount of
labeled data during the training phase. Nevertheless, it is
worth noting that further enhancements to the results can
be achieved by considering SVM variants. In a different
study [32] authors utilized an unsupervised Gaussian mixture
model (GMM) to detect driver cognitive fatigue. The
analysis is based on data extracted from simulated driving
scenarios that exhibit similarities and correlations. However,
the methodology employed in this study lacks practical
utility, as it focuses solely on upper body posture patterns.
Likewise, quantitative-only methods are good at measuring
things that can be easily quantified, whereas cross-validation
can face issues like overfitting and inter-data dependency.
Moreover, predictive models are required to make a choice
to reduce data to usable information, and predictive models
present challenges in terms of interpretability [33]. Therefore,
a choice must be made to reduce data to usable informa-
tion, and novel approaches are required to overcome the
limitations of existing methodologies. Driver behavior for

intrusion detection utilizing ECU traffic can be considered
a temporally-based multivariate driver classification task
because data frames from the automotive network incorporate
temporal characteristics sequentially. As a result, various
machine learning-based models for multivariate classifica-
tion have been investigated, as shown in Table 1, along
with their respective limitations. These limitations highlight
the need for a novel IDS to achieve improved classification
results.

B. DEEP LEARNING BASED TECHNIQUES
Several significant challenges in various domains, such as
medicine [34], [35], agriculture [36], [37], and computer
science [38], [39], have been successfully addressed using
deep learning models for prediction and classification tasks
[40]. Likewise, deep learning models have also shown
promising potential in the realm of driver behavior classi-
fication. A deep neural network-based energy consumption
driving model using stacked LSTM was proposed in [41] to
mitigate air pollution, considering car dynamics and sensor
data to make a personalized user predictor. However, the
model can be further improved by considering the affect
of abrupt events associated with driving behavior in traffic.
In a later study, Alamri et al. [42] proposed a classification
technique employing driving-related bio-signals based data
for aggressive driving classification, implementing a deep
convolutional neural network (DCNN) model and edge
technology to reduce automobile crashes. Nevertheless, the
utilization of different models and regularization techniques
has the potential to enhance the performance of their moni-
toring system. Authors in [43] classified driving styles using
CNN-LSTM. Unsupervised grouping and voting techniques
were used to collect and label driving data from various
simulator scenarios. However, network optimization can
improve performance in different driving scenarios. In a later
study, Wang and Wang-Hei Ho [44] utilized GPS sensor
data to achieve driver characterization. They implemented
statistical methods to develop a joint histogram map to
capture driving behavior. However, the used dataset lacks
real-world traffic conditions, and the performance can be
further improved using data acquired from ECUs connected
to in-vehicle networks.

Recurrent neural networks (RNNs) have found widespread
application in a multitude of time series problems, including
driver behavior classification and other similar domains
[45], [46]. Notably, RNNs have faced the challenge of
vanishing gradients when processing sequential data [47].
However, the introduction of LSTM networks has effectively
addressed this concern. By leveraging memory cells capable
of preserving information over extended periods, the LSTM
architecture has successfully mitigated the vanishing gradient
issue. Moreover, in contrast to conventional neural networks,
LSTM models exhibit the ability to accommodate input
sequences of varying lengths, effectively capture long-term
dependencies, and discern the significance of irrelevant
data, thereby enhancing their utility as classifiers [48].
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Zhang et al. in [13] developed CNN and GRU/LSTM-based
neural networks to recognize identical driving patterns in
automotive network data using temporal dynamics. However,
the model has not been validated on larger-scale, realistic
driving studies. In reference [18], authors showed that LSTM
can improve the performance of FCNmodels with a marginal
increment in parameters, which is a significant advantage
for temporal-based multivariate classification tasks. The
authors in [24] used marginal data preprocessing and a
deep-learning network with a fully convolutional block and
an LSTM module for the driver profiling task, as proposed
in [18]. Aggressive driving is the primary cause of traffic
accidents, and its early detection is essential for safe
driving. The authors in [49] investigated speed prediction
and energy optimization using a hybrid prediction model.
Based on their driving characteristics, they also classified
drivers as timid, aggressive, or neutral. However, choosing
different clustering techniques can further improve the
classification performance. LSTM-FCN based models have
shown enhanced performance; however, the authors have
outlined in [18] that the performance of LSTM-FCN can
be further improved through the application of fine-tuning
and refinement techniques. The effective use of LSTM-FCN
as a classifier for univariate time series has prompted its
application in the analysis of multivariate time series [50],
necessitating the requirement of a novel IDS. In Table 2, the
contributions and shortfalls of deep learning basedmodels for
multivariate classification are discussed in detail.

