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ABSTRACT Recently, convolutional neural networks (CNNs) have shown promising achievements in
various computer vision tasks. However, designing a CNN model architecture necessitates a high-domain
knowledge expert, which can be difficult for new researchers while solving real-world problems like
medical image diagnosis. Neural architecture search (NAS) is an approach to reduce human intervention
by automatically designing CNN architecture. This study proposes a two-phase evolutionary framework to
design a suitable CNNmodel for medical image classification named TPEvo-CNN. The proposed framework
mainly focuses on architectural depth search and hyper-parameter settings of the layered architecture for the
CNN model. In the first phase, differential evolution (DE) is applied to determine the optimal number of
layers for a CNN architecture, which enhances faster convergence to achieve CNNmodel architectures. In the
second phase, the genetic algorithm (GA) is used to fine-tune the hyper-parameter settings of the generated
CNN layer architecture in the first phase. Crossover and mutation operations of GA are devised to explore
the hyper-parameter search space. Also, an elitism selection strategy is introduced to select the potential
hyper-parameters of the CNN architecture for the next generation. The suggested approach is experimented
on six medical image datasets, including pneumonia, skin cancer, and four COVID-19 datasets, which are
categorized based on image types and class numbers. The experimental findings demonstrate the superiority
of the proposed TPEvo-CNN model compared to existing hand-crafted, pre-trained, and NAS-based CNN
models in terms of classification metrics, confusion matrix, radar plots, and statistical analysis.

INDEX TERMS Convolutional neural network, differential evolution, genetic algorithm, medical imaging,
neural architecture search.

I. INTRODUCTION
In recent years, deep learning models, specifically convo-
lutional neural networks (CNNs), have shown impressive
performance in various computer vision tasks, including
image classification [1], object recognition [2], image
splicing [3] and image segmentation [4]. Several CNN
models, including LeNet [5], AlexNet [6], VGGNet [7],
Inception [8], ResNet [9], and DenseNet [10], have gained
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popularity due to their ability to solve specific problems
with large numbers of parameters and design options.
Hence, the performance of a CNN model varies depending
on the problem nature and the architecture used in the
CNN model. The performance of a CNN model is directly
affected by its architectural design, which includes the layer
types, arrangement, and associated hyper-parameter settings
of the layers [11]. Notably, developing a CNN model is
vital for a specific problem that needs human involvement,
and a trial-error method leads to considerable time and
computational resources. Therefore, designing a suitable
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CNN model for a task like medical image classification
by considering diverse architectures and hyper-parameter
settings is challenging.

Neural architecture search (NAS) is an approach recently
developed for automatically designing the architecture of
CNN, which involves determining the appropriate layer
arrangement and hyper-parameter configuration [12]. It has
three components: search space, search strategy, and per-
formance estimation strategy. The search space pertains to
the representation of CNN architectures. The search strategy
involves efficient exploration of the architectural search space
to discover an appropriate CNN model. Finally, performance
evaluation is concerned with assessing the performance of the
generated CNN model architectures, aiming to speed up the
search process and reduce the evaluation cost. Furthermore,
recent research [13], [14] revealed that NAS can be treated as
a non-linear complex optimization problem.

Recently, researchers have concentrated on several NAS
components to design the CNNmodel architecture [15], [16],
[17], [18], [19], [20].Most of the existing works are dedicated
to explore the various search strategies. Most commonly, the
search strategies can be classified into reinforcement learning
(RL) based [21], [22], [23], [24], [25], and evolutionary
algorithm (EA) based [26], [27], [28], [29], [30], [31], [32],
[33] search. RL-based strategy can not be suitable for NAS
because it requires high computing resources and is often
computationally expensive. On the other hand, EA-based
search strategies have shown promises in NAS research
due to powerful global search capabilities. Researchers have
developed meta-heuristic algorithms inspired by nature and
animal communities’ behaviour to design optimal CNN
model architecture [34], [35]. However, most of these studies
significantly impact the performance of the designed CNN
model architecture.

The earliest EA-based algorithm is Stanley and Miikku-
lainen’s neuroevolution of augmenting topologies (NEAT)
[36], which simultaneously optimizes a feed-forward neural
network’s topology structure and weights. To learn deep
CNN structures automatically, Xie and Yuille [26] used a
genetic algorithm (GA) that utilizes an encoding technique
to represent every network structure as a binary string with a
fixed length. Sun et al. [30] presented an encoding scheme
that varies with the length and a novel fitness evaluation
method using GA to construct an optimal CNNmodel for the
image classification task.Most of these studies encoded CNN
model architectures randomly from pre-defined architectural
search spaces, including layer types and the total number of
individual layers. It can be observed that more randomness
may cause the architecture design to get trapped in a
local optimum, which leads to premature solution [37].
Therefore, starting the initial population of CNN architecture
with the exemplary layer types is an excellent research
opportunity. These will accelerate the required convergence
rate to develop a worthy CNN model. Furthermore, it is also
essential to properly adjust the hyper-parameters of each layer
to enhance the performance of a CNN structure.

This work proposes a two-phase evolutionary framework
to design a suitable CNN model for biomedical image
classification tasks named TPEvo-CNN. The first phase
includes architecture depth search (ADS), which can find
the optimal number of layer types of the CNN model by
using the conventional differential evolution (DE) algorithm.
On the other hand, the second phase is concerned with the
hyper-parameter search (HPS) of the CNN layers generated in
the first phase by using an improved genetic algorithm (GA),
which is enhanced with introduced crossover and mutation
operations. Overall, the contributions in this work are as
follows:
• A two-phase evolutionary framework for designing
compatible CNN model architecture is proposed to
explore the NAS-based biomedical image classification.

• Phase I (architecture depth search) finds suitable convo-
lutional, pooling, and fully connected layer types for the
target tasks using the DE algorithm. This architectural
layer information is transferred to Phase II.

• Phase II (hyper-parameter search) acts as hyper-parameter
optimization by tuning the hyper-parameters of the
layer architectures obtained from Phase I through GA.
Here, crossover and mutation operators are proposed to
explore the hyper-parameter search spaces.

• The experiment is conducted on six biomedical image
datasets, including four types of COVID-19, pneumonia,
and skin cancer datasets, to measure the efficiency and
effectiveness of the proposed model.

• A comprehensive comparison among the results of vari-
ous hand-crafted, pre-trained, NAS-based CNN models
and the proposed model itself are conducted based on
classification metrics, confusion matrices, radar plots,
and statistical analysis to validate the obtained results.

The subsequent sections of the article are organized as
follows: Section II outlines the fundamentals of CNN model
architecture, differential evolution, genetic algorithm, and
related work relevant to our investigation. The proposed
approach is described in Section III. Section IV presents
the datasets description, parameter settings, and system con-
figuration. The experimental results of the proposed model
and a comparison with existing state-of-the-art methods are
presented in Section V. Finally, Section VI provides the
conclusion of this study and outlines the future scope.

II. PRELIMINARIES
A. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional neural networks (CNNs) are one class of
deep learning models primarily used for computer vision
tasks [38]. These networks comprise several layers arranged
in a specific sequence to build an operational CNN model.
These layers can be classified into convolution denoted as
Convo, pooling (Pool), and fully connected (FC) layers. The
convolution layer serves as the primary unit of CNN and
is responsible for extracting the hierarchical features from
the input data [39]. The size of the convolutional layer in
a CNN is determined by the number of filters, the size of
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the filters, and the stride size. The pooling layer reduces
the dimensionality of the feature map generated by the
convolutional layer with hyper-parameters such as pooling
kernel size, stride size, and pooling type. The most common
types of pooling used are max pooling and average pooling.
Max pooling retains the most prominent features from the
convolved feature map, while average pooling calculates the
average value of the features from the selected feature map.
After a few convolutional and pooling layers sequences, the
obtained featured map is flattened into a single column and
fed to the FC layers for classification. Finally, the probability
distributions of the CNNmodel outputs are computed through
a softmax layer.

There is no fixed guideline or rule to provide a precise
number of Convo, Pool, and FC layers that can be used
in a CNN model. Furthermore, the arrangement of these
layer types is also a challenging task. It can consist of
sets of Convo layers followed by Pool or alternated Convo
and Pool layers. Thus, the overall number of each layer
type, their placement in the CNN architecture, and their
corresponding hyper-parameter configurations have a vast
exploring research area for solving a problem.

B. DIFFERENTIAL EVOLUTION (DE)
DE is a population-based meta-heuristic algorithm devel-
oped to search global solutions for non-linear complex
optimization problems [40]. It has four steps: initialization,
mutation, crossover, and selection to guide the search process.
Initially, it starts with a population (X ) of individuals
(x1, x2, . . . , xNP), which are initialized randomly within the
search space. Mutation operation produces donor vector (vgi )
of the ith individual at generation g. The commonly used
mutation operation is defined as:

vgi = xgr1 + F ×
(
xgr2 − xgr3

)
, (1)

where, xgr1 , x
g
r2 , and xgr3 are three mutually exclusive distinct

individuals randomly taken from the population. F is a
positive parameter denoted as the scale factor that scales
the difference between two vectors. After generating the
donor vector, the crossover operation is performed. The most
common binomial crossover is mathematically defined in
Eq. (2).

ugj,i =

{
vgj,i if randj [0, 1] ≤ CR or j = jrand
xgj,i Otherwise,

, (2)

where ugj,i denotes the j
th dimension of the ith individual at

gth generation. The crossover operation begins by generating
a random number for each individual, jrand . Additionally,
a random number, randj ∈ (0, 1), is generated for each
dimension of each vector. These values are then compared
to the crossover rate, CR, and jrand to determine whether the
crossover will be applied to the dimension. Subsequently,
a trial vector, ugi , is created, and its fitness is compared to that
of the parent vector to identify the superiority between them.
The mutation, crossover, and selection are then repeated

sequentially until the maximum number of generations or a
user-defined stopping criterion is reached.

