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ABSTRACT In recent years, the way that machine learning is used has undergone a paradigm shift driven
by distributed and collaborative learning. Several approaches have emerged to enable pervasive computing
and distributed learning in ubiquitous Internet of Things (IoT) systems. Numerous decentralized strategies
have been proposed to deal with the limitations of centralized learning, including privacy and latency due to
sharing local data, while utilizing distributed computations as a promising substitute to centralized learning.
However, such distributed learning schemes come with new security and privacy concerns that should be
addressed. Thus, in this paper, we first provide an overview for the emerging paradigms developed for
distributed learning. Then, we performed a comprehensive survey for the privacy and security challenges
associated with distributed learning along with the presented solutions to overcome them. Furthermore,
we highlight key challenges and open future research directions toward implementingmore robust distributed
systems.

INDEX TERMS Data privacy and security, Internet of Things (IoT), deep learning, adversarial attacks.

I. INTRODUCTION
Distributed learning evolution is driven by the recent
advances in the edge computing, ubiquitous Internet of
Things (IoT) systems, and hardware computing capabilities.
The rapid utilization of smart devices, such as self-driving
cars, swarm robotics, mobile phones, wearable medical
devices, and industrial IoT devices, generate an extraordinary
amount of data that need to be analysed, processed, and
stored. According to the statistics in [1], there will be over
75.4 billion internet-connected devices by 2025 as a result
of the development of capable and affordable devices. The
proliferation of interconnected devices is expected to yield a
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staggering volume of data, projected to reach an astonishing
181 zettabytes annually (as depicted in Figure 1). When
harnessed effectively, this vast reservoir of data holds the
potential to generate a substantial economic capital, estimated
to reach a remarkable 11 trillion by the year 2025 [2].
Capitalizing on this extensive reservoir of data, industries
are increasingly embracing Artificial Intelligence (AI)-based
systems across various sectors, including robotics [3], [4],
computer vision [5], and speech recognition. Renowned
industry leaders are now deploying their advanced IoT ser-
vices, orchestrating a transformation across diverse facets of
modern existence and driving the continuous advancement of
AI technologies. However, this ambitious integration presents
substantial challenges in terms of memory demands and
computational workloads, therebymandating the deployment
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FIGURE 1. The expected data generation between 2010 and 2025 [8].

of robust servers to manage these requirements effectively.
Furthermore, the accumulation and transmission of vast
volumes of data to centralized servers for the training of
AI or deep learning models present significant challenges
that could impede the full potential of emerging intelligent
systems. These challenges encompass critical aspects such as
privacy preservation, latency reduction, and the management
of resource-intensive computational and network burdens.
Consequently, this scenario has given rise to an appealing
prospect and a compelling necessity for the adoption of
distributed learning methodologies.

Recently, cloud computing is no longer appropriate for
real-time AI tasks due to the strict latency requirements
imposed by the real-time applications and services, such
as virtual and augmented reality (VR/AR) [6], and self-
driving cars. For example, when it comes to autonomous cars
detecting potential dangers and applying brakes, or sending
data to cloud servers, meeting the latency requirements
of the autonomous vehicle may not be possible. This is
because, for instance, sending camera frames to remote
servers requires rapid decisions, regardless of the distance and
latency involved. As a result, sending data to cloud servers
may not fulfill these real-time demands. The experiments
in [7] revealed that it takes more than 200 ms to execute
a computer vision related task having a camera frame
offloaded to an Amazon server. Furthermore, in cloud-based
AI schemes, privacy is a crucial concern in addition to the
latency of the above-mentioned delay-sensitive applications.
Due to the high risk of severe and vulnerable cyber threats
such as malicious attacks and data breaches, many end-users
are reluctant to transfer their private data to cloud servers.
Other than privacy concerns offloading an immense amount
of data to remote servers also encounters scalability and
network load problems, since it might cause a bottleneck in
cloud access.

Accordingly, pushing real-time AI tasks to the network
edge has been proposed as a practical solution to address
the challenges of latency, privacy, and scalability mentioned
earlier [9], [10]. Edge devices have been improving at a fast
pace to match real-time AI tasks, thanks to their physical
proximity to data sources [11]. Edge devices can conduct

a significant amount of computational activities without
exchanging the associated data with the remote servers,
ensuring agile IoT services.

Despite the promising potential of edge computing, there
is still a practical limitation when attempting to run an entire
AI model on a single edge device due to the constrained
resources available on these devices, particularly when tasks
require significant computational power. Distributed learning
has recently gained significant interest as a promising
solution to address the limitations of centralized learning,
cloud computing, and edge computing, while also protecting
data privacy and reducing the significant overhead associated
with data transfer [12], [13]. In this context, each entity or
user can utilize their local data to construct a local model
or execute a portion of a global model, and then forward the
outcomes to an orchestrator for aggregation, resulting in the
final outcomes. A technique like this enables the distribution
of data and AI models to be trained in a decentralized manner,
while leveraging the collective power of edge devices.

A. OUR SCOPE
This survey focuses on the emerging distributed learning
paradigms, which is a promising research area that closely
associated with the resource limitation of participants
(e.g., memory, computation, bandwidth, and energy) and
the communication overheads between them. However, the
process of distributed training or inference can involve a
large number of participants who may communicate over
wireless links, which presents new challenges related to
channel capacities and conditions, delayed performance,
as well as privacy and security concerns. Thus, this paper
reviews the aforementioned challenges while discussing
various deployed distributed learning paradigms and algo-
rithms. The paper first identifies the motivations behind
establishing distributed learning for AI applications and the
related communication/network challenges. Then, it provides
an overview of various privacy and security attacks that
distributed learning may experience. After that, the paper
discusses various defense mechanisms and algorithms pre-
sented in the literature to overcome these attacks. Finally,
it presents interesting future research directions that worth
further investigation. The paper’s roadmap is depicted in
Figure 2.

B. THE PAPER’S CONTRIBUTIONS AND STRUCTURE
The primary contributions of this paper can be summarized
as follows:

1) We staged a brief background of distributed learning
and introduce its different paradigms with potential
applications.

2) We identify and discuss different types of privacy and
security attacks related to various distributed learning
paradigms.

3) We review different defensive mechanisms proposed in
the literature for addressing various security and pri-
vacy attacks in different distributed learning paradigms.
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FIGURE 2. A taxonomy of the main topics presented in this survey.

4) We provide a detailed discussion of potential future
challenges in this field, along with suggestions
for promising research directions that merit further
investigation.

The rest of this paper is arranged as follows: Section II
presents the related work while highlighting the novelty
of our paper. Section III introduces the background and
fundamentals of distributed learning. Section IV presents
diverse types of privacy and security attacks for different
distributed learning paradigms, while discussing a range
of defensive mechanisms proposed in the literature for
addressing these attacks in Section V. Section VI provides a
comprehensive discussion of the future challenges and open
research directions. Finally, Section VII concludes the paper.