III. METHODOLOGY
Modern vehicles are equipped with multiple ECUs, which
facilitate the extraction of data from the in-vehicle network.
This data can be obtained through two primary means:
the on-board diagnostics (OBD) connector and CarbigsP,
an OBD scanning tool. The purpose of this data extrac-
tion is to analyze the behavior of the driver. Using this
temporal-based multivariate data, driver classification can be
defined as an intrusion detection problem.

A. PROBLEM FORMULATION
A multivariate time-series-based IDS is proposed in this
study using a modified LSTM-FCN model. A multiclass
driver identification problem as an intrusion detection system
is denoted as a total of K -class supervised classification
problems. The input to the deep learning-based model
is the measurements extracted from N number of ECUs
representing unique driving behaviors performed by K
drivers. We assume the training dataset as features/K -label
pairs are extracted during driving as follows

D,Y = {(Di, yi)}Ki=1 = (D1, y1), (D2, y2),

. . . , (Di, yi), . . . , (DK , yK ). (1)

D is the temporal based driving behaviors of the drivers
and yi represents the K -class label, where yi: yi ∈

[1, 2, 3, . . . ,K ]. Di will be a multivariate time series with

N -dimensions, Di = [ECU1,ECU2,ECU3, · · · ,ECUN ]
representing driving behaviors recorded from N numbers of
ECU.Given the inputDi, which is driving behaviors extracted
fromECUN , we have to find a function𭟋 that classifies driver
behaviors. Let {f1, f2, · · · , fn, · · · , fN } be the set ofN features
set obtained from Di and for multivariate case, n > 1 and
1 ≤ n ≤ N . The goal of this problem is to find a classifier
function 𭟋 : X → Y as below, from sequence to the driver yi
with the behaviors,

yi = 𭟋(f1, f2, · · · , fn, · · · , fN ). (2)

B. DATA DESCRIPTION AND ACQUISITION
This research made use of two publicly available datasets
in order to validate the credibility of our suggested IDS.
The detailed features of the datasets [12], [16] used for
evaluation are presented in Tables 3, 4 and 5. The HCRL
driving dataset [12] was compiled using an OBD-II scanner
from ten different drivers. All driver data is generated using
one vehicle. The dataset consists of 23 hours of driving
with 51 features extracted from various sensors linked to
the automotive network. The generated data has a sample
rate of one hertz (Hz) and was extracted using a single
vehicle from KIA Motors to obtain a total of 94,401 data
samples. Experimentation used four paths with radically
different conditions. Likewise, the test driving dataset [16]
contains 51 attributes extracted from four drivers with varying
driving styles. The four drivers completed 30 trips in total.
Every feature, as well as the trip, is recorded every 1 second
(1 Hz), for a total of 58584 samples in the dataset using a
single vehicle from Hyundai Motors.

The data obtained from the automotive network through
the OBD connection is unsuitable for direct use [52]. The
logged data is raw and needs essential preprocessing, i.e.,
removing any missing values, before being used for intrusion
detection. Different features extracted from the CAN bus data
may have different scales; therefore, data normalization is
required to transform all features on the same scale to use as
classifier input [48]. Dimension reduction is also a necessary
part of data preprocessing [19] and is required to choose a
subset of unique features that contribute more to enhancing
the accuracy of the classifier used for intrusion detection. As a
result, appropriate preprocessing steps are required, such as
cleaning in-vehicle network data, normalizing data features,
and identifying unique features to be used as input into the
neural network. Because the data is generated by multiple
ECUs, data normalization is required to standardize all
features. Since each retrieved feature has a distinct range, the
normalizing procedure transforms the data for use in IDS. All
instances of each feature, i.e., ff = {x

f
1 x

f
2 , · · · , x

f
i , · · · , x

f
I }

are transformed using the normalizing procedure. The ith
data point x fi of a feature ff is transformed to the x fnorm by
using

x fi(norm) =
x fi − µ(ff )

σ (ff )
. (3)
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TABLE 1. Traditional machine learning based techniques.

