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ABSTRACT This paper presents an end-to-end trainable wavelet video coder based on motion-compensated
temporal filtering. Thereby, it introduces a different coding scheme for learned video compression, which
is dominated by residual and conditional coding approaches. By performing discrete wavelet transforms
in temporal, horizontal, and vertical dimensions, an explainable framework with spatial and temporal
scalability is obtained. This paper investigates a novel trainable motion-compensated temporal filtering
module implemented using the lifting scheme. It demonstrates how multiple temporal decomposition levels
can be considered during training. Furthermore, larger temporal displacements owing to the coding order
are addressed and an extension adapting to different motion strengths during inference is introduced. The
experimental analysis compares the proposed approach to learning-based coders and traditional hybrid video
coding. Especially at high rates, the approach exhibits promising rate-distortion performance. The proposed
method achieves average Bjøntegaard Delta savings of up to 21% over HEVC, and outperforms state-of-the-
art learned video coders.

INDEX TERMS Convolutional neural networks, deep learning, discrete wavelet transforms, motion
compensation, motion estimation, scalability, video codecs, video coding, video compression, video signal
processing.

I. INTRODUCTION
Following the progress of learned image compression, there
have been significant advances in learned video com-
pression. Built on learned image coders, video coding
approaches exploit temporal redundancies by following two
main paradigms: residual and conditional coding. Residual
coders [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] largely
take over the structure of known hybrid video coders such
as VVC [11]. Using motion-compensated inter prediction,
the residual between the predicted and current frame is
compressed and then transmitted. Instead of transmitting a
difference signal, conditional coders compress the current
frame directly under the condition that both the encoder
and decoder know the prediction. Since the introduction
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of conditional coding in learned video compression by
a framework called DCVC [12], there have been several
improvements of DCVC [13], [14] as well as other condi-
tional coding schemes based on a generative model [15] or
transformers [16], [17].With these developments, conditional
coding currently outperforms residual coders and represents
the state of the art in learned video coding.

This paper investigates a different coding scheme visual-
ized in Fig. 1: learned wavelet video coding. It performs a
discrete wavelet transform (DWT) in temporal, horizontal,
and vertical dimensions. Specifically, an end-to-end train-
able wavelet video coder based on Motion-Compensated
Temporal Filtering (MCTF) [18] is introduced. Traditional
MCTF as proposed by Ohm [18] and improved by Choi
and Woods [19], incorporates motion compensation into the
temporal wavelet transform. Until the early 2000s, MCTF-
based wavelet video coding was an active research topic as a
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FIGURE 1. Schematic overview of the wavelet video coding scheme. This
paper introduces a novel trainable version of the coding scheme.
A temporal wavelet transform is followed by a 2D wavelet transform in
horizontal and vertical dimensions. By incorporating motion compensa-
tion into the temporal wavelet transform, Motion-Compensated Temporal
Filtering (MCTF) is performed.

scalable alternative to predictive transform coders. With the
success of the video coding standard H.264/AVC [20], hybrid
video coding approaches have dominated the field. Transform
coding has emerged as the predominant principle in learned
image and video compression. Here, the foundation of most
popular coders [21], [22], [23] is based on nonlinear trans-
form coding [24].
Recently, employing a learned spatial wavelet transform

for end-to-end image compression has shown great potential
by achieving state-of-the-art performance [25]. Motivated by
this emerging topic of trainable wavelet transforms for com-
pression, the novel learned MCTF video coding approach is
built on top of the wavelet image coder called iWave++ [25].
The MCTF video coder provides a flexible framework that
supports lossless compression. In addition, MCTF enables
a fully scalable video coder. Compared to other learned
approaches, which usually do not support input in YUV 4:2:0
format, wavelet video coding allows arbitrary input formats.

The focus of this paper is on the investigating a novel
trainable MCTF module and compressing the obtained tem-
poral subbands with the state-of-the-art wavelet image coder
iWave++ [25]. The contributions of this paper are as follows:

• Introduction of the first end-to-end trainable wavelet
video coding scheme. To date, there have been no
learned video compression approaches based on MCTF.

• Presentation of a training strategy for multiple temporal
decomposition levels in MCTF.

• Investigation of large temporal displacements due to the
MCTF coding structure and a first solution for handling
these cases more efficiently.

• Proposal of a content-adaptive MCTF approach that
adapts to different types of motion during inference.

II. STATE OF THE ART
A. LEARNED VIDEO COMPRESSION
DVC [1], [2] was the first learning-based deep video
compression framework. It follows the structure of a tra-
ditional hybrid P-frame codec but replaces its modules for
motion estimation, motion vector and residual compression
by neural networks. With the feature-space video coding
network FVC [4], the DVC framework was significantly
improved by performing these operations in the feature space.
The coarse-to-fine framework C2F [5] further advanced

FIGURE 2. Overview of the end-to-end image compression method
iWave++ [25]. x is a single luma or chroma channel of an image in the
YCbCr color space. The red arrows indicate the coding order of the
subbands y . Trainable modules are colored in blue. For visualization, the
subbands of two decomposition levels are shown.

residual coding using two-stage motion compensation at dif-
ferent resolutions and mode prediction networks.

Conditional coding can offer theoretical benefits over
residual coding [26] and learning-based frameworks allow for
its straightforward implementation via conditional autoen-
coders [27], [28]. The DCVC [12] framework has attracted
greater attention to conditional coding for learned video com-
pression. Conditioning on the temporal context in the feature
space [13], and an extended entropy model with a latent prior
in addition to quantization at different granularities [14] made
the DCVC framework reach state-of-the-art performance.
Another conditional coding approach [17] follows the struc-
ture of DCVC but uses a transformer-based entropy model.
There are also frameworks based on augmented normalizing
flows [15] or without an explicit motion model, such as the
video compression transformer VCT [16].

B. WAVELETS FOR LEARNED IMAGE COMPRESSION
The traditional discrete wavelet transform has desirable prop-
erties for image and video coding. Its compromise between
spatial and frequency resolution fits the correlation structure
of image data: edges can be coded more efficiently in the
spatial domain, whereas smooth shades and regular textures
can be better modeled in the frequency domain. Hence, the
image compression standard JPEG2000 [29] and the Dirac
video coder [30] employ a DWT as an alternative to the
discrete cosine transform. The coders rely on the lifting
scheme [31] for a fast and efficient implementation of the
DWT. With the lifting structure, the DWT can be performed
in place by factoring its calculation into multiple lifting steps.
At the same time, the lifting structure allows the construction
of new wavelet filters, so-called second-generation wavelets.
Moreover, the lifting scheme is a reversible structure and is
thus well suited for realizing lossless transforms that can be
incorporated into learning-based frameworks.