C. GENETIC ALGORITHM (GA)
GA is a meta-heuristic approach that follows the natural
selection process of the environment [41]. The algorithm
uses a natural selection strategy to develop high-quality
solutions for complex optimization problems. The GA com-
prises five steps: population initialization, fitness evaluation,
selection, crossover, and mutation. GA involves creating an
initial population consisting of all feasible solutions for a
given problem. Each individual, known as a chromosome,
comprises a collection of genes. Individuals are evaluated
using a fitness function, which describes the capability to
form an optimal solution. Individuals with higher fitness
values will have a greater chance of being selected to
reproduce in subsequent generations. Depending on the
application and the search problem, several fitness functions
are used [42]. Classification accuracy, for example, is a
typical fitness operation for various classification problems.
In the selection step, individuals are chosen based on their
fitness values for the next generation. One of the essential
components of the GA is the crossover operation. This
operation produces new offspring from the individual parents
by exchanging information of genes based on the crossover
probability Pc. Some genes in new offspring are mutated
using mutation operations based on the mutation probability
Pm to increase population diversity from generation to
generation. This GA process ends when the stopping criteria
are met, or the maximum computing budget is reached. The
final step involves reporting the best individual found across
all generations as the optimal solution.

D. RELATED WORKS
Designing an optimal CNN model for computer vision tasks
has no pre-defined rules; therefore, it requires expertise to
create such models. Minimizing human intervention while
creating a suitable architecture for a given task is challenging.
Researchers have recently introduced various approaches to
automatically build the optimal CNN architecture for their
problem. This section discusses related works on several
NAS models, including RL and EA methods for image
classification tasks. Furthermore, we have also discussed
the various CNN models built particularly for COVID-19
datasets.

1) RL-BASED CNN MODELS
Baker and his colleagues [21] introduced an RL-based
meta-modelling algorithm called MetaQNN, which aims at
automatically producing high-performance CNN architec-
tures for the classification task. To choose CNN layers
and their corresponding parameters from a predefined finite
search space, the authors employQ-learning with an ϵ-greedy
exploration strategy. The performance of MetaQNN is tested
on three datasets, including CIFAR-100, SVHN, and MNIST
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datasets, and compared with existing NAS models regarding
their classification accuracy. Zoph et al. [22] proposed CNN
architectures design by using the RL method, which they
named NASNet. NASNet searches architectural building
blocks composed of Convo, Pool, and FC layers on a small
CIFAR-10 dataset. The next step involves transferring the
blocks to a larger dataset, ImageNet, by combining multiple
copies of these blocks, each with its own set of parameters,
to form a complete CNN architecture. Moreover, the authors
also proposed a new regularisation approach to improve the
model’s generalization significantly. Cai et al. [23] suggested
an efficient architecture search (EAS) framework that effi-
ciently explores the architecture space by reusing the initial
network’s weights. The authors introduced a meta-controller
that utilizes function-preserving transformation to increase
the network’s depth or layer width. Their proposed method
tested on only two datasets, CIFAR-10 and SVHN. However,
RL significantly impacts the automatic design of CNN
models from the NAS perspective, but this requires handling
both an agent and child network (generated by the agent),
which is tedious and time-consuming [43].

2) EA-BASED CNN MODELS
Recently, researchers have shown a growing interest in EA
to design CNN architecture for image classification tasks.
Xie and Yuille [26] introduced the automatic architecture
design of CNN (GeNet) for image classifications. They used
a fixed-length variable encoding schema to represent each
CNN architecture. They followed the selection, crossover,
and mutation operations of GA on each encoded network
to evolve the CNN architecture. However, the proposed
work only focused on the connection between layers without
considering the corresponding hyper-parameters of those
layers. The model was tested on the CIFAR-10 dataset.
Zhu et al. [27] introduced a method for efficient evolu-
tion of neural architecture (EENA) regularized for image
classification. Their proposed EENA is guided by prior
learning experiences that accelerate the search process with
the crossover and various mutation operations, which can
lead to reduced computational costs. The authors tested
their algorithm only on the CIFAR-10 and CIFAR-100
datasets. Tan et al. [28] introduced a multi-objective opti-
mization algorithm for evolving the network architecture
of the EfficientNet-B7 model. Also, they incorporated a
uniform scaling approach that scales the convolutional layer
depth and width. Their proposed method is investigated
on three datasets: CIFAR-10, CIFAR-100, and ImageNet.
This approach might be expensive in computation due to
the inclusion of multiple objective functions. Moreover, the
architecture layout is also restricted to a specific CNNmodel.
Suganamu et al. [29] proposed cartesian genetic program-
ming (CGP) to construct high-performing CNN architectures
(CGP-CNN) for classification tasks. The proposed method
used CGP to encode CNN structure along with different
layer connections. (1+λ) evolution strategy helps to explore
the CNN architecture search, where CNN layer types and

connectivities change randomly based on genetic mutation
operations. In addition, they also implemented rich initial-
ization and early stopping techniques into the CGP-CNN
to accelerate the evolution process. The authors evaluated
the performance of the proposed model on CIFAR-10,
CIFAR-100, and ImageNet datasets and compared it with
only two manual CNN designs: VGG-16 and ResNet archi-
tecture. However, the early stopping mechanismmay stop the
training earlier before getting the optimal solution. Fernandes
and Yen [34] suggested an approach based on particle
swarm optimization (PSO) for optimal CNN architecture
to address the image classification tasks and named it
psoCNN. They introduced a novel variable-length encoding
scheme to represent each CNN architecture. PSO velocity
operation updated the CNN layer types by copying them from
personal/global best solutions to optimize the search process.
The effectiveness of the psoCNN was tested on various
image datasets, including MNIST and its variations, convex
and rectangular image datasets. However, the architectural
search space may need to be thoroughly explored because
each new particle is constructed based on the only personal
or global best particle. Table 1 summarizes the EA-based
NAS studies focusing on advantages, disadvantages and
limitations.

3) CNN MODELS FOR COVID-19
Recently, some studies have focused on designing better
CNN models to diagnose COVID-19 patients by analyzing
various chest X-ray image datasets. Wang et al. [44] devel-
oped COVID-Net, an early CNN model specifically created
for identifying COVID-19 from chest X-ray images. The
authors evaluated their model using a four-category classi-
fication task, distinguishing between normal, bacterial pneu-
monia, viral pneumonia, and COVID-19 chest X-ray images.
Their experimental results demonstrated superior classifica-
tion accuracy against the popular manually designed CNN
model architectures. Apostolopoulos and Mpesiana [45]
employed transfer learning with advanced popular CNN
architectures to diagnose COVID-19 patients. They found
that the proposedMobileNet CNN architecture outperformed
other models regarding classification accuracy in three class
category tasks, such as healthy, pneumonia, and COVID-19
X-ray datasets. Another study by Ozturk and colleagues [46]
proposed the DarkCovidNet model for COVID-19 diagnosis
using two different datasets: a binary dataset consisting
of no-findings versus COVID-19 classes and a multi-class
dataset consisting of no-findings, pneumonia, and COVID-19
classes. According to the investigation, the DarkCovidNet
algorithm demonstrated better performance in identifying
COVID-19 cases when working with the binary dataset than
the multi-class dataset. Waheed et al. [47] designed a new
model named CovidGAN to improve the performance of
CNN architectures for COVID-19 diagnosis. They discovered
that actual data with synthetic augmentation (CNN-SA)
generated from an auxiliary classifier generative adversarial
network (ACGAN) basedmodel for COVID-19X-ray images
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TABLE 1. Summary of the EA-based CNN models.