C. DATA SPLITTING AND WINDOWING TECHNIQUE
Cross-validation is the most commonly followed method in
a large number of published articles on driver identification.
In fact, their methodologies divide the information from
every trip into training and validation datasets. Despite the
fact that these study results were accurate, when the data
was plotted, a strong correlation between the attributes was
revealed. To address this issue, we created a data splitting
algorithm that does not use training and validation data from
the same driving trip. Let n be the total number of trips
covered by each driver; out of these n trips, the first n−1 trips
were used for training, and the last trip data was dedicated
to the validation set. In Algorithm 1, the driving dataset
is divided into parts by allocating portions to training and
validation sets. Each class in the drivers dataset is copied
to an empty list, and data is appended from each class to
the list using for loop. Two counters, numberOfTraining
and numberOfValidation are initiated. It then loops through
each driver in a list of drivers and identifies the indices
where the time is set to 1, marking the start of a new
trip. For each driver, the loop then iterates through these
trip start indices and splits the driver’s data into trip
segments, which are then appended to the two counters. The
number of trips for training and validation sets is separated
depending on their frequency. Every last trip is appended
to numberOfValidation counter. This algorithm is useful for
processing large datasets of driving data, allowing for easy
separation of the data into training and validation sets. The
available driving dataset is partitioned into numerous smaller
data chunks using a temporally-based windowing method for
driver identification. To maintain the integrity of the data
chunk, temporal-based contingent attributes are retrieved.

The windowing approach retrieves overlapping data chunks
of size W . The driver dataset has been pre-processed into
training and validation sets. To enhance the model accuracy,
a windowing approach is used to split the data into smaller,
more manageable sections. The window size W is set at
60 seconds for main experimentation but can be changed
according to requirement. The window is shifted by same
amount for each iteration to create overlapping segments.
In Algorithm 2, a new empty list is created, which will
be used to store each of the individual windows of the
dataset. Within the loop, each driver dataset is split into a
60-second window and overlaps with the previous segment
by a specified shift. The windowing process is an important
step in driver identification, as it allows for more granular
analysis of the data and can help to identify subtle differences
in driving behavior that may not be apparent in larger
segments of data for intrusion detection systems. Algorithm 2
defines the window size and shift values using two variables,
windowSize and Shift, which can be altered as required.
For each window added, the numberOfWindows variable
is incremented. The total number of generated windows is
shown in the final output.

D. NETWORK ARCHITECTURE
Various approaches have been proposed for multivariate time
series classification to capture the interrelationship between
different features. Zheng et al. [53] segmented multivariate
time series into univariate components, allowing for indi-
vidual feature learning and achieving promising results for
classification tasks. Nevertheless, their approach failed to
adequately capture the interrelationship between different
univariate time series. Later, Zhao et al. in [54] addressed
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TABLE 2. Deep learning based techniques.

this limitation by using a modified approach that involved
jointly training the multivariate time series for feature
extraction, instead of learning individually. Subsequently,
Karim et al. [18] proposed a deep learning model with a
similar architecture to the one proposed in [54], aiming to
tackle a univariate classification task that relies on temporal
information. Afterwards, they further improved their model
for multivariate classification tasks in [50] by integrating SnE
block [55] to FCN architecture and demonstrated improved
performance while requiring minimal preprocessing steps.
Although the model presented in [18] exhibited promising
results for temporal-based classification tasks, the authors
acknowledged the need for refinements to achieve even better
performance. In this study, we have built upon their work
and placed specific emphasis on enhancing the performance
through the incorporation of various refinements. These
include the selection of different hyperparameters such as
window size and shift, as well as the integration of additional
modules. The authors in [18] and [50] also emphasized
the importance of dimension shuffling in the input to the
LSTM block as a means to improve performance. Building
upon this insight, we have incorporated dimension shuffling
as an input to the LSTM block in our proposed model.
Consequently, the LSTM, augmented by the scale dot product
attention module, receives input as a form of fn × W due
to dimension shuffle, where W represents the window size
(timestep) and fn signifies the number of features for 1 ≤
n ≤ N . Our proposed model incorporates a FCN architecture
consisting of three distinct blocks. Each block encompasses