II. RELATED WORK
The investigation of security and privacy concerns in various
distributed learning models is still in its early stages, prompt-
ing researchers to carefully scrutinize existing research
and offer novel perspectives. Different studies have been
presented in the field of distributed learning, including: devel-
opment of algorithms and systems for distributed training
of deep learning models, as well as methods and prototypes
for improving the efficiency and performance of distributed
learning systems [14]. The presented studies in this area focus
on different issues related to partitioning and distribution
of the data among different participants, implemented
communication protocols between the participants during
training, and strategies to combine the results from different
participants to generate a final trained model or inference
result [15]. In this context, the authors in [16] presented
a thorough overview of privacy-preserving methods for
Machine Learning as a Service, (MLaaS), beginning with
traditional techniques and extending to popular deep learning
techniques. In [17], the authors’ emphasis was on distributed
learning schemes for 5G and beyond, which spotlighted the
challenges and possibilities of distributed learning in the 5G
era. In [18], the authors provided a review of distributed
learning techniques for 6G networks with a focus on the
integration of future wireless systems with AI. On the other
hand, the authors in [19] presented a systematic literature
review on distributed machine learning schemes utilizing

edge computing. The main objective of this work was to
examine the difficulties of implementing ML/DL on edge
devices in a distributed manner, with particular emphasis
on the adaptation or development of techniques to operate
on these resource-constrained devices. However, these two
surveys lack the elaboration on privacy and security concerns.
The authors in [20] provided an overview of collaborative
deep learning, where they classified collaborative learning
schemes into direct, indirect, and peer-to-peer approaches,
while highlighting some of their associated privacy concerns.
Furthermore, the authors examined general cryptographic
algorithms and other techniques that can be utilized for
privacy preservation and highlighted their advantages and
disadvantages in the collaborative learning setting. In [21],
the authors investigated the possible threats of deep learning
concerning black and white box attacks, and discussed the
relevant countermeasures for both offensive and defensive
purposes. In [22], a comprehensive survey on the inte-
gration of differential privacy with ML was presented,
commonly referred to as differentially private ML. The
authors categorized the related works into two primary
groups, based on diverse differential privacy mechanisms:
the Laplace/Gaussian/exponential mechanisms and the out-
put/objective perturbation mechanisms.

There are some related surveys that tackled security and
privacy concerns in Federated Learning (FL) and discussed
corresponding solutions [2], [23], [24]. For instance, the
authors in [25] provided a review of current literature on
FL, where they presented a functional architecture for FL
systems along with the related techniques. Moreover, they
discussed FL systems from four perspectives: different types
of parallelism, aggregation algorithms, data communication,
and security. The authors in [24] presented a review and
classification of threat models in of FL, along with two
major types of attacks that can occur in FL, i.e., poisoning
attacks and inference attacks. This review provided a valuable
resource for individuals looking to gain an understanding
of FL and its potential privacy concerns, while emphasizing
on the underlying assumptions and essential techniques used
in different attacks. In [26], the primary focus was on the
application and security of FL in healthcare applications. The
authors discussed various architectures and models of FL
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in the context of healthcare, and provided a comprehensive
overview of the use cases of FL in this domain. The authors
highlighted the potential benefits of using FL in healthcare,
such as improving data privacy and security, enabling
collaboration between multiple healthcare organizations, and
enhancing the accuracy of medical diagnoses and treatments.

While there have been previous surveys in the literature
on the topic of distributed machine learning, each providing
valuable insights and information (as summarized in Table 1),
our survey distinguishes itself by focusing on recent studies
that have integrated both security and privacy concepts in
the context of distributed machine learning. Thus, this survey
aims to fill a gap in the literature by examining themost recent
developments in security and privacy issues in distributed
machine learning. It provides a comprehensive review of the
current state of the field and highlight the emerging trends and
challenges in this area. In particular, we conduct an in-depth
review of the fundamental attacks that occur in distributed
learning and identified effective solutions that have made
this approach practical and effective across a variety of
applications. By delving deep into these attacks and solutions,
we aim to provide a clear understanding of the underlying
principles that have enabled the success of distributed
learning. Additionally, we explore various methodologies
and solutions that have been proposed in the literature,
which can serve as a valuable resource for researchers to
expand their knowledge and inspire the development of new
strategies for distributed learning. Thus, this survey offers a
fresh perspective on the intersection of security and privacy
in distributed learning, making it a valuable resource for
researchers and practitioners in this field.

III. FUNDAMENTALS OF DISTRIBUTED MACHINE
LEARNING
Distributed learning is a powerful approach that involves
training machine learning models using data and resources
that are distributed across multiple devices or users. This
approach is particularly useful for training large and complex
models that would be too difficult to train on a single
machine. Additionally, distributed learning can enhance the
efficiency and scalability of the learning process. Compared
to traditional centralized machine learning approaches,
distributed learning provides several benefits. These include
enhanced scalability, efficiency, and accuracy of machine
learning models, along with reductions in training time.
Additionally, distributed learning allows for improved model
performance through multiparty collaboration and the ability
to feed distributed data to the model. Thus, it is becoming
increasingly popular due to the vast amounts of data
generated by modern applications and the need for efficient
processing of this data.

Despite the benefits of distributed learning, it also presents
several challenges that must be addressed. One such chal-
lenge is communication overhead, which arises due to the
involvement of multiple devices in the learning process that
need to communicate with one another. Additionally, security
and privacy concerns must be addressed to ensure that

sensitive data remains protected. Fault tolerance is another
issue that must be considered, as the failure of any individual
device can disrupt the learning process. Finally, guaranteeing
convergence, or the ability of the model to converge on
a solution, is also a challenge that must be addressed in
distributed learning.

A. BACKGROUND OF DISTRIBUTED LEARNING AND
EXISTING PARADIGMS
Distributed learning, a subset of AI’s core technologies,
involves training models on data distributed across multiple
devices or participants. The concept of distributed learning
becomes an increasingly popular approach in the era of
big data and AI due to its ability to accelerate the training
process. By distributing the data across multiple devices,
each device can work on a different subset of the data
simultaneously, reducing the overall training time. This
approach is particularly useful for large datasets or complex
models that may take a considerable amount of time to
be trained. In addition to faster training times, distributed
learning also offers greater scalability. As the amount of
data grows or the models become more complex, distributed
learning can easily handle the increased workload by adding
more devices or participants to the learning process. This
allows for the training of models on extremely large datasets
that would be impractical to manage on a single machine.
However, implementing distributed learning comes with its
own set of challenges. Communication between devices and
maintaining model consistency can be difficult, and failures
of individual devices can cause significant disruptions.
Researchers have developed various techniques to address
these issues, including fault tolerance strategies such as
checkpointing and replicated training [28], [29], and model
consistency techniques such as parameter averaging and
consensus optimization [30].

There are several paradigms of distributed learning that
differ in how the data and computations are distributed across
the participants [31]. These paradigms include:

• Data parallelism: In this paradigm, the data is partitioned
across multiple participants in a distributed manner, and
each participant performs computations on its local data.
The intermediate results are then exchanged among the
participants to update/generate the final model.