Convolutional Neural Networks (CNNs) allow the opti-
mization of wavelet transforms based on a set of training
images [32]. Such a learned wavelet transform implemented
via the lifting scheme has been shown to outperform the
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FIGURE 3. Overview of the proposed wavelet video coding scheme for
one temporal decomposition level with two frames. f denotes the input
video sequence.

wavelet filters used by JPEG2000. The learned wavelet
transform forms the basis of the end-to-end trainable
wavelet image coder iWave++ [25]. An overview of
iWave++ is shown in Fig. 2. First, the encoder performs
a CNN-based DWT with four decomposition levels. The
obtained tree-structured subbands constitute a hierarchical
representation at different resolutions. For transmission, the
wavelet coefficients are quantized using scalar quantization
with a trainable parameter. Subsequently, a CNN-based con-
text model estimates the entropy parameters of a Gaussian
mixture model employed for adaptive arithmetic coding.
The context model exploits correlations within the current
subband to be coded and across subbands from different
decomposition levels. After an inverse discrete wavelet trans-
form (IDWT) is performed by the decoder, a post-processing
module compensates for quantization artifacts.

Learned wavelet image compression provides a flexi-
ble framework. A 3D version of iWave++ [33] has been
employed for lossless and lossy medical image compression,
that is, for coding 3D volume data without temporal infor-
mation. An extension through an affine wavelet transform
module further improved volumetric image compression per-
formance [34]. The low- and highpass subbands obtained
from the lifting scheme are re-scaled by an affine map com-
puted based on the output of the prediction and update filters.

Dong et al. [35] proposed a partly trainable wavelet video
coder that follows a ’’t+2D’’ decomposition structure. First,
they perform a temporal wavelet transform taken from [36].
Afterwards, they code the obtained temporal subbands using
a trainable entropy parameter estimation module that largely
takes over the structure of iWave++. In addition, Dong et al.
enabled quality scalability via bitplane coding. This paper
focuses on a trainable temporal wavelet transform instead to
obtain a fully CNN-based wavelet video coder.

III. LEARNED WAVELET VIDEO CODING
In the following section, the end-to-end trainable wavelet
video coding scheme is introduced. Fig. 3 provides an
overview of the proposed approach. The temporal wavelet
transform realized via MCTF provides temporal scalability.
The obtained temporal low- and highpass subbands are coded
using dedicated iWave++ [25] image compression models.
Its spatial 2D wavelet transform yields spatial scalability.

FIGURE 4. Details on prediction and update filters. f denotes the input
video sequence. The ’’ME’’ module contains motion estimation and
motion vector coding. Its output MVt corresponds to the decoded motion
vectors at time instance t . MC stands for motion compensation and MC−1

for inverse motion compensation. The ’’DN’’ modules represent residual
CNN-based filter operations.

First, the concept of wavelet video coding for one tem-
poral decomposition level, that is, for coding two frames is
explained. Subsequently, multiple temporal decomposition
levels are discussed in Section IV.

A. TRAINABLE TEMPORAL WAVELET TRANSFORM
1) LIFTING SCHEME
The lifting structure [31] provides a flexible and efficient
implementation of the DWT. The temporal lifting scheme
illustrated in Fig. 3 consists of the three steps split, predict,
and update. In the first step, the input video sequence f is
split into even- and odd-indexed frames f2t and f2t+1. In the
next step, the odd frames are predicted from the even frames
with the prediction operator P . A temporal highpass sub-
band (HPt ) is obtained as HPt = f2t+1−P(f2t ). Subsequently,
an update step is performed according to LPt = f2t +U(HPt )
resulting in a temporal lowpass subband (LPt ). The inverse
lifting scheme is obtained by reversing the order of the oper-
ations and inverting the signs. Rounding the output of the
prediction and update operators yields an integer-to-integer
temporal DWT required for lossless reconstruction [37].

2) PREDICTION AND UPDATE FILTERS
Fig. 4 illustrates the detailed structure of the prediction and
update filters. For the prediction step, motion estimation
between the even and odd frames f2t and f2t+1 is performed
to obtain the motion vectors at time instance t . The motion
vectors are employed for motion compensation, followed by
a denoising filtering module (DN). In the update step, the
motion vectors are inverted to perform inverse motion com-
pensation (MC−1) followed by another denoising module.
Due to the update step, the even frame is effectively low-pass
filtered along the motion trajectory. The temporal lowpass
filtering separates noise from content over time.

Applying a denoising filter after forward and inverse
motion compensation has been shown to improve compres-
sion efficiency in scalable lossless wavelet coding of dynamic
CT data [38]. This paper follows the same processing order
and structure but uses trainable denoising filters, allowing for
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flexibility during training. The denoising filters have the same
residual filter structure as the prediction and update filters of
the CNN-based spatial DWT in iWave++ [25].

B. MOTION ESTIMATION AND MOTION
VECTOR COMPRESSION
The approaches for motion estimation and motion vec-
tor coding follow the state-of-the-art learned video coder
DCVC-HEM [14]. During motion estimation, a dense optical
flow field is estimated using a Spatial Pyramid Network
(SPyNet) [39]. With six pyramid levels, the input of SPyNet
is 6× downsampled. At every pyramid level, a network com-
putes the residual flow based on the upsampled flow from the
preceding level, and thus deals with relatively small motion.

To code the motion vectors obtained from SPyNet,
a motion vector encoder computes a 64-channel latent rep-
resentation with a 16× downscaled spatial resolution. The
latents are discretized using multi-granularity quantization.
The entropy model uses a hyper prior and a dual spatial
prior. The latter is a two-step coding approach that exploits
channel redundancies, which allows parallelization, in con-
trast to an autoregressive prior. The latent prior employed
by DCVC-HEM conditions the entropy model on previously
coded motion vector latents and is omitted for the MCTF
coder. Because training is performed using only two frames,
as detailed in Section IV-B, only one motion vector latent
is available. For more details on motion vector compression,
please refer to [14].

IV. DYADIC TEMPORAL DECOMPOSITION
A dyadic decomposition [29] recursively applies a wavelet
transform in the temporal direction to the lowpass of the
previous decomposition stage. Thus, different temporal reso-
lutions are obtained at each decomposition level for temporal
scalability. With the dyadic decomposition structure, the
number of frames contained in a group of pictures (GOP)
is equal to powers of two. This paper investigates GOPs
containing up to eight frames.

A. CODING ORDER AND TEMPORAL SCALABILITY
Fig. 5 illustrates the coding order of MCTF for a GOP con-
sisting of 8 frames. Because MCTF is an open-loop structure,
motion estimation is performed on the original frames instead
of the decoded frames. In the first temporal decomposition
level, the operator P1 predicts all odd-indexed frames from
the respective preceding frame. The resulting four temporal
highpass frames h1,t and their corresponding motion vectors
can be directly coded. Next, the temporal lowpass frames are
obtained from the update operation U1 which receives the
highpass frames as input. After the first temporal decompo-
sition level, there are four temporal lowpass frames. MCTF
repeats this decomposition in the temporal direction until
only the single temporal lowpass frame l3,0 in decomposition
level j = 3 is left. Overall, the highpass frames h1,t from
the first decomposition level can be coded first, followed
by the highpass frames from the deeper temporal levels.