contained crucial features and visualizations that enhanced
the classification performance of COVID-19 X-ray images.
Khan et al. [48] introduced a CoroNet model that utilizes
pre-trained Xception architecture that was tested on the large
chest X-ray dataset. The model has been evaluated in four,
three, and two-category classifications, including normal,
bacterial pneumonia, viral pneumonia, and the COVID-19
image dataset. This study achieved better results with mini-
mal data pre-processing. Ezzat et al. [49] developed the GSA-
DenseNet121-COVID-19 model that used the pre-trained
CNN DenseNet121 architecture and employed gravitational
search algorithm (GSA) to get the optimal hyper-parameters.
The results demonstrated improved classification perfor-
mance when using a two-class dataset of COVID-19 positive
versus negative cases. Song and colleagues [50] developed
a DRENet model based on the ResNet50 CNN model and
included a feature extraction mechanism to extract image
details. The model is tested on computed tomography (CT)
images with three classes: normal or healthy, bacterial
pneumonia, and COVID-19. Ibrahim et al. [51] employed
supervised deep learning techniques to develop four clas-
sification models, each combining CNN, Bi-GRU, GRU
with VGG19 and ResNet152V2 CNN models. The models
are evaluated using publicly available CT and chest X-ray
images in four classes: normal, pneumonia, lung cancer,
and COVID-19. Experimental outcomes indicated that the
VGG19+CNN model exhibited superior performance among
the four proposed models. Louati et al. [52] developed a
bi-level optimization approach called Bi-CNN-D-C for joint
design and compression of convolutional neural networks.
The upper level generates the new architecture with minimum
convolutional blocks, while the lower level prunes the
generated architecture. The co-evolutionary migration-based
algorithm (CEMBA) is used as a search engine to address the
bi-level architectural optimization problem. The Bi-CNN-D-
C model is tested on a two-class image dataset comprising
the cases of normal and COVID-19. The results suggest

that the proposed model outperforms existing CNN when
applied to a similar dataset. Singh et al. [53] introduced
a meta-heuristic strategy to optimize deep CNN to detect
COVID-19 from chest X-ray images and named it CNGOD.
The deep learning model comprises depth-wise separable
convolutions that independently look at cross-channel and
spatial correlations. The grasshopper optimization algorithm
(GOA) is used to optimize the network. The maximum
probability-based cross-entropy (MPCE) loss function min-
imizes the classification error and improves the training
time. The model is evaluated on three chest X-ray images:
normal, pneumonia, and COVID-19. Table 2 summarizes the
related COVID-19 CNN models by providing the proposed
approaches, limitations, and the datasets used in the original
work.

This study proposes an algorithmic framework incor-
porating a two-phase strategy for automatically evolving
CNN architecture. The proposed method is tested on several
medical image datasets to examine the effectiveness of the
proposed work. To the best of our knowledge, only a few
studies have previously examined these datasets from the
NAS perspective.

III. THE PROPOSED APPROACH (TPEVO-CNN)
A. MOTIVATION
The evolution of the CNN process involves searching for
an optimal architecture for a specific task, often finding
the best combinations of layer types, layer connections,
and connection methods (such as summation or cas-
cading). However, the effectiveness of any CNN model
depends not only on its basic architecture but also on
the appropriate hyper-parameter settings of the layer types.
Selecting appropriate hyper-parameters is a critical job.
Manual hyper-parameter tuning is a trial-and-error process
requiring enough time to evaluate each hyper-parameter
setup associated with a CNN model. However, our proposed
work is mainly based on separate optimization of layers
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TABLE 2. Summary of the start-of-the-art CNN models applied on COVID-19 datasets.

and hyper-parameters in one algorithmic framework as the
problem becomes more complex while both are optimized
simultaneously by exponential increase of search space
due to the encoding size of CNN architecture, making
it computationally expensive and challenging to explore
promising CNN architecture. Therefore, the architecture
and hyper-parameter search of a CNN model within
one algorithmic framework can significantly improve the
model’s performance. Thus, an efficient two-phase evolu-
tionary framework is proposed to design an optimal CNN
model architecture for solving medical image classification
tasks.

In the first phase, the DE algorithm finds the optimal
architectural depth of CNN models, including num-
bers of Convo, Pool, and FC layers. In the second
phase, HPS is performed using GA with proposed
crossover and mutation operations for selecting appropriate
hyper-parameter settings for CNN models generated in
the first phase. Moreover, an elitism selection strategy
is employed to hold the promising hyper-parameters of
CNN architecture for the next generation. The proposed
approach aims to accelerate faster convergence to achieve

a high-performing, suitable CNN model for medical image
classification tasks. Detailed descriptions of each phase
of the proposed method are presented in the upcoming
subsections.

B. OVERVIEW OF TPEVO-CNN
The entire framework of the proposed TPEvo-CNN algorithm
is depicted in Figure 1. At first, the given dataset is divided
into training and testing sets. The training set is again split
into two groups, namely training and validation, to evaluate
the fitness of the generated CNN architecture by the proposed
framework. The proposed two-phase method is conducted
sequentially in Phase I and Phase II. In Phase I, a set of
optimal depth CNN architectures are determined using the
DE algorithm named architecture depth search (ADS). The
hyper-parameter settings of the generated CNN architectures
in Phase I are tuned using GA called hyper-parameter
search (HPS). The crossover and mutation operations of
GA are devised to achieve hyper-parameter settings of
the CNN model. Moreover, an elitism selection strategy
is introduced to keep the potential individuals for the
subsequent generations in the HPS. Hence, the best CNN
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FIGURE 1. The overall framework of TPEvo-CNN algorithm.

architecture is selected, considering the highest classification
accuracy based on the validation dataset within the predefined
maximum generations. Finally, the obtained best CNNmodel
is trained on the original training dataset and tested on the test
dataset to record the classification accuracy for performance
evaluation of the proposed method.

C. PHASE I: ARCHITECTURE DEPTH SEARCH
Optimal depth is crucial to design the initial structure of
any CNN model. This phase determines the number of
Convo, Pool, and FC layers in a workable CNN model.
The total number of layers within a given CNN model
represents its depth. In the proposed work, a conventional
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Algorithm 1 Proposed Phase I (ADS)
Input: population size: NP, maximum generation:

gmax , mutation factor: F , crossover rate:CR.
Output: optimal depth of each individual.
X ← x1, x2, . . . , xNP with D dimensions;

// Initialize population
for i = 1 to NP do

xi← randomly initialize the number of Convo,
Pool and FC layer from the Section IV-B;
// fitness evaluation
f (xi)← compute_fitness(xi,Dtrain,Dvalid );
fitness(i) = f (xi);

end
while g ≤ gmax do

for i = 1 to NP do
Generate three random indexes r1, r2 and
r3 with r1 ̸= r2 ̸= r3 ̸= i;
vgi ← xgr1 + F (xgr2 -x

g
r3 );

// mutation
jrand ← randind(1,D); // crossover
for i = 1 to D do

if randj(0, 1) ≤ CR || j = jrand then
ugi,j← vgi,j;

else
ugi,j← xgi,j;

end
end
fitness(i) = f (ugi );

end
// selection for next generation
if f (ugi ) ≤ f (x

g
i ) then

xg+1i ← ugi ;
else

xg+1i ← xgi ;
end

end
g← g+ 1;
Return optimal depth of {x1, . . . , xNP};

DE is used to find the optimal number of different layer
types to design the basic structure of a functional CNN.
We devise the proposed ADS strategy in Algorithm 1. The
corresponding population initialization, fitness evaluation,
mutation, crossover, and selection operations are expanded
in the following subsections.

1) POPULATION INITIALIZATION
Population is defined as the number of individuals ini-
tially distributed within the whole search space. Here,
X is a population of NP individuals denoted as X =

{x1, x2, x3, . . . , xNP}. Each xi has three dimensions repre-
senting the number of Convo, Pool, and FC layers for a
CNN structure. In the initialization process, individuals in

FIGURE 2. An example of mutation operation in Phase I.

the population are initialized randomly with a pre-defined
architectural search space as described in Section IV-B.

2) FITNESS EVALUATION
Every individual is evaluated through a fitness function,
which provides the quality of that individual to perform
some tasks. The fitness is assessed by considering the
classification accuracy of the CNN model concerning the
validation dataset. Each individual needs to convert a
workable CNN architecture during the fitness evaluation
phase. Therefore, after selecting the number of convo, pool,
and FC layers, we randomly define the hyper-parameters
of each layer from the pre-defined hyper-parameters set
mentioned in Section IV-B. It should be noted that the first
and last layers of each individual must be limited to Convo
and FC according to the CNN framework. The popular
categorical cross-entropy function [54] is used to calculate
the error value of each generated CNN architecture. Then,
the error value is converted to classification accuracy by
subtracting the corresponding error value from 1. The Xavier
initialization [55], rectified linear unit (ReLU) [56], and
Adam optimizer [57] are used in this work to initialize
weights, activation function, and optimizing parameters of
the CNN model.

3) MUTATION
DE performs the mutation operation to generate the donor
vector, vgi = (vgi,1, vgi,2, . . . , vgi,D) corresponding to the
target vector xgi . Among the different mutation schemes, the
DE/rand/1 scheme is used widely in various applications
due to its easy implementation and good diversity in the
search space [58]. Thismutation scheme is used to explore the
depth of CNN model architecture in our study and illustrated
in Figure 2. In the example, xr1 , xr2 and xr3 are three mutually
exclusive random individuals chosen from the population
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FIGURE 3. Example of crossover operation in Phase I.

X to generate the donor vector corresponding to the target
vector xi respectively. The difference (xr2 -xr3 ) is computed
between xr2 and xr3 on the corresponding dimension and
the absolute value is considered. Boundary checking is done
if both xr2 and xr3 have the same number of similar layer
types in the same jth dimension. Then, the difference vector
is multiplied with the scaling factor F , and the corresponding
real number (floating point) is converted into an integer using
the round-off technique. Here, F is set as 0.6 based on the
literature study of the DE algorithm [58]. Finally, xr1 is added
to generate the donor vector vi corresponding to the target
vector xi.

