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ABSTRACT Traffic sign recognition plays a crucial role in the intelligent vehicle’s environment perception
system. However, due to varying weather conditions, illumination, and complicated backgrounds, recogniz-
ing traffic signs becomes very challenging. A novel lightweight detection model based on YOLOv5s, namely
Sign-YOLO, is proposed to overcome these challenges. Firstly, the CA (Coordinate Attention) module is
incorporated into the backbone network to improve the extraction of key features. Secondly, the improved
High-BiFPN is used to enhance YOLOv5s’ neck structure’s capability in fusing multi-scale semantic
information. Finally, the improved Better-Ghost Module is employed to reduce the model’s parameters
and accelerate the detection speed. We used the CCTSDB2021 dataset to evaluate our model. Compared to
YOLOv5s, the proposed Sign-YOLO algorithm in this paper reduces the model parameters by 0.13 M. The
precision, recall, F-1 score, andmAP value have improved by 1.02%, 7.01%, 1.84%, and 4.61%, respectively.
The FPS value remains around 86 fps. The results show that Sign-YOLO has achieved the optimal balance
between accuracy and real-time performance.

INDEX TERMS Chinese traffic sign, intelligent vehicle, deep learning, lightweight model, YOLOv5s.

I. INTRODUCTION
Traffic sign recognition is a crucial research area in intelligent
transportation. Its goal is to provide drivers with valuable
traffic information to enhance their driving safety [1]. How-
ever, different weather conditions, such as clouds, snow,
and fog, as well as varying illumination during the day and
night, along with complicated backgrounds, often increase
the difficulty of traffic sign recognition in vehicle driving [2].
Therefore, locating and identifying traffic signs in real-world
scenarios remains a challenging task.

Computer vision-based traffic sign detection algorithms
can be mainly divided into two categories: traditional
detection algorithms and deep learning-based detection algo-
rithms. Traditional traffic sign detection algorithms typically
involve a sequential set of steps to detect traffic signs. Firstly,
they segment the regions of interest containing traffic signs.
Then, they employ manual feature extraction methods to
extract information from these regions based on color, shape,
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and pixel values using techniques such as LBP [3], SIFT [4],
and HOG [5]. Finally, machine learning approaches like Ran-
dom Forest [6], Adaboost [7], and SVM [8] are utilized for
the classification of the detected traffic signs. However, man-
ual feature extraction methods face challenges in capturing
complex semantic information from images, which leads to
limited expressive power in representing image features and
poor robustness across various tasks.

The popularity of deep learning-based detection models
has gradually increased due to the constraints imposed by tra-
ditional methods. CNNs are employed to train these models,
utilizing a vast number of images in the process. The contin-
uous evolution of network parameters enables the models to
effectively capture traffic sign characteristics. There are two
main types ofmodels used in deep learning: two-stagemodels
and one-stage models. In the case of two-stage models, the
first step involves a search to detect traffic signs and identify
regions of interest. Once these regions are located, a feature
extraction network is employed to obtain the coordinates and
categories of the traffic signs. Representative examples of this
category include the R-CNN series [9], [10], [11] and Mask

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 113941

https://orcid.org/0009-0009-7433-4592
https://orcid.org/0000-0001-9980-7426
https://orcid.org/0000-0002-2517-2867


W. Song, S. A. Suandi: Sign-YOLO: A Novel Lightweight Detection Model for Chinese Traffic Sign

R-CNN [12], etc. In one-stage models, they predict both the
class probabilities and positional coordinates of traffic signs
at the same time. The SSD series [13], [14] and the YOLO
series [15], [16], [17], [18], [19], [20] are representative
models of this category. These detection models achieve high
accuracy but suffer from large parameters and slow detection
speeds.

Selecting the lightweight detection model YOLOv5s is a
recommended strategy for resolving issues related to large
parameters and slow detection speeds in traffic sign detection
models. Although it has fewer parameters and faster detection
speed, its detection accuracy is relatively lower. Therefore,
this paper focuses on enhancing the network structure of
YOLOv5s, and the main contributions of Sign-YOLO com-
pared to the original version are listed as follows.

• By incorporating a coordinate attention mechanism
into the backbone network, the network becomes more
focused on interesting regions, thus enhancing its abil-
ity to extract crucial features and making the model
more proficient at detecting traffic signs in real-world
scenarios.

• The proposed High-BiFPN enhances PANet’s capability
to fuse features from multi-scale objects by employing
a weighted bi-directional feature pyramid network with
intra-cell skip connections.