a 1-D Convolutional layer, a batch normalization layer,
a Rectified Linear Unit (ReLU) layer. These components
are stacked together within each block. In our model, the
batch normalization layer is used to stabilize gradients to
accelerate convergence by making gradients less sensitive to
network weights [56]. The SnE [55] along with a scaled-dot
product attention mechanism [57] has been incorporated
into our model. The FCN architecture contains a set of
convolutional layers, which include a combination of 128,
256, and 128 filters. These filters are equipped with 8, 5,
and 3 kernels, respectively. The output of a preceding FCN
block with 128 filters and 8 kernels is received by the next
FCN block with 256 filters and 5 kernels in this stack and
is fed into the last block with 128 filters and 3 kernels.
The hyperparameters were fine-tuned using the categorical
cross-entropy loss function and the Adam optimizer. During
the training phase, a total of 50 epochs were selected for all
experiments. A dropout layer with a rate of 0.8 was chosen,
and the batch size was configured to be 128. The initialization
of the convolution kernels is based on the work referenced
in [58]. According to Fig. 1, the proposed method classifies
drivers based on temporal data extracted from ECUs.

1) FCN WITH SNE COMPUTATIONAL MODULE
Each of the FCN modules includes a computational SnE
module, which dynamically adjusts the input [55]. In our
implementation, the dimension reduction ratio r is a hyper-
parameter. Its value is found to be empirically similar to
that used in [55]. When the dimension reduction ratio r
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Algorithm 1 Drivers Trips

Input : driver dataset D,Y= {(Di, yi)}Ki=1, where Di = [ECU1,ECU2,ECU3, · · · ,ECUN ]
Output: training and validation sets

1 driversLabel = [yi], i = 1, 2, · · · ,K
2 driversData← [ ]
3 for each yi in driverLabel do
4 driversData.append(D,Y[driversLabel] == yi)
5 end for
6 numberOfTotalTrips← [ ]
7 for each yi in driversData do
8 numberOfTrainingSet = 0
9 numberOfValidationSet = 0

10 index = [driversData[yi][Time(s)] == 1]
11 for each j in len(index) do
12 if i < len(index)− 1 then
13 numberOfTrainingSet = numberOfTrainingSet + 1
14 numberOfTotalTrips.append(driversData[yi][index[j] : index[j+ 1]])
15 else if j == len(index)− 1 then
16 numberOfValidationSet = numberOfValidationSet + 1
17 numberOfTotalTrips.append(driversData[yi][index[j] : ])
18 end for
19 end for
20 return numberOfTotalTrips, numberOfTrainingSet, numberOfValidationSet

TABLE 3. Features of HCRL dataset [12] and test dataset [16] used for
evaluation.

is set to 8, the number of parameters required to learn
these self-attention maps is reduced. The squeeze technique
is used to extract global spatial information from each
channel, resulting in one activation per channel. Global
average pooling (GAP) [59] layers are used to minimize the
spatial dimensions of the feature tensor input. The dimensions
[Batch× h× w× C] are lowered to [Batch× 1× 1× C] by
shrinking each feature map to a single vector of size n, where
n represents the number of convolutional channels. Using
GAP layers, the squeeze technique compresses each feature
into a single vector. This compression reduces the overall
parameters and thus the computational overhead [60]. A fully
connected multi-layer perceptron (MLP) bottleneck structure
is used to generate scaling weights with a single hidden layer.
The hidden layer is used as a reduction block where the
input space is transformed to a smaller dimension defined

Algorithm 2 Shift Parameter for Windowing
Input : windowSize, shift, driversData
Output: numberOfWindows

1 drivers← [ ]
2 numberOfWindows = 0
3 for i in len(driversData) do
4 n = driversData/windowSize
5 w = 0
6 for j in n do
7 temp = driversData[i][w : w+ windowSize]
8 drivers.append(temp)
9 numberOfWindows = numberOfWindows+ 1

