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ABSTRACT Masked autoencoders (MAE) is a deep learning method based on Transformer. Originally used
for images, it has now been extended to video, audio, and some other temporal prediction tasks. In the field
of computer vision, MAE performs well in classification, prediction, and target detection tasks. In terms
of specific application, MAE has made many achievements in medical treatment, geography, 3D point
cloud and machine troubleshooting. Since its introduction at the end of 2021, there have been more than
300 related preprints, and MAE has been significantly performed in tier one computer vision conferences
during 2022 and 2023. In view of the current popularity of MAE and its future development prospects,
we conduct a relatively comprehensive survey of MAE mainly covering officially published articles so
far. We comb through and classify the improvements in MAE, demonstrating relatively representative
applications in computer vision. Finally, as a summary, we discuss the possible future research directions
and development areas based on the characteristics of MAE, hoping our work could be a reference for the
future work of MAE.

INDEX TERMS Computer vision survey, MAE, masked autoencoders, masked image modeling.

I. INTRODUCTION
Masked Autoencoders (MAE) is a new masked image
modeling method proposed by He et al. [1] in November
2021 and published in CVPR 2022. Based on Transformer
[2], MAE learns the features of a image by first masking
partially and then reconstructing. At present, MAE can be
well applied in image classification, image segmentation,
target detection and other fields. During the past one and
a half years, MAE not only appeared in the top computer
vision conferences such as CVPR, ICLR, WACV, but also
showed great potential in the medical field, geographical
remote sensing and other aspects.

As a pre-training method, the contribution of MAE can be
summarized as follows:

• MAE uses a simple NLP-like approach to perform
self-supervised learning on images. It involves masking a
large portion of the image (e.g., 75%) and then reconstructing
the image based on the unmasked portion, thereby learning
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the image features. Experimental results [1] have shown that
models pretrained with MAE achieve better performance in
downstream tasks such as image classification.

• Self-supervised learning does not require annotated data,
significantly reducing the workload and meeting the needs of
training with large-scale datasets. It enables efficient training
of large models.

• The effectiveness of MAE demonstrates the presence of
significant redundancy in images. Even when a large portion
of an image is masked, it can still be well reconstructed. The
encoder of MAE only needs to process a small portion of the
original image, which greatly reduces the time required for
large model pretraining. Additionally, it improves accuracy
while reducing memory consumption.

MAE has attracted a great deal of attention since its
preprint, with the original article being cited nearly 2,000
times. At CVPR 2022 where MAE was published officially,
20 concurrent papers referenced MAE. There are also
numerous research papers based on MAE at 2023 CVPR
and ICLR conferences. Currently, there are approximately
300 articles related to MAE on the preprint website arXiv.
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Given the current trend, we believe it is necessary to
organize a survey focused on MAE. Here, we only examine
the work of MAE in the field of computer vision. It should
be noted that MAE also shows remarkable performance in
time-series related predictions, such as mechanical anomalies
detection [3], [4], [5], [6], [7], [133]. It can be said that
MAE is a new research focus following methods such as
the YOLO series and Deeplab series. Fu et al.’s works
[134], [135] introduce information on related cutting-edge
research.

The remaining parts of this survey introduce the following
topics:

• Section II introduces the existing survey preprint ofMAE
(2.1), provides a detailed explanation of the MAE training
process (2.2), introduces commonly used datasets (2.3), and
discusses model evaluation metrics (2.4).

• Section III introduces the current improvements and
variations of MAE. According to different modalities,
we discuss fundamental MAE for images, multimodal MAE,
and MAE for videos separately. For the improvement of
fundamental MAE, we categorize it into three major classes:
adding information, combining with contrastive learning, and
integrating with Convolutional Neural Networks, according
to specific methods. For the improvement of multimodal
MAE, we provide detailed introductions from various
aspects, includingmultimodal image, image-text multimodal,
image-video, and image-audio multimodal tasks. As for
MAE for videos, there are currently two overall tenden-
cies: removing temporal information and utilizing temporal
information.

• Section IV introduces the current applications of MAE
for images in different domains, as well as its development
in the field of videos and 3D. Regarding the former,
we categorize them into three major classes: medical images,
unmodified images, and geographic and remote sensing
images.

• Sections V and VI summarize and discuss the future
research directions, applications, and potential improvement
approaches.

II. BACKGROUND
A. EXISTING MAE SURVEY
In August 2022, Zhang et al. published the first and
currently only survey on mask autoencoders [8]. This survey
mainly focuses on discussing related work on masked
image modeling, with limited coverage on the research and
improvements of MAE itself. Considering that the survey
was written less than a year after the publication of MAE,
its summary of recent achievements in top conferences and
preprints is limited. Additionally, this survey has limited
coverage of the applications of MAE and overlooks some
achievements. Here, we focus on the work of MAE in the
field of computer vision, analyze and summarize the recent
improvements of MAE, and conduct a more comprehensive
investigation of its specific applications in the image
domain.

FIGURE 1. MAE training process [1]. In the MAE approach, the original
image is first divided into patches, with a majority of them (e.g., 75%)
masked out. The remaining portion is used as input. After going through
encoding and decoding steps, the reconstructed image is obtained as the
end result.

B. MASKED AUTOENCODERS (MAE) THEORY
Overall, MAE adopts an asymmetric encoder-decoder archi-
tecture. The encoder is essentially a ViT [9] model that
takes as input only the visible image patches without any
masking. Corresponding, the decoder is a Transformer model
that operates only on the visible blocks and reconstructs the
masked regions based on them. The loss function employed is
MSE, as shown in (1). For an input image X, it is divided into
non-overlapping image patches Xi, with a subset of blocks M
being masked. Yi represents the reconstructed image block.
The training process of MAE is shown in Figure 1.

Loss =
1

|M |

∑
i∈M

||Xi − Yi||22 (1)

On the details, MAE first performs patchification on the
original image. This is actually the conventional approach of
ViT [9]. Since the Transformer model itself is designed for
NLP, in order to apply Transformer to image processing, it is
necessary to partition the image into blocks. Patchification
involves dividing the given 2D image into small squares
and converting these squares into one-dimensional vectors.
The dimensions of the given image are HxWxC (height x
width x channels), and the side length of the small square
blocks is denoted as P, i.e., they are PxPxC images. In total,
N=HxW/PxP image blocks are obtained. After applying a
linear transformation to each image block, they are projected
into a D-dimensional space, resulting in N one-dimensional
vectors of size PxPxC.

1) MASKING STRATEGY
MAE utilizes a random masking strategy, with 75% of
patches masked. Additionally, it employs a uniform distri-
bution to prevent excessive masking near the center of the
image. The remaining visible image patches obtained after
masking are used as input for the encoder.Recent research
[10] has demonstrated that the effectiveness of MAE stems
from its ability to extract high-level semantic representations
from low-level features such as image pixels. The masking
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ratio and patch size determine which latent variables need to
be recovered.

2) ENCODER
For the MAE encoder, which is ViT, Kong et al. [11]
demonstrated that the reason MAE can achieve reasonable
reconstruction results is due to the stable propagation of
representations brought by ViT. Furthermore, comparing ViT
and Convolutional Neural Network (CNN), Transformer-
based models are simpler than CNN because Transformers
do not rely on temporal sequences, while CNN operates
in a layer-wise manner. This enables large-scale parallel
computing. Cao further pointed out that because CNNs are
locally supported and operate on small receptive fields, they
need to be deeply stacked. ViT is globally supported, so it
does not require a massive architecture like CNN. This may
explain why MAE can reconstruct the entire image better
using only a small number of image patches.

The original MAE uses vanilla ViT [9]. Depending on the
task, there are also works that replaced it with plain ViT [9]
or Swin Transformer [12], [13], [14], [15].
In addition, there are also negative evaluations of utilizing

ViT. Li et al. [16], who designed CoTMAE, believe that
ViT, as an encoder network for MAE, suffers from high
computational cost and a large number of parameters,
which presents significant obstacles in industrial detection
applications. Therefore, they replaced the encoder with a
convolutional-transformer hybrid structure. In the improve-
ment of MAE, there are also studies [17], [18] that achieve
multimodal training by changing the encoder.