• The proposed HAG(High Active Ghost) module aims to
reduce redundancy in feature maps using cheap opera-
tions, thereby reducing the parameters of YOLOv5s.

II. RELATED WORK
Using Google Scholar, we searched for recent publications
on traffic sign detection and recognition. After extensive
research, we have classified the techniques into two cat-
egories: traditional approaches and deep learning-based
methods.

Dai et al. [21] developed a novel strategy to improve
the accuracy of traffic sign identification under varying
lighting conditions. They achieved this by leveraging color
features, resulting in an impressive accuracy of 78% and a
processing speed of 11 fps. Liang et al. [22] introduced a
pioneering method for traffic sign recognition, which inte-
gratedHOG-Gabor feature extraction and a fusion of Softmax
classifiers. This novel approach demonstrated a remarkable
accuracy of 97.68%. Xu et al. [23] proposed a novel traffic
sign detection method that combines adaptive color thresh-
olding segmentation and shape symmetry hypothesis testing.
This approach effectively utilizes both the available traffic
sign information and the image data to enhance the accuracy
of the detection process. The initial stage required the com-
putation of an adaptive segmentation threshold through an
examination of the cumulative distribution function derived
from the image histogram. The resulting thresholded image
exhibited a distinct shape characteristic, which was further
transformed into a feature vector representing interconnected
regions. This method achieved a traffic sign detection accu-
racy surpassing 94%. Sun et al. [24] introduced a traffic

sign detection approach that utilizes adaptive gamma cor-
rection. Their method yielded impressive results, with a
detection rate of 97.28% and a false detection rate of 10.35%.
Calero et al. [25] used HOG features and an ELM classifier
to detect and recognize traffic signs under extreme daytime
lighting conditions, achieving an accuracy of 96.71% and a
detection speed of 24 fps. Wang et al. [26] proposed a fast
and accurate localization of moving targets based on FrFT.
Traditional approaches require manual extraction of color
characteristics, shape characteristics, or a combination of
both to extract precise information from traffic signs. How-
ever, these methods are susceptible to interference from
environmental factors such as variations in lighting condi-
tions, severe weather, and complex backgrounds.

The need for manual feature extraction is eliminated with
the utilization of deep learning-based techniques in traffic
sign detection. Deep learning models are trained using a
substantial amount of labeled data samples, enabling them to
acquire knowledge of nonlinear functions. These functions
convert images into a feature space where linear classifiers
can quickly distinguish between classes, resulting in accu-
rate traffic sign recognition. Cui et al. [27] introduced the
CAB Net, an innovative method aimed at improving the
accuracy of traffic sign detection. The primary emphasis of
this method was on generating high-resolution and reliable
semantic feature maps. The outcomes were exceptionally
impressive, achieving an mAP of 89% while simultaneously
maintaining a swift detection speed of 27 fps. Li et al. [28]
combined MobileNet with Faster R-CNN to improve the
detection accuracy of small traffic signs by integrating color
and shape attributes. For the classification of traffic signs,
they adopted an efficient CNN using asymmetric kernels.
The experimental outcomes demonstrated the effectiveness
of their proposed detector, successfully identifying traf-
fic signs across all categories. Dewi et al. [29] employed
GANs to produce a larger and more diverse collection of
training images, thereby enhancing the dataset. By integrat-
ing synthetic images with the original ones, they aimed to
enhance the overall quality of the dataset. The outcomes of
their study indicated an accuracy of 84.9% using YOLOv3
and a further improvement to 89.33% with YOLOv4.
Ayachi et al. [30] presented a traffic sign detection model
employing the YOLO approach. This model exhibited
impressive results by employing both model quantization
and pruning techniques, achieving a remarkable mAP score
of 96% while maintaining a fast-processing speed of up
to 16 fps. Lu et al. [31] proposed STDN, a traffic sign
detection network that combines PosNeg balanced anchors
and domain adaptation techniques. This network achieves a
detection speed of 55.9 fps. Liang et al. [32], [33] proposed
an improved Sparse R-CNN, which combines coordinate
attention blocks with ResNeSt to construct a feature pyra-
mid and modify the backbone network. This modification
allows the extracted features to focus on crucial informa-
tion, thereby enhancing the accuracy of traffic sign detection.
Subsequently, they introduced the DetectFormer algorithm,
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achieving detection performance of 97.6% AP50 and 91.4%
AP75 on the BCTSDB dataset.