10 w = w+ shift
11 end for
12 end for
13 return numberOfWindows

by the reduction factor r . The compressed space retains its
original dimensionality, the same as the input, using weights
that adaptively scale each channel of the feature map. Input
is of shape (1 × 1 × C). Thus, there are C neurons in the
input layer. Hidden layer reduces this by a reduction factor r ,
thus leading to a total number of C/r neurons. Finally, the
output is projected back to the same dimensional space as
the input, returning to C neurons [61]. In total, you pass the
(1×1×C) tensor as input and obtain a weighted tensor of the
same shape (1 × 1 × C) tensor from the excitation module,
it is first passed through a sigmoid activation layer which
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TABLE 4. Driver classification features used from HCRL dataset [12].

TABLE 5. Driver classification features used from test dataset [16].

scales the values to a range of [0 − 1] [62]. Subsequently
the output is applied directly to the input by a simple
broadcasted element-wise multiplication represented by⊗ in
Fig. 1, which scales each channel/feature map in the input
tensor with its corresponding learned weight from the MLP
in the Excitation module. The dimension reduction feature
of SnE module plays a vital role in improving the accuracy
of our proposed model. In the case of multivariate datasets,
each feature map affects the following layers differently.
However, the baseline LSTM-FCNmodel, as used in previous
works [18], [24] lacks the ability to adaptively rescale feature
maps, i.e., the learned self-attention mechanism applied to
the output feature maps of preceding layers. At each time

sample, the SnE module incorporates self-attention with the
intercorrelation among the features of multivariate data [50].
This integration of SnE module significantly improves the
accuracy of the proposed model over baseline LSTM-FCN
[18], [24].

2) LSTM WITH SCALED DOT PRODUCT ATTENTION
The LSTM network is designed to address the issue of
vanishing gradients in recurrent neural networks (RNN)
[63]. However, LSTM only addresses unidirectional long-
term dependencies. The most common forms of attention
exercised are additive and scale dot product [57]. These
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FIGURE 1. Proposed method for driver classification.

mechanisms produce nearly identical results, but in different
ways. Multiplicative-based attention is more effectively
optimized because it can be implemented using efficient code
on high-speed hardware [64]. Our attention module is based
on scaled dot product attention [57]. In scaled dot product
attention, the similarity between the query vector and the key
vector is computed by multiplying their dot products by the
inverse square root of their dimension L. Here, L represents
the dimension of the query vector and the key vector. The
enhancement of attention captures the relationship between
time-based sequential data and its long-term dependencies.
A softmax function receives the output of the dot product.
For large values of L, the resulting dot product will become
increasingly large, and the output of the softmax function will
be in a region with a small gradient. To mitigate the effects of
the exploding effect, the output of the dot product is divided
by a scaling factor L and is given by

Attention = softmax(
QKT
√
L

)V , (4)

where Q, K and V denote the query, key, and value vectors.

IV. PERFORMANCE EVALUATION
We have utilized two publicly available driving datasets
for performance evaluation. The datasets were extracted
using the CAN bus at a per-second sample rate. The first
dataset [12] is denoted as the HCRL dataset, whereas the
second dataset [16] is referred to as the test dataset and is
used for classifier generalization. Each dataset incorporates

51 features. Tables 6 and 7, show the detailed distribution of
driver classes for both datasets.

A. EVAUATION OF HCRL DRIVING DATASET
This subsection provides a comprehensive discussion of the
results and evaluations obtained from the training and test
sets of the processed HCRL driving dataset [12]. In total,
94,401 data samples were extracted for ten different drivers
from the driving dataset. The samples are separated according
to each driver, as indicated in Table 6. Each row in the
dataset represents a sample received every second from N
different ECUs. The data set is segmented into training,
validation, and test segments. The training portion receives
66,081 samples (70%) of the data, while the remaining 28,320
samples (30%) are divided between validation and testing.
Validation data is used to assess the performance of the
model during training, while test data is used to evaluate
unseen data. The validation and test sets are kept separate
from the training process and are used to evaluate the final
performance. Driver A has the fewest samples (7,240) in the
entire dataset, while Driver D has the maximum number of
samples (i.e., 13,244). Figs. 2 and 3 depict the accuracy and
loss of the proposed model for the training and test sets over
the course of the 50 epochs, respectively. The gap between
the training and test graphs suggests that the model may
have been overfitted to the training data. Overfitting occurs
when a model learns the training data too well, and as a
result leading to suboptimal performance when applied to
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TABLE 6. Distribution of each driver class.