3) DECODER
There are currently two different opinions regarding the role
of the decoder in MAE. Cao et al. believe that the decoder is
of great importance. Although the decoder is only used during
the pre-training stage, it helps the encoder establish better
representations. On the contrary, the authors of SimMIM,
Xie et al., argue [19] that a more complex decoder is not
necessarily better, and the decoder may not be as important
as thought. In fact, SimMIM uses a simpler linear layer
as the decoder. On the other hand, in the improvement of
MAE, some studies [20], [21], [22] incorporate additional
information through the decoder.

C. DATASETS
1) IMAGES
In order to better compare the performance, current eval-
uations of MAE for image processing generally include
pre-training using the ImageNet-1K dataset and use ViT-B as
the backbone, which means that image features are extracted
by ViT-B.

The ImageNet-1K dataset [23] is derived from the
large-scale visual recognition challenge ILSVRC. The ‘‘1K’’
represents the presence of 1,000 classes, with over one
million images sourced from search engines such as

Flickr. ImageNet-1K meets the requirements for large-scale
datasets. Many experiments and studies currently use the
ImageNet-1K dataset to assess the performance of their final
models.

2) VIDEOS
There is not much practice of MAE in videos. However,
most of them involve the use of the Kinetics-400 and
Something-Something V2 datasets.

Kinetics-400 (K400) [24] was released in 2017 and covers
400 kinds of human actions extracted from YouTube videos.
The video clips in this dataset have an average length of
around 10 seconds, with a total quantity of over 200,000
videos, making it one of the largest video datasets available.

Something-Something V2 (SSv2) [25] was released at
ICCV 2017. It covers 174 human actions and, like K400, is a
large-scale video dataset with over 200,000 videos.

In addition, smaller datasets like AVA, UCF101, and
HMDB51 are also involved. AVA [26] contains over
400 videos covering 80 basic and atomic human activities.
UCF101 and HMDB51 are classic small-scale datasets that
often appear in earlier studies. UCF101 [27] consists of
over 10,000 videos representing 101 action classes, while
HMDB51 [28] contains over 6,000 videos representing
51 action classes.

3) MULTIMODAL TASKS
For image-text multimodal tasks, the Conceptual 12M dataset
is used. Conceptual 12M [29] comprises over 12 million
paired images and textual descriptions. Since its release in
2018, Conceptual 12M has become an important dataset
for multimodal tasks and has been continuously expanding.
Conceptual 12M is not manually annotated; its image-text
pairs are filtered from web content.

In the current research on image-video multimodal tasks,
there is no dedicated multimodal dataset. Instead, separate
image datasets like ImageNet-1K and video datasets like
SSv2 are used individually.

Regarding image-audio multimodal tasks, both audio
datasets and dedicated multimodal datasets are employed.
AudioSet [30], released by Google, covers a wide range of
sounds from various categories and events. Its content is
derived from the audio portions of videos on YouTube. As the
dataset includes original video URLs, it is commonly used in
multimodal tasks.

VGGSound [31] consists of audio and video and, like
AudioSet, is a large-scale dataset sourced from YouTube.
However, VGGSound reduces the number of labels and
covers sounds from more daily life scenarios.

D. EVALUATION METRICS
MAE adopts the pretraining-finetuning paradigm, which
involves pretraining the model on a larger dataset to obtain
certain model parameters, followed by fine-tuning on a
downstream task-specific dataset. For example, after training
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MAE on ImageNet-1K, fine-tuning on a dataset specific
to a particular species can yield better image classification
performance. In essence, this approach builds upon the large
amount of data and labels available in ImageNet-1K and
further refines the model. The benefit of this approach is that
it allows for the utilization of a large amount of data while
also saving training time. Additionally, the model benefits
from the generalizable features learned during pretraining,
enabling faster convergence and mitigating overfitting issues
that may arise from small datasets.

There are currently two methods for evaluating the
performance of pretrained models: fine-tuning and linear
probing. Both methods involve adjusting the pretrained
model and then assessing its accuracy.

Fine-tuning [32] refers to freezing most of the pretrained
model and only training the output layers and fully connected
layers. For MAE using ViT, fine-tuning involves dividing the
image into patches and converting them into visual tokens
based on the requirements of ViT. The adjusted model’s
performance is then evaluated to assess the effectiveness of
the pretrained model.

Linear probing [33] involves making minimal changes to
the model. This is based on the belief that the pretrained
model itself should already possess certain image classifica-
tion capabilities and can extract features properly. Therefore,
in linear probing, only the linear layers are updated, while the
other parameters of the model remain unchanged. Typically,
linear probing is used as an evaluation method for the
pretrained model, but in practice, fine-tuning the pretrained
model is usually performed before use. It is important to note
that the accuracy achieved through linear probing in MAE is
significantly lower than that achieved through fine-tuning in
general.

Accuracy [34] refers to the proportion of correctly
classified samples in the total number of samples in a
classification task. It is a traditional method for evaluating
the performance of classification. The formula for accuracy
is shown in (2).

Accuracy =
correct classifications
all classifications

(2)

Lastly, the number of training epochs is also an aspect to
consider. Training on large datasets can be time-consuming,
so reducing the number of training epochs is important
for the practical use and deployment of the model. The
originalMAE, for example, required training for 1600 epochs
to achieve optimal performance when using ImageNet-1K.
However, with the current advancements in MAE, compara-
ble performance can be achieved with as few as 300 epochs
or even fewer, as shown in [20] and [35].

E. RELATED THEORIES AND METHODS
1) DENOISING AUTOENCODERS: FROM NLP TO CV
The method used by MAE is fundamentally based on
denoising autoencoders [36]. It aims to reconstruct the

original appearance of a corrupted input and learn its features
through this reconstruction process.

This approach has been widely used in natural language
processing and has achieved significant results. BERT [37]
and GPT [38] are two notable examples. Compared to BERT,
GPT adopts an autoregressive method, which incorporates
sequential elements during training. Although there have
been attempts to apply similar methods in the field of
image processing, the performance of convolution-based
masked image modeling is not ideal. In the visual domain,
contrastive learning methods have achievedmore success and
have various variations. Recent examples include SimCLR
[39], Cao et al.’s Parametric Instance Discrimination [40],
BYOL [41], and DeiT [42], while earlier examples include
VGG [43].

These differences may be attributed to the distinctions
between visual tasks and natural language. Some of these
differencesmust be overcome, while others can be considered
as directions for method improvements.

In terms of differences that must be overcome, natural
language is inherently segmented, consisting of individual
words, phrases, and sentence components, whereas images
are continuous by nature. This raises the question of how to
segment an image into separate objects that can be processed
individually, similar to words in text.

Regarding directions for improvement, firstly, images
exhibit stronger locality, with higher correlation between
neighboring pixels. Unlikemethods used for natural language
tasks, both MAE and SimMIM perform image reconstruction
tasks without semantic guidance. In fact, incorporating
semantic information into the training process of MAE is one
of the directions for improvement.

Secondly, Xie, the author of SimMIM, argues that [19]
visual signals are relatively low-level compared to text.
Current improvements in MAE also involve focusing more
on low-level semantic information. Adapting the model to
the characteristics of images can improve its performance to
some extent.

Regarding the segmentation of images to enable processing
similar to text, [9] demonstrated through experiments that
when using ViT (applying Transformers to images), dividing
the image into 16 × 16 patches yields the best results.
This approach has also been adopted in MAE with ViT as
backbone.