4) CROSSOVER
After mutation, a trial vector ugi = (ugi,1, u

g
i,2, . . . , u

g
i,D)

is obtained according to the binomial crossover operator
on xgi and vgi , as shown in Figure 3. In the crossover, one
component of vi is picked randomly and assigned to the jrand
variable. A set of random numbers r ∈ (0, 1) is generated for
each dimension (j) for creating trial individual, ui. Finally,
if r ≤ CR or j = jrand , then jth component of ui comes from
the corresponding component of vi; otherwise from xi. This
process acts as of Eq. (2).

5) SELECTION
Individuals selected for the next generation (g + 1) are
based on the classification accuracy as compared between
the target vector xi and the trail vector ui which is defined in
Eq.(3).

xg+1i =

{
ugi if f (ugi ) ≥ f (xgi )
xgi Otherwise

. (3)

Here, f represents the fitness function that reveals the
classification accuracy concerning the validation set. The
mutation, crossover, and selection processes are repeated

Algorithm 2 Proposed Phase II (HPS)
Input: population size: NP, maximum generation: T ,

crossover probability: Pc, mutation
probability: Pm.

Output: optimal hyper-parameter settings of each
individual.

{x1, x2, . . . , xNP} ← population initialization of
hyper-parameters with the predefined ranges;
fitness← compute_fitness (xi);
for t = 1 to T do

Qt ← ∅;
while | Qt |< NP do

o1, o2← compute_crossover (p1, p2, ρc);
// generate two offspring

individuals using proposed
crossover strategy from Pt−1

o1, o2← compute_mutation (o1, o2, ρm);
// mutate two offspring

individuals using proposed
mutation strategy

Qt ← Qt ∪ o1 ∪ o2;
end
fitness← compute_fitness (Qt );
// calculate the fitness of each

individual in Qt
pt ← compute_selection (Pt−1, Qt );
// choose the individuals for the

next generation based on the
proposed selection method

end
Return optimal hyper-parameter of {x1, . . . , xN };

to the maximum number of generations as the user
provides.

Finally, a set of individuals are collected consisting of
the architectural information about the number of Convo,
Pool, and FC layer for a workable CNN model, and all the
individuals are transferred to Phase II for hyper-parameter
tuning of these layer architectures.

D. PHASE II: HYPER-PARAMETERS SEARCH
In this phase, the GA algorithm is used to fine-tune the
hyper-parameters of the CNN architecture generated in
Phase I. The pseudo-code of the proposed HPS is presented
in Algorithm 2. At the beginning, each individual (found
during the ADS phase) is randomly assigned the associated
hyper-parameters to each layer type from predefined ranges
provided in the Subsection IV-B. After that, the evolution
of hyper-parameters is performed by the GA algorithm
with the proposed crossover and mutation operations.
Furthermore, an elitist selection approach is introduced to
select potential CNN hyper-parameter settings for the next
generation.
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Algorithm 3 Fitness Evaluation
Input: population size: NP, training data: Dtrain,

validation data: Dvalid , maximum epoch
number: epomax .

Output: individual fitness.
for each individual xi do

CNN← converts the encoded information of an
individual into a CNN architecture ;
Train CNN on Dtrain for a total of epomax epochs;
xi.fitness← accuracy of CNN on Dvalid ;

end
Return fitness of each individual;

1) POPULATION INITIALIZATION
Population initialization impacts the performance of the NAS
study. Initialization of CNN architectures, i.e., individuals,
can be made to distribute throughout the search space.
In Phase II, the population size remains the same as in
Phase I because we must find hyper-parameter settings
of the same number of CNN architectures generated in
Phase I. The obtained individuals containing the number of
Convo, Pool, and FC layers from Phase I are then converted
into a functional CNN architecture randomly and can be
represented as xi = (Convo,Pool,Convo,Pool, . . . ,FC).
In TPEvo-CNN, Convo layers select the filter size cf and the
number of filters cn from a predefined range, while the stride
size cs is set as 1× 1. Similarly, for Pool layers, the kernel
size pk is chosen from a predefined range, while the stride size
ps is considered as 1× 1 respectively in this study. For each
pooling layer, the pooling type (ptype) is randomly assigned as
either average or max pooling. For the FC layer, the number
of neurons fn is selected from the user-specified range. Thus,
each element in the vector representation xi refers to a layer
type and its associated hyper-parameter settings. The limits
of the hyper-parameters for each layer type are furnished in
Section IV-B.

2) FITNESS EVALUATION
Every individual is evaluated through a fitness or objective
function which provides the individual’s rank or quality.
In this phase, an individual’s fitness is assessed in the
same way as in Phase I by considering the classification
accuracy of the CNN model with respect to the validation
dataset. Algorithm 3 outlines the fitness evaluation process
of Phase II. First, each generated CNN model must be
trained using the given training dataset Dtrain. The Xavier
initialization [55], rectified linear unit (ReLU) [56], and
Adam optimizer [57] are used in this work to initialize
weights, activation function, and optimizing parameters of
the CNN model.

3) CROSSOVER
Crossover is designed to make the population diverse by
sharing information among individuals. The performance of

Algorithm 4 Proposed Crossover Strategy
Input: population size: NP, individuals at generation

t: Pt , crossover probability: Pc.
Output: two offspring o1 and o2.
o1, o2← ∅;
for i = 1 to N do

for j = 1 to 10 do
p1, p2← choose two individuals randomly
from Pt ;

δ← compute the different between p1 and p2;
end

end
p1, p2← max(δ);
// selected parent individuals
r ← generate a random number between (0,1);
if r ≤ Pc then

len1← compute the length of p1;
len2← compute the length of p2;
for n = 1 to min (len1,len2) do

K(n)← stores the genes information of p1
randomly from [1,len1);
L(n)← stores the genes information of p2
randomly from [1,len2);

end
// exchange the information

between two parent individuals
// K(n) and L(n) same layer type
for i = 1 to K do

for j = 1 to L do
temp← K(i);
K(i)← L(j);
L(j)← temp;

end
end
o1, o2← p1, p2;

else
o1, o2← p1, p2;

end
Return o1, o2;

any suggested algorithm can be enhanced by implementing
an efficient information-sharing tactic. Here, a crossover
strategy is proposed to explore the hyper-parameters search
space. The overview of the devised crossover strategy is
presented in Algorithm 4.

First, two individuals are chosen randomly from the
population, and the Hamming distance (δ) between them is
calculated. This process is repeated ten times, selecting the
two individuals with the maximum δ value. The maximum
δ value can help to select more diverse individuals from
each other in terms of its hyper-parameters to perform the
evolution process. The selected individuals are treated as
parent individuals p1, p2. An example of the parent selection
approach is shown in Figure 4. After the parent selection,
the crossover is performed on the parents p1 and p2, if a
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FIGURE 4. Example of proposed parent selection strategy in crossover
operation.

random number r ∈ (0, 1) is less than equal to crossover
probability Pc. If not, then p1 and p2 will be considered
as offspring o1 and o2 for the next generation, respectively.
To perform the crossover, first lengths len1 and len2 of two
parents p1 and p2 are computed. After that, two arrays (K)
and (L) with sizemin(len1, len2) are defined to store the gene
information of the parents p1 and p2. The gene information
is structured with the layer types and it’s associated hyper-
parameters values, which will be shared within the two arrays
(K) and (L) using a variable temp. This analogy indicates a
multi-point crossover between two parents and provides more
diversity than a single-point crossover [59], [60]. Finally, two
new offspring o1, o2 are generated from the two parents p1,
p2 after sharing the hyper-parameters information as shown
in Figure 5.

4) MUTATION
Mutation can help for more diversification in the population
and also restrict to get stuck at local optimal during the
execution. Amutation operation is performed when a random
number r ∈ (0, 1) is less than equal to the mutation
probability Pm. First, a position is chosen randomly from the
length of selected offspring o. The position denoted a layer
whichwould be amongConvo, Pool and FC layers. After that,
another random number γ ∈ [1, 3] is generated to perform
the mutation operation. If γ = 1, only one hyper-parameter
of the particular layer type is selected randomly and changed
arbitrarily from the pre-defined ranges, as elaborated in
Section IV-B. No change is made to any hyper-parameter
setting of the selected layer if γ = 2. Finally, in case of
γ = 3, all the hyper-parameters of the selected layer types
will be modified randomly by taking their value from

FIGURE 5. Example of proposed crossover operation in HPS phase.

Algorithm 5 Proposed Mutation Strategy
Input: an offspring: o, mutation probability: Pm.
Output: mutated offspring o.
γ ← ∅;
r ← generate a number between (0,1);
while r ≤ Pm do

i← randomly select integer between 1 to length
(o);

γ ← randomly select integer between [1,3];
if γ = 1 then

o(i)← one hyper-parameter of the particular
layer types will be changed randomly;

else if γ = 2 then
o(i)← no change is made in hyper-parameter
setting;

else
o(i)← all the hyper-parameters of the
particular layer types will be changed ;

end
end
Return mutated offspring o;

Section IV-B. Algorithm 5 provides the proposed mutation
operation for only one offspring individual.