• Model parallelism: In this paradigm, the model is
partitioned across multiple participants in a distributed
system, and each participant is responsible for executing
a part of the model’s output. The intermediate results are
then exchanged among the participants to generate the
final output. This paradigm is useful for large models
that cannot be trained on a single machine due to
memory or computational constraints (see Figure 3).

• Hybrid parallelism: This paradigm combines data paral-
lelism and model parallelism, in which each participant
has access to a subset of the data, and the computations
are distributed across the participants.

• Federated Learning (FL): In this paradigm, the data is
distributed across multiple devices or participants, and
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TABLE 1. Related surveys on privacy and security in distributed learning.

the training is performed locally on each device. Then,
the local model updates are forwarded to a central server,
which aggregates them to update the global model [32].
This paradigm aims at enhancing the privacy because it
allows the data to remain on the devices and only sends
the model updates through the network [33]. FL comes
with two modes: Synchronous FL and Asynchronous
FL. The former synchronizes updates, ensuring global
model consistency but introducing potential latency. The
latter mode allows independent updates, accommodat-
ing variable participation and network conditions but
risking model inconsistency.

• Ensemble learning: In this paradigm, multiple models
are trained independently on different subsets of the
data, and their predictions are combined to produce the
final output.

We remark that these paradigms of distributed learning
have different strengths and weaknesses, and the choice of
paradigm depends on the available resources and applica-
tions’ requirements.

There are various configurations of distributed learning,
which vary based on how the data and computations are
distributed across the participants. In some configurations,
a central server, i.e., Remote agents (RA), may be responsible
for aggregating the model updates, while in others, the
updates may be exchanged directly between the participants.
RA and work agents (WA) are key components of many
distributed learning configurations. RA is responsible for
coordinating the WA’s work and ensuring that the model
updates are aggregated correctly. TheWA performs the actual

FIGURE 3. Data/model parallelization in distributed learning.

computations on the local data and sends the updates to the
RA for aggregation. Hence, distributed learning configura-
tions can be categorized into threemain groups (see Figure 4):
hierarchical distributed learning (or master-slave configu-
ration), centralized distributed model, and fully distributed
learning (in which every participant interacts independently
with other participants). We remark that different averaging
and topology schemes can be used to combine the model
updates from different WAs, such as weighted averaging,
local updates, and gossip-based protocols [34]. Moreover,
the choice of distributed learning configuration depends on
the specific application and requirements, including the size
of the dataset, the computing resources available, and the
privacy concerns.
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FIGURE 4. Examples for some of the existing distributed learning configurations.

B. LESSONS LEARNED
Based on the conducted review of the development and
implementation of distributed learning, several key lessons
can be concluded:

1) Scalability: As the size of datasets and complexity of
models continue to grow, it is crucial to be able to
scale learning algorithms across multiple participants.
Distributed learning offers a promising approach to
achieve this scalability through leveraging data paral-
lelism and model parallelism, which can help prevent
bottlenecks in the training process.

2) Fault tolerance: In distributed systems, failures of
individual devices or users can cause significant
disruptions to the learning process. Therefore, it is
essential to design systems with fault tolerance,
using techniques such as checkpointing and replicated
training.

3) Communication overhead can be a bottleneck: In
distributed learning, communication between diverse
participants can become a bottleneck, slowing down the
training process. Various strategies have been proposed
to address this issue, such as using compression
techniques to reduce the size of data transferred
between participants [35].

4) Model consistency: A key aspect of distributed learning
is achieving convergence and consistent model updates
across multiple devices. It is important to ensure that
all participants have access to consistent and up-to-date
data/models. Techniques such as distributed stochastic
gradient descent, parameter averaging, consensus opti-
mization can help ensure that models remain consistent
across diverse participants [30].

5) Hardware and software heterogeneity: In distributed
learning, participants may have different hardware and
software configurations, which canmake it challenging
to achieve optimal performance. Various techniques
have been proposed to address this issue, such as
adjusting learning rates and partitioning data based on
device characteristics.

FIGURE 5. Privacy and security attacks discussed in this survey.

IV. PRIVACY AND SECURITY ATTACKS IN DISTRIBUTED
LEARNING
This section introduces and categorizes the key privacy and
security threats that have arisen in the context of distributed
learning, while discussing different factors that affect their
time response (see Figure 5).

A. PRIVACY ATTACKS
Privacy attacks in distributed learning refer to actions or
tactics that can be employed to gain unauthorized access to
sensitive information from a machine learning model or the
data used to train the model. These attacks can be conducted
by malicious actors seeking to obtain confidential or sensitive
data for nefarious purposes or by legitimate users who may
inadvertently compromise the privacy of the data. In what
follows, wewill explore some of the common types of privacy
attacks that have been identified in the context of distributed
learning.

1) MODEL INVERSION ATTACK
Model inversion attacks, also known as inverse machine
learning attacks, involve using a machine learning model to
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generate synthetic data that closely resembles the original
data used to train the model. These attacks can be used
to infer sensitive information about individuals represented
in the data, such as their personal characteristics, habits,
or preferences [36]. The idea behind model inversion attacks
is to use the machine learning model as a tool to generate
synthetic data that accurately represents the underlying
patterns in the original data. By analyzing the synthetic
data, an attacker can potentially deduce information about
the individuals represented in the original data, even if that
information was not explicitly included in the original data.
Model inversion attacks can be particularly concerning in the
context of sensitive data, such as medical records, financial
data, or other types of personal information.

2) MODEL STEALING ATTACK
From a privacy perspective, model stealing attacks can
have implications related to the unauthorized extraction
of sensitive information.The attack could be considered a
privacy breach. When an adversary successfully steals a
machine learning model [37], they might gain insights into
the underlying training data, potentially exposing sensitive
patterns or characteristics of the data. This breach of privacy
could lead to the exposure of proprietary information, trade
secrets, or personally identifiable information that was used
in the model’s training.

3) MEMBERSHIP INFERENCE ATTACKS
They refer to a class of attacks that aim to determine whether
a specific individual’s data was used to train a ML model
[38]. In other words, the goal of a membership inference
attack is to determine if a particular individual is a member
of the dataset that was used to train the model. Membership
inference attacks can be carried out by analyzing the output
of the ML model, and attempting to infer whether a specific
data point was used in the model’s training. This can be done
by comparing the model’s predictions on the target data point
to its predictions on a separate set of data points that were
not used in training. If the model’s predictions on the target
data point are significantly more accurate than its predictions
on the other data points, it can be inferred that the target data
point was likely used to train the model.

4) DATA EXFILTRATION
This type of attack involves accessing and stealing sensitive
data from one of the participating parties in a distributed
learning system [39]. This can be done through direct access
to the data or by exploiting vulnerabilities in the shared
machine learning model.