FIGURE 5. Coding order for a GOP size of 8. The temporal lowpass and
highpass subbands are denoted as lj,t and hj,t . The gray frames are
coded from temporal decomposition level 1 to 3.

Finally, the lowpass frames l3,0 from the lowest temporal
decomposition level are transmitted.

Note that the distance between frames d in the temporal
direction increases with every temporal decomposition level j
according to d = 2j−1. Hence, the frame distance d is
equal to 4 in temporal decomposition level j = 3. This
is disadvantageous in terms of rate-distortion performance
compared with regular P frame coding with a frame distance
of d = 1 for every P frame. However, MCTF has the benefit
of providing temporal scalability: the lowpass subbands are
similar to the original sequence and therefore correspond to
a Base Layer (BL). The highpass subbands contain residual
information that serves as an Enhancement Layer (EL). The
further the input video sequence is decomposed in the tem-
poral direction, the more ELs are available. For a GOP size
of 8, there are three ELs as indicated in Fig. 5. Owing to
the different temporal decomposition levels, dedicatedMCTF
filtering, motion estimation, and motion vector compression
networks for each temporal decomposition level are benefi-
cial. The benefits of the different MCTF stages are evaluated
in Section V-B2.

On the decoder side, the inverse MCTF is performed by
reversing the order of the prediction and update filters.

B. TRAINING STRATEGY AND LOSS
This paper adopts a multi-stage training strategy, of which
Table 1 provides an overview. During the entire training
procedure, each training sample consists of two frames. In the
first part, a single MCTF stage is trained (training stage 1-3),
and more stages are added in the second training part (train-
ing stage 4-5) depending on the GOP size. Thus, dedicated
models for different GOP sizes are trained to consider the
varying number of temporal decomposition levels. The two
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TABLE 1. Training schedule for a GOP size of 4/8. A training sample
consists of two frames in each training stage. LR denotes the learning
rate, dmax the maximum frame distance between two frames in a training
sample, and ’’parts’’ refers to the trainable components of the network.
’’All’’ parts include the MCTF stages and the iWave++ models.

iWave++models employed for coding the temporal lowpass
and highpass subbands are initialized with models pretrained
on image data.

1) FIRST TRAINING PART: SINGLE MCTF STAGE
During the first two training stages, only the network com-
ponents for MCTF are trainable. They consist of motion
estimation, motion vector compression, and DN modules.
In the first stage, the loss is the distortion DME between the
frame to be predicted f2t+1 and the prediction P1(f2t ). The
second stage additionally considers the rate RMV required for
motion vector coding. In the next stage, the entire network is
trainable and the loss is the regular rate-distortion loss.

The full rate-distortion loss for two frames reads:

Lfull =

∑
i=0,1

Rall,i + λ · DMSE(fi, f̂i),

where i denotes the frame number and the distortion term
corresponds to the Mean Squared Error (MSE) between the
original frame fi and the reconstructed frame f̂i. Rall,i consists
of the rate required to code the temporal subbands using an
iWave++ model. If the corresponding frame i is coded as
a temporal highpass subband, Rall,i also includes RMV. This
paper considers lossy compression, where the only informa-
tion loss stems from the scalar quantization operation of the
iWave++ models.

2) SECOND TRAINING PART: MULTIPLE MCTF STAGES
To account for multiple temporal decomposition levels, mul-
tiple MCTF networks are used, where the additional MCTF
stages are initialized with the parameters of the already avail-
able MCTF stage. For a GOP size of 4 with two temporal
decomposition levels, two MCTF stages and a maximum
frame distance dmax of two are used. For every batch element,
a random frame distance between one and dmax is selected.
Depending on the frame distance, a different MCTF stage
with different networks is chosen. Thus, for a GOP size of 4,
it is randomly alternated between optimizing the first MCTF
stage with a frame distance of one and the second MCTF
stage with a frame distance of two. Thereby, the different
MCTF stages share the iWave++ models employed for cod-
ing the temporal lowpass and highpass subbands.

FIGURE 6. Lifting structure with downsampling strategy for
decomposition levels j > 1 (MCTF-DS). Here, the ’’ME’’ module performs
motion estimation on downscaled input frames. The reconstructed
motion vectors MVt obtained from motion vector compression are
upscaled before being used for forward and inverse motion
compensation.

In the last two training stages, again only the MCTF com-
ponents are trained first and then all network modules are
jointly optimized as can be seen in Table 1. To consider
inverseMCTF formultiple decomposition levels during train-
ing, experiments were conducted using four frames per batch
element. However, they showed that training becomes unsta-
ble, and the final rate-distortion performance is significantly
worse than training with two frames and one temporal level.

For a GOP size of 8, the number of MCTF stages is
increased from two to three. The maximum frame dis-
tance dmax in the last two stages (see Table 1) is set to 4 to
account for the GOP structure shown in Fig. 5.

C. DOWNSAMPLING STRATEGY FOR TEMPORAL
DISPLACEMENTS IN MCTF
The larger the temporal decomposition level, the larger
the temporal distance between the frames in the origi-
nal sequence (see Section IV-A). Therefore, considerably
larger temporal displacements are possible. If the motion
is too strong for the motion estimation network to predict
accurately, prediction errors can lead to ghosting and error
propagation across decomposition levels.

To address larger motion, computing and transmitting
motion vectors at a lower spatial resolution for temporal
decomposition levels larger than one is proposed. Specifi-
cally, the current frame and reference frame before motion
estimation are downscaled by a factor of two for every tem-
poral decomposition level j > 1 as illustrated in Fig. 6. Hence,
the motion vectors are coded at lower resolution and upscaled
after the motion vector decoder. Both bilinear down- and
upsampling are performed. The upscaled motion vectors are
then used for the forward and inverse MCTF. The proposed
downsampling strategy (MCTF-DS) does not require addi-
tional training, and its benefits are evaluated in Section V-B2.

D. CONTENT-ADAPTIVE MCTF (MCTF-CA)
The coding efficiency of MCTF is highly dependent on the
motion-compensated prediction quality as motion estimation
errors propagate to higher temporal decomposition levels.
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Even with the downsampling strategy, the motion present
in a scene can be too strong for the motion estimation net-
work or occluded regions can limit the prediction quality.
Therefore, adaptive temporal scaling for each video sequence
can lead to improved coding efficiency compared with uni-
form dyadic temporal decomposition by mitigating ghosting
and thus error propagation. Lanz et al. [40] investigated
content-adaptive wavelet lifting for scalable lossless coding
of medical data by choosing the number of temporal decom-
position levels based on the sequence content. This paper
proposes the adoption of a content-adaptive wavelet lifting
approach for our lossy wavelet video coder, which is referred
to as MCTF-CA. This approach does not require additional
training.