2) MASKED IMAGE MODELING: COMPARISONS OF
NOTABLE MIM METHODS
The specificmethod of denoising autoencoders, when applied
to the field of natural language processing (NLP), is referred
to as masked language modeling (MLM). In the context of
visual tasks, it is known as masked image modeling (MIM).
The MAE method is a type of MIM. Here, we compare
MAE with BEiT, SimMIM, and MaskFeat - that is, the MIM
methods before, concurrent with, and after MAE. Table 1
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TABLE 1. Comparisons of notable MIM methods. We compare and provide detailed explanations of the research conducted before, concurrently, and
after MAE, namely BEiT, SimMIM, and MaskFeat. These four methods have some similarities in terms of overall architecture and training process, making
them comparable. Additionally, in the subsequent improvements and developments of MAE, there are cases of mutual inspiration and influence among
these methods.

illustrates the differences among these methods in terms of
the masking process, loss function, and computational object.

Prior to MAE, BEiT [44] is the first to apply MLM
from NLP to the visual domain. BEiT establishes a visual
vocabulary based on the approach used in NLP, making
the training process more complex. In comparison, MAE
training is much simpler. Among the MIM studies conducted
concurrently with MAE, SimMIM [19] gains considerable
attention. SimMIM utilizes different masking strategies and
loss functions compared to MAE, but still achieves impres-
sive results. Another notable MIMmethod that emerged after
MAE isMaskFeat [45]. MaskFeat calculates the histogram of
gradient feature instead of directly computing pixels, asMAE
does.

BEiT [44] introduces the concept of masked image model-
ing as a pretraining task. In the pretraining of BEiT, an image
is first divided into image patches, and corresponding visual
tokens are established. The input to the Transformer consists
of masked image patches, and the output is the visual tokens.
Finally, the visual tokens are decoded to reconstruct the
original image.

In terms of masking strategies, BEiT uses the block-wise
masking method. In simple terms, random block sizes and
aspect ratios are obtained, and the process is repeated until
the masking exceeds 40%. The mean squared error (MSE)
loss function is used for image classification tasks.

Similar to MAE, SimMIM [19] has a simpler training
process compared to BEiT. Both directly predict image
patches instead of predicting visual tokens and reconstructing
the image. Both the encoder and MAE utilize Transformers,
but SimMIM uses a linear layer for the decoder, resulting
in lower computational complexity compared to MAE.
SimMIM suggests that a more complex decoder may not
necessarily be better and may not play a significant role.

While SimMIM uses random masking like MAE, it uses
larger masking blocks instead of increasing themasking ratio,
as in MAE.

MaskFeat [45] was proposed after MAE, with a focus
on video prediction. The main improvement of MaskFeat
lies in the prediction target. MaskFeat compared pixel RGB
values, Histogram of Oriented Gradients (HOG) features, and
tokens encoded from image patches, ultimately proving that
HOG as the prediction target yielded the best results. HOG
is an image descriptor method proposed by Dalal in 2005
[46]. It calculates the gradient direction and magnitude of
pixels in an image, divides the image into small regions,

and calculates histograms of gradient directions within each
region, resulting in a vector that describes the image features.

Furthermore, MaskFeat uses the same blocking-wise
masking strategy as BEiT.

III. IMPROVEMENTS TO MAE
We discuss the current improvements separately by funda-
mentalMAE,multimodalMAE, andMAE for video. Figure 2
shows the classification of improvements on MAE.

A. FUNDAMENTAL
We categorized the improvements on the fundamental MAE
into four aspects: adding additional information, combining
with contrastive learning, combining with CNN, and other
approaches. This section provides detailed explanations and
analysis for each of these aspects. Table 2 compares the
differences in training process and performance among these
fundamental MAE approaches.

1) ADDING INFORMATION
One direction of improvement for MAE during training is
to add information through different methods. Specifically,
this can be categorized into two directions: adding semantic
information and adding noise.

By incorporating semantic information, the model training
can be guided, reducing the memory requirements of the
encoder and improving pretraining speed. MAE variants that
have been improved by incorporating semantic information
include BootMAE, SemMAE, and AdaMAE. The encoder
of MAE is essentially a ViT that focuses on the unmasked
parts of the image, as the proportion of unmasked parts is
relatively small compared to the entire image. The original
MAE already requires less memory compared to other ViT
methods. By guiding the model with semantic information,
further memory savings can be achieved, highlighting the
lightweight advantage of MAE. In this regard, BootMAE
transfers semantic information to the decoder, while
SemMAE and AdaMAE focus on the masking strategy.

AdaMAE is specifically designed for a video-based MAE,
known as VideoMAE. It incorporates semantic information
to improve the performance. Further details about the
improvements in MAE for videos will be discussed in the
subsequent part.

The approach of BootMAE [20] (2022.7) involves incor-
porating low-level semantic information into the decoder,
as the original MAE primarily focuses on high-level semantic
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FIGURE 2. Classification of improvements on MAE. The selected studies are from high-level journals and conferences, and some research papers are
highly cited preprints.
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TABLE 2. Comparisons of fundamental MAE improvements. Best accuracy and corresponding pretraining epochs when using the ImageNet-1K dataset
and ViT-B as the backbone are demonstrated. Masking strategies, encoders, and decoders are also shown as below.

information. Specifically, BootMAE introduces two decoders
with identical structures. The difference lies in how they
select elements from the embedding dimension of the
encoder. One decoder selects elements from the modified
encoder output, which changes the dimension, while the other
decoder selects elements from the embedding dimension
of the decoder. In contrast, the original MAE only selects
elements from the decoder’s embedding dimension without
shuffling.

The authors believe that this design allows one decoder
to handle low-level semantic information while the other
decoder focuses on contextual and high-level semantic
information. Experiments show that BootMAE outperforms
MAE on the ImageNet-1K and COCO datasets, and it
requires fewer pretraining epochs.

SemMAE [21] (2022.9) primarily focuses on proposing
its own masking strategy called Semantic-Guided Masking.
SemMAE first increases the number of patches to four times
that of the original MAE and performs masking based on
this. The masking strategy of SemMAE involves dividing the
image into different semantic parts based on objects and then
masking a specific part among them. When increasing the
masking percentage, SemMAE partially masks a semantic
part first, gradually increasing the percentage until the entire
part is masked, and then moves on to the next semantic part.
This way, semantic information is implicitly encoded in the
masking.

In addition, SemMAE combines the pretraining results of
iBOT and uses Style Gan [47] to reconstruct the spatial and
texture information of the image. iBOT [48] itself is designed
to capture semantic information from images. Finally,
SemMAE utilizes the argmax function to process attention
maps, calculating the set corresponding to the maximum
value, which allows obtaining a semantic segmentation map
of the original image and performing masking accordingly.

According to experiment results, SemMAE performs bet-
ter than BootMAE on ImageNet-1K. Additionally, SemMAE
outperforms MAE in downstream tasks of fine-grained

dataset classification. The authors also evaluated SemMAE’s
performance on semantic segmentation of the ADE20K
dataset [49]. Although the results were not entirely satis-
factory, SemMAE showed better performance compared to
similar methods such as BEiT and MAE.

There are currently two approaches to utilizing noise. One
approach is to disrupt the image through noise. In essence,
this has a similar effect to masking a portion of the image,
as both involve initially damaging the image and learning
its characteristics during the reconstruction process. The
other approach is to utilize the information within the
noise, essentially adding information through noise, which
is similar to adding semantic information. DMAE adopts
the former approach to improve robustness and enhance
the classification performance of downstream tasks, while
DiMAE adopts the latter approach.

The goal of the DMAE [22] is primarily to increase the
model’s robustness. DMAE first adds Gaussian noise to each
pixel value and randomly masks several patches to disrupt
each image. Then, a Transformer-based encoder-decoder
model is trained to reconstruct the original image from
the corrupted model. This approach is an extension of the
Gaussian smoothing model, which takes the noise-corrupted
image as input for classification. Similar to the work of
Carlini et al. [50], DMAE consists of two stages. The first
stage is to process the noise-corrupted input, and in the
second stage a classifier is applied to predict the labels in
the denoised image. The resulting model can better withstand
adversarial attacks, maintaining correct classification even in
the presence of small perturbations.

