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ABSTRACT With the meteoric rise in anonymous network traffic data, there is a considerable need
for effective automation in traffic identification tasks. Though many shallow and deep machine learning
network traffic classification solutions have been proposed, they often rely on tabular data, making them
unable to detect complex spatial relationships. However, recent advancements in computer processing
power have increased the viability of transforming tabular data into images for training deep convolutional
neural networks, transforming structured data problems into spatial ones. To identify the most effective
methods for representing tabular anonymous network traffic data as images, we compared five deep
learning classifiers trained on data from different tabular-to-image algorithms–Image Generator for Tabular
Data (IGTD), DeepInsight, vector-of-feature wrapping (normalized and non-normalized), and our newly
introduced Binary Image Encoding (BIE) technique in the classification of eight network application types.
Furthermore, we examine whether deep residual models trained on tabular-to-image data can outperform
the top-performing shallow learner, XGBoost, at classifying anonymous network traffic. We found that
ResNet-50, a pre-trained instance of deep residual network, trained on image datasets using IGTD and the
novel Binary Image Encoding outperformedXGBoost trained on tabular data. Our ResNet-50models trained
using IGTD and BIE achieved F1-scores of 96.0% and 98.49% respectively, improving on the baseline of
95.1% achieved by XGBoost.

INDEX TERMS Tabular-to-image techniques, binary image encoding, convolutional neural networks,
network traffic, anonymous traffic, deep learning, XGBoost, image generator for tabular data, DeepInsight,
ResNet-50.

I. INTRODUCTION
Network traffic classification is crucial for improving net-
work management and security [1]. For instance, real-time
applications like video streaming may require lower latency
for a better user experience than web browsing [2]. Classi-
fying this traffic can enable better optimization by internet
service providers (ISPs) to prioritize real-time applications
with more suitable network nodes [1]. Moreover, classifying
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network traffic may aid in malicious network traffic intercep-
tion, which local governments typically mandate [3], [4], [5].
Automation of this task has garnered greater interest as the
scale of network traffic increases and new threats to network
security reveal themselves.

Using the information in each packet that was transmitted
or through a collection of packets and their metadata, called
a flow, ISPs can classify traffic based on the application that
produced it and optimize their infrastructure to scale to the
evolving needs of their customers [6]. Due to the emergence
of a suite of encryption and anonymization technologies such
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as Secure Shell Protocol (SSH), Hypertext Transfer Proto-
col (HTTPS), The Onion Router (TOR), and Virtual Private
Networks (VPNs), it can be difficult to rely on conventional
techniques to discover the origin of the anonymous and
encrypted traffic [7]. To solve this problem, machine learning
algorithms have been successfully employed to classify the
applications producing network traffic [8], [9], [10].

A promising newmachine learning approach to classifying
network traffic is transforming structured tabular network
traffic data into unstructured images. Audio, visual, and
raw packet capture data are examples of unstructured data,
whereas structured data is typically numerical or categorical
data organized in a tabular form [11]. The basic premise
behind tabular-to-image (T2I) transformations is to convert
structured data into a form more suitable for deep learn-
ing algorithms. Deep learners tend to outperform shallow
learners when it comes to the classification of unstructured
data, so by converting structured data into unstructured data
these deep classifiers can be utilized to potentially improve
predictive performance [11]. Convolutional neural networks
(CNNs) are one such model that can exploit properties such
as locality and order between components of the data [12].
Prior research [9], [13], [14] has proven the effectiveness
of CNNs in classifying network traffic when trained on T2I
data. Other CNN variants, such as deep residual networks
(ResNet), have also yielded high performance in a broad
range of classification tasks.

While previous research has established the potential of
CNNs trained on T2I data, only a limited number of these
techniques have been tested in the network traffic domain [9],
[13]. Moreover, there is minimal research comprehensively
comparing the effectiveness of these T2I methods. With
numerous T2I methods presented throughout several problem
domains, determining the best method to use in the network
traffic domain can better optimize network traffic classifica-
tion tasks. These gaps in knowledge served as motivation for
the experiments presented in this paper.