In the following section, the concept of content-adaptive
MCTF for a GOP size of 8 is explained. During inference, the
coding costs for a GOP consisting of 8 frames are optimized.
As a cost criterion, the rate-distortion cost for N = 8 frames
is evaluated as:

CN =

N−1∑
i=0

Rall,i + λ · DMSE(fi, f̂i),

where the tradeoff parameter λ is chosen according to the
value employed for training the MCTF model. With one
MCTF model trained for a GOP size of 8, evaluate different
options for coding the current GOP. Subsequently, the variant
with the minimum coding cost is chosen:

min
(
C8,GOP8, CDS8,GOP8, C8,GOP4, C

DS
8,GOP4, C8,GOP2

)
,

where the notation CDS8,GOP4 denotes the cost of coding
8 frames in smaller GOPs of size 4 with the downsampling
strategy, for example. Either a GOP size of 8 is coded or split
into several smaller GOPs. Here, two GOPs of size 4 or four
GOPs of size 2 are possible. In addition, it is decided whether
to use the downsampling strategy or not.

In total, five options are considered for coding a GOP with
8 frames. The choice for each GOP needs to be transmitted to
the decoder side. However, the overhead of transmitting three
bits per eight frames is negligible. Hence, binary encoding is
used to signal the content-adaptive choice for a coding unit
with eight frames.

For a GOP size of 4, there are three options: Two GOPs of
size 2 and one GOP of size 4, with or without downsampling.

V. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
1) TRAINING DETAILS
The networks described above are implemented using the
PyTorch framework. The Vimeo90K data set [41] is used for
training and the batch size is set to 8. During training, patches
of size 128 × 128 are cropped from the luma channel of the
respective training sample, whereas no cropping is performed
during inference. By choosing the rate-distortion trade-off
parameter according to λ = {0.007, 0.01, 0.03, 0.05, 0.08},
five models are obtained for each GOP size. AdamW [42]

is used as optimizer. Furthermore, the iWave++ models
pretrained on luma data from [43] are used for temporal
subband coding. SPyNet [39] is initialized with the ’’sintel-
final’’ model1 trained on a synthetic data set.
As described in Section IV-B, separate models with multi-

pleMCTF stages are trained for GOP sizes of 4 and 8, because
the seven frames available in sequences from the Vimeo90K
data set allow considering up to three temporal decomposition
levels, that is, a maximum GOP size of 8. In line with the
MCTF evaluation setup from Dong et al. [35] with a GOP
size of 8, it is shown that in this setting, MCTF performs
competitive to state-of-the-art coders.

2) TEST CONDITIONS
The UVG [44] and MCL-JCV [45] data sets are used for
testing. The sequences in both data sets have a resolution of
1920 × 1080 and are in YUV 4:2:0 format. UVG consists
of 7 sequences and MCL-JCV of 30. To consider a differ-
ent resolution of 1280 × 720, the JCT-VC class E data set
(HEVC E) containing three YUV 4:2:0 sequences are used.
The test conditions in [14] are followed by evaluating on the
first 96 frames of each sequence. In addition, the evaluation
includes three sequences from the UVG 4K [44] data set
(CityAlley, FlowerFocus, FlowerKids) with a resolution of
3840 × 2160 and testing is performed on the first 24 frames.
DCVC-HEM2 [14] and DCVC3 [12] are evaluated with

GOP sizes of 4 and 8 for a fair comparison with the
MCTF approach. Thereby, publicly available models from
the authors are used, which were trained on Vimeo90K.
As a traditional hybrid video coder, HM 16.254 is included.
HM is used in the Lowdelay P (LD-P) configuration because
the learned video coders only support unidirectional motion
estimation. HM is evaluated in its default main profile with
an intra period and GOP sizes of 4 and 8 as well.

The evaluation is performed in terms of RGB-PSNR,
as this is common in learned video compression, and the aim
of this paper is to provide comparable measurements. The
MCTF approach and HM receive the input video sequence
in YUV 4:2:0 format, whereas the input is converted to
RGB 4:4:4, as required by DCVC-HEM and its predecessor
DCVC. The wavelet video coder supports input data in YUV
4:2:0 format as well as in 4:4:4 format, because the color
channels are coded independently by iWave++. The motion
vectors are computed based on the luma channel. They are
re-used for the chroma channels, and bilinear downsampling
is performed if necessary.

B. EXPERIMENTAL RESULTS
1) COMPARISON TO STATE-OF-THE-ART VIDEO CODERS
a: RATE-DISTORTION CURVES
The novel approach is compapred to HM, the state-of-the-art
learned video coder DCVC-HEM [14], and its predecessor

1https://github.com/sniklaus/pytorch-spynet
2https://github.com/microsoft/DCVC/tree/main/DCVC-HEM
3https://github.com/microsoft/DCVC/tree/main/DCVC
4https://vcgit.hhi.fraunhofer.de/jvet/HM/-/releases/HM-16.25
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FIGURE 7. Rate-distortion evaluation on the UVG data set. Solid lines
correspond to a GOP size of 8 and dashed lines to a GOP size of 4.

FIGURE 8. Rate-distortion evaluation on the MCL-JCV data set. Solid lines
correspond to a GOP size of 8 and dashed lines to a GOP size of 4.

DCVC [12]. Figs. 7-10 show the rate-distortion curves for
the UVG, MCL-JCV, HEVC E, and UVG 4K data sets,
respectively. The dashed lines correspond to a GOP size of 4,
whereas solid lines indicate a GOP size of 8.

Clearly, the conditional coder DCVC (gray) is not competi-
tive with the remaining video coders. The approach performs
better for a smaller GOP size of 4 compared to a GOP size
of 8 on two data sets, which implies an error propagation
issue. Its successor, DCVC-HEM (green), on the other hand,
can effectively exploit temporal redundancies for the larger
GOP size of 8. DCVC-HEMoutperforms HM in lower bitrate
ranges onUVGandMCL-JCV,whereasHMalways performs
better at higher rates.

The rate-distortion performance of the best-performing
model, MCTF-CA (red), behaves in the opposite way: the
higher the rate, the better the approach performs relative
to HM.At higher rates, themodel clearly outperformsHM for

FIGURE 9. Rate-distortion evaluation on the HEVC E data set. Solid lines
correspond to a GOP size of 8 and dashed lines to a GOP size of 4.