unseen data [65]. The smaller the difference between the
training and test accuracy, the less likely overfitting is to
occur. As shown in Fig. 2, the gap between the training and
test accuracy decreases as the number of epochs increases.
This suggests that the model is not overfitting to the training
data. By the end of the training, the gaps had closed, and the
model was performing similarly on both the training and test
data. In addition to the accuracy graph, the loss graph can
also provide insights into the performance of the model. The
loss graph shows the number of errors that the model makes
on the training data. As the model learns, the loss should
decrease. According to Fig. 3, the loss decreases steadily as
the number of epochs increases. This indicates that the model
is learning effectively. Fig. 4 depicts the 10 × 10 confusion
matrix for a disjointed multiclass driver identification as an
indicator of IDS performance. Each column of the matrix
along the x-axis reflects the occurrences of a predicted label
for Drivers A through J, whereas each row along the y-axis
reflects the occurrences of a driver’s actual label. An entry in
the confusion matrix at a given row and column indicates the
frequency of observations for both the predicted and actual
labels. The classification report includes a per-class micro-
average, weighted average, and accuracy score, in addition
to recall, F-1, and precision for the driver identification
problem. Fig. 5 depicts the summary of classification model
performance, which measures the quality of a classifier
predictions. The report indicates that the precision of all
drivers falls within a good range. Almost all driver classes
exhibited recall rates close to 100 %. The F1, along with
precision and recall scores, demonstrate that the output of
the classifier is not biased and does not exhibit overfitting or
underfitting.

B. EVAUATION ON TEST DRIVING DATASET
For the driving dataset [16], a total of 58,584 data samples
were extracted from 4 different drivers. Where each row
in the dataset reflects a sample received from N separate
ECUs every second. Training, validation, and test segments

FIGURE 2. Accuracy vs. epoch for HCRL driving dataset [12].

FIGURE 3. Loss vs. epoch for HCRL driving dataset [12].

FIGURE 4. Confusion matrix for HCRL driving dataset [12].

are part of the data set. 70% of the data is allocated to
training, with the remaining 30% allocated to validation and
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FIGURE 5. Classification report for HCRL driving dataset [12].

TABLE 7. Distribution of each driver class for test driving dataset [16].

FIGURE 6. Accuracy vs. epoch for test driving dataset [16].

testing. As shown in Table 7, the data samples are segregated
according to each of the drivers. Driver C has the fewest
samples in the overall data set (9,732), whereas Driver D has
the most (16,904). Figs. 6 and 7 depict the accuracy and loss
of the proposed model for the training and test sets during
the duration of the 50 epochs, respectively. Fig. 8 displays
the 4×4 confusion matrix for multiclass driver identification
as a performance indicator for IDS. Each x-axis column of
the matrix represents the instances of a predicted label for
Drivers A through D, whereas each y-axis row represents the
instances of a driver’s actual label. A given row and column
entry in the confusion matrix represents the frequency of
observations for both the predicted and actual labels.

FIGURE 7. Accuracy vs. epoch for test driving dataset [16].

A confusion matrix presented in Fig. 8 is used to evaluate
the performance of our proposed driver identification model
against a test dataset [16]. The rows of the table correspond
to the actual classes, and the columns correspond to the
predicted classes. The diagonal elements represent the
number of correct predictions made for each class, and
the off-diagonal elements represent the number of incorrect
predictions. Driver A has the highest true positive value,
and Driver C has the lowest true positive. On the other
hand, Driver A has three false negatives and three false
positives. The classification report for the driving dataset
[12] demonstrates lower values for the per-class, micro-
average, andweighted average scores for F-1, as well as lower
recall and precision for the driver identification problem as
compared to the HCRL dataset. Fig. 9 depicts the summary
of classification model performance, which measures the
accuracy of a classifier’s predictions on a test dataset.
The report indicates that all drivers’ precision falls within
the acceptable range, but driver C achieves the best results.
Nearly all driver classes exhibit decreased recall values. The
F1 score indicates that the output of the classifier is also
within an acceptable range, that the dataset is not biased, and
that there are no indications of overfitting or underfitting.