Deep learning-based models have demonstrated remark-
able effectiveness in improving the performance of traffic
sign detection. However, finding a balance between enhanc-
ing the precision of traffic sign detection and maintaining
a compact model size remains a significant challenge.
Therefore, we have designed and implemented Sign-YOLO,
a model for traffic sign detection that offers high precision,
a lightweight design, and strong robustness.

III. METHOD
We will discuss YOLOv5s and the improved Sign-YOLO
algorithm. Firstly, we have incorporated the coordinate atten-
tion module into the backbone network of YOLOv5s. Next,
we have enhanced the structure of the neck network in
YOLOv5s by integrating an improved High-BiFPN. Lastly,
we have reduced the number of parameters in the Sign-YOLO
model by utilizing the improved Better-Ghost module.

A. YOLOv5s NETWORK MODEL
YOLOv5s is designed as a one-stage object detection model
that follows a specific methodology. The central concept
involves the extraction of image features through a backbone
network. These features are subsequently processed by the
neck network structure. Finally, in the output layer, the model
performs classification and regression tasks to predict the
bounding boxes of objects along with their associated class
confidences. The network structure of YOLOv5s is shown
in Figure 1.

FIGURE 1. YOLOv5s network structure.

The YOLOv5s network architecture consists of three main
components: the backbone, neck, and head. (1) Feature infor-
mation is extracted from imagesmainly through the backbone
network, which includes three critical modules: the CBS
module, the CSP module, and the SPPF module. (2) Figure 2
illustrates the neck architecture, comprising two essential

FIGURE 2. PAN network structure.

elements: the FPN structure and the PAN structure. The
PAN structure consists of an FPN structure and a bottom-up
pyramid structure, which can fuse top-down semantic infor-
mation and bottom-up positional information. These pieces
of information are derived from feature maps extracted by the
backbone network at multiple scales. (3) The head section uti-
lizes the fused feature results from the neck module to make
predictions, resulting in three different prediction scales:
20 × 20, 40 × 40, and 80 × 80.

B. CONSTRUCTION OF THE SIGN-YOLO
After introducing the principle of how YOLOv5s detects
objects, we will describe the Sign-YOLO algorithm that we
have proposed in this section.

1) STEP 1:COORDINATE ATTENTION MECHANISM
Integrating an attention mechanism module into YOLOv5’s
backbone network gives the model the ability to focus
on relevant details of interesting traffic signs. This min-
imizes the influence of the surrounding environment and
improves the model’s detection accuracy.

The representative attention mechanisms include the
BAM [34], CBAM [35], SE [36], and coordinate attention
module (CA) [37]. While SE attention primarily focuses on
capturing inter-channel information, it may overlook the sig-
nificance of positional information. The CA module, on the
other hand, serves as a high-performing and lightweight
attention mechanism. To begin, the channel attention mecha-
nism is restructured by dividing it into two parallel 1D feature
encodings. Two separate 1D global pooling operations are
employed to encode input features independently, with one
operating vertically and the other horizontally. This approach
generates two separate feature maps that are sensitive to their
respective directions. In this way, it embeds spatial coordinate
position information into the channel attention mechanism,
thereby obtaining precise location data while capturing long-
range dependencies. Subsequently, the two feature maps with
unique directional information undergo a conversion process,
resulting in the generation of two attention maps. These
attention maps are then used to adjust the input feature map
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FIGURE 3. The network structure of CA module.

by assigning varying weights to its elements based on their
importance for position and direction. This has the potential
to improve the model’s capability in accurately recognizing
and detecting targeted traffic signs. The network structure of
the CA module is shown in Figure 3.
Global pooling is split into two 1D feature encodings,

where an input X undergoes pooling operations with kernels
of sizes (H , 1) and (1,W ) along the horizontal and vertical
dimensions, respectively. These pooling operations encode
each channel individually. For a given position (a, b) and
channel c, the pixel value of channel c is represented as
xc(a, b). As a result, the average pooling value in the hori-
zontal direction can be formulated as follows:

pac(a) =
1
W

∑
0≤b≤W xc(a, b). (1)

Similarly, the pooling values in the vertical direction can
be written as:

pbc(b) =
1
H

∑
0≤a≤Hxc(a, b). (2)

Afterward, the obtained feature maps are combined by
concatenating them and applying a shared 1×1 convolutional
operation for further transformation. The relevant definition
is as follows:

z = θ (q([pac, p
b
c])). (3)

where [, ] represents the concatenation operation, q represents
the convolution operation, θ represents the SiLU activation
function, and z ∈ R(Cr )×(H+W ) represents the intermediate
feature map encoding spatial information in both horizontal
and vertical directions.