FIGURE 10. Rate-distortion evaluation on 3 sequences (CityAlley,
FlowerFocus, FlowerKids) from the UVG 4K data set. Solid lines
correspond to a GOP size of 8 and dashed lines to a GOP size of 4.

all data sets and GOP sizes. The performance degrades only
for the MCTF-CA model at the lowest rate point (λ = 0.007)
compared with the other rate points. The MCTF-CA model
performs particularly well at high rates, owing to its invert-
ible wavelet transforms. The perfect reconstruction property
allows lossless compression without quantization, and there-
fore provides the capacity for high coding efficiency at high
quality.

b: BJØNTEGAARD DELTA RATE
For a quantitative evaluation of the rate-distortion perfor-
mance, the Bjøntegaard Delta (BD) rate savings of the
learned video coders are measured using HM LD-P as
an anchor. Note that the BD values need to be handled
with caution because the available supporting points of
DCVC-HEM and DCVC cover a limited bitrate and quality
range. Thus, comparisons in terms of the BD metric can
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TABLE 2. Rate-distortion evaluation on the UVG, MCL-JCV, HEVC E, and
UVG 4K data sets for different GOP sizes. Average BD rate savings are
provided relative to HM in LD-P configuration as an anchor.

be less reliable [46], and rate-distortion curves should be
considered to obtain a complete picture. Therefore, using
HM as an anchor avoids comparing the two conditional
coders with the proposed method directly, but still per-
form comparisons over different bitrate and quality ranges.
To cover the entire bitrate-distortion range of the learned
video coders, HM is evaluated with Quantization Param-
eters (QP) values QP = {32, 27, 22, 19, 17, 15, 13}. The
integration area for BD rate calculation is determined by
the respective learned video coder, that is, by the minimum
and maximum RGB-PSNR values obtained with the learned
coder. Compared with the entire rate-distortion curve of
HM, the overlap of the rate-distortion curve of DCVC-HEM
with respect to the bitrate lies in the range of 14-29%. The
overlap in terms of RGB-PSNR is between 42 and 46%
depending on the data set and GOP size. Comparing the
overlap of the rate-distortion curves of HM and MCTF-CA,
the rate overlap is between 36 and 66%, whereas the
distortion overlap ranges from 70 to 94 %. Hence, the
MCTF models cover a larger rate-distortion range, as shown
in Figs. 7-10.

Table 2 contains the BD measurements for all four data
sets and for both GOP sizes. Over the entire bitrate range,
DCVC-HEM performs best on the MCL-JCV data set for
a GOP size of 8, achieving a BD rate reduction of approx-
imately −4% compared to HM. In the remaining cases,
MCTF-CA performs the best. It achieves BD rate savings
of up to −21% and −9% on the UVG data set for GOP
sizes of 4 and 8, respectively. On MCL-JCV, BD rate savings
of −12% are obtained for a GOP size of 4. Furthermore,
MCTF-CA achieves coding gains of −26% and −11% for
GOP sizes of 4 and 8, respectively, on HEVC E. Overall,
the high-resolution sequences from the UVG 4K data set are
the most challenging for all learned video coders. MCTF-CA
only achieves coding gains over HM for a GOP size of 4,
but nevertheless performs favorably in comparison to the
remaining learned coders.

TABLE 3. BD rate savings for each of the 7 UVG sequences over HM in
LD-P configuration.

c: PER-SEQUENCE EVALUATION ON THE UVG DATA SET
The coding performance of DCVC-HEM and MCTF-CA is
assessed for each of the seven sequences in the UVG data set.
Table 3 provides BD rate savings relative to HM as an anchor.
Independent of the GOP size, DCVC-HEM performs better
than the proposed approach compared to HM for sequences
with stronger motion, namely, Jockey, ReadySteady, and
YachtRide. These sequences mostly contain relatively large
translational motion. In contrast, the MCTF-CA approach
performs best for sequences with high spatial detail and
more irregular motion. For example, the approach achieves
BD rate savings of over −63% for the Beauty scene, which
is challenging because of moving hair. Here, DCVC-HEM
struggles and is the least efficient compared to HM.

Overall, the per-sequence evaluation shows that MCTF
leads to superior coding performance compared to an
‘‘IPPP. . .’’ coding order for specific scene contents. The
following example of the ShakeNDry sequence illustrates the
benefits of the temporal update operation. The scene has
a static background, but contains challenging motion with
flying water drops. With the MCTF-CA model, the first GOP
of the sequence is coded with a GOP size of 8, that is,
three temporal decomposition levels. The temporal updates
help improve the coding efficiency of the temporal highpass
frames at higher temporal decomposition levels: the highpass
frames in the first, second, and third level require 0.38 bpp,
0.27 bpp, and 0.20 bpp at approximately 42.2 dB. As shown in
Fig. 11(d)-(f), the highpass h3,4 from temporal decomposition
level three contains fewer prediction errors compared to the
other levels, which leads to better coding efficiency. The
application of two temporal update operations (see Fig. 11
(c)) creates a better representation for the prediction com-
pared to the original frame in Fig. 11 (b) through lowpass
filtering along the motion trajectory.

When comparing the rate-distortion curves of MCTF-CA
for every sequence of the UVG data set (cf. Fig. 12),
the ShakeNDry sequence is one of the most challenging
sequences next to the Beauty sequence. Fig. 12 provides the
motion-compensated prediction quality in terms of PSNR and
maximum motion vector length in pixels averaged over all
96 evaluated frames for each sequence. These values are com-
puted using a SPyNet model trained on Vimeo90K without
considering motion vector compression. These measure-
ments show that a high prediction quality of over 48 dB and
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FIGURE 11. Impact of the temporal update operation. Subfig. (a) shows
the first frame of the ShakeNDry sequence from the UVG data set.
(d)-(f) depict temporal highpass frames coded in different temporal
decomposition levels by a MCTF-CA model (λ = 0.08, GOP size 8). The
highpass frame h3,4 from the highest temporal decomposition level has
less prediction errors compared to h2,2 and h1,1 (black corresponds to
zeros). This is because h3,4 is predicted from l2,0 shown in (c). Here, the
application of temporal updates to l2,0 improves the prediction and thus
coding efficiency.

TABLE 4. Complexity comparison of learned video coders for an input
size of 1920 × 1080 in terms of model size and kilo multiply-accumulate
operations per pixel (kMAC/px).

relatively small motion (HoneyBee, Bosphorus) are associ-
ated with the best rate-distortion performance of MCTF-CA.
However, a lower prediction quality and larger motion do
not necessarily lead to poor rate-distortion performance; for
example, MCTF-CA performs better on the Jockey sequence
than on the Beauty sequence because factors such as high
spatial detail contained in a sequence influence the coding
efficiency as well.

d: COMPLEXITY
The computational complexity of the MCTF-based approach
is assessed in terms of model size and kilo multiply-
accumulate operations per pixel (kMAC/px). As shown
in Table 4, the MCTF-CA approach is more complex with
respect to both model size and kMACs/px. Note that most
of the model complexity of MCTF-CA is attributed to the
temporal subband coder iWave++. For a GOP size of 8, the
MCTF modules only account for 29 % of the model size

FIGURE 12. Comparison of the rate-distortion curves of MCTF-CA
(GOP size of 8) for every sequence of the UVG data set. For each
sequence, the motion strength in pixels (px) and motion-compensated
prediction quality in dB averaged over all frames are provided. For these
measurements, the motion vectors between successive frames required
for motion compensation are estimated using a SPyNet model. Thereby,
the motion strength for a single frame is measured as the maximum
motion vector length in horizontal or vertical direction.

TABLE 5. Rate-distortion evaluation on the UVG and MCL-JCV data sets
for different GOP sizes. Average BD rate savings are provided relative to
the baseline MCTF model as an anchor.

and 12%of the required kMACs/px. Because of the dedicated
MCTF stages for every temporal decomposition level, the
MCTF modules have a larger influence on the model size
relative to MACs.