5) POISONING ATTACKS
This type of attack aims to introduce malicious or misleading
data into the training process of a ML model. The goal
of such an attack is to cause the model to make incorrect
predictions or inferences when deployed in the real world
[40]. Specifically, in a poisoning attack, a malicious user may

inject a small number of data points with incorrect labels into
the training data, with the aim of causing the model to learn
a biased or incorrect decision boundary [41]. Alternatively,
a larger number of data points may be modified in a subtle
way that is designed to influence the model’s behavior in
a particular direction. These modifications can be carried
out in a targeted or indiscriminate manner, depending on
the attacker’s goals. Poisoning attacks can be particularly
challenging to detect and mitigate, as the malicious data
points may be indistinguishable from legitimate data points.
Additionally, since the model is trained on a large amount
of data, it may be difficult to identify and remove the
poisoned data points without negatively impacting the overall
performance of the model.

B. SECURITY ATTACKS
In distributed learning, security attacks are actions or
strategies that can be used to compromise the security of a
ML model or the data used to train it. These attacks can take
many forms, and can range from simple data breaches tomore
sophisticated attacks such as model stealing attacks. Some of
the most common types of security attacks in the context of
distributed learning include:

1) GENERATIVE ADVERSARIAL NETWORK (GAN) ATTACKS
A GAN is a type of deep learning model that comprises two
neural networks: a generative network and a discriminative
network [42]. The generative network generates synthetic
data that is similar to the real data, while the discriminative
network learns to distinguish between real and synthetic
data [43]. A GAN-based attack is a type of adversarial
attack that can be employed against a ML model in the
context of distributed learning [44]. In this type of attack, the
attacker trains a generativemodel, such as aGAN (Generative
Adversarial Network), to generate synthetic data that is
similar to the data used to train the target model [45]. The
attacker can then use this synthetic data to deceive or attack
the target model in various ways, causing it to make incorrect
predictions or inferences [46]. For example, an attacker can
use the synthetic data generated by the GAN to attack the
target model in a targeted manner. They can create synthetic
data that is designed to force the target model to make specific
incorrect predictions or inferences. Additionally, an attacker
can use GANs to launch a poisoning attack by generating
synthetic data that contains malicious inputs. When this data
is used to train the target model, it can lead to the model
being poisoned, causing it to make incorrect predictions or
inferences. Therefore, GAN-based attacks have been shown
to be effective at causing ML models to make incorrect
predictions or inferences, and they can be a powerful tool for
adversarial attackers.

2) OVERFITTING ATTACKS
This attack involves training a machine learning model on a
small, carefully selected dataset to cause themodel to perform
poorly on other data [47]. It can be used to undermine the
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performance and accuracy of the model, leading to incorrect
predictions and compromised results.

3) MODEL STEALING ATTACKS
From a security standpoint, model stealing attacks can be
seen as a form of intellectual property theft and a potential
vulnerability in machine learning systems [37]. If an attacker
manages to replicate a model, they could use it for malicious
purposes, such as crafting adversarial attacks to exploit
vulnerabilities in the model or using it for unauthorized
purposes without proper authorization. This undermines the
security of the machine learning system and could lead to
various security risks, especially if the replicated model is
used for harmful activities.

4) INFORMATION EXPLOITING ATTACKS
These attacks involve attempts to extract sensitive infor-
mation about individuals or institutions by analyzing the
predictions made by a ML model [48]. They can pose a
significant threat to the privacy and security of the individuals
or organizations whose data was used to train the model.
By exploiting the patterns and predictions generated by the
model, attackers can infer sensitive information about the
training data, such as the demographics, behaviors, or pref-
erences of the individuals or organizations. Information
exploiting attacks can also compromise the security of the
model itself, leading to incorrect or biased predictions that
can be manipulated by attackers.

5) FREE RIDING ATTACK
A free-riding attack occurs when someone exploits a ML
system’s resources and capabilities without providing any
data or resources themselves, leading to potential overuse
and degradation of the system’s resources. This kind of
attack can be a problem in distributed ML systems, as it can
reduce performance and accuracy for all users and increase
maintenance costs. It’s even more critical if the model is
confidential or has sensitive information, as the attacker may
gain unauthorized access to exploit it.

Several types of free-riding attacks can be carried out
against distributed ML systems. Some common examples
include:

1) Data free riding: This form of intrusion entails gaining
access to and utilizing the data of a ML system without
providing any of one’s own data.

2) Model free riding: This attack refers to the utilization
of a trained model without contributing to the model’s
training or maintenance. It can be carried out by
downloading or accessing the model and utilizing it for
personal objectives.

3) Infrastructure free riding: This type of attack involves
using the infrastructure of a ML system (such as
computing resources or storage) without contributing
to the maintenance or development of the system.

C. TIME RESPONSE
Time response of privacy and security attacks in distributed
learning refers to how quickly an adversary can gather
sensitive information or performmalicious activities based on
the data or models used in the distributed learning process.
Hence, it assesses the speed at which privacy/security
breaches or attacks can take place. It is important to
note that a rapid response time in privacy/security attacks
could lead to more significant risks, as adversaries could
exploit vulnerabilities before proper countermeasures can
be implemented [49]. Thus, when designing secure dis-
tributed learning systems, it is crucial to consider not
only the effectiveness of the proposed defense mecha-
nisms but also the potential speed at which attacks can
occur.

Several factors can affect the response time of various
attacks, depending on: learning model complexity, attack
objective, available resources at the attacker’s disposal,
attack strategy, data quality and quantity, defensive measures,
and knowledge of model architecture. For instance, more
complex models might require additional time [50] for
inversion attacks due to the increased difficulty of modeling
their internal behavior. Moreover, the specific goal of the
attack can influence the response time. Different attacks
might target various aspects of the model, such as generating
adversarial examples or undermining the model’s training
process. Furthermore, the computational resources available
to the attacker can influence the speed of the attack [51].
More powerful hardware or distributed computing can
expedite the inversion process. In terms of attack strategy,
the chosen approach by the attacker can impact the time
response. Some attacks may prove to be more efficient
than others. Moreover, the quality and quantity of available
data for the attack can affect its speed. Having more data
might result in more accurate inferences. Finally, defensive
measures and knowledge of the model architecture can also
significantly impact the response time. If the target model
is safeguarded with effective privacy-preserving techniques
or security mechanisms, the response time of an attack
might increase, as it becomes more challenging for the
attacker to deduce accurate information. On the contrary,
if the attacker possesses knowledge of the architecture and
details of the model being targeted, it can expedite the
attack.

V. DEFENSIVE MECHANISMS FOR DIVERSE ATTACKS IN
DISTRIBUTED LEARNING
In this section, we present various defensive mechanisms for
diverse privacy and security attacks that have been discussed
above.

A. PRIVACY ATTACKS SOLUTIONS
In what follows, we discuss various defensive mechanisms
for privacy attacks that can be implemented in distributed
learning (see Figure 6).
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FIGURE 6. The discussed defensive mechanisms for privacy attacks in distributed learning.