5) SELECTION FOR NEXT GENERATION
Here, an elitism-based selection mechanism is suggested to
construct a constant population size of individuals for the fol-
lowing generation. Generally, tournament or roulette wheel
selection mechanisms are used to build the population for
the next generation [61]. However, these techniques may skip
informative individuals. Therefore, selecting an individual is
critical after the mutation operation in the GA context. Thus,
Algorithm 6 presents the introduced elitism-based selection
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Algorithm 6 Proposed Selection Strategy
Input: parent population at t generation: Pt and

offspring population at t generation: Qt .
Output: the elitism-based generation at t + 1: Pt+1.
Pt+1← ∅;
At ← Pt ∪ Qt ;
Bt [N ]← sort (At ) based on the maximum
classification accuracy and N represents size of array
equal to At ;
for i = 1 to 50% of Pt do

Pt+1← Pt+1 ∪ Bt (i) ;
At [N − 1]← item Bt (i) is removed from At ;

end
while | Pt+1 |<| Pt | do

p← select an individual from Pt by using a
binary tournament selection method;
Pt+1← Pt+1 ∪ p;

end
Return Pt+1;

approach. First, an auxiliary population At is constructed
by combining the current population Pt and offspring Qt at
generation t . Next, At is sorted in descending order based
on the classification accuracy and stored in an array Bt .
After that, the top 50% individuals are considered for the
following population Pt+1 from Bt and these individuals are
removed from At . To keep the population size NP, remaining
individuals for Pt+1 will be selected from Pt using the
famous binary tournament method [61] of GA. Finally, NP
individuals are generated for the population Pt+1.

E. PUTTING ALL TOGETHER
The Algorithm 7 outlines the entire framework of the
suggested TPEvo-CNN method. First, the ADS phase is
conducted for optimal architecture search to determine the
number of Convo, pool, and FC layers in an individual of
population NP as shown in Algorithm 1. Afterwards, optimal
hyper-parameters are set according to the Algorithm 2 for the
CNN architecture generated in Phase I. Finally, the best CNN
(i.e., xbest ) is nominated based on its maximum classification
accuracy. Further, the xbest CNNmodel architecture is trained
on original training data and finally tested on the test
data to collect the accuracy of the proposed framework for
performance evaluation.

F. COMPUTATIONAL TIME COMPLEXITY OF TPEVO-CNN
The computational time complexity (CC) mainly depends on
the specific problem analysis and fitness evaluation part of
an algorithm. The CC of the TPEvo-CNN is computed from
several components of the algorithm that are in two phases.
To enhance the representation, let N denote the population
size, D indicate the number of dimensions, and T represent
the maximum number of generations in the algorithm. The
CC of population initialization is in O(N ×D), while the CC
of the proposed ADS and HPS are in O(T ×N ×D). The CC

Algorithm 7 Framework of the TPEvo-CNNMethod
Input: training dataset: Dtrain, test dataset: Dtest .
Output: best individual Xbest and its test result.
Perform architecture depth search (ADS) in Phase I
according to Algorithm 1;
Perform hyper-parameters search (HPS) in Phase II
according to Algorithm 2 ;
xbest ← max(fitness); // best CNN model
// train the best CNN model
for e1 ≤ train_epoch do

xtrainbest ← train (xbest ,Dtrain);
end
// test the best CNN model
for e2 ≤ test_epoch do

f (xbest )← test (xtrainbest ,Dtest );
end
Return xbest and its test result;

for individual selection of the next generation is in O(T ×N ).
Therefore, the total CC of TPEvo-CNN is in O((2×T ×N ×
D)+ (N × D)+ (T × N )).

IV. EXPERIMENTAL DESIGN
This section details the six medical image datasets used in
our study, as well as the parameter settings of the proposed
method and the system configuration for the experiments.

A. DATASETS
The experiment is conducted on six publicly available
medical image datasets to evaluate the effectiveness and
efficiency of the proposed framework. The datasets include
four types of COVID-19 datasets [46], [62], [63], [64], which
are categorized on image types and different classes collected
from the various sources, and also on pneumonia [65] and
skin cancer [66] datasets. The four types of COVID-19
datasets are chest X-ray images with binary class,1 chest
X-ray images with multi-class,2 Computer Tomography
(CT) images3 and chest radiography images.4 For the
simplicity, these four datasets are denoted as COVID-19x1,
COVID-19x2, COVID-19-CT and COVID-19-Radiography
respectively in this work. The samples of each COVID-19
dataset are divided into a training set and a testing set in a ratio
of 7 : 3 due to the large number of samples in these datasets.
In contrast, the lower number of samples compared to the
COVID-19 datasets, pneumonia, and skin cancer datasets are
divided in a ratio of 9 : 1 for training and testing purposes.
The details of each dataset, such as dataset name, data type,
input size, total samples, training samples, test samples, and
the number of classes, are provided in Table 3. Moreover,

1https://data.mendeley.com/datasets/8h65ywd2jr/3
2https://github.com/muhammedtalo/COVID-19
3https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-

dataset?select=COVID
4https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-

database
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TABLE 3. An overview of six datasets used in the experimental study of TPEvo-CNN approach.

FIGURE 6. Few sample images of (a) COVID-19x1 (b) COVID-19x2
(c) COVID-19-CT (d) COVID-19-Radiography (e) Pneumonia and (f) Skin
Cancer datasets.

a few random samples of the four types of COVID-19,
pneumonia and skin cancer images are presented in Figure 6.

Moreover, the six datasets are pre-processed through
image pre-processing techniques for compatibility with the
proposed CNN model, the pre-trained and NAS-based CNN
models. In our experiment, before feeding each training
example to the model, all the images in the datasets
are resized to a uniform resolution of 180 × 180. This
standardization eliminates the variations in image sizes and
aspect ratios, ensuring consistent inputs for the CNNmodels.
Subsequently, each image is normalized by subtracting its
mean and then dividing the resulting value by standard
deviation (std), as stated in Eq. (4).

normal(x) =
x −mean(x)

std(x)
. (4)

In this context, ‘‘x’’ represents a single image and ‘‘std(x)’’
denotes the standard deviation of the pixel values in
that image with a maximum possible value of 255. This
normalization step reduces the sensitivity to the pixel
intensity variations, aiding faster convergence and improving
the overall performance of the CNN models. Additionally,
we further employ one-hot encoding to transform categorical
class labels into binary vector representations. Together, these
prepossessing steps enhance the fairness and consistency of
model comparisons, leading to improved convergence and
reliable performance across the different datasets.

B. PARAMETER SETTINGS
In this study, parameters of the proposed method are
considered based on the recommendation of the existing
literature as DE [40], GA [61], and deep learning [67]
along with the limited computational resources in our hand.
The associated parameter settings used in the proposed
TPEvo-CNN are provided in Table 4. Here, the population
size is fixed at 20 throughout the evolution processes, while
maximum generations are set at 10 and 20, respectively, for
Phase I and II. ADS is responsible for finding the optimal
depth of the CNN architecture, where each layer type varies
within a pre-defined range. The range of the Convo layer
varies from 3 to 8, the Pool layer from 1 to 4, and the FC
layer from 1 to 3, respectively. In Phase I, for DE the F and
the CR are set as 0.6 and 0.4, respectively, while in GA, the
Pc and the Pm values are set as 0.9 and 0.7, respectively, for
Phase II in our study.

On the other hand, HPS is concerned about the optimal
hype-parameter settings of the generated CNN structures.
In this regard, hyper-parameter ranges can be different from
layer to layer. For the Convo layer of the CNN, the range of
the filter size (cf ) lies from 3× 3 to 7× 7, the stride size is
set as 1× 1, and the number of filters (cn) is selected from
the range of 3 to 256. In case of Pool layer, kernel size (pk )
alters from 2× 2 to 4× 4 and stride size is fixed at 2 × 2.
Moreover, the pooling type (ptype) varies based on randomly
generated number defined as:

ptype =

{
avg_pooling, rand(0, 1) ≤ 0.5,
max_pooling, Otherwise.

(5)

Finally, the number of neurons (fn) for FC layers ranges from
1 to 300.

Furthermore, to train the CNNmodels, we utilized ReLu or
rectified linear unit [56] as activation function, Xavier weight
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TABLE 4. Initial parameter settings for TPEvo-CNN.

initialization [55], and Adam optimization [57] algorithm
due to their popularity in deep learning, respectively. The
popular categorical cross-entropy [54] is used to compute
the classification accuracy of generated CNN models. The
proposed approach maintains a fixed learning rate of
0.001 during execution. To speed up the training speed,
we consider a batch size of 32 for batch normalization (BN)
and 50% dropout connection, as recommended in [68] and
[69]. Moreover, we set 20% of the training images as a
validation sample and conducted the fitness evaluation on it
by considering a single epoch number as recommended in
most of the existing NAS-based CNN model [29], [34] for
evaluation. Nevertheless, the final CNN model architecture
obtained through the TPEvo-CNN model is trained and
tested by considering 100 epoch numbers to evaluate the
performance in our study.

C. SYSTEM CONFIGURATION
The TPEvo-CNN algorithm is developed using Python 3.6.9,
Tensorflow 1.15.0, and Keras libraries 2.3.1. The Experiment
is Conducted on a 7820 Dell Precision Workstation equipped
with Ubuntu 18.04, 2.5GHz Intel 5th Generation Processor,
RAM 16GB, and Nvidia Quadro Graphics Card (RTX5000).