The overall idea of DiMAE [51] is to add noise from
different domains to the image and then reconstruct it to learn
domain-invariant features. On one hand, DiMAE preserves
the content of the input while adding style information
from other domains. On the other hand, DiMAE restores
the original domain style through multiple domain-specific
decoders. Regarding ‘‘content-preserved style blending,’’
DiMAE’s experiments found that content noise leads to a
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performance decrease in cross-domain reconstruction tasks.
Therefore, DiMAE adopts a new non-parametric content-
preserved style blending method to utilize cross-domain
reconstruction while avoiding the performance degradation
caused by content noise. As for ‘‘restoring domain style,’’ the
encoder transfers domain information to the decoder, guiding
the reconstruction of the input image’s style.

2) COMBINED WITH CONTRASTIVE LEARNING
From an overall perspective, in the MAE improvements
combined with contrastive learning, there are relatively few
changes to the training process of MAE itself, and the
research mainly focuses on how to achieve the integration.

Contrastive learning is a popular self-supervised learning
method in recent years, mostly used for classification tasks.
As the name suggests, contrastive learning focuses on the
commonalities among similar instances and the differences
between different classes. Therefore, contrastive learning
often incorporates data augmentation techniques. Among
them, BYOL [41] has achieved better performance than
previous contrastive learning methods. BYOL adopts an
asymmetric structure, using one neural network to predict
the representations in another network, where the second
network is referred to as the target or teacher network,
and its parameters are periodically copied from the first
network (online or student network). The student network
is trained by minimizing the difference between itself and
teacher networks. The success of BYOL has inspired many
subsequent works, and SdAE and RC-MAE have adopted the
BYOL paradigm to improve the performance of MAE.

In SdAE [35], the student component utilizes both a
decoder and an encoder to reconstruct the masked portion,
while the teacher component is used to explore the latent
representation of the masked tokens. Additionally, SdAE
employs multiple masked views to enhance performance.

Specifically, the output of the teacher component in
SdAE utilizes the EMA, which is an important component
of BYOL. EMA [52], standing for Exponential Moving
Average, is used for parameter updates and optimization.
EMA is a special type of average that assigns greater
weight to recent data in a given time period. The EMA
formula is shown in (3). Experiments have shown that EMA
helps maintain the differences between the two networks in
BYOL, thereby preventing model collapse and significantly
improving model performance.

EMAcur . =Weight×(Valuecur .−EMApre.)+EMApre. (3)

In the process of incorporating contrastive learning into
MAE, SdAE proposes a multi-fold masking strategy to
handle the images inputted into the teacher network. This
strategy involves dividing the masked tokens into several
groups on top of random masking and independently
inputting them into a shared teacher network. The teacher
network then calculates the tokens for each group separately.

In terms of results, although SdAE does not show a
significant improvement in accuracy, it greatly reduces the

number of pretraining epochs. The originalMAE, when using
the ViT-Base model for ImageNet-1k classification, requires
1600 epochs to achieve an accuracy of 83.6%. In contrast,
SdAE only requires 300 epochs to achieve an accuracy
of 84.1%.

Compared to SdAE, RC-MAE [53] is simpler as both
the student and teacher networks use the same architecture.
RC-MAE first randomly masks the original image and
then feeds the remaining parts separately to the student
and the teacher. The student component is responsible
for reconstructing the image, while the teacher component
predicts the missing parts. Similar to SdAE, RC-MAE also
utilizes the EMA from BYOL to update the parameters of
the teacher component. The main improvement of RC-MAE
lies in modifying the loss function to be a combination of
the reconstruction loss between the original image and the
teacher network and the consistency loss.

Loss =
1

|M |

∑
i∈M

(||Xi − Yi||2 + ||Yi − Y ′
i ||

2) (4)

In (4), i represents the token index, Y and Y’ represent
the reconstructed parts from the decoder of the student and
teacher networks, respectively. X denotes the segmented
image patches, and M represents the mask token. Therefore,
Xi represents the randomly masked image patches.

In terms of results, taking the classification task using the
ImageNet-1k dataset as an example, RC-MAE does not show
significant improvement when fine-tuning with ViT-B, but
it shows some improvement when fine-tuning with ViT-L
compared to MAE. Additionally, RC-MAE performs slightly
better thanMAE in downstream tasks such as image detection
and segmentation, while requiring fewer memory resources
during training.

In CMAE [54], the student component utilizes an
encoder-decoder to learn latent representations and recon-
struct images, while the teacher component utilizes a
momentum encoder [55] to provide contrastive learning
supervision. To better leverage the benefits of contrastive
learning, CMAE also incorporates an auxiliary feature
decoder in the student component. In order to ensure semantic
integrity, the momentum encoder in the teacher component of
CMAE uses complete image patches.

In terms of data augmentation, CMAE generates two
different views to align with the characteristics of contrastive
learning, and these views are inputted into the student and
teacher branches, respectively. According to [55], color aug-
mentation methods applied to views in contrastive learning
can degrade the results. Therefore, spatial and color data
augmentation is applied to the input of the teacher branch.
Additionally, to prevent excessive differences between the
two branches, CMAE employs a weak augmentation method
to generate inputs for both the student and teacher networks.
The core idea of this method is to first obtain the primary
image through random cropping from the original image.
Then, this primary image is used as a shared object for
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both branches, and each branch generates its own view by
fine-tuning the cropping positions based on this shared object.

Regarding the training objective, the reconstruction loss
in CMAE uses mean squared error (MSE) as the loss
function, specifically calculating the loss between themasked
patches and the predicted results. For the contrastive loss
[56], the authors of CMAE experimentally demonstrate that
the InfoNCE loss [57] performs better than the BYOL
loss [41]. The former focuses on extracting similar positive
samples from the same sample, while the latter expands the
commonalities between positive samples.

CMAE achieves the best performance when trained for
1600 epochs, with a fine-tuned accuracy of 85.3%.

The mentioned works represent typical cases of improv-
ing MAE. In addition to those, CAV-MAE [18] applies
contrastive learning and MAE to audio-visual multimodal
tasks, while dBOT [58] incorporates MAE and knowledge
distillation [59] into contrastive learning with a guided
teacher network, without making significant changes to
MAE itself. Bai et al. [60] also utilize MAE to enhance
knowledge distillation. Due to MAE’s ability to achieve good
reconstruction even when most of the information is masked,
incorporating MAE leads to higher efficiency and robustness
in knowledge distillation. MAR [61] introduces MAE to
improve the generalization ability of knowledge distillation.

3) COMBINED WITH CONVOLUTIONAL NEURAL NETWORKS
(CNN)
Combining with Convolution Neural Networks (CNN) is also
a direction of improvement for MAE. MAE itself is based
on Transformer. Although CNN has dominated the field of
computer vision for the past decades, replacing CNN with
Transformer has become a rising trend.

On one hand, in the context of the masking-reconstruction
task, the challenge with CNN is that finding ways to integrate
masked tokens or position embeddings into convolutional
networks is required. Although the earliest masked image
modeling was actually implemented by CNN. On the other
hand, while Transformer networks often have larger capacity,
their generalization performancemay beworse thanCNNdue
to a lack of proper inductive bias.

Currently, methods that combine convolution with MAE
can be concluded into two kinds. One approach is to use CNN
to replace or improve a specific training process of MAE,
while the other approach is to construct architectures that
combine CNN with MAE.

MCMAE [62] utilizes masked convolution to prevent
information leakage within convolutional blocks. To address
the issue of heavy computational cost associated with
the original MAE masking strategy, MCMAE employs
a block-wise masking strategy to improve computational
efficiency.

Specifically, the encoder ofMCMAE progressively, on one
hand, abstracts the input image to generate multi-scale token
embeddings. The decoder, on the other hand, reconstructs

pixels based on the masked tokens. In the early stages
of high-resolution token embeddings, convolutional blocks
are used to encode local content. In the later stages
of low-resolution token embeddings, Transformer blocks
aggregate global context. As a result, the encoder obtains both
local and global perspectives at different stages, generating
diverse multi-scale features.