2) ABLATION STUDY: MCTF CONFIGURATION
In the following section, several MCTF coder configurations
are examined. In doing so, the benefits of the proposed down-
sampling strategy and content-adaptive MCTF approach are
evaluated.

TABLE 6. BD rate savings for each of the 7 UVG sequences over the
baseline MCTF model as an anchor.
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FIGURE 13. Rate-distortion evaluation on the UVG data set. Solid lines
correspond to a GOP size of 8 and dashed lines to a GOP size of 4.
MCTF-Single: Same MCTF stage for all temporal decomposition levels.
MCTF: Different MCTF stages for each level. MCTF-DS: Different MCTF
stages with downsampling strategy during inference. MCTF-CA: Content
adaptive MCTF. Best to be viewed enlarged on a screen.

a: MULTIPLE MCTF STAGES
First, a single MCTF stage (’’MCTF-Single’’) is evaluated
and compared with multiple MCTF stages. The latter uses
dedicated MCTF modules for each temporal decomposition
level, that is, different DN, motion estimation, and motion
vector compression networks for every level. Table 5 com-
pares the MCTF-Single model with the MCTF model with
multipleMCTF stages as an anchor. TheMCTF-Singlemodel
is obtained at the end of training stage three (cf. Table 1).
It is included in the evaluation, because it corresponds to the
standard approach commonly used in traditional MCTF.

On both data sets, MCTF-Single results in a BD rate degra-
dation of over +16% and +29% for GOP sizes of 4 and 8,
respectively. Therefore, multiple MCTF stages are necessary
to achieve improved rate-distortion performance for higher
temporal decomposition levels with larger frame distances.

The impact of multiple MCTF stages on the rate-distortion
curves for the UVG data set is illustrated in Fig. 13. The
models with multiple MCTF stages (blue) clearly outperform
a single stage (orange), independent of the GOP size.

b: DOWNSAMPLING STRATEGY (MCTF-DS)
Next, the MCTF-DS approach introduced in Section IV-C is
evaluated. On average, the MCTF-DS models (gray) lead
to a reduced bitrate at approximately the same quality as
the baseline models (blue), as shown in Fig. 13. The bitrate
savings are due to the smaller spatial resolution of the motion
vectors, which requires a lower rate. At the same time,
there is no significant quality degradation, and for some rate
points, the quality is even slightly improved. On average,
MCTF-DS leads to coding gains between 2 and 3%, mea-
sured in terms of BD rate, compared to the MCTF model

FIGURE 14. Content adaptive MCTF prevents ghosting. Subfig. (a) shows
the first frame of a GOP of size 8 from the Jockey sequence. The MCTF
model in (c) codes the first frame as l3,0 in third temporal decomposition
level, which leads to ghosting due to the large motion in the scene
(C8,GOP8 = 1.74). MCTF-CA in (d) mitigates ghosting by choosing a GOP
size of 2 and transmitting the first frame as l1,0 in the first temporal
decomposition level (C8,GOP2 = 1.57).

with multiple stages as an anchor (cf. Table 5). However,
MCTF-DS degrades the performance on the MCL-JCV data
set for a GOP size of 8.

Table 6 provides the BD rate evaluation for each sequence
of the UVG data set. For scenes containing larger motion
(ReadySteady, YachtRide, Jockey), MCTF-DS achieves BD
rate savings of up to −4% and −12% for a GOP size
of 4 and 8, respectively, compared to the MCTF model with
multiple MCTF stages. Consequently, MCTF-DS improves
the performance for larger motion. For the HoneyBee
sequence with a small moving object and high spatial detail,
the downsampling strategy leads to BD rate increases of 0.5%
and 10% for GOP sizes of 4 and 8, respectively. This shows
that although the downsampling strategy leads to improved
performance for most sequences, a content-adaptive mecha-
nism is required.

c: CONTENT-ADAPTIVE MCTF (MCTF-CA)
The MTCF-CA approach explained in Section IV-D over-
comes the disadvantages ofMCTF-DS for somemotion types
and scene contents. As can be seen in Table 5, MCTF-CA
performs best on all data sets and GOP sizes. In particular,
for a GOP size of 8, MCTF-CA provides average BD rate
savings of at least 10% compared to the MCTF model with
multiple MCTF stages as an anchor.
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A detailed evaluation on every sequence of the UVG
data set provided in Table 6 shows that for a GOP
size of 4, MCTF-CA improves over MCTF-DS for 5 out
of 7 sequences. For the remaining two sequences, MCTF-DS
is already optimal. However, for a GOP size of 8more options
for MCTF-CA are available and MCTF-DS is only optimal
for the Bosphorus sequence, which contains relatively easy
translational motion. For the remaining sequences, a content-
adaptive approach leads to considerable improvements in
terms of BD rate; for example, MCTF-CA achieves BD rate
savings of −12% and −25% on the YachtRide and Jockey
sequences, respectively. Furthermore, MCTF-CA prevents
the use of the downsampling strategy for sequences where
it degrades rate-distortion performance, for example, for
the HoneyBee and Beauty sequences containing high spa-
tial detail. Therefore, content-adaptive temporal scaling is
clearly advantageous in terms of rate-distortion performance,
because the motion types are highly dependent on the scene
content.

Fig. 14 provides an example of the benefit of MCTF-CA:
the Jockey sequence from the UVG data set contains
strong motion, which leads to ghosting for some GOPs
(cf. Fig. 14(c)) when processing the sequence with a uni-
form temporal decomposition, that is, a constant GOP size
of 8 with the MCTF model. MCTF-CA adaptively chooses a
smaller GOP size if ghosting harms the coding costs. As can
be seen in Fig. 14(d), MCTF-CA prevents ghosting by deter-
mining a GOP size of 2, which can be coded most efficiently.

VI. CONCLUSION
This paper introduced the first end-to-end trainable wavelet
video coder based on MCTF. It presented a training strategy
that considers multiple temporal decomposition levels during
training. Moreover, a downsampling strategy was proposed
as a first solution for handling larger temporal displacements
in MCTF. The novel content-adaptive MCTF enables the
proposed method to adapt to different motion types in each
sequence. The experimental results show that the learned
MCTF video coder exhibits promising rate-distortion per-
formance, especially for higher bitrates. On the UVG data
set, the MCTF-CA method achieves average BD rate savings
of −21% and −9% for GOP sizes of 4 and 8, respectively,
compared to HM. Thereby, it clearly outperforms the state-
of-the-art video coder DCVC-HEM [14].
There are various possibilities for improvement as an initial

version of a learned wavelet video coder. First, one could
examine a different temporal subband coder required for
practical usage because the autoregressive context model
of iWave++ prohibits parallelization. Second, the MCTF
structure requires extensions to handle more diverse motion
types and GOP sizes of 16 and higher. Because the maxi-
mum frame distance doubles with every additional temporal
decomposition level, motion estimation is considerably more
challenging for, for example, a GOP size of 16 with a frame
distance of 8. Therefore, bidirectional motion estimation and
methods for overcoming the limitations of short-sequence

training sets for larger GOP-size compression could be
investigated. To mitigate ghosting for larger GOP sizes,
an adaptive choice of a truncated DWT without temporal
update [47] could be beneficial. Furthermore, the complexity
of content-adaptiveMCTF can be limited by using a predictor
for choosing the adaptive MCTF option.