V. RESULTS AND DISCUSSION
In this section, we present the experimental results of the
proposed framework and compare them with the diverse
state-of-the-art CNN models on six medical image datasets.

The results are analyzed and validated based on the differ-
ent performance evaluation metrics, such as classification
metrics, confusion matrix, statistical analysis, and radar
plots explained in the following subsections. Moreover,
the achieved top ten CNN model architectures through
the TPEvo-CNN are discussed with respect to all the
experimented datasets.

A. CLASSIFICATION METRICS
The proposed TPEvo-CNN is evaluated on various classi-
fication metrics, including accuracy, precision, recall, and
F1-score [70]. Accuracy mentions the ratio of correctly
predicted samples to the total number of samples in a dataset
and is defined as:

Accuracy =
True Positive+ True Negative

Total Samples
. (6)

True Positive denotes the positive class that the model
accurately predicts, whereas True Negative represents the
outcomes when a model correctly predicts the negative class.

Precision is a classification metric that measures the
ratio of True Positive samples to the total number of
samples predicted as positive. It is defined as the number of
TruePositive samples divided by the sum of True Positive and
False Positive samples, as follows:

Precision =
True Positive

True Positive+ False Positive
. (7)

Here, False Positive denotes the result predicted wrongly as
a positive class against the negative class of the actual class.

The recall is a metric that measures the number of True
Positive samples predicted as positive by the model from the
total number of True Positive and False Negative samples,
which can be formulated as:

Recall =
True Positive

True Positive+ False Negative
. (8)

False Negative represents the model incorrectly predicting a
negative class while the actual class is positive.

On the other hand, the Precision-Recall metrics for multi-
class problems can be calculated with averaging technique
of classes by using the same formula as defined in Eq. (7)
and (8). First, the multi-class problem is divided into
binary-class problems using the One-vs-Rest class. For
example, if we have a k class, the k class can be binarized
into k tasks. It can be represented by One-vs-Rest averaging
technique as the 1st class Vs remaining k − 1 classes
(2, 3, . . . , k − 1). Therefore, the Precision-Recall metric
for the kth class can be computed by the following Eq.(9)
and (10).

Precision k =
TruePositivek

TruePositivek + FalsePositivek
, (9)

Recallk =
TruePositivek

TruePositivek + FalseNegativek
, (10)

where TruePositivek and FalsePositivek denotes the true
positive value of the kth class and the sum of the false positive
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values of the first k − 1 number of classes corresponding
to the kth class. Similarly, FalseNegativek is the sum of the
false negative values of the first k − 1 number of classes
corresponding to the kth class. Finally, the Precision-Recall
metrics for multi-class problems with respect to a model are
calculated by taking the average of the corresponding metrics
for all the classes and defined as:

Precision =

∑K
k=1 Precision k

K
(11)

Recall =

∑K
k=1 Recall k

K
(12)

The F1-score is the harmonic mean of precision and recall
metrics. It is the same for both binary and multi-class classi-
fication problems and mathematically defined in Eq. (13).

F1-score = 2×
Precision × Recall
Precision + Recall

(13)

1) COMPARISON WITH STATE-OF-THE-ART COVID-19
MODELS
The efficiency and effectiveness of the proposed TPEvo-CNN
is compared with the state-of-the-art CNN models regarding
classification metrics such as accuracy, precision, recall and
F1-score concerning four COVID-19 datasets categorized
based on image types and a number of classes. We have con-
sidered the compared CNNmodels such as COVID-Net [44],
MobileNet [45], DarkCovidNet [46], CNN-SA [47], Coro-
Net [48], GSA-DenseNet121-COVID-19 [49], DRENet [50],
Deep-chest [51], Bi-CNN-D-C [52], CNGOD [53] because
these models have experimented on the same category of
COVID-19 datasets as carried in our work. Notably, the
reproducibility of the developed models for the purpose
of comparison may only sometimes be feasible due to the
unavailability of the code implementation, computational
resources, and the requirements of high execution times as
recommended in the literature [12], [13]. For this reason,
we have collected only the results of the compared CNN
models from the original work and reproduced them in our
study. Moreover, their experimental setups of the compared
models, as mentioned in the original work are summarized in
Table 5.
The accuracy, precision, recall and F1-score values of the

proposed method and the compared models (as reproduced
directly from the original work) are shown in Table 6
for the COVID-19 datasets concerning image types and
numbers of classes. Here, '-' sign reveals that the model
has not been experimented on the corresponding dataset.
The model COVID-Net obtained an accuracy, precision,
recall, and F1-score as 83.5%, 82.3%, 87.23% and 83.92%,
respectively, in four class category classification problems.
The MobileNet obtained better results with three class
classification problems, and associated accuracy, precision,
and recall are 96.78%, 96.46%, and 98.66%, respectively.
The model DarkCovidNet produced more accurate results
on two categories than three, as in column 5 to 8 of
Table 6. The CNN-SA model is evaluated on a two-class

classification problem and achieved 95% prediction result on
all classification metrics. The CoroNet performed better for
the binary classification than the multi-class classification,
as shown in columns 5, 6, and 7 in Table 6. The
GSA-DenseNet121-COVID-19 model achieved accuracy,
precision, recall, and F1-score are 98.38%, 98.5%, 98.5%
and 98%, respectively, in case of two class classification
problem. The model DRENet produced 93% in all four
classification metrics in three class classification challenges.
The model Deep-chest generates the same results, 98.05%,
as its classification accuracy and recall, whereas the precision
and F1-score are 98.43% and 98.24%, respectively. The
recent Bi-CNN-D-C model can generate 96.81% accuracy
for a binary class classification problem. Finally, the model
CNGOD gives the result as accuracy, precision, recall,
and F1-score as 96.83%, 96.52%, 96.63% and 97.08%,
respectively, for a three-class classification challenge. The
proposed TPEvo-CNN produces better classification results
on COVID-19x1 dataset among all four COVID-19 datasets,
which are represented in the bold form in Table 6. The
generated CNN model also performs well against most
state-of-the-art COVID-19 models. TPEvo-CNN achieved
98.2% classification accuracy, second after the model GSA-
DenseNet121-COVID-19 reported 98.5% accuracy, which
seems to be the same. The suggested model is fourth
regarding the 98% recall result, behind CoroNet (two classes)
and GSA-DenseNet121-COVID-19 model. Finally, the
F1-score attained a 98% result and shared the second position
with the GSA-DenseNet121-COVID-19 model after the
CoroNet with two classes and the Deep-chest model. Finally,
we can observe that the proposed model is competitive
compared to the COVID-19 CNN models.

2) COMPARISON WITH PRE-TRAINED AND NAS-BASED
CNNS
Further, to validate the performance of the proposed
model, we have considered the state-of-the-art pre-trained
and NAS-based CNN models for comparison. Due to
time and resource limitations, all these models, includ-
ing our proposed method, experimented on only one
type of COVID-19 dataset that contains chest X-ray
images and two classes. Moreover, the details configu-
ration, i.e., that is architectural information and param-
eter settings are kept unchanged for pre-trained models
such as LeNet-5 [5], AlexNet [6], VGG-16 [7], VGG-19
[7], Inception-V3 [8], ResNet-50 [9], DenseNet-201 [10],
DenseNet-121 [10]. On the other hand, the architectural infor-
mation is borrowed from existing literature of NAS-based
CNN models, including MetaQNN [21], NASNet [22],
EAS [23], GeNet [26], EENA [27], EfficientNet-B7 [28],
CGP-CNN [29], and psoCNN [34]. In contrast, parameter
settings for these models are kept the same as in the
proposed method. Finally, the TPEvo-CNN, pre-trained,
and NAS-based CNN models are executed in the same
system configuration by considering the same performance
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TABLE 5. Summary of the experimental setups of the compared models as mentioned in the literature. ‘x’ indicates unavailability of information.

evaluation strategies such as accuracy, precision, recall, and
F1-score.

The classification metrics, the number of parameters
and the execution time of the proposed TPEvo-CNN and
compared models on COVID-19x1 are presented in Table 7
while the best results are shown in boldface. It can be
observed that the proposed method performs better than all
other NAS models in terms of accuracy, precision, recall,
and F1-score, which are 98.2%, 98.5%, 98.8%, and 98.8%,
respectively. TPEvo-CNN takes 2.21 million in parameters
after only the CGP-CNN model, which is 2.01 million.
Except for psoCNN and CGP-CNN, the optimal CNN
architecture generated by the proposed method takes about
8407.95 seconds to produce the final output on the test
dataset.

In addition, the performance of the proposed method is
also evaluated in terms of classification metrics using an
augmented COVID-19x1 dataset. For this purpose, a random
transformation technique is applied among shear, zoom, rota-
tion, shifting, and horizontal flipping to increase the number
of samples in the dataset. The size of the COVID-19x1
dataset is increased from 6679 (2830 COVID-19 samples
and 3849 normal samples) training samples to 20037 (8490
COVID-19 samples and 11547 normal samples). Similarly,
test samples are increased from 1214 to 3642 COVID-19
and 1651 to 4953 normal samples. Finally, the results
of classification metrics for the TPEvo-CNN model with
data augmentation (TPEvo-CNN + Augment) are included
at the bottom of Table 7. The obtained results reveal
the superiority compared to other models along with the
proposed method without augmentation concerning accuracy
(98.8%), precision (98.7%), recall (98.4%), and F1-score
(98.5%). However, it has produced 3.59 million parameters

and taken 13680.62 seconds as execution time, which is
computationally expensive.