1) MODEL INVERSION ATTACKS
Several methods have been presented in the literature to
mitigate model inversion attacks in distributed ML systems,
including:

a: DIFFERENTIALLY PRIVATE ALGORITHMS
Differential privacy is a technique used to protect the privacy
of individuals while sharing or releasing data [52]. By
adding noise or randomness to the data, differential privacy
makes it harder for attackers to identify specific individuals
or sensitive information in the data. The utilization of
differentially private algorithms, as exemplified in [53] and
[54], can increase the difficulty for potential attackers to
reverse-engineer confidential data from the model. Indeed,
differential privacy can obtain statistical guarantees about
the privacy of participants, however it does not protect
against all possible attacks. For example, an attacker may
be able to infer sensitive information about individuals
by combining the differentially private output with other
publicly available data or by using sophisticated ML models
to analyze the output. Moreover, the level of privacy
protection provided by differential privacy may depend
on the specific implementation and configuration of the
algorithm.

b: DATA MASKING
Data masking mechanisms refer to substituting sensi-
tive data with a random or synthetic version of the original
data that retains the statistical characteristics of the original
data but does not disclose any sensitive information. The
purpose of data masking mechanisms, as described in [55],
[56], and [57], is to minimize the risk of exposing sensitive
information while still allowing access to the data for
analysis or other purposes. Indeed, by using data masking
techniques, attackers will have a more challenging task for
reverse-engineering sensitive data from the shared models.
Since the data masking techniques alter the original data,
an attacker cannot rely on a direct mapping of the original
data to extract sensitive information. Instead, they would
have to employ more sophisticated methods to infer the
sensitive data, which can be significantly more difficult

and resource-intensive. However, the effectiveness of data
masking mechanisms depends on the specific method used
and the strength of the randomization or synthesis used
in the masking process. In some cases, an attacker may
still be able to infer sensitive information from the masked
data, particularly if they have prior knowledge or access
to other data sources. Thus, it is important to evaluate and
select the appropriate data masking mechanism based on the
specific context and the potential threats and risks to the
data.

c: SECURE COMMUNICATION PROTOCOLS
Implementing secure communication protocols, such as
transport layer security (TLS) [58], [59], [60] or secure
sockets layer (SSL) [61], is beneficial in safeguarding the
model from inversion attacks by preventing unauthorized
access to the model and the data it handles.

d: PROPER ACCESS CONTROLS
The implementation of efficient access controls mechanisms
[62], including authentication, authorization, and related
protocols, is an effective measure to prevent unauthorized
access to the shared models and associated data.

2) MODEL STEALING ATTACKS
To prevent/mitigate the impact of model stealing attacks, it is
important to employ robust security measures such as access
controls, network segmentation, and secure communication
protocols. Additionally, implementing techniques such as
watermarks or other forms of model fingerprinting can help
identify stolen models and deter potential attackers. Finally,
monitoring for suspicious activity and promptly responding
to security incidents can help in minimizing the impact of
model stealing attacks. Other than secure communication
and access controls, following ways also presented in the
literature to mitigate the model stealing attacks.

a: ENCRYPTING THE MODEL
Encrypting the trained model can make it more difficult for
attackers to access and copy the model without permission
[63], [64].
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b: USING WATERMARKING TECHNIQUE
Watermarking techniques [65], [66] involves the addition
of a unique identifier to the model that can be used
to trace the origin of the model if it is accessed or
used without permission. Furthermore, a combination of
mentioned security measures can help in mitigating the risk
of model stealing attacks in distributed learning systems.

3) MEMBERSHIP INFERENCE ATTACKS
To mitigate the risk of membership inference attacks, it is
important to employ effective privacy-preserving techniques,
such as differential privacy or secure multi-party computa-
tion. Additionally, it may be necessary to limit access to
the data used to train the model and to implement efficient
access controls mechanisms to prevent unauthorized access
to the models’ output. In what follows, we summarize the key
mechanisms presented in the literature for mitigating the risk
of membership inference attacks:

a: LEVERAGING DIFFERENTIALLY PRIVATE ALGORITHMS
These algorithms rely on adding noise to the training data
while protecting the privacy of the people whose data are
being utilized, allowing for accurate model training. It may
be more challenging for attackers to deduce the membership
of particular data in the training set when differentially private
algorithms are used.

b: USING SYNTHETIC DATA
Synthetic data [67], [68] refers to the data that is artificially
generated to mimic the statistical properties of real data [69],
but does not contain any sensitive information. Using syn-
thetic data helps in protecting the privacy of the individuals
whose data is being used in the training, while still allowing
for accurate model training.

c: IMPLEMENTING DATA ENCRYPTION SCHEMES
Encrypting the training data or the trained model makes it
more difficult for the attackers to access and use the data or
model for membership inference.

d: ADOPTING DATA SANITIZATION
Data sanitization [70], [71] involves removing or replacing
sensitive information from the training data in order to protect
the privacy of the participating users in the learning [72].

e: DEPLOYING DATA ANONYMIZATION TECHNIQUES
Data anonymization [73] techniques involve removing or
replacing identifying information from the training data in
order to protect the privacy of the participating users [74].
It is worth noting that data masking schemes can also serve

the purpose of mitigating membership inference attacks.

4) DATA EXFILTRATION ATTACK
To mitigate the risk of data exfiltration attacks, it is important
to implement robust security measures such as access
controls, network segmentation, and secure communication

protocols, while limiting the access to the data used in
the distributed learning and monitoring suspicious activity.
Furthermore, employing techniques such as differential
privacy or homomorphic encryption can help in protecting the
privacy of the data and mitigate the impact of any potential
data breaches. To sum up, we recap the main presented
mechanisms to overcome this attack as follows:

a: DATA ENCRYPTION
Encrypting the data that is processed by the ML model can
make it more difficult for the attackers to exfiltrate sensitive
data [75], [76].

b: DATA ANONYMIZATION TECHNIQUES
These techniques involve removing or replacing identifying
information from the data that is processed by the ML model
to protect the privacy of the participants.

c: DATA HASHING
It involves replacing the original data with a unique code,
or hash, that is derived from the data [77], [78]. This canmake
it more difficult for the attackers to exfiltrate sensitive data,
as the original data cannot be reconstructed from the hash.

d: DATA ACCESS CONTROLS
Implementing data access controls, such as data access
policies and data segregation techniques, helps in preventing
unauthorized access to sensitive data.

It is crucial to emphasize that the utilization of both data
masking and data sanitization schemes can be instrumental
in proficiently mitigating the risks associated with data
exfiltration.