Then, the tensor z can be split into two separate tensors,
denoted as za and zb, by performing a division along the
spatial dimension. Afterward, the feature maps za and zb are
subjected to transformations using two 1 × 1 convolutions,
qa and qb, respectively. These convolutions result in tensors
with the same number of channels as the input X .

ua = σ (qa(za)). (4)

ub = σ (qb(zb)). (5)

where σ represents the sigmoid activation function. There-
fore, the feature map output of the CA module is defined as

fc(a, b) = xc(a, b) × uac(a) × ubb(b). (6)

where c represents the number of channels. uac(a) represents
the weight at the a-th position in theW direction, while ubb(b)
represents the weight at the b-th position in the H direc-
tion. xc(a, b) denotes the value of the input feature map,
and fc(a, b) represents the value of the output feature map.
Figure 4 illustrates the incorporation of the CA module into
the CSP structure of the YOLOv5s backbone network.

FIGURE 4. The structure of CA_CSP module.

2) STEP 2:MULTI-SCALE FEATURE LAYER FUSION MODULE
HIGH-BIFPN
YOLOv5s employs the PAN structure to fuse input features at
multiple scales. The input features are simply added together
without distinction in this way. However, the contributions of
the fused output features are often unequal due to the differ-
ences in resolutions among the input features. To address this
problem, Tan et al. [38] proposed a Weighted Bi-directional
Feature Pyramid Network (BiFPN). Weighted fusion is a
mechanism employed by BiFPN to understand the signifi-
cance of various input features. According to this strategy,
each node in the network assigns weights to the input features
and trains these weights using a fast normalization method,
as shown in Equation 7.

Out =

∑
i

wiIi
ε +

∑
j wj

. (7)

where Ii represents the input feature,Out represents the result
of weighted feature fusion, wi and wj are learnable weights.
The ReLU activation function is utilized to constrain the
learnable weights to the range of [0, 1]. ε = 0.0001 is a small
value to ensure output stability.

113944 VOLUME 11, 2023



W. Song, S. A. Suandi: Sign-YOLO: A Novel Lightweight Detection Model for Chinese Traffic Sign

FIGURE 5. High-BiFPN network structure.

This paper is inspired by the ideas of BiFPN. In the
YOLOv5smodel, after a 16-fold downsampling, the resulting
40 × 40 feature map is connected to the subsequent feature
maps through cross-layer connections. This enhancement
improves the network’s ability to detect traffic signs by allow-
ing for a more thorough extraction of positional information,
minimizing the loss of feature information, and enhancing
overall performance. The improved High-BiFPN structure is
shown in Figure 5.

The blue nodes represent nodes with two branching inputs,
while the green nodes represent nodes with three branching
inputs. Weights are assigned to different input features based
on their varying contributions to the output features at dif-
ferent scales. Taking the blue nodes of the P3 layer as an
example, the definition is as follows:

Ptd’3 = Conv

(
w3 × P3 + w4 × Resize(Ptd4 )

w3 + w4 + ε

)
. (8)

where Conv is the convolution operation, Resize upsamples
the input, w3 is the learnable weight of the output of the third
layer P3, and w4 is the learnable weight of the output of the
fourth layer Ptd4 .
In Figure 5, we demonstrate the concatenation of

(
Ptd’3

)
with P3. Subsequently, a 1 × 1 convolution is employed to
merge the current features into a new feature, resulting in
the output denoted as Ptd3 at this node. This intra-cell jump
connection structure serves a dual purpose: it reconstructs
the features while also increasing the number of channels,
maintaining the original channel count in the YOLOv5s
model. This further enhances the feature fusion capability of
the feature pyramid. The connection of the intra-cell jump
connection structure is illustrated in Equation 9.

Ptd3 = Conv(concat(P3,Ptd
′

3 )). (9)

where concat is the concatenation operation and Conv is the
convolution operation.

When different scale features are inputted into the green
node from three branches, we can similarly obtain Pout’4 and

output Pout4 , as shown in equations 10, 11.

Pout’4 = Conv

(
w1 × P4 + w2 × Ptd4 + w5 × Resize(Pout3 )

w1 + w2 + w5 + ε

)
.