In the current masked autoencoder frameworks, all tokens
in the masking strategy need to be preserved for the later
Transformer processing, resulting in high computational
costs and losing the efficiency advantage of MAE. To address
these issues, MCMAE adopts a block-wise masking strategy.
It first obtains the mask for the later Transformer stage
and gradually upsamples the mask to larger resolutions
in the early convolutional stages. This way, the processed
tokens can be fully divided into masked tokens and visible
tokens, inheriting the computational efficiency of MAE.
By equipping the early convolutional blocks with masked
convolution, information leakage is prevented, avoiding the
mixing of features from masked and visible regions in the
later stages, thereby improving training performance.

Although MCMAE involves minor modifications, it yields
significant results. According to its performance on
ImageNet-1K, it achieves performance second only to
CMAE, which utilizes contrastive learning.

FCMAE [63] adopts a masking strategy where 60% of the
original input is randomly masked. It uses the ConvNeXt [64]
model as the encoder and a lightweight ConvNeXt block as
the decoder, forming an asymmetric structure with a heavy
encoder and a light decoder.

CoTMAE [16] takes inspiration from CoAtNet and
combines CNN and self-attention in the encoder using
a hybrid convolution-transformer pyramid network. The
pyramid structure progressively downsamples the input, with
four stages that shrink the input by 1/4, 1/8, 1/16, and 1/32.
The first two stages utilize convolution for local feature
encoding, while the latter two stages employ convolution
and self-attention fusion modules. CoAtNet uses convolution
for downsampling and global relative attention operations,
incorporating progressive pooling in multiple stages.

Specifically, CoTMAE first masks the original image
by dividing it into equally sized parts and randomly
masking each part with a fixed 75% masking ratio.
Then, it extracts visible blocks from each part, reorders
and reassembles them as the input image for the
encoder. This input is then passed through the hybrid
convolution-transformer pyramid network. Additionally,
CoTMAE designs a Transformation-Convolution Fusion
(TCF) module, which combines convolutional layers and
self-attention layers. To facilitate the transition between
attention and convolution blocks, DW-Conv [65] is added as
implicit positional encoding in theMulti-Head Self-Attention
(MHSA) module [2].

Finally, CoTMAE uses mean squared error (MSE) as the
loss function, similar to BERT, only calculating the loss
on the masked patches. In terms of performance, on an
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industrial segmentation dataset, CoTMAE demonstrates bet-
ter fine-tuning performance compared to supervised models.

4) OTHERS
GAN-MAE [66] combines MAE with GAN by using
a complete MAE as the generator. The discriminator is
responsible for determining whether each image patch is
generated or original. This approach reduces the number
of iterations required and improves accuracy. The authors
believe that this discriminator can provide guidance for the
image generation process.

MixMAE [67] addresses the slow training speed of MAE
by proposing a novel approach. It randomly masks two
images and combines them to form a mixed image, which
is then used as input to reconstruct both original images. For
MAE itself, MixMAE makes minimal modifications by only
replacing the decoder with Swin Transformer. Similar studies
have attempted to use heterogeneous ViT for MIM methods,
such as [14], [15], [16], [68], and [69]. However, there are
not many research studies that have explored the application
of this method for improving MAE, which could potentially
become a future research direction. In terms of results, the
model’s performance has been significantly improved.

Finally, the above approaches maintain the self-supervised
learning nature of MAE or combine it with other unsuper-
vised methods. SupMAE [70], which stands for supervised
MAE, introduces supervised methods into MAE improve-
ments for the first time. It adds a supervised branch parallel
to the original MAE training process. This branch processes
the masked input using a two-layer MLP and utilizes
cross-entropy as the classification loss function. Although
SupMAE does not significantly improve precision, it greatly
enhances training efficiency and robustness while requiring
fewer computational resources.

B. MULTIMODAL
The comparison of different multimodal MAE methods is
shown in Table 3. Considering that different multimodal
tasks may involve multiple different datasets, in addition
to the masking strategies, encoders, decoders, and loss
functions involved in the training process, the datasets used
for each task are also listed. On one hand, this is because
comparing performance directly based on different datasets is
challenging, and on the other hand, it aims to provide insights
and references for research in this direction.

1) MULTIMODAL IMAGE
Image multimodality primarily refers to different visual
modalities, such as depth maps, semantic segmentation
graphs, in addition to the common RGB images for the
same scene. In practical applications like the medical field,
there are various image modalities like CT and MRI,
and in geographic remote sensing, there are point clouds,
GS images, and so on. Currently, there are two main
approaches for applying MAE to multimodal image tasks.

The first approach is to process each visual modality
separately. However, this method often leads to a more
complex training process.

The second approach is to process the images themselves
by fusing different modalities, allowing a image to convey
multimodal information. This enables the transformation
of multimodal tasks into regular image processing tasks.
However, whether this method is suitable for downstream
tasks needs to be further considered in specific work.

MultiMAE [71] addresses image multimodal tasks by
masking the RGB mode, depth map, and semantic segmen-
tation graph separately. It employs different loss functions
for different modalities and conducts pretraining on different
datasets. The encoder and decoder follow the MAE pattern.
Specifically, the RGB mode uses MSE as the loss function,
while the depth map and semantic segmentation graph
use mean absolute error and cross-entropy loss, respec-
tively. Additionally, for training of the RGB mode on the
ImageNet-1K dataset, MultiMAE utilizes pseudo-labeling.
Pseudo-labeling is a technique where a small portion of
labeled samples is used to predict the labels of unlabeled
samples, significantly reducing the workload.

M3PT [72] takes an opposite approach to MultiMAE in
terms of masking. In M3PT, different modes of the image
(depth map and RGB image) share the same mask. The
authors ofM3PT argue that if themasks for the twomodes are
different, it would lead to information leakage. The purpose
of the MIM method is to disrupt a portion of the input
and then predict it. If there is information leakage, it is not
truly masking the image. Additionally, to better adapt the
model to downstream tasks, M3PT follows a similar training
process for both pretraining and fine-tuning stages, instead of
discarding the decoder during the fine-tuning stage as done in
MAE.

res-MAE [17] and Zekai Chen [73] both employ the
MAE method and make improvements for multimodal tasks
in the medical field, specifically for CT and MRI. Chen’s
approach is relatively simple, directly applying MAE to
3D images without significant modifications to the training
process. While the training process of res-MAE consists
of a pretraining stage and a multimodal fusion stage. The
former adopts the idea of MAE but utilizes ResNet18 as the
encoder and a combination of convolution and upsampling as
the decoder. The masking strategy and loss function remain
consistent with MAE. In the latter stage, a ViT model is used
for multimodal fusion.

2) IMAGE-TEXT MULTIMODAL
Currently, the research approaches for image-text multimodal
tasks are similar to those for image multimodal tasks. One
approach is to convert both images and text into sequences
that can be processed together, while the other approach is to
separately encode and decode images and text.

Geng et al. [74] propose a method that transforms text and
images into sequences of the same dimensionality for joint
processing. However, they treat images and text differently
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TABLE 3. Comparisons of multimodal MAE improvements. Due to the different nature of the targeted multimodal tasks, it is not possible to directly
compare the performance of models. Here, we list the datasets used in different works. Additionally, for multimodal tasks, model improvements are
focused on the input and output parts. Therefore, a comparison of the loss functions used is also provided here.

in terms of masking and loss functions. The advantage of
this approach is that it requires minimal modifications to the
encoder and decoder, which are the main components of the
training process. For image masking and loss functions, they
adopt the same approach as MAE, masking 75% of the image
and using MSE as the loss function. For text masking, they
follow the BERT approach, masking 15% of the text and
using cross-entropy loss as the loss function.

Chen et al. [75] focus on medical images and text. Instead
of simply improving MAE, their approach is more like a
combination of MAE and BERT. They mask and process
images and text separately, using different encoders and
decoders. The fusion module, after the encoders, combines
the processing tasks for images and text. Specifically, the
encoders for images and text are similar to those in MAE
and BERT, respectively, while the decoders adopt ViT
and MLP (Multi-Layer Perceptron) architectures. There are
also works [76] in recent years that have replaced ViT
with MLP in image recognition tasks. The fusion module
employs a collaborative attention mechanism composed of
two Transformer layers. Each Transformer layer includes
self-attention, cross-attention, and feed-forward layers.