5) POISONING ATTACKS
To mitigate the risk of poisoning attacks, it is important to
employ robust security measures such as access controls,
network segmentation, and secure communication protocols.
It may be also necessary to limit the access to the data
used in the training process and to implement data validation
techniques to detect and remove any suspicious data points.
Moreover, employing techniques such as federated learning,
where the data is kept decentralized and training is done on
local devices, can help in reducing the impact of poisoning
attacks. Several mechanisms have been presented in the
literature to deal with the threats of poisoning attacks [79]
in distributed learning systems, which include:
(i) Leveraging robust validation and sanitization processes to
ensure that the acquired data are free of malicious inputs.
This can include implementing data quality checks, such as
checking for missing values or outliers, and removing or
replacing data that does not meet certain criteria.
(ii) Implementing data de-identification techniques which
involve removing or obfuscating identifying information,
such as names, addresses, and social security numbers, so that
the participants in distributed learning cannot be directly
identified from the data [80], [81]. However, it is important
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to note that de-identification is not foolproof and can be
circumvented through re-identification attacks. Therefore,
it is crucial to use additional privacy protections, such
as access controls, encryption, and monitoring, to further
safeguard sensitive data.
(iii) Leveraging data anonymization techniques which
involve removing or replacing identifying information from
the training data in order to protect the privacy of the
individuals whose data is being used.
(iv) The use of both data masking and data sanitization can
also assist in minimizing the risks associated with poisoning
attacks.

B. SECURITY ATTACKS
In the next discussion, we will explore diverse protective
mechanisms that can be utilized in distributed learning to
counter security threats (see Figure 7).

1) GAN-BASED ATTACKS
GAN-based attacks in distributed learning can be countered
with several defensive mechanisms, which include: data
augmentation, adversarial training, robust optimization, dif-
ferential privacy, model distillation, and federated learning.
Data augmentation, i.e., oneway tomake aGAN-based attack
less effective is to enhance the diversity of the training data
[82]. This can be achieved through data augmentation [83],
[84] techniques, such as cropping, rotating, and adding noise
to the acquired data. Another approach is to use adversarial
training [85], in which the model is trained on a mix of real
and generated data [86], [87]. The goal of adversarial training
is to improve the model’s ability to distinguish between real
and generated data, thereby making it more resistant to GAN-
based attacks. Defense-GANs schemes [88] are a special type
ofGAN that are designed specifically to defend against GAN-
based attacks. They can be trained to recognize and reject
generated data, making them an effective countermeasure
against GAN-based attacks. Model distillation schemes are
also presented to train a smaller, more efficient model using
the output of a larger, more complexmodel [89]. This can help
defend against GAN-based attacks by reducing the number
of possible attack points. Ensemble methods are used also
for defending against GAN-based attack [90], [91], [92],
where multiple models are trained and their predictions are
combined to create a final prediction. Due to the possibility
that the data generated may not be consistent across various
models, this is useful in the case of GAN-based attacks.
Some GAN-based attacks rely on manipulating the input data
before it is fed into the learning model. Hence, by leveraging
input preprocessing schemes [93], the manipulated input data
can be detected and removed to reduce the effectiveness of the
GAN-based attacks.

2) OVERFITTING ATTACKS
To prevent overfitting attacks in distributed learning, it is
important to take the following precautions:

• Using a simple model structure: A complex model
structure with a large number of parameters is more
prone to overfitting. Using a simpler model structure can
help in reducing the risk of overfitting.

• Leveraging a large dataset: A large dataset can provide
more information to the learning model, helping it to
learn generalizable patterns rather than memorizing the
training data.

• Regularizing the model: Regularization techniques [94],
[95], such as L2 regularization or dropout can help
prevent overfitting by introducing additional constraints
on the model parameters.

• Deploying cross-validation: Cross-validation involves
dividing the dataset into training and validation sets,
and using the validation set to evaluate the model’s
performance. This can help in identifying the overfitting
and allow for adjustments to be made to the model.

• Using early stopping criteria: Early stopping entails
monitoring the model’s performance on the validation
set and stopping the training when the model’s perfor-
mance begins to degrade. This can help in preventing
the overfitting by stopping the training before the model
becomes too closely fit to the training data.

• Implementing transfer learning: Transfer learning [96],
[97] involves using a pre-trained model as the starting
point for the training of a new model. This can help
in decreasing the risk of overfitting by leveraging the
knowledge learned from the pre-trained model.

• Leveraging bagging techniques: Bagging is a technique
that applies training multiple models on various subsets
of the training data and combining their predictions. This
can help improve the generalization of the model by
reducing the variance of the predictions.

• Using boosting scheme: It entails training a series of
models, each of which is trained to fix themistakesmade
by the model before it, actually lowering the bias of the
predictions, this can help in the model’s generalization.

3) MODEL STEALING ATTACKS
Different schemes have been presented in the literature to
protect against model stealing attacks in distributed learning.
These schemes rely on implementing one or more of the
following measures. First, deploying the learning models in a
secure environment, such as a secure server or cloud-based
platform, can help prevent unauthorized access or copying
of the model. Second, implementing model watermarking
which involves adding a unique identifier or ‘‘watermark’’
to the model, in order to help in identifying the source
of any copied models. Third, leveraging model obfuscation
[98] which involves making the model more difficult to
understand or reverse-engineer. Fourth, implementing model
versioning that helps the participants to keep track of versions
of the model, which is helpful in implementing controls to
ensure that only authorized users have access to the latest
version, hence preventing the use of outdated or stolen
models. Fifth, by regularly updating [99] the model with
new data and retraining, it is possible to prevent the use
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FIGURE 7. The discussed defensive mechanisms for security attacks in distributed learning.

of outdated or stolen models while improving the model’s
accuracy. In addition to that, model wrapping [100] is also
used to encapsulate the model in a secure wrapper that
controls access to the model and logs any attempts to access
it. Finally, secure data storage, access control, and physical
layer security [101] are also utilized to prevent unauthorized
access. The shared learning models can be protected from
unauthorized access by considering physical layer security
measures, as well as secure servers and data centers. Indeed,
leveraging access control measures like user authentication
and authorization allow for preventing unauthorized access to
the model, while encrypting the data used to train the model
can help also in protecting it from being decrypted without
authorization.

4) INFORMATION EXPLOITING ATTACKS
To protect against these types of attacks, it is important
to use secure and robust techniques in the design and
implementation of distributed learning systems. This calls
for deploying security initiatives such as encryption, secure
communication protocols, and other protective methods
in order to prevent unauthorized access or misuse of
learning data and models. The main presented schemes to
tackle information exploiting attacks in distributed learning
are:

• Data anonymization: Anonymizing the acquired data
[73], [74] can help in preventing the identification of
participants and protect their privacy.

• Data perturbation: Perturbing the used data [102],
[103] to train the model, by adding noise or applying
transformations to the data, can help in preventing the
extraction of sensitive information.

• Model generalization: Designing the learning models to
be more generalizable [104], rather than closely fit to

the training data, allows for preventing the extraction of
sensitive information from the model’s predictions.

• Model transparency: Implementing techniques such
as model interpretability or explainability enables the
model’s predictions to bemore transparent while turning
it to bemore difficult for the attackers to extract sensitive
information.

• Model sanitization: Sanitizing the model, by removing
sensitive features or applying perturbations to the
model parameters, can help in avoiding the information
exploiting attacks.

• Model distillation: Model distillation [105], [106],
[107], [108] involves training a smaller, simpler model
that is able to reproduce the predictions of a larger,
more complex model. This can help in preventing the
extraction of sensitive information from the model’s
predictions.