(10)

Pout4 = Conv(concat(Pout’4 ,Resize(Pout3 ))). (11)

where Resize is the downsampling operation and w1, w2,
and w5 are the learnable weights corresponding to the three
input feature maps of Pout’4 . We propose High-BiFPN, which
improves the concatenation module in the PAN structure of
YOLOv5s.

3) STEP 3: THE LIGHTWEIGHT BETTER-GHOST MODULE
In traditional convolutional methods, all channels of the input
feature map are simultaneously considered, resulting in the
generation of a large number of redundant features in the
intermediate feature map. These redundant features help us
fully grasp the input data, but they also demand a lot of
computational resources. Han et al. [39] proposed a novel
lightweight Ghost module that can generate redundant feature
maps using cheap operations. This paper, inspired by the
Ghost Module, proposes a Better-Ghost Module (BGM). The
structure of BGM is depicted in Figure 6. The first part of
the BGM is generated by a CBS operation with a size of
1 × 1 , output channels equal to half of the input channels,
and a grouping of 1, producing the real feature layer. Then,
the result of the first part of the CBS operation is used as input,
and the Ghost feature layer is obtained through a 3× 3 CBS
operation with the same number of input and output channels
and the same number of groups as the input channels. The
final step involves combining the output feature maps from
the two components and using them as the ultimate output
feature map for the BGM. The CBSmodule consists of a k×k
dimension convolutional layer, a Batch Normalization layer,
and a SiLU activation function.

FIGURE 6. The structure of lightweight Better-Ghost Module.

The original Ghost Module used the ReLU activation func-
tion, while the BGM structure in this paper uses the SiLU
activation function. This choice is made because the ReLU
activation function has a gradient of 0 for the negative half of
the x-axis. Consequently, negative gradients are set to 0 after
passing through ReLU, causing sparsity in negative values.
This can lead to the phenomenon of ‘‘dead neurons,’’ where
neurons become ineffective in learning meaningful features.
The SiLU function, on the other hand, maintains a non-zero
gradient on the negative half-axis, allowing weights to con-
tinue updating on the negative side. This effectively prevents
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the loss of negative gradient information and provides higher
activation, enabling the extraction of more effective features.
As a result, it improves the training efficiency of the model.
The two activation function curves are shown in Figure 7.

FIGURE 7. ReLU and SiLU activation functions.

We will present evidence from memory usage and com-
putational demands to demonstrate the effectiveness of the
BGM module. Assuming the size of the input feature map
and output feature map is C × H × W , where C , H , and W
represent the number of channels, height, and width of the
feature map, respectively. In the BGM module, the convolu-
tional kernel is k × k ×

C
g , where k and g denote the size and

number of groups of the convolutional kernel, respectively.
The convolution computation is divided into two steps. In the
first step, with k = 1 and g = 1, the real feature map is
generated. In the second step, with k = 3 and g = C/2, the
ghost feature map is generated. The flops can be calculated as
C
2 ×H×W×C×1×1+C

2 ×H×W×3×3, and the parameters
can be calculated as 1 × 1 × C ×

C
2 + 3 × 3 × 1 × 1 ×

C
2 .

In the case of a normal convolution where the input feature
map and output feature map are of the same size as the BGM
module, the convolutional kernel size is 3×3, the FLOPs are
C×H×W×C×3×3, and the parameters areC×C×3×3.
The ratio of computational complexity between the BGM
module and regular convolution is

γ =
C × H ×W × C × 3 × 3

C
2 × H ×W × C × 1 × 1 +

C
2 × H ×W × 3 × 3

=
18C
C + 9

. (12)

The comparison of parameters between the BGM module
and regular convolution is

ϕ =
C × C × 3 × 3

1 × 1 × C ×
C
2 + 3 × 3 × 1 × 1 ×

C
2

=
18C
C + 9

.

(13)

By examining equations (12) and (13), it becomes evident
that as the number of channels grows, the ratio experiences
a corresponding increase. Therefore, when inputting fea-
ture maps of the same size, the BGM module used in this
paper requires fewer parameters, resulting in faster process-
ing speed. Moreover, as the number of channels increases,

the benefits obtained from the BGM module become more
significant. The paper uses an improved BGM module to
replace the conventional convolution in the CSP2_4 module
of the YOLOv5s network. Figure 8 illustrates the enhanced
architecture of the Sign-YOLO model after incorporating the
aforementioned improvements.

FIGURE 8. Sign-YOLO network structure.