3) IMAGE-VIDEO, AND IMAGE-AUDIO MULTIMODAL
OmniMAE and CAV-MAE are two methods that improve
MAE for image-video and image-audio multimodal tasks,
respectively. Both methods involve masking videos or audio
along with images for processing. OmniMAE treats images
as a special type of video, while CAV-MAE masks the
spectrogram of the audio. In terms of the training process,
OmniMAE has minimal modifications to the training process
of MAE, while CAV-MAE utilizes three encoders.

OmniMAE [77] focuses on input processing and masking
strategies. It represents images or videos as four-dimensional
tensors with dimensions T×H×W×3, where T represents the
time dimension, H and W represent the spatial dimensions,
and 3 represents the color channels. An image can be seen

as a single-frame video with T=1. In terms of masking
strategy, OmniMAE defaults to using random masking for
images (90%) and videos (95%). These high masking rates
are closer to what MAE uses for videos [78]. Additionally,
the authors compare different masking strategies and find that
for videos, tubemasking performs slightly better than random
masking. Random masking for videos is random for each
frame, while tube masking applies the same mask to each
frame. Considering that the video clips in the SSv2 dataset
used by OmniMAE are relatively short, tube masking for
videos may be closer to random masking for images.

In contrast, CAV-MAE [16] introduces more significant
modifications to the training process and incorporates
contrastive learning. In terms of masking strategy, CAV-MAE
masks the spectrogram of the audio, allowing it to leverage
the masking method used by MAE for images. In practical
experiments, the best performance is achieved when masking
50% of the audio, but the improvement compared to the
original MAE masking rate of 75% is not substantial. In the
training process, although CAV-MAE incorporates three
encoders for audio encoding, image encoding, and shared
encoding, these three encoders are actually Transformers
with different numbers of layers. Afterward, CAV-MAE uses
contrastive loss to calculate the results obtained from the
audio and image encoders. Contrastive loss is commonly
used in contrastive learning to handle paired data. Finally, the
results are fed into the decoder and the mean squared error
(MSE) loss function is computed.

C. VIDEO
At present, there is not much research on extending the
MAE method to videos. The current methods for migrating
the MAE method from images to videos start with masking
strategies. In terms of results, the masking proportion for
MAE on videos is higher, at 90% or above. This is consistent
with the fact that videos generally contain more redundant
information compared to images. However, it is important
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TABLE 4. Comparisons of MAE for videos. Due to the lack of a large-scale dataset for video, similar to ImageNet-1K for images, there are variations in the
datasets used. We list the datasets here. However, because of the differences in targeted tasks and training datasets, direct comparisons of model
performance are not feasible.

to note that there are two different improvement approaches
for MAE on videos. The FAIR team from Meta AI uses a
masking strategy that is independent of temporal and spatial
information [79], while VideoMAE [78] and its extended
research use masking strategies that incorporate temporal
and spatial information, even introducing more semantic
information. Table 4 shows comparisons of MAE for videos.
Feichtenhofer et al. [79] argue that there is higher redun-

dancy and stronger continuity of information in both spatial
and temporal dimensions. Therefore, if temporal information
is present in the masking process, it can lead to less preserved
information and affect the subsequent reconstruction results.
Thus, in the research by the FAIR team, particular attention is
paid to using masking strategies that do not involve temporal
and spatial information. The encoders and decoders of MAE
remain largely unchanged in their research. In contrast,
VideoMAE [78] uses tube masking, where the masked blocks
have temporal correlations. VideoMAE believes that this
approach enables learning of the spatiotemporal structure
of videos. Essentially, although the strategies used in these
two approaches are different, they both aim to preserve
more temporal and spatial information. In terms of results,
the model from the FAIR team generally outperforms
VideoMAE.

AdaMAE [80] improves upon VideoMAE by incorporat-
ing semantic information. AdaMAE samples visible tokens
based on semantic context to mask 95% of the tokens, aiming
for lower memory requirements and faster pre-training.
Specifically, AdaMAE adds an independent adaptive token
sampler to the existing tokenizer, encoder, and decoder
of MAE. The output of the tokenizer is inputted into
a multi-head attention network (MHA) and activated by
softmax. This assigns scores to different tokens. According
to the scores, AdaMAE keeps tokens that contribute to the
reconstruction of the image while masking the rest. As for the
results, AdaMAE achieves a classification accuracy of 70.0%
on the SSv2 dataset and 81.7% on the Kinetics-400 dataset,
surpassing previous methods for video clip classification.

VideoMAE v2 [81] focuses on improving VideoMAE for
large-scale tasks. Themain improvements can be summarized
in terms of masking strategies and the pre-training process.
In terms of masking strategies, inspired by [61], VideoMAE
v2 adds an additional masking step in the decoder to alleviate
the training burden. Therefore, the masking strategy used
here is referred to as dual masking, where tube masking is
applied in the encoder and running cell masking is used in the
decoder. In terms of the pre-training process, self-supervised

pre-training is conducted on unlabeled datasets, followed by
supervised post-pre-training fine-tuning on labeled datasets.
This maximizes the utilization of both labeled and unlabeled
data. In the experiments, the authors also include Instagram
data and a video dataset calledWebVid2M [82] obtained from
website scraping.

In addition, there are also works that apply MAE to video
object tracking and segmentation (VOT and VOS) data.
DropMAE [83] suggests adaptively removing intra-frame
clues during the decoding process to facilitate better learning
of inter-frame clues.

IV. APPLICATIONS
The applications of MAE in computer vision mainly focuses
on different types of images, including medical images,
natural images, and geographical images, as well as video
surveillance and the 3D domain. Related applications are
shown in Figure 3.

A. MEDICAL
In the medical field, MAE is primarily applied in the
domain of disease image classification. There are also studies
that involve MAE in the areas of image segmentation and
cross-modality tasks.

1) PATHOLOGICAL IMAGE CLASSIFICATION
In the case of image classification, the objects primarily
include professional charts and scans such as electrocardio-
grams (ECG) and electroencephalograms (EEG), as well as
medical images such as tissue slices. Medical images are
characterized by a large workload for annotating data and
various types of noise and individual variations. MAE, as a
form of self-supervised learning, can significantly reduce the
workload of annotating data. By masking parts of the image
and then reconstructing it, MAE can effectively capture the
main characteristics of the learning object, reduce the impact
of noise, and thus increase the robustness and transferability
of the model.

ECG and EEG both contain temporal and spatial infor-
mation. On one hand, they represent the activity of organs
over a period of time, indicating their temporal nature.
On the other hand, ECG and EEG describe the state
of organ health, indicating their spatial nature. Therefore,
MaeFE [84] (2022.12) focuses on different mask patterns
specifically designed for ECG, regarding their temporal
and spatial characteristics. MV-SSTMA [85] designs a
multi-view convolution-transformer hybrid structure for
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FIGURE 3. Applications of MAE in Various Fields. The selected articles in this figure mainly focus on papers that have been published or included in
journals and conferences.

EEG, interpreting the emotion-related information of the
EEG signals from the perspectives of spectrum, space, and

time. Additionally, Yang et al. [86] extract both local and
global features from ECG to capture the key information,
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overcoming the scarcity of labeled ECG samples and
achieving higher performance than existing state-of-the-art
self-supervised models. Similarly, the training strategy of
MV-SSTMA also adopts a phased processing approach. The
overall samples are first randomly masked and learned,
followed by learning specific samples. The resulting models
also achieve the highest performance in their respective
fields.