V. PERFORMANCE SUMMARY AND COMPARISON
The window size and window shift are important hyper-
parameters that directly impact the accuracy of the model
[23], [66]. In order to examine the effect of these hyperpa-
rameters on accuracy, we conducted a series of experiments
on both datasets. The performance comparison graphs
in Figures 10 to 15 illustrate the relationship between the
number of epochs, ranging from 0 to 50, and the classification
accuracy, as depicted on the x-axis and y-axis, respectively.

A. PERFORMANCE COMPARISON USING DIFFERNET
WINDOW SIZES AND SHIFT
The datasets are divided into training and test sets using the
data splitting method outlined in Algorithm 1. 15 features
were selected from a total of 51 to generate performance
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FIGURE 8. Confusion matrix fot test driving dataset [16].

FIGURE 9. The classification report for test driving dataset [16].

comparison graphs using feature selection techniques in the
Weka software [67]. Fig.10, Fig.11 and Fig.12 illustrate the
classification accuracy of the HRCL driving dataset. Addi-
tionally, Fig.13, Fig.14, and Fig.15 present the corresponding
classification accuracy for the test dataset. The previous
subsection III-D provided a description of hyperparameters,
which include the number of layers and kernel dimensions
within each layer. In this section, our attention is directed
towards additional hyperparameters, specifically the window
size and shift. For each window size (60, 90, and 120),
different experiments are conducted with varying amounts of
shift, and the corresponding accuracy is calculated. A larger
window size can improve accuracy because it allows the
classification model to capture more long-term temporal
dependencies in the data. However, larger window sizes have
the inherent disadvantage of slow processing as the model
adapts to changes in the data more slowly [68]. Moreover,
all of the figures demonstrate that the window shift affects
accuracy because it defines the amount of shift between
consecutive windows. For a smaller shift with a higher
percentage of overlap in the window, the model will only

FIGURE 10. Performance comparison (window size = 60 & shift in %) for
HCRL driving dataset [12].

FIGURE 11. Performance comparison (window size = 90 & shift in %) for
HCRL driving dataset [12].

receive a small amount of new data each time the window
is shifted, increasing the likelihood that the model will learn
the specifics of the training data and be unable to generalize
to new data [69]. Alternatively, when employing a 100% shift
between windows, the model may not be able to capture
essential details of the dataset. This limitation becomes
evident through the analysis of Figures 10, 11 and 12, which
demonstrate that the accuracy of the HCRL dataset graph
is significantly higher with a 20% shift compared to a
100% shift across various window sizes. The observed higher
accuracy with a 20% shift suggests that a smaller window
shift allows the model to capture temporal patterns within
the dataset. A smaller window shift provides a larger amount
of overlapping data during each epoch, enabling the model
to learn spatial and temporal features and utilize contextual
information. On the other hand, Fig.13, Fig.14, and Fig.15
indicate that a 60% window shift yields higher accuracy for
the test dataset. This finding suggests that a larger shift is
more effective in capturing the relevant information for the
test dataset and helps the model focus on a broader context
and capture long-term dependencies.
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FIGURE 12. Performance comparison (window size = 120 & shift in %) for
HCRL driving dataset [12].

FIGURE 13. Performance comparison (window size = 60 & shift in %) for
test driving dataset [16].

FIGURE 14. Performance comparison (window size = 90 & shift in %) for
test driving dataset [16].

B. COMPARISON OF ACCURACY RESULTS WITH OTHER
METHODS
In Figs. 16 and 17, we have compared the classification
results of the proposed method with those of other deep

FIGURE 15. Performance comparison (window size = 120 & shift in %) for
test driving dataset [16].

TABLE 8. Performace comparison with other models for the HCRL
dataset.