The MCTF-based approach provides an explainable and
scalable alternative to common autoencoder-based video
coders. This paper made the first steps to enable further
development of this important direction of research.

REFERENCES
[1] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, ‘‘DVC: An end-

to-end deep video compression framework,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10998–11007.

[2] G. Lu, X. Zhang, W. Ouyang, L. Chen, Z. Gao, and D. Xu, ‘‘An end-to-end
learning framework for video compression,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 43, no. 10, pp. 3292–3308, Oct. 2021.

[3] R. Yang, F. Mentzer, L. Van Gool, and R. Timofte, ‘‘Learning for
video compression with recurrent auto-encoder and recurrent probability
model,’’ IEEE J. Sel. Topics Signal Process., vol. 15, no. 2, pp. 388–401,
Feb. 2021.

[4] Z. Hu, G. Lu, and D. Xu, ‘‘FVC: A new framework towards deep video
compression in feature space,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 1502–1511.

[5] Z. Hu, G. Lu, J. Guo, S. Liu, W. Jiang, and D. Xu, ‘‘Coarse-to-fine
deep video coding with hyperprior-guided mode prediction,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 5921–5930.

[6] E. Agustsson, D. Minnen, N. Johnston, J. Balle, S. J. Hwang, and
G. Toderici, ‘‘Scale-space flow for end-to-end optimized video compres-
sion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 8503–8512.

[7] O. Rippel, A. G. Anderson, K. Tatwawadi, S. Nair, C. Lytle, and
L. Bourdev, ‘‘ELF-VC: Efficient learned flexible-rate video coding,’’
in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 14479–14488.

[8] W. Park and M. Kim, ‘‘Deep predictive video compression using mode-
selective uni- and bi-directional predictions based on multi-frame hypoth-
esis,’’ IEEE Access, vol. 9, pp. 72–85, 2021.

[9] R. Yang, R. Timofte, and L. Van Gool, ‘‘Advancing learned video com-
pression with in-loop frame prediction,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 33, no. 5, pp. 2410–2423, May 2023.

[10] N. Van Thang and L. Van Bang, ‘‘Hierarchical random access coding for
deep neural video compression,’’ IEEE Access, vol. 11, pp. 57494–57502,
2023.

[11] B. Bross, Y.-K.Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-R. Ohm,
‘‘Overview of the versatile video coding (VVC) standard and its appli-
cations,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 10,
pp. 3736–3764, Oct. 2021.

[12] J. Li, B. Li, and Y. Lu, ‘‘Deep contextual video compression,’’ in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 34, Dec. 2021, pp. 18114–18125.

[13] X. Sheng, J. Li, B. Li, L. Li, D. Liu, and Y. Lu, ‘‘Temporal context mining
for learned video compression,’’ IEEE Trans. Multimedia, early access,
Nov. 8, 2022, doi: 10.1109/TMM.2022.3220421.

[14] J. Li, B. Li, and Y. Lu, ‘‘Hybrid spatial–temporal entropy modelling for
neural video compression,’’ in Proc. 30th ACM Int. Conf. Multimedia,
Oct. 2022, pp. 1503–1511.

[15] Y.-H. Ho, C.-P. Chang, P.-Y. Chen, A. Gnutti, and W.-H. Peng, ‘‘CANF-
VC: Conditional augmented normalizing flows for video compression,’’ in
Proc. Eur. Conf. Comput. Vis. (ECCV), Oct. 2022, pp. 207–223.

[16] F. Mentzer et al., ‘‘VCT: A video compression transformer,’’ in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 35, Nov. 2022, pp. 13091–13103.

[17] J. Xiang, K. Tian, and J. Zhang, ‘‘MIMT: Masked image modeling trans-
former for video compression,’’ in Proc. Int. Conf. Learn. Represent.
(ICLR), May 2023, pp. 1–17.

[18] J.-R. Ohm, ‘‘Three-dimensional subband coding with motion compensa-
tion,’’ IEEE Trans. Image Process., vol. 3, no. 5, pp. 559–571, Sep. 1994.

[19] S.-J. Choi and J. W.Woods, ‘‘Motion-compensated 3-D subband coding of
video,’’ IEEE Trans. Image Process., vol. 8, no. 2, pp. 155–167, Feb. 1999.

113400 VOLUME 11, 2023

http://dx.doi.org/10.1109/TMM.2022.3220421


A. Meyer et al.: Learned Wavelet Video Coding Using Motion Compensated Temporal Filtering

[20] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, ‘‘Overview of
the H.264/AVC video coding standard,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[21] J. Ballé, V. Laparra, and E. P. Simoncelli, ‘‘End-to-end optimized image
compression,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), Apr. 2017,
pp. 1–27.

[22] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, ‘‘Variational
image compression with a scale hyperprior,’’ in Proc. Int. Conf. Learn.
Represent. (ICLR), May 2018, pp. 1–47.

[23] D. Minnen, J. Ballé, and G. D. Toderici, ‘‘Joint autoregressive and hier-
archical priors for learned image compression,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 31, Dec. 2018, pp. 10771–10780.

[24] J. Ballé, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson,
S. J. Hwang, and G. Toderici, ‘‘Nonlinear transform coding,’’ IEEE J. Sel.
Topics Signal Process., vol. 15, no. 2, pp. 339–353, Feb. 2021.

[25] H. Ma, D. Liu, N. Yan, H. Li, and F. Wu, ‘‘End-to-end optimized versatile
image compression with wavelet-like transform,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 3, pp. 1247–1263, Mar. 2022.

[26] F. Brand, J. Seiler, andA. Kaup, ‘‘On benefits and challenges of conditional
interframe video coding in light of information theory,’’ in Proc. Picture
Coding Symp. (PCS), Dec. 2022, pp. 289–293.

[27] F. Brand, J. Seiler, and A. Kaup, ‘‘Intra-frame coding using a condi-
tional autoencoder,’’ IEEE J. Sel. Topics Signal Process., vol. 15, no. 2,
pp. 354–365, Feb. 2021.

[28] T. Ladune, P. Philippe, W. Hamidouche, L. Zhang, and O. Déforges,
‘‘ModeNet: Mode selection network for learned video coding,’’ in Proc.
IEEE 30th Int. WorkshopMach. Learn. Signal Process. (MLSP), Sep. 2020,
pp. 1–6.

[29] D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression
Fundamentals, Standards and Practice. New York, NY, USA: Springer,
2002.