• Model aggregation: Model aggregation [109] involves
training multiple models and combining their predic-
tions to make a final prediction, which improves the
generalization of the model and makes it more difficult
for the attackers to extract sensitive information.

• Data partitioning schemes can also be employed to
mitigate information-exploiting attacks.

5) FREE RIDING ATTACK
To mitigate the risk of free-riding attacks, it is important
to implement appropriate access controls and resource
allocation policies. This can include setting limits on the
portion of resources that can be accessed by each user or
implementing payment or credit systems to ensure that the
participating users contribute to the system in proportion to
their use of its resources. There are several ways in which

VOLUME 11, 2023 114573



M. U. Afzal et al.: Privacy and Security in Distributed Learning

we can mitigate the risk of free-riding attacks in distributed
learning, which include:

• Using robust access controls: Implementing robust
access controls, such as authentication and authorization
protocols, can help in preventing unauthorized access to
the model and the data it processes. This can include
measures such as user authentication, role-based access
controls, and data encryption.

• Leveraging digital rights management (DRM) tech-
niques: DRM techniques [110], [111] involve using
technical measures to control access/use of the ML
models. This can include measures such as encryption,
digital keys, and license management systems.

• Utilizing legal measures: The participating users in
distributed learning systems can use legal measures,
such as copyright law and contracts, to protect their ML
models and prevent unauthorized use or replication.

• Deploying secure communication protocols: Imple-
menting secure communication protocols can help in
avoiding the malicious participants from intercepting
or manipulating data or model parameters during the
training process.

• Implementing efficient resource allocation schemes:
Implementing mechanisms for fairly allocating resou-
rces, such as CPU or GPU time, among different
participants can help in preventing free riding attacks by
ensuring that all participants contribute resources to the
training process.

• Resource accounting: Keeping track of the resources
contributed by each participant, such as data or com-
puting resources, can help in identifying and avoiding
free riding attacks through ensuring that all participants
contribute fairly to the training process.

• Reputation schemes: Implementing reputation-based
schemes [112], [113] that track the contributions of each
participant encourages fair participation and tackles free
riding attacks by rewarding participants who contribute
with more resources to the training process.

• Data partitioning: Partitioning the training data [114],
[115], [116] is found to be helpful in preventing
malicious participants from accessing the whole data
without providing enough resources during the training
process.

• Token-based schemes: Implementing token-based
schemes [117], or leveraging a blockchain network
[118], [119], allows for ensuring that all participants
contribute fairly to the training process by requiring
participants to provide a certain number of tokens in
exchange for access to the model or training data.

• Federated learning: It can also help in preventing the free
riding attacks since it requires from all participants to
train their local models with their own data and share
the trained models with others. Hence, it ensures that
all participants have contributed to the training process
[120], [121], [122].

C. LESSONS LEARNED
Based on the conducted review of diverse privacy and
security attacks and their defensivemechanisms in distributed
learning, several key lessons can be gleaned, including:

1) Deploying appropriate security and privacy mecha-
nisms is critical for protecting the integrity of the data,
models, and distributed systems.

2) To minimize the impact of privacy attacks, it is
essential to utilize suitable privacy-preserving mea-
sures and techniques, such as differential privacy,
federated learning, secure multi-party computation,
and homomorphic encryption. These techniques aid in
safeguarding the confidentiality of both the data and the
model while still enabling efficient distributed learning.

3) By leveraging a combination of the privacy and
security mechanisms described above, the probability
of encountering privacy and security attacks can be
considerably diminished in distributed ML systems.
Specifically, by implementing multiple layers of pro-
tection, such as access controls, data masking, secure
communication protocols, and differential privacy, the
security of the ML model and the associated data
can be strengthened. However, it is crucial to select
and implement the appropriate mechanisms based on
the considered context and potential threats to ensure
comprehensive protection against diverse attacks.

4) Setting up access controls, monitoring for unusual
activities, and regularly updating security protocols
can help prevent and identify the risks of attacks and
vulnerabilities.

5) Collaboration among different participants should be
maintained on trust and transparent environment to
ensure the success of distributed learning.

VI. OPEN CHALLENGES AND FUTURE DIRECTIONS
In this section, we outline and briefly discuss crucial research
challenges that require attention for future improvements
in existing solutions and successful implementation of
distributed learning systems (see Figure 8).

A. ARCHITECTURE SELECTION
In distributed learning, architecture selection involves choos-
ing the hardware and software configuration for machines
collaborating in ML model training. Key factors to consider
include hardware, network architecture, and security risks.
In architecture selection for distributed learning, hardware
is a pivotal factor. The hardware chosen must balance
power with cost-effectiveness, accommodating the workload.
This involves selecting machines with suitable CPU, GPU,
and memory resources to match model requirements. For
instance, memory-intensive or parallelized models might
necessitate machines with greater memory or more GPUs.
The network architecture is also an important considera-
tion in architecture selection for distributed learning. The
network should be able to support the communication
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FIGURE 8. The proposed future research directions.

requirements of the distributed learning system. This may
involve choosing high-bandwidth networking technologies,
such as 5G networks, or designing a distributed system
that can operate efficiently over a wide area network.
Network architecture is also pivotal in distributed learning’s
architecture selection. The network must support system
communication and address security concerns. This could
involve high-bandwidth options or creating a distributed
system efficient for wide area networks.

B. ALGORITHM DESIGN
It refers to the process of designing machine learning
algorithms that are suitable for training onmultiple machines.
Several factors to consider when designing algorithms for
distributed learning include data distribution, communication
efficiency, scalability, convergence, and robustness. First,
data is usually partitioned and distributed across multiple
machines. Hence, learning algorithms must be tailored to
efficiently process this data distribution. This can mean
designing algorithms to work on local data subsets and
aggregate results across machines, or employing distributed
processing methods. Secondly, communication efficiency is
crucial. Participating nodes must communicate for data and
model parameter exchange. Thus, learning algorithms should
minimize communication overheads to prevent learning
slowdown. This could mean designing algorithms for dis-
tributed data processing, sending only essential information
[123], or leveraging data sparsity for reduced communication
overhead.

Scalability, rapid convergence, and Robustness are also
pivotal. The collaborative learning algorithm should scale
adeptly with machines and data size. This can entail
designing algorithms for parallel data processing, employing
model or data parallelism for workload distribution. The
algorithm should swiftly converge to a satisfactory solution
within resource constraints. This might involve design-
ing algorithms that efficiently utilize available resources,
incorporating techniques like stochastic gradient descent
or mini-batch processing to enhance convergence speed.

Moreover, ensuring chosen learning algorithms are resilient
against communication failures, delays, or security/privacy
risks is crucial in distributed contexts. This could involve
designing algorithms to manage data inconsistencies or
communication lags, or implementing fault tolerance and
distributed consensus techniques to uphold training process
integrity.