MAE achieves good results in the classification of medical
images such as scans and tissue slices. Wang et al. [87] apply
MAE to self-supervised classification of cervical cancer OCT
images, and the proposed classification model demonstrated
better transfer learning capability and comparable perfor-
mance to medical experts. Jiao et al. [17] use MAE for
self-supervised learning of spinal tumor CT and MRI scan
images, significantly improving the classification accuracy
for complex tumor subtypes. The team from Johns Hopkins
University [88] compares the classification performance of
CNN and MAE on different imaging scan datasets for
chest diseases and conclude that MAE performs better
when used for pre-training. An et al. [89] apply MAE
to the classification of breast cancer tissue slice images,
combining it with multiple instance learning (MIL), and
achieve performance superior to the state-of-the-art method
CLAM in this field. In addition, Huang et al. [90] use
MAE for feature extraction in medical images and develop
an evaluation mechanism called EXAMINE for extracting
categories. SwinMAE [15], specifically designed for medical
small datasets such as BTCV CT images, replaces the
backbone with Swin Transformer, and achieves good results.

2) ORGAN IMAGE SEGMENTATION
In terms of segmentation, MAE’s performance cannot
be considered excellent, but it demonstrates considerable
potential. Methods like MAE, which utilize masked image
modeling (MIM), have opened up new possibilities for
medical image segmentation. In terms of MAE’s strengths,
a team from Dongguan University of Technology [91] finds
that MAE performs well in hybrid pre-training for medical
segmentation tasks. Chen et al. [73] from pharmaceutical
company Bristol Myers Squibb use MAE for image segmen-
tation in abdominal CT, brain tumor MRI, and COVID-19
CT scans, resulting in robust models with accelerated training
speed and reduced costs.

In terms of MAE’s shortcomings, Yan et al. [92] point
out that conventional MAE performs better in recovering
coarse high-level semantic information but may struggle
with detailed low-level information. Therefore, for tasks like
multi-organ segmentation, using MAE directly may not yield
ideal results. Similarly, Almalki and Latecki [93] compare the
performance of UM-MAE and SimMIM in tooth numbering
and X-ray image segmentation, and find that the image
segmentation performance of the pre-trained model based
on pyramid Vision Transformers using the uniform masking
strategy in MAE is inferior to SimMIM, which also belongs
to the masked image modeling approach. To address this

issue, Yan proposes using convolutional encoders to extract
low-level semantic information to complementMAE’s ability
to extract dense downstream information.

It is worth mentioning that Zhou et al. [94] once
again demonstrates the outstanding performance of MAE in
medical image classification and segmentation.

3) MEDICAL CROSS-MODALITY
Text and images are two fundamental forms of expression
in medical knowledge. Chen et al. [75] propose a method
to extract general knowledge from medical text and images
by reconstructing missing pixels and labels from randomly
masked images and text. And the results can then be applied
to various medical visual and language tasks. Different
decoders and masking ratios are designed for text and
images respectively. The resulting model achieves better
performance compared to other cross-modal studies in the
medical domain.

B. REAL-WORLD AND UNMODIFIED IMAGES
Talking about real-world images and unaltered images, the
applications can be classified into three categories: human
body, animals/plants, and text.

For applications related to the human body, MAE is
primarily used in graph-related techniques. Yang et al.
[95] address the problem of face anti-spoofing (FAS),
distinguishing between real and fake faces, by defining a
facial region as a point. This transforms the FAS problem
from a binary classification task into a graph classification
problem. Yang simplifies the complex graph relationship
information using MAE. Marlin et al. [96] also employ
MAE for learning facial features, with a focus on facial
details and facial features. PoseMask [97] applies MAE for
pose estimation in classroom scenarios, using heatmaps as
reference masks to estimate poses in crowded or occluded
scenes. Furthermore, Sheng et al. [98] use MAE for feature
extraction of gestures in Spatial-Temporal Motion Maps
(STMM), improving gesture recognition accuracy. These
applications utilize the ability of MAE to reconstruct images
for graph-related tasks.

In the case of animals and plants, MAE is mainly used
to handle small datasets consisting of real nature images.
In chicken face detection, Ma et al. [99] employMAE to gen-
erate more samples, thereby enhancing the dataset. Yang et al.
[100] achieve second place in the SnakeCLEF 2022 fine-
grained snake dataset classification competition using a
pre-trained MAE model. These datasets are characterized by
a scarcity of data for individual categories. Similarly, MAE
is used in the PlantCLEF2022 classification competition
[101]. The PlantCLEF2022 dataset contains millions of plant
photos, but on average, each class has only 36 images, leading
to a scarcity in samples. Additionally, MAE is applied for
the classification of grape powdery mildew [102], effectively
addressing the challenge of limited labeled data.

Regarding text in images, Qiao et al. use MAE for
text recognition [103] to tackle the difficulty of extracting
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fine-grained features. In GeeSolver [104], MAE is employed
to improve captcha solvers and reduce manual labeling
efforts. Zhang et al. [105] use MAE to restore distorted
backgrounds after modifying text in images.

C. GEOGRAPHIC AND REMOTE SENSING (RS)
In summary, MAE is primarily used for classification of
remote sensing (RS) images and pre-training on a large
amount of unlabeled data. Additionally, MAE’s generation
capability is also utilized for hiding sensitive targets. In the
context of RS image classification, a team from Tsinghua
University [106] performs pre-training on unlabeled data
from the Hainan dataset acquired by the polarimetric
synthetic aperture radar (PolSAR) remote sensing system and
the flight dataset collected by NASA/JPL AIRSAR using
MAE. This approach significantly reduces the workload
while maintaining good model performance. SatViT [107]
utilizes MAE for pre-training on unlabeled remote sensing
images obtained from Sentinel-1 and 2. After fine-tuning,
it outperforms existing state-of-the-art methods in down-
stream tasks such as peatland classification and land cover
classification. In addition to specific terrain and landform
classification tasks, Kondmann et al. [108] use MAE for
change detection in remote sensing. They pretrain their
model on the RapidAI4EO corpus dataset, and the MAE
model performs the best in remote sensing change detection
compared to conventional models.

Regarding the hiding of sensitive targets in RS images,
Li and Bai [109] use MAE pretrained on the ImageNet-
1K dataset to restore images with targets already masked,
resulting in natural-looking images without sensitive targets.
The advantage of MAE is that it has faster parameter tuning
time and more stable models compared to GANs for image
generation. Additionally, Almoussawi et al. [110] use MAE
for correctness detection in the classification of real-world
images of fires, achieving an F1-score of above 0.9.

Furthermore, [111] employs MAE for the reconstruction
of non-saturated HDR images, optimizing the HDR effect.

D. VIDEO PREDICTION AND SURVEILLANCE
The application of MAE in videos mainly utilizes its
scalability and focuses on detecting abnormal situations
in surveillance. Since MAE generates logically consistent
videos, its predictions for videos with anomalies can be
particularly poor. This allows for better identification of
videos with abnormal situations.

Reference [112] applies MAE to unsupervised video
anomaly detection (UVAD), which aims to identify abnormal
events from completely unlabeled videos. They use spa-
tiotemporal cubes (STCs) to represent video events, which are
constructed from temporally contiguous foreground patches
of unlabeled videos. Then, half of the patches in the STC are
masked along the temporal dimension, and a ViT is trained
to predict the masked patches using the unmasked patches.
[113] further uses MAE for recognizing anomalous human
activities.

In addition, MaskViT [114] utilizes two types of window
attention: spatial attention and spatiotemporal attention, and
designs tokens with variable percentages to improve video
prediction.

Reference [95] applies MAE to deepfake detection. The
purpose of deepfake detection is to distinguish between
forged faces and real faces. Deepfake detection [115] is
defined as a graph classification problem, where each facial
region corresponds to a vertex. However, the presence of
redundant relational information hinders the expressiveness
of the graph. Inspired by the success of mask modeling,
mask relation learning is chosen to reduce the redundancy of
learning information relationship features.

E. 3D AND POINT CLOUDS
1) 3D IMAGE
In addition to the multimodal scenario mentioned earlier [72],
MAE has other applications in the 3D domain.

In 3D-MTR [116], MAE is used to process input 2D
images to enhance 3D reconstruction. 3D-MTR consists
of three parts: a 3D reconstruction network, MAE, and a
CNN-based inpainting network. The inputs for the first two
parts are 2D images, and the inpainting network combines
the outputs of the previous two networks to obtain the
reconstructed 3D image.