Moreover, the effectiveness and efficiency of the
TPEvo-CNN model is measured on pneumonia and skin
cancer datasets. Tables 8 and 9 summarise the test outcomes,
including classification accuracy, total parameters, and
execution time for the compared models. In the case of
the pneumonia dataset, as given in Table 8, the proposed
method obtained a better 79.4% classification accuracy than
all popular NAS models and placed fifth with 4.89 million
of total parameters. The generated optimal CNN model
takes approximately 5295.88 second to get the final test
result after the existing psoCNN and CGP-CNN models. The
proposed model achieves a better accuracy 83.4% for the skin
cancer dataset than all NAS-based popular CNNmodels. The
optimal CNN model generates 4.53 million parameters and
stands fifth after the models psoCNN, CGP-CNN, LeNet-
5, and EfficientNet-B7. The optimal CNN architecture in
TPEvo-CNN takes 4873.93 seconds to generate the final test
accuracy, the fourth in execution time after the CGP-CNN,
psoCNN and MetaQNN models. In addition, Figure 7 also
depicts the precision, recall, and F1-score of the generated
optimal CNN models concerning the epochs number in
both training and test cases individually for COVID-19x1,
pneumonia, and skin cancer datasets. Thus, the proposed
model demonstrated competitive results for the three datasets
compared to pre-trained and NAS-based CNN models.

B. CONFUSION MATRICES
The obtained confusion matrices are shown in Figure 8
individually in each of the six datasets. For the COVID-19x1
dataset, the top left of the confusion matrix represents the
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TABLE 6. The performance of the TPEvo-CNN compared to the results of other COVID-19 CNN models. A dash (’−’) is used if no test results are reported.
The results of the TPEvo-CNN method are highlighted in bold.

correctly predicted samples True Positive for the COVID-19
class, while the bottom right represents the number
of correctly predicted samples for the normal class as
True Negative. The top right indicates the samples that
belong to the COVID-19 class but can be treated as normal
(False Positive). At the same time, the bottom left defines the
number of samples that belong to the normal class but are
treated as COVID-19 (False Negative). The same follows for
all other five datasets, including COVID-19x2, COVID-19-
CT, COVID-19-Radiography, pneumonia, and skin cancer
dataset.

The confusion matrix results provide valuable insights
into the performance of the proposed TPEvo-CNN algorithm
across different datasets. In the COVID-19x1 dataset, the
algorithm achieved a high number of correct predictions of
image samples (2814) compared to a relatively less number
of incorrect prediction samples (51). Similarly, for the
COVID-19x2 dataset, 329 samples are correctly predicted,

and only nine are incorrectly predicted. Moving on to the
COVID-19-CT dataset, the proposed algorithm demonstrated
711 correct predicted samples and only 34 incorrect pre-
dictions. The multi-class dataset (COVID-19-Radiography)
showcased the algorithm’s efficiency by accurately predicting
6160 image samples while producing only 192 incorrect
predictions. The proposed model predicted 371 samples cor-
rectly for pneumonia cases, while only 96 samples generated
incorrect predictions. Finally, the algorithm performedwell in
the skin cancer dataset by accurately predicting 276 samples
against only 55 incorrect predictions. Overall, these results
suggest that the proposed TPEvo-CNN shows promising
performance for the image classification of six medical image
datasets.

C. STATISTICAL ANALYSIS
Wehave performed a statistical analysis on each experimental
dataset to assess the proposed model’s performance. The
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TABLE 7. A comparative analysis of models for the COVID-19x1 dataset based on accuracy, precision, recall, F1-score, parameter number (in millions),
and execution time (in seconds).

FIGURE 7. The generated precision, recall and F1-score by the best CNN model for COVID-19x1 (top), Pneumonia (middle) and Skin Cancer (bottom)
dataset.
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FIGURE 8. The resulting confusion matrices are shown for the following datasets: (a) COVID-19x1, (b) COVID-19x2, (c) COVID-19-CT, (d)
COVID-19-Radiography, (e) Pneumonia and (f) Skin Cancer.

TABLE 8. Comparative analysis of TPEvo-CNN on the pneumonia dataset
with respect to classification accuracy, number of parameters (in million)
and execution time (in second).

Cohen Kappa (CK) score [71], a statistical method, is used to
quantify the agreement between the actual and predicted class
labels for a classification model. This score can be calculated
with the help of the raw data and the values of the confusion
matrix generated by the classifier. The CK score is defined
mathematically as:

CK =
ρo − ρe

1− ρe
. (14)

TABLE 9. Comparative analysis of TPEvo-CNN on the skin cancer dataset
with respect to classification accuracy, number of parameters (in millions)
and execution time (in seconds).

Here, ρo is the observed agreement between actual and
predicted values. It can be calculated as the ratio of the sum
of diagonal values and the sum of non-diagonal values of
any confusion matrix. Whereas ρe represents the expected
agreement in terms of probability measure that the true
values and false values agree by chance, which helps us
to understand the agreement due to random chance rather
than true observation. The observed and expected agreement
quantify the reliability or agreement between the classifier
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TABLE 10. CK scores of the proposed TPEvo-CNN model for each dataset.

and the experimental dataset. The higher CK scores reveal
the stronger agreement, while the lower indicates the less
agreement for a classifier.

The results of the CK score for the proposed TPEvo-CNN
model on six medical image datasets are presented in
Table 10. It can be observed from the results that the levels of
agreement of the proposed model vary on different datasets.
For the COVID-19 datasets, the CK scores vary between
0.90 and 0.96, which is close to the 1, recommended as strong
agreement. Hence, the proposed CNN model is consistent
in classifying the COVID-19 datasets. Surprisingly, the
CK scores are obtained as 0.53 and 0.63 for pneumonia
and skin cancer datasets, respectively, through the TPEvo-
CNN model. It demonstrates a moderate agreement between
the proposed model with the corresponding datasets. This
unfortunate situation can occur due to class imbalance
and insufficient samples in the datasets used for training
the model. However, the proposed model’s overall perfor-
mance is reasonable and satisfactory based on statistical
analysis.

D. RADAR PLOTS
We also draw radar plots for the generated best CNN
models in Figure 9 to more clearly illustrate the various
classification metrics for each of the six datasets. For
COVID-19x1 dataset, both COVID-19 and the normal class
produce similar accuracy 98.2%, while the COVID-19 class
generates better results of precision 98.9% than normal class
97.7%. The normal class generates a higher value for recall
and F1-score with 99.2% and 98.4% respectively, compared
to 96.9% and 97.9% for COVID-19 class. In case of the
COVID-19x2 dataset, the pneumonia class achieves better
results in all cases of classification metrics compared to the
COVID-19 and normal classes. It generates 98.9% accuracy,
98.8% precision, 98.7% recall and 98.7% F1-score value
compared to 98.2%, 97.3%, 98.6%, 97.9% for COVID-19
class and 98.9%, 98.8%, 98.7%, 98.7% for normal class.
In COVID-19-CT, the COVID-19 class performs better than
the normal class with respect to its recall and F1-score, which
are 95.8%, 95.3%, respectively. The normal class generates
94.9% recall and 95.4% F1-score value. The precision value
of the COVID-19 class is 94.9% while 95.9% for the normal
class. In case of accuracy, both classes generate similar results
of 95.4%. Again, in the COVID-19-Radiography dataset,
among four classes, the normal class produced the best
results compared to the other three classes. The normal class

gives corresponding results of 98.3%, 98.3%, 98.1%, 98.2%
as accuracy, precision, recall and F1-score, respectively.
For the same dataset, the produced accuracy, precision,
recall and F1-score are 98.5%, 95.4%, 95.6% and 95.5%
respectively, for the COVID-19 class, whereas the values are
98.1%, 97.6%, 97.8%, 97.7% for the class lung_opacity and
98.5%, 88.1%, 88.8%, 88.4% for the viral pneumonia. The
pneumonia dataset generates equal accuracy for the bacterial
and viral classes as 79.4%. For the remaining precision, recall
and F1-score, the bacterial type performs well, which are
82%, 82.7%, 84.3% respectively than 67.4%, 72.7%, 70.1%
for viral class. Finally, in the case of the skin cancer dataset,
the benign and malignant classes achieve equal accuracy of
83.4%. But for precision and F1-score, the class benign gives
better results with 92.2% and 85.8% compared to the 72.8%
and 80% for the malignant class. For recall, benign produces
80.2% and far enough from 88.7% in the malignant class.