[30] T. Borer, ‘‘WHP 238—The VC-2 low delay video codec,’’ Brit. Broadcast.
Corp. (BBC), London, U.K., Tech. Rep. WHP 238, Aug. 2013.

[31] W. Sweldens, ‘‘Lifting scheme: A new philosophy in biorthogonal wavelet
constructions,’’ Proc. SPIE, vol. 2569, pp. 68–79, Sep. 1995.

[32] H. Ma, D. Liu, R. Xiong, and F. Wu, ‘‘IWave: CNN-based wavelet-like
transform for image compression,’’ IEEE Trans. Multimedia, vol. 22, no. 7,
pp. 1667–1679, Jul. 2020.

[33] D. Xue, H. Ma, L. Li, D. Liu, and Z. Xiong, ‘‘IWave3D: End-to-end brain
image compression with trainable 3-D wavelet transform,’’ in Proc. Int.
Conf. Vis. Commun. Image Process. (VCIP), Dec. 2021, pp. 1–5.

[34] D. Xue, H. Ma, L. Li, D. Liu, and Z. Xiong, ‘‘AiWave: Volumetric image
compression with 3-D trained affine wavelet-like transform,’’ IEEE Trans.
Med. Imag., vol. 42, no. 3, pp. 606–618, Mar. 2023.

[35] C. Dong, H.Ma, D. Liu, and J.W.Woods, ‘‘Wavelet-based learned scalable
video coding,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2022,
pp. 3190–3194.

[36] Y. Liu and J.W.Woods, ‘‘New and efficient interframe extensions of EZBC
and JPEG 2000,’’ in Proc. IEEE 19th Int. Workshop Multimedia Signal
Process. (MMSP), Oct. 2017, pp. 1–6.

[37] A. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, ‘‘Lossless
image compression using integer to integer wavelet transforms,’’ in Proc.
IEEE Int. Conf. Image Process. (ICIP), Oct. 1997, pp. 596–599.

[38] D. Lanz, F. Schilling, and A. Kaup, ‘‘Scalable lossless coding of dynamic
medical CT data using motion compensated wavelet lifting with denoised
prediction and update,’’ in Proc. Picture Coding Symp. (PCS), Nov. 2019,
pp. 1–5.

[39] A. Ranjan and M. J. Black, ‘‘Optical flow estimation using a spatial
pyramid network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 2720–2729.

[40] D. Lanz, C. Herbert, and A. Kaup, ‘‘Content adaptive wavelet lifting for
scalable lossless video coding,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2019, pp. 1782–1786.

[41] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, ‘‘Video enhance-
ment with task-oriented flow,’’ Int. J. Comput. Vis., vol. 127, no. 8,
pp. 1106–1125, Feb. 2019.

[42] I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay regularization,’’ in
Proc. Int. Conf. Learn. Represent. (ICLR), Nov. 2019, pp. 1–8.

[43] A. Meyer and A. Kaup, ‘‘A novel cross-component context model for end-
to-end wavelet image coding,’’ in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Jun. 2023, pp. 1–5.

[44] A. Mercat, M. Viitanen, and J. Vanne, ‘‘UVG dataset: 50/120fps 4K
sequences for video codec analysis and development,’’ in Proc. 11th ACM
Multimedia Syst. Conf., May 2020, pp. 297–302.

[45] H. Wang, W. Gan, S. Hu, J. Y. Lin, L. Jin, L. Song, P. Wang, I. Katsavouni-
dis, A. Aaron, and C.-C. J. Kuo, ‘‘MCL-JCV: A JND-based H.264/AVC
video quality assessment dataset,’’ in Proc. IEEE Int. Conf. Image Process.
(ICIP), Sep. 2016, pp. 1509–1513.

[46] C. Herglotz, H. Och, A. Meyer, G. Ramasubbu, L. Eichermüller,
M. Kränzler, F. Brand, K. Fischer, D. T. Nguyen, A. Regensky, and
A. Kaup, ‘‘The Bjøntegaard bible—Why your way of comparing video
codecs may be wrong,’’ Apr. 2023, arXiv:2304.12852.

[47] D. S. Turaga, M. van der Schaar, Y. Andreopoulos, A. Munteanu, and
P. Schelkens, ‘‘Unconstrained motion compensated temporal filtering
(UMCTF) for efficient and flexible interframe wavelet video coding,’’
Signal Process., Image Commun., vol. 20, no. 1, pp. 1–19, Jan. 2005.

ANNA MEYER (Graduate Student Member,
IEEE) received the master’s degree in advanced
signal processing and communications engi-
neering from Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Germany, in 2021.

During her master’s, she worked on multi-
spectral image compression and few-shot object
detection for artworks. Since 2021, she has been a
Researcher with the Chair of Multimedia Commu-
nications and Signal Processing, FAU, where she

conducts research on wavelet video compression and deep learning.

FABIAN BRAND (Graduate Student Member,
IEEE) received the master’s degree in electrical
engineering from Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Germany, in 2018.

During his bachelor’s, he worked on methods
for frame-rate-conversion of video sequences, and
during his master’s, he researched automated har-
monic analysis of classical music and style classi-
fication. Since 2019, he has been a Researcher with
the Chair ofMultimedia Communications and Sig-

nal Processing, FAU, where he conducts research on methods for video
compression and deep learning. For his work, among others, he received the
Best Paper Award of the Picture Coding Symposium (PCS) 2019.

ANDRÉ KAUP (Fellow, IEEE) received the
Dipl.-Ing. and Dr.-Ing. degrees in electrical engi-
neering from RWTH Aachen University, Aachen,
Germany, in 1989 and 1995, respectively.

He joined Siemens Corporate Technology,
Munich, Germany, in 1995, and became the
Head of the Mobile Applications and Services
Group, in 1999. Since 2001, he has been a
Full Professor and the Head of the Chair of
Multimedia Communications and Signal Process-

ing, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
From 2005 to 2007, he was a Vice Speaker of the DFG Collaborative
Research Center 603. From 2015 to 2017, he was the Head of the Department
of Electrical Engineering and the Vice Dean of the Faculty of Engineering,
FAU. He has authored around 450 journal and conference papers and has
over 120 patents granted or pending. His research interests include image
and video signal processing and coding and multimedia communication.

Dr. Kaup is a member of the IEEE Image, Video, and Multidimensional
Signal Processing Technical Committee, the ScientificAdvisory Board of the
German VDE/ITG, and the Bavarian Academy of Sciences. He is a member
of the Editorial Board of the IEEE CIRCUITS AND SYSTEMS MAGAZINE. He was
a Siemens Inventor of the Year 1998 and received the 1999 ITG Award.
He received several IEEE best paper awards, including the Paul Dan Cristea
Special Award, in 2013, and his group won the Grand Video Compression
Challenge from the Picture Coding Symposium, in 2013. The Faculty of
Engineering with FAU and the State of Bavaria honored him with teaching
awards, in 2015 and 2020, respectively. He served as an Associate Editor
for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY.
He was the Guest Editor of the IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL

PROCESSING.

VOLUME 11, 2023 113401