TABLE 9. Performace comparison with other models for the test dataset.

FIGURE 16. Performance comparison with other models for the HRCL
dataset [12].

learning methodologies for HRCL and test datasets. All
deep learning models are trained using the Adam optimizer
with a sparse categorical cross-entropy function. Throughout
the experiment, consistent values for all hyperparameters,
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FIGURE 17. Performance comparison with other models for the test
dataset [16].

such as window size, window shift, and r , were selected
to ensure a fair and meaningful comparison with other
models. Specifically, the DCNN method [42] employs 1D
convolutional layers for the purpose of aggressive behavior
detection. Meanwhile, the stacked LSTM approach [41]
leverages convolutional LSTM to construct a predictive
model aimed at mitigating air pollution. For driver maneuver
classification, the DNN model [44] is employed, while the
CNN framework [70] is applied to address the driver clas-
sification challenge. Lastly, the LSTM-FCN hybrid model
[24] integrates both LSTM and FCN components to cap-
ture temporal dependencies within the data. Tables 8 and 9
provide accuracy comparison of the proposed model and
other deep learning models for both HCRL and test datasets.
The results indicate that the proposed model exhibits
superior performance when compared to other existing driver
classification models. Specifically, achieving the highest
accuracy rates of 99.36% for the HCRL dataset and 96.37%
for the test dataset. In the case of the HCRL dataset, the
LSTM-FCN model demonstrated notable performance with
an accuracy rate of 95.18%. Additionally, the DCNN-based
driver classification model exhibited a competitive accuracy
of 93.25%. Moreover, the stacked-LSTM, DNN, and CNN
models achieved respective accuracies of 70.74%, 72.67 and
61.74%. In contrast, when considering the test dataset, the
DCNNmodel emerged as the top performer with an accuracy
rate of 90.16%, while the LSTM-FCN model achieved an
accuracy rate of 83.38%. TheDNN, stacked LSTM, and CNN
models obtained accuracies of 61.14 60.62%, and 51.30%,
respectively. It can be easily observed that the proposed
model showed a significant performance improvement over
other models, namely CNN, stacked-LSTM, and DNN. This
is due to the fact that our proposed model consists of three
FCN blocks extended by SnE blocks, along with an LSTM
augmented by a scale dot product attention module and
a dropout layer. These modules facilitate the acquisition
of spatial and temporal features. The SnE layers, which
come after the FCN layers, incorporate neighboring spatial
locations, while the augmented scaled dot product attention

mechanism contributes to enhancing feature selection and
extraction capabilities. However, the other models are unable
to extract the temporal and spatial dependencies of the input
dataset.

VI. CONCLUSION
This research focuses on developing driver classification
based IDS for in-vehicle networks in an effort to improve
vehicle safety. The proposed model incorporates the benefits
of both FCN and LSTM networks to capture the temporal
dynamics of driver behavior using a novel cross-validation
technique that yields reliable results to evaluate its perfor-
mance on two publicly available driving datasets. Necessary
preprocessing is performed on the input of the model,
i.e., cleaning, normalizing data, and distinguishing unique
features. For the proposed IDS, the LSTM-FCN based
architecture is enhanced by adding SnE and scaled dot
product attention modules. 10 drivers from the HCRL dataset
and 4 drivers from the test dataset were classified using the
proposed method. The experimental results show that our
architecture performs better than other published models,
accomplishing improved results with an accuracy of 99.36%
on the HCRL dataset and 96.37% on the Test dataset.
Furthermore, we achieved precision of 99.09%, recall of
99.04%, and an F1 score of 99.04% for HRCL (10 drivers),
and precision of 95.85%, recall of 95.85%, and an F1 score
of 95.85% for the test dataset (4 drivers). In conclusion, our
obtained results indicate that we can attain better performance
for the IDS proposed for vehicle security by augmenting
behavioral characteristics extracted from drivers. This could
lead to a more secure vehicle security system. In the future,
we plan to incorporate FCN with other modules to further
enhance the performance of the driver classification system.
Furthermore, we intend to fine-tune hyperparameters to
accurately capture the underlying patterns and dynamics of
different driving scenarios.
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