E. DISCUSSION ON ACHIEVED TOP RANKED CNN MODEL
ARCHITECTURES
The evolution of the best CNN models of six datasets are
further demonstrated in Figure 10 with respect to their train-
ing and validation samples over 20 generations. The initial
training accuracy for the COVID-19x1 dataset is 94.76% in
the first generation, and it steadily improved to 97.89% for
the following 19 generations. The validation dataset showed a
similar pattern, with an initial accuracy of 94.61% in the first
generation, which continued to increase and reached 97.78%
in the 20th generation. Again, the training startedwith 94.06%
accuracy and ended with 96.88% for COVID-19x2 dataset.
On the other hand, for the same dataset, the optimal CNN
model starts and finishes the validation accuracywith 93.89%
and 96.48%, respectively, over an entire generation. The best
CNNmodel of the COVID-19-CT dataset starts training with
a 93.40% accuracy and stops with an accuracy of 95.19%
at the last generation. For validation, the model produced
an accuracy of 93.19% that continued to increase and gave
94.92% accuracy at the maximum generation. The best CNN
model of the COVID-19-Radiography dataset starts training
with a 95.22% accuracy and ends with a 96.92% accuracy
at the last generation. For validation, the model provides an
accuracy of 95.09%, which keeps increasing, and 96.88%
in the last generation. Similarly, in case of the pneumonia
dataset, there is a noticeable improvement in the accuracy
of both the training and validation set with an increase in
the number of generations. The training accuracy begins
at 74.11% and finally reaches an accuracy of 77.09% at
generation 20. Similarly, the validation accuracy starts at
73.91% and increases to 76.98% at generation 20. The
accuracy of the training and validation sets for the skin
cancer dataset increases steadily across generations. The
best CNN architecture starts with a training accuracy of
79.95% in the first generation and improves to 83.67% in
the last generation. Similarly, the validation accuracy begins
at 79.81% and improves to 83.17% in the last generation.
Hence, it is evident that the accuracy for both the training and
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FIGURE 9. Class-wise accuracy, precision, recall, and F1-score for the (a) COVID-19x1 (b) COVID-19x2(c) COVID-19-CT (d) COVID-19-Radiography
(e) Pneumonia (f) Skin Cancer dataset.

validation datasets are consistently improving as the number
of generations increases.

Further, we investigated the hyper-parameter settings
corresponding to each layer of the CNN model through
the scatter plots for each dataset. We have considered
the top ten CNN model architectures and their associated
hyper-parameter settings generated by the proposed model.
The scatter plots for each layer type, such as Convo, Pool,
and FC of the CNN model concerning each dataset, are
presented in Figure 11. In the case of COVID-19x1 dataset,
among the achieved top ten architectures, eight have the
same number as five Convo layers, while two have only six.
It can be observed in Figure 11(a) that the filter sizes and
the number of filters for the Convo layer vary mostly from
3 to 7 and 120 to 250, respectively. On the other hand, eight
architectures attained three Pool layers, and the remaining
two CNNs attained four Pool layers. Their associated hyper-
parameters, such as Pool kernel size, varies from 2 to 3, and
Pool type is obtained as max Pool, shown in Figure 11(b).
Finally, the top ten generated architectures attained the less
number of FC layers (2 or 3) in which the number of neurons
in the layer mostly varies from 160 to 198 as shown in
Figure 11(c). For COVID-19x2 dataset, it can be observed
that eight of the top ten architectures include five Convo
layers, while two have only six Convo layers along with the
variation of 3 to 6 filter sizes and 110 to 250 number of
filters which are presented in Figure 11(a). However, six CNN

model architectures achieved three Pool layers, and the four
CNNs achieved two Pool layers. Their corresponding hyper-
parameters, such as Pool kernel size, which ranges from 2 to
3, and Pool type, which is mostly max Pool, are depicted in
Figure 11(b). Finally, as shown in Figure 11(c), the six CNN
model has two FC layer, and four have one FC layer, with
mostly 112 to 275 neurons per layer. In the context of the
COVID-19-CT dataset, it is evident that most of the top ten
architectures (eight out of ten) consist of five Convo layers.
However, two architectures contain six and seven Convo
layers, respectively, along with a varying range of filter sizes
(ranging from 3 to 4) and filter numbers (ranging from 139 to
242), as illustrated in Figure 11(a). Additionally, seven CNN
models produced three Pool layers, while the remaining three
employ two Pool layers. The hyper-parameters associated
with the Pool layers, such as the kernel size (ranging from
2 to 3) and the predominant use of average pooling, are
depicted in Figure 11(b). Finally, Figure 11(c) demonstrates
that eight CNN models incorporate two FC layers, while
the remaining two have three FC layers. The number of
neurons per FC layer is predominantly within the 178 to
258 range. The COVID-19-Radiography dataset reveals an
exciting pattern with most CNN architectures, comprising
eight out of ten models, consisting of five Convo layers.
However, two architectures stand out by having only six
Convo layers. These models exhibit a wide range of filter
sizes, mostly among 3, 5 and 6, and generated 111 to
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FIGURE 10. The evolution of the six best CNN networks in (a) COVID-19x1, (b) COVID-19x2, (c) COVID-19-CT, (d) COVID-19-Radiography, (e) Pneumonia
and (f) Skin Cancer dataset.

244 filters, as represented in Figure 11(a). Moving on to
the Pool layers, five CNN architectures incorporate three
Pools, while the four models employ two Pool layers, and one
model has one Pool layer. The hyper-parameters associated
with these Pool layers, such as mostly 2 kernel size and
max pooling, are depicted in Figure 11(b). In terms of FC
layers, Figure 11(c) illustrates that eight CNN models have
two FC layers, while the remaining two models employ three
FC layers. The number of neurons in FC primarily ranges
from 112 to 275. The top generated CNN architectures for
the pneumonia dataset exhibit some consistent patterns with

five CNN architectures consisting of eight Convo layers,
three having seven Convo, and two composed of six Convo
layers, as presented in Figure 11(a). The filter sizes are
mostly 3, 5 and 6, with the number of filters varying from
92 to 244. In case of Pool layers, all ten CNN architectures
incorporate three Pool layers along with mostly kernel size
3 and max Pool being the most common type, illustrated
in Figure 11(b). Additionally, in Figure 11(c), eight CNN
models are composed of two FC layers, and two have three
FC layers in which the number of neurons ranges from 98 to
228. The top ten CNN architectures for the skin cancer dataset
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FIGURE 11. The hyper-parameters configuration for the top ten best CNN models are provided in three categories, namely, (a) Convolution, (b) Pooling,
and (c) Fully-Connected layer for each of the six datasets.

TABLE 11. The obtained CNN architectures for each of the six medical image datasets in our experiment.

incorporate six Convo layers, as shown in Figure 11(a). The
commonly used filter sizes are 3, 5, and 6, with the number of
filters varying between 108 and 248. In addition, eight CNN
models are incorporated with three Pool layers, while two
architectures include four Pool layers. Most of the Pool layers
have a kernel size of 3, with a preference for max pooling
and presented in Figure 11(b). Furthermore, two architectures
have three FC layers, five have two FC layers, and three
have one FC layer. The number of neurons in these FC layers
ranges from 148 to 224, as depicted in Figure 11(c).
Finally, the obtained suitable CNN model architectures

using the proposed method corresponding to each of
the six medical datasets are provided in Table 11. Most
of the obtained suitable CNN models for COVID-19x1,
COVID-19x2, COVID-19-CT, COVID-19-Radiography,
pneumonia, and skin cancer datasets are composed of 10, 9,
9, 10, 12 and 11 layers, respectively. For the COVID-19x1
dataset, only five, three and two layers for convolutional,
max-pooling, and fully-connected layers are suitable for
the classification. On the other hand, for the COVID-19x2
dataset, five convolutional layers, two max-pooling layers,

one average pooling layer, and one fully-connected layer are
sufficient. The optimal CNN architecture for the COVID-19-
CT dataset comprises of four convolutional layers, two
average pooling layers, one max pooling layer, and two fully
connected (FC) layers. Similarly, it can be observed that five
convolutional layers, two max-pooling layers, one average
pooling layer, and two FC layers of CNN architecture are
enough to classify the COVID-19 radiography dataset. The
obtained CNN architecture consists of eight convolutional
layers, one average pooling layer, two max-pooling layers,
and one FC layer to classify the pneumonia dataset. Finally,
the top-performing CNN model architecture for the skin
cancer dataset comprises six convolutional layers, two
average pooling layers, one max pooling layer, and two FC
layers.

VI. CONCLUSION
This research paper introduces a method involving a
two-phase evolutionary framework to design the most
effective CNN model architectures for various medical
image classification tasks. In this framework, each individual
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represents a CNN architecture, which includes different layer
types and hyper-parameter configurations of those layers.
During Phase I of the proposed evolutionary framework, the
number of different types of layers (Convo, Pool, and FC) in
the CNN architecture is determined using the DE algorithm.
On the other hand, the hyper-parameters of the generated
CNN architectures are tuned using the enhanced crossover,
mutation, and elitism selection strategy of the GA algorithm
in Phase II. The proposed method is evaluated on datasets of
COVID-19, pneumonia, and skin cancer. The experimental
results demonstrate superior performance compared to state-
of-the-art models, including existing COVID-19 models,
pre-trained models, and NAS-based CNN models in terms
of precision, recall, F1-score and classification accuracy.
Furthermore, we also highlight the effectiveness of the
proposed model itself by representing the confusion matrix,
statistical analysis, and radar plots of six datasets and
discussed the configuration of the best-generated CNN
models.

In future, a block or cell-based model can be designed
using the proposed method. Moreover, this proposed
approach can be applied to medical signal processing-based
disease predictions.
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