IV. EXPERIMENT
A. DATASET
We will validate the Sign-YOLO model using the
CCTSDB2021 dataset. The dataset divides traffic signs into
three types: prohibition signs, warning signs, and mandatory
signs. It consists of 16,356 images created through man-
ual processing of 423 different videos, captured at various
times, weather conditions, locations, and speeds, ensuring
data diversity. The images in the dataset have resolutions
of 860 × 480, 1280 × 720, 1920 × 1080, etc. The training
dataset includes a total of 16,356 images, and for evaluation
purposes, it has a separate test set containing 1,500 images.
During the training phase, the dataset is divided into two
distinct sets: the training set and the validation set, with a
9:1 ratio. Figure 9 displays some sample images from the
CCTSDB 2021 dataset.

B. EXPERIMENTAL CONFIGURATION AND PARAMETER
SETTINGS
The experiment was conducted on a computer running the
Windows 11 operating system. The computer was equipped
with an Intel Core i9-13900KF CPU clocked at 3.00 GHz,
an NVIDIA GeForce RTX 4070 graphics card, and 12GB
of graphics memory. The experiment utilized the Python
programming language along with PyTorch 1.13.1 for imple-
mentation. To accelerate the training process, CUDA 11.1
was employed. We used the SGD optimizer to update the
model parameters during training for 400 epochs, with a batch
size of 16. The initial learning rate was set to 0.001, with
a applied momentum of 0.937 and weight decay of 0.0005.
Additionally, we incorporated mosaic and mixup techniques

113946 VOLUME 11, 2023



W. Song, S. A. Suandi: Sign-YOLO: A Novel Lightweight Detection Model for Chinese Traffic Sign

FIGURE 9. Some samples in CCTSDB2021.

with a ratio of 80%. For all other configurations, we adhered
to the default settings as used in the original YOLOv5smodel.

To obtain 9 anchor boxes of various scales, including
large, medium, and small, the K-means method was initially
applied to analyze the CCTSDB2021 dataset during the train-
ing process. The anchor box sizes are as follows: (22, 38),
(26, 62), (48, 92), (15, 26), (12, 33), (16, 46), (5, 10), (6, 13),
and (10, 19). Then, the model was trained without pretraining
using these parameters.

C. EVALUATION METRICS
This study evaluates the algorithm’s performance using mul-
tiple assessment metrics, including average precision (AP),
precision (P), F-1 score, mean Average Precision (mAP),
recall (R), and Frames Per Second (FPS). FPS quantifies the
rate at which images are processed per second. True Positives
(TP) indicate correctly detected traffic signs that match their
true meaning. False Positives (FP) refer to cases where a
traffic sign is detected, but its meaning does notmatch the true
meaning. False Negatives (FN) represent traffic signs that the
model fails to detect. The following formulas can be used to
calculate these metrics:

Precision =
TP

TP+ FP
. (14)

Recall =
TP

TP+ FN
. (15)

AP =

∫ 1

0
P(R) d(R). (16)

mAP =
1

classes

classes∑
i=1

∫ 1

0
P(R) d(R). (17)

F1-Score =
2 × Precision × Recall
Precision + Recall

. (18)

D. RESULTS AND ANALYSIS
1) EVALUATION RESULTS
In this study, we utilize enhanced modules in combination
with YOLOv5s to create Sign-YOLO, which is subsequently
evaluated and compared with the YOLOv5s algorithm using
the CCTSDB2021 dataset. The results achieved are presented
in Table 1.

With an IOU threshold set to 0.5, the Sign-YOLO model
increased the P-value by 1.02%, the R-value by 7.01%, the
F1-score by 4.84%, and the mAP value by 4.61%. Further-
more, the model size decreased by 0.13 M. In this paper,
we successfully achieved improvement in various metrics
in the Sign-YOLO model, and its parameters are smaller
than those of YOLOv5s. The significant improvement in the
R-value indicates that Sign-YOLO has a better ability to
recognize and locate traffic signs, reducing the occurrence of
false negatives (where real targets are incorrectly classified as
negative instances). This means that more traffic signs will be
accurately detected, contributing to improved traffic safety.
To further facilitate a detailed comparison, we have provided
the P curves, R curves, F1-score curves, and PR curves for
the three traffic sign categories of the CCTSDB2021 dataset,
as shown in figure 10.

FIGURE 10. Comparison of P curves, R curves, F1 curves, and PR curves
for YOLOv5s and Sign-YOLO.