MeshMAE [117] focuses on processing 3D mesh data.
The research here is mainly on how to handle meshes and
utilize MAE. The mesh is divided into non-overlapping local
patches, each containing the same number of faces, and the
3D positions of the center points of each patch are used
to form position embeddings. Then, the MAE method is
applied, randomly masking some patches in the mesh, and
the damaged mesh is input into a Transformer to reconstruct
the information of masked patches, allowing the network to
learn discriminative representations of the mesh data.

I2P-MAE [118] addresses the lack of 3D data in datasets
and obtains 3D representations from pre-trained 2D models.
In terms of improvements toMAE, this approach deliberately
ensures that important point labels are not masked in the
masking strategy, rather than completely random masking.

Additionally, PiMAE [119] designs a dual-branch MAE to
facilitate 3D and 2D interactions. Joint-MAE [120] is similar
but uses joint encoders and joint decoders.

2) POINT CLOUDS
Point clouds are an important component of computer vision,
representing datasets of objects or spaces. In addition to
MAE, there have been other MIM methods applied to point
clouds in recent years, such as [121] and [122].

Currently, the application of MAE in point clouds
mainly focuses on the processing of inputs. Reference
[123] divides the input point cloud into irregular patches
and directly applies the MAE method. Reference [124]
improves the discriminative capability of MAE for point
clouds by representing them as discrete occupancy values
(1 if a point belongs to the point cloud, 0 otherwise) and
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performing simple binary classification between masked
object points and sampled noise points as a proxy task.
This approach increases robustness and enriches the learned
representation.

In terms of specific task improvements, Point-M2AE
[125] improves the learning of irregular point clouds 3D
representation by modifying the encoder and decoder into
a pyramid architecture, capturing fine-grained and high-
level semantic information of 3D shapes. VoxelMAE [126]
addresses the sparse density of points and large variations
in the same scene in autonomous driving point clouds.
It specifically designs the discrimination between empty and
non-empty points, similar to [124].

GraphMAE [127] combines MAE with graph learning,
using scaled cosine error as the loss function instead of MSE.

Similar work includes MGAE [128], where [128] masks
edges and reconstructs important edges instead of points.

V. DISCUSSION
A. IMPROVEMENT DIRECTIONS
Apart from improving accuracy, there are three noteworthy
directions for performance improvement in MAE.

Currently, the training phase of MAE requires a large
number of training epochs, around 1600 epochs. This not
only prolongs the model training speed but also poses
certain requirements for the computational resources. Some
researches have shown limited improvement in model
performance but significantly reduces the number of epochs
required. According to Table 2 of Section III, it is particularly
notable that SdAE [35] and SupMAE [70] have significantly
reduced batch sizes.

Furthermore, enhancing the robustness of the model
using the characteristics of MAE as an MIM method is
another research direction. In the works adding noise to
the training process [22], [51] has shown improvements in
model robustness. Lastly, in terms of improving model per-
formance, CMAE [53] has demonstrated the most significant
enhancement, but it does not show significant improvement
in reducing the number of epochs.

Lastly, expanding the application scope of MAE is
indeed a direction worth exploring. Although MAE was
initially used for image processing, particularly image
classification [1], it has been extended to other tasks such
as object detection, image segmentation (e.g., DropMAE
[83]), as well as applications in video and multimodal
tasks. One of the challenges in multimodal tasks is the
lack of large-scale datasets that are applicable to different
downstream tasks, similar to imagenet for image classifi-
cation. This presents an opportunity for further research to
focus on creating more diverse and comprehensive multi-
modal datasets that can effectively support various types of
tasks.

It should be noted that in terms of model perfor-
mance improvement, CMAE [53] has demonstrated the
most significant enhancement. However, it does not show
significant improvement in reducing the number of epochs.

B. APPLICATIONS
In terms of application, based on the summary of MAE in
different fields in the previous section (Section IV), here
we categorize the aspects of the role of MAE in practical
applications into four categories.

Based on pre-training with larger datasets, MAE can
achieve better fine-tuning results in 1) situations where
downstream task datasets are smaller. MAE is also used in
2) situations to reduce data redundancy or extract features.
Additionally, many works utilize MAE for: 3) its scalability
and 4) as a self-supervised method to reduce the labeling
workload.

In scenarios where the downstream task dataset is small,
some works [84], [86], [98] leverage the good performance
of MAE in small data scenarios, while others use the
prediction process of MAE to augment the dataset. In the
latter case, small datasets often come with imbalanced
data, and some works [14] use MAE to simulate abnormal
situations. Moreover, fine-grained classification tasks [100],
[101] suffer from insufficient sample data. Reference [129]
extensively discusses the use of MAE for data augmentation
by generating input images.

As a denoising autoencoder, MAE reconstructs inputs
based on partially corrupted data, thereby reducing dataset
redundancy and extracting features. In addition to the works
mentioned in Section IV [85], [95], this characteristic of
MAE is also applied in industrial tasks [3].

In the original paper by He [1], the scalability of MAE is
emphasized. This means that even if the reconstructed results
differ from the original, they still possess a certain level
of coherence and can connect with contextual information.
Therefore, MAE has significant applications in image
generation [97], [103], [109], and also performs well in tasks
that require temporal coherence [4], [132].
Lastly, since MAE is a self-supervised method, its appli-

cations [84], [86], [87], [98] are often mentioned for greatly
reducing the labeling workload. Overall, the contributions of
MAE are particularly prominent in imperfect datasets with
high workload. Compared to other pretraining-finetuning
methods (mainly contrastive learning) that rely on a large
number of negative sample pairs and data augmentation,
MAE has significant advantages.

C. IMPROVEMENT STRATEGIES
In terms of improvement strategies, the improvements
of MAE can be roughly categorized into: 1) modifying
the training process, and 2) combining with other train-
ing methods. (Regarding modifying the training process,
adjusting the masking strategy and loss function are relatively
straightforward in terms of implementation, and many works
[20], [21], [35] have focused on this aspect. In general,
the selection of masking strategies and loss functions refers
to other MIM methods such as BEiT and SimMIM. For
example, the masking strategy of BEiT is used in [20] and
[62]. Improvements to the encoder and decoder [62], [63]
involve changes to the backbone architecture.
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Regarding combining with other training methods, one
more prominent approach is to improve the overall structure,
while another approach is to integrate similar methods. As for
the first approach, there are currently works that combine
MAE with contrastive learning and convolution. Sections
III-A2-III-A4 provide detailed introductions to the currently
published research. Overall, the former is essentially the
structure of contrastive learning with the masking process,
while the latter focuses on improving the encoder. In fact,
these combined methods are similar to MAE, targeting
similar tasks but with different approaches to pre-training.
Following this line of thinking, other self-supervised learning
techniques such as knowledge distillation also have the
potential to be combined and improved with MAE.

In terms of referencing similar methods, in addition to
MIMmethods, considering other autoencodermethods is also
an idea. On the basis of other improvements, there is also
room for adjustments specific to a particular downstream
task. In fact, most of the MAE applications discussed in
Section IV involve steps for adapting to specific downstream
tasks.

VI. CONCLUSION
Since the publication of the original MAE paper, applications
based on MAE have been widely seen in various journals and
international conferences, along with research on improving
MAE and combining it with other pre-training and self-
supervised learning methods. In terms of applications, MAE
has been extensively used in medical, natural image, and
geographic remote sensing image domains. In fact, MAE has
also been applied and extended to other fields such as audio
[67], [130], [131], and dealing with machine malfunctions.
Additionally, MAE has garnered more attention in the field
of self-supervised training, contributing to the popularity of
MIM methods in recent years.

MAE achieves good results while maintaining a relatively
simple and non-redundant structure, which is significant
in the context of increasingly large datasets. Through
this survey, we have summarized the contributions and
developments of MAE and discussed potential directions for
future research, hoping to provide insights for practitioners in
the field.
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