C. DATASET GENERATION
It is the process of creating a dataset that can be used to train
a ML model on multiple machines. This is a critical step in
distributed learning, as it involves collecting, preprocessing,
and partitioning data to create a dataset that can be used
to train a ML model in a distributed setting. There are
several approaches to generating datasets for distributed
learning, including data collection, data preprocessing, data
augmentation, and data partitioning. Data collection involves
collecting data from a diverse type of sources, such as sensors,
databases, or the web, and storing it in a format that can
be used to train a machine learning model. This can be a
time-consuming and resource-intensive process, especially
in distributed learning, as it may involve collecting large
amounts of data from multiple sources and storing it on
multiple machines. Data preprocessing involves cleaning
and preparing the data for use in a ML model. This may
consist of tasks such as removing missing or invalid data,
standardizing the data, and splitting the data into training and
testing sets. Data preprocessing is important in distributed
learning, as it ensures that the data is in a consistent and usable
format across all machines. Data augmentation composed of
generating new data points based on existing data points in the
dataset. This can be useful for increasing the size and diversity
of the dataset and improving the performance of the machine
learning model. In distributed learning, data augmentation
can be used to generate additional data that can be distributed
across multiple machines to improve the efficiency and
scalability of the training process. Data partitioning involves
dividing the dataset into smaller subsets, which can be stored
and processed on different machines. This can improve the
efficiency, efficacy and scalability of the training process, as it
allows the model to be trained on smaller subsets of the data
in parallel.

D. META-LEARNING
Meta-learning, or ‘‘learning to learn’’, is a subfield of ML
that empowers learning models to enhance their performance
on new tasks by leveraging past task experiences. It proves
valuable in dynamic and diverse data and task environments,
enabling models to swiftly adapt and elevate performance
as conditions evolve. In distributed learning, meta-learning
[124], [125] can be used to train models that are able to
learn more efficiently and effectively using data distributed
across multiple machines. Furthermore, meta-learning can
also be leveraged to optimize the hyperparameters of ML
models in a distributed setting. For example, a meta-learning
algorithm could be used to learn the optimal learning rate
or regularization parameters for a given task based on
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the performance of the model on previous tasks. Thus,
meta-learning has the potential to significantly improve
the efficiency and effectiveness of distributed learning by
enabling ML models to adapt and improve their performance
on new tasks using the knowledge gained from previous tasks.

E. DOMAIN ADAPTATION
Domain adaptation is a ML technique that involves adapting
a model trained on one domain (or dataset) to a different, but
related, domains. Domain adaptation is useful in situations
where it is difficult or expensive to collect sufficient labeled
data for a particular task, and instead, data from a related
domain can be used to train a model that can then be adapted
to the target domain [126]. In Particular, domain adaptation
in distributed learning setup can be used to train models that
can perform well on a variety of related tasks or domains
using data distributed across multiple machines. This can
be achieved through the use of techniques such as transfer
learning, which allows a model to transfer knowledge learned
on one domain to a related domain, and multi-task learning,
which allows a model to learn multiple tasks or domains
simultaneously. It is also possible to use domain adaptation
in combination with meta-learning to further improve the
performance of a learning model in a new domain. For
example, a meta-learning algorithm could be used to optimize
the hyperparameters of a model based on its performance on
a variety of related tasks or domains.

F. ANOMALY DETECTION
Anomaly detection, is the process of identifying unusual
or unexpected data points within a dataset. It is useful
in a wide range of applications, including fraud detection,
cybersecurity, and predictive maintenance. In distributed
learning, anomaly detection can be challenging due to the
large size and complexity of the data being analyzed. One
approach to anomaly detection [127], [128] in distributed
learning is to utilize unsupervised learning algorithms, such
as clustering or density-based methods, which can determine
patterns and anomalies in the data without the need for
labeled examples. Another approach is to use supervised
learning algorithms, which require a labeled training dataset
to learn the typical behavior of the system being monitored.
These algorithms can then be used to identify outliers
from normal behavior as anomalies. It is also possible to
use a combination of unsupervised and supervised learning
techniques to improve the accuracy and reliability of the
anomaly detection process. In summary, the process of
identifying abnormal or unexpected data points in vast and
intricate datasets within distributed learning requires the
utilization of specific algorithms and methodologies.

G. MODEL UNCERTAINTY AND EXPLAINABILITY
Model uncertainty and explainability are significant con-
siderations in distributed ML, as they can influence the
reliability and trustworthiness of the results produced by the
learning model. Model uncertainty refers to the degree of

uncertainty or variability in the predictions made by a model.
In distributedML,model uncertainty can arise due to a variety
of factors, including the variability in the data used to train
the model, the complexity of the model [129], [130], and the
number of parameters used in the model. To address model
uncertainty, it is often useful to measure the uncertainty of
the model’s predictions using techniques such as Bayesian
inference or bootstrapping.

Explainability, on the other hand, refers to the ability
of a model to provide clear and interpretable explanations
for its predictions. In distributed ML, it is important to
ensure that the model is transparent and easy to understand,
especially if the model is being used to make important
decisions. In general, it is important to carefully consider
model uncertainty and explainability in distributed ML to
ensure that the model is reliable and trustworthy, and that
its predictions can be understood and interpreted by human
users. Approaches like feature importance analysis and
model distillation can be good candidates to enhance the
interpretability of ML models.

H. DISTRIBUTED ML IN FUTURISTIC TECHNOLOGIES
As we discussed that distributed ML focuses on training
models on multiple machines, possibly with different hard-
ware and software configurations, to improve the speed and
scalability of the training process. Thus, it has the potential to
be used in a wide range of futuristic technologies, including
the following:

1) Autonomous vehicles: Distributed ML can be used to
train models that enable autonomous vehicles [131],
[132] to make decisions based on data collected from
sensors and other sources.

2) Smart cities: Distributed ML [133], [134] can be used
to interpret data from sensors and other sources in
real-time to optimize resource allocation and improve
the efficiency of city services.

3) Internet of Things (IoT): Real-time analysis of data
from IoT devices can be facilitated by distributed
learning, leading to the development of smarter and
more responsive systems [135].

4) Personal assistants: Utilizing distributed learning,
models can be trained to enhance the accuracy and effi-
ciency of voice recognition in personal assistants like
smart speakers, improving their ability to comprehend
and respond to voice commands [63].

5) Healthcare: Distributed ML can be used to ana-
lyze medical data to spot patterns and trends that
can inform treatment decisions and improve patient
outcomes [136].

VII. CONCLUSION
The burgeoning technology of distributed learning can
effectively harness the growing volume of data in distributed
environments. However, the rise of this technology has raised
additional concerns regarding the privacy and security of the
users who are involved in the learning process. Thus, in this
survey, we initially focused on examining the security and
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privacy challenges that arise with distributed machine learn-
ing. We subsequently conducted a comprehensive overview
of various defensive mechanisms presented in existing litera-
ture, which aim to tackle these types of attacks. Furthermore,
this survey identified the unique features of adversaries at
various levels of the distributed learning systems, while also
outlining several research challenges and potential directions
for future investigations in this area. Therefore, this survey
provides a valuable source of information for readers who
wish to gain a more comprehensive insight into this topic,
and encourages further exploration and advancement in the
field of distributed machine learning.
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