At a confidence score of 0.5, the corresponding P, R, F1,
and AP values for the YOLOv5s and Sign-YOLO algorithms
are presented in table 2. The Sign-YOLO model has demon-
strated remarkable advancements in performance metrics for
detecting three classes of traffic signs, surpassing the capa-
bilities of YOLOv5s.
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TABLE 1. Comparison results of Sign-YOLO and YOLOv5s on the CCTSDB2021 dataset.

TABLE 2. Performance of YOLOv5s and Sign-YOLO on the CCTSDB2021
dataset.

FIGURE 11. Performance comparison of YOLOv5s and ours. (a) original
image; (b) results of YOLOv5s; (c) Results of Sign-YOLO.

In this paper, we introduced relevant tests in real-life
scenarios. Firstly, we utilized a vehicle-mounted camera to
capture video footage of the road environment. The video was
processed into multiple images, which were then subjected to
testing using the YOLOv5s algorithm and the Sign-YOLO
algorithm. The results of these tests were visualized using
a heatmap, as shown in Figure 11. The findings demon-
strate that the Sign-YOLO model places more emphasis on
detecting traffic signs within images and achieves superior
performance in terms of recognition. According to these find-
ings, the Sign-YOLO algorithm outperforms the YOLOv5s
model in terms of detection and recognition capabilities.

2) PERFORMANCE COMPARISON
Sign-YOLO was thoroughly validated on the CCTSDB2021
dataset through a series of extensive comparative exper-
iments. The paper utilized diverse evaluation metrics to
conduct a comprehensive quantitative assessment from mul-
tiple viewpoints. The comparative results are presented
in table 3.

Sign-YOLO is compared with several object detection
algorithms, encompassing both one-stage and two-stage
approaches. The evaluation involves well-known techniques
such as Faster R-CNN, Libra R-CNN, Dynamic R-CNN,
Sparse R-CNN, SSD, RetinaNet, and the YOLO series. Gen-
erally, one-stage object detection algorithms demonstrate

faster processing times in contrast to their two-stage coun-
terparts, but two-stage algorithms tend to provide higher
accuracy. Faster R-CNN is a classic two-stage detection
algorithm with P, R, F1 score, and mAP of 84.43%, 54.98%,
0.60, and 56.58% respectively. Recent advancements in
two-stage detection include Libra R-CNN, Dynamic R-CNN,
and Sparse R-CNN. Sparse R-CNN achieved significant
improvements with precision at 94.12%, an F1 score of
0.67, and an mAP of 59.65%, surpassing Faster R-CNN
by 9.69%, 7.00%, and 3.07% respectively. However, despite
these gains, the detection speed is limited by the two-stage
model, and it is challenging to improve the detection speed
of this algorithm. As a result, it cannot achieve real-time
object detection in various road environments in the wild.
SSD has several limitations and cannot accurately detect
traffic signs. The RetinaNet algorithm has improved the aver-
age detection precision of traffic signs, but the FPS value
is 8.88. The YOLO series has made significant advancements
since then. YOLOv5s, compared to previous algorithms, has
achieved impressive detection results with a mAP value of
76.39%. The model size is 7.03M, and its FPS is 112.
Compared to YOLOv5s, the Sign-YOLO algorithm achieves
optimization by combining multiple modules, resulting in
a higher recall rate, precision, F1 score, and mAP in traf-
fic sign object detection tasks. Additionally, it achieves an
FPS value of 86. Therefore, Sign-YOLO effectively meets
the detection needs of traffic signs for self-driving vehicles
in a variety of road situations by striking an appropri-
ate balance between detection accuracy, speed, and model
size.

Detection algorithms exhibit varying performance depend-
ing on the constantly changing and complex weather condi-
tions encountered during everyday driving in the wilderness.
Table 4 presents the detection outcomes of various algorithms
on the CCTSDB2021 test set across five weather conditions,
using an IOU threshold of 0.5.

It can be observed that different traffic sign detection
algorithms achieve relatively high precision and recall rates
in cloudy, snowy, and sunny conditions. This indicates that
these algorithms performwell in situations with good lighting
and without fog interference. However, in foggy weather
and at night, different detection algorithms exhibit relatively
low precision and recall rates, suggesting that foggy weather
adversely affects the detection of traffic signs. Nighttime
conditions have a more significant impact on the detection
of traffic signs compared to foggy weather, as visibility is
relatively low at night. This is due to the relatively dim
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TABLE 3. Detection results of different networks on the CCTSDB2021 dataset.

TABLE 4. Detection results of CCTSDB 2021 in different weather conditions (unit: %).

lighting during the night, which can lead to visual blurring
and certain obstructions.

In a nighttime scene, the recent two-stage model, Sparse
R-CNN, achieves a precision value (P) of 91.48% and a
recall value (R) of 44.15%. On the other hand, the one-stage
model YOLOv5s achieves a precision value of 86.97% and a
recall value of 58.36%. Compared to YOLOv5s, Sign-YOLO
demonstrates a 1.47% higher precision value and a 10.35%
higher recall value in nighttime conditions. Under foggy
weather conditions, Sign-YOLO shows significant improve-
ments in both precision and recall, with P-values andR-values
higher than YOLOv5s by 8.41% and 15.83%, respectively.
Therefore, the proposed algorithm in this paper exhibits out-
standing performance across a range of weather conditions,
leading to a compelling conclusion.

This paper performed relevant tests in different road
environments under natural scenes and varying weather
conditions. The YOLOv5s algorithm, which demonstrated
better performance, was selected for comparison with the
Sign-YOLO algorithm proposed in this paper. The test results
are shown in Figures 13–17. In these figures, ‘prohibitory’
represents prohibitory traffic signs, ‘warning’ represents
warning traffic signs, and ‘mandatory’ represents regulatory
traffic signs. Tests were conducted on rural and urban streets
under sunny weather conditions, as shown in Figure 12.
Under snowy weather conditions, tests were performed
on highways and town roads, as illustrated in Figure 13.

FIGURE 12. Performance comparison of YOLOv5s and Sign-YOLO under
sunny conditions (a) Original image; (b) YOLOv5s test results;
(c) Sign-YOLO test results.

FIGURE 13. Performance comparison of YOLOv5s and Sign-YOLO under
snow conditions (a) Original image; (b) YOLOv5s test results;
(c) Sign-YOLO test results.

Similarly, under cloudyweather conditions, tests were carried
out in the wilderness and residential areas, as demonstrated
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FIGURE 14. Performance comparison of YOLOv5s and Sign-YOLO under
cloud conditions (a) Original image; (b) YOLOv5s test results;
(c) Sign-YOLO test results.

FIGURE 15. Performance comparison of YOLOv5s and Sign-YOLO under
night conditions (a) Original image; (b) YOLOv5s test results;
(c) Sign-YOLO test results.

FIGURE 16. Performance comparison of YOLOv5s and Sign-YOLO under
foggy conditions (a) Original image; (b) YOLOv5s test results;
(c) Sign-YOLO test results.

TABLE 5. The detection performance comparison of different methods on
the TT100K dataset.

in Figure 14. During nighttime weather conditions, tests were
conducted on urban roads, as depicted in Figure 15. Addition-
ally, under foggy weather conditions, tests were performed
on urban roads, as shown in Figure 16. The results indicate
that the algorithm presented in this paper achieves superior
object localization and recognition performance compared to
YOLOv5s. It can effectively meet the detection requirements
of traffic signs for intelligent vehicles in various road envi-
ronments within natural scenes.

In order to comprehensively validate the detection capabil-
ities of our algorithm for Chinese traffic signs, we conducted
a comparative analysis with different algorithms on the
TT100K public dataset. The comparative results are shown
in table 5. It is evident from the table that, compared with
other mainstream algorithms, our algorithm demonstrates a
significant advantage in the detection of Chinese traffic signs.

V. CONCLUSION
This paper proposes several improvement strategies based
on YOLOv5s for traffic sign detection. Firstly, we used
the K-means clustering approach to generate appropriate
anchor boxes for the CCTSDB2021 traffic sign dataset. Next,
we enhance the backbone network of YOLOv5s by incorpo-
rating a CAmodule into the CSP structure. This enhancement
aims to boost the model’s capability to extract crucial fea-
ture information, allowing the backbone network to focus
on vital elements within traffic sign images while reduc-
ing background interference. Furthermore, we improve the
Feature Pyramid Network (FPN) structure to better integrate
local and global features. In the original FPN, features with
different resolutions contribute unequally to the fused output
features. Our proposed improvement addresses this issue by
enhancing the network’s ability to capture relevant informa-
tion from both local and global features. CSP2_4 incorporates
an advanced High-Ghost substitution technique instead of
the traditional convolution operation, resulting in a reduction
in parameter size for the Sign-YOLO model compared to
YOLOv5s. The experimental results show that Sign-YOLO
outperforms existing algorithms for traffic sign detection.
Although the current method efficiently balances detection
speed and accuracy on the CCTSDB2021 dataset, there is still
an opportunity for improvement in detection speed.
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