In our work, wemeasure the efficacy of five T2I algorithms
in classifying anonymous network traffic by comparing
five ResNet-50 classifiers trained on data generated with
IGTD, DeepInsight, feature wrapping (normalized and non-
normalized), and Binary Image Encoding (BIE), a new T2I
method introduced in this work. We also compare these mod-
els to the shallow learner, XGBoost, trained on the original
tabular data as a baseline comparator. Using this methodol-
ogy, we can find whether T2I techniques allow the ResNet
classifier to outperform XGBoost and identify the most opti-
mal T2I technique for the network traffic problem domain.

The following are the major contributions of our work:
• Introduce BIE, a new T2I algorithm that utilizes data
encoded as binary representations of double-precision
floating point numbers. We believe BIE can be applied
to many problem domains, though it may have specific
advantages for network traffic classification.

• Provide a direct comparison of the efficacy among var-
ious T2I techniques. An experimental comparison of

many T2I algorithms has not been explored in previous
research for network traffic classification.

• Apply DeepInsight and IGTD T2I methods to the
network traffic domain. These methods were initially
introduced and tested on genomic data and their effec-
tiveness when applied to classifying network traffic has
not been previously explored.

• Create an open-source image dataset for further evalua-
tion of the T2I techniques.

• Establish that T2I methods employed with ResNet-50
can outperform shallow classifiers on the classification
of anonymous network traffic.

The rest of the article is structured as follows: Section II
discusses related T2I and network traffic research and exist-
ing knowledge gaps, Section III introduces the datasets used
in this work, Section IV introduces the classifiers used in this
work, Section V explains the T2I methods that are the focus
of this work, Section VI outlines our experiment methodol-
ogy, Section VII presents the findings of our experiments,
Section VIII concerns the limitations and future areas of
study, and the paper concludes in Section IX.

II. RELATED WORKS
Our literature review found that the related works could be
loosely categorized into three groups. Section II-A groups
the related works that primarily focus on anonymous traffic
classification regardless of the machine learning algorithms
used. Section II-B aggregates works that primarily use CNNs
in anonymous network traffic classification and section II-C
groups works that use tabular-to-image techniques from dif-
ferent problem domains.

A. ANONYMOUS NETWORK TRAFFIC CLASSIFICATION
Anonymous network traffic classifiers categorize network
traffic using machine learning models. The following works
establish pre-existing approaches used for anonymous traffic
classification [13], [14], [15], [16].

Allhusen et al. [15] trained multiple shallow learners to
classify darknet and benign internet traffic from the CIC-
Darknet2020 (CIC-DN) dataset (see section III-A). They
analyzed the effects of the following feature groups on model
performance: all original features after data cleaning, all
features excluding source and destination port, 11 manually
selected features, and the manually selected features without
source and destination port. The Ridge-300 classifier outper-
formed all other models with an accuracy of 99% on their
selected feature set.

Gupta et al. [16] trained an XGBoost model to classify
Tor, VPN, and normal traffic from the CIC-DN dataset. The
authors selected 36 of the original 83 features to reduce
redundancy and increase classification efficiency. They found
that XGBoost obtained the highest classification accuracy
(98%) compared to seven other classifiers and concluded that
the classifier still performed well despite the class imbalance
in the dataset.
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Lan et al. [13] proposed a deep-learning solution for dark-
net traffic identification and application classification called
DarknetSec. Their method consists of custom attention-based
1D CNN and is compared to other state-of-the-art classifiers
such as VGG19 with RF on the CIC-DN dataset. They found
that their proposed method outperformed the other tested
classifiers yielding>92% accuracy on 8 different application
classes.

He and Li [14] developed a one-dimensional CNN model
to classify anonymous proxy traffic with smaller image
sizes. First, they converted two-way and one-way Spatio-
temporal features to one-dimensional images. Next, they
compared their method to other CNN-based models on the
ISCXVPN2016 dataset as well as a self-generated dataset
using Shadowsocks andWireshark. Their method attained the
same performance (>99%) as other methods while reducing
memory storage by over 90% and minimizing computational
overhead.

B. NETWORK TRAFFIC CLASSIFICATION WITH CNNs
CNN-based deep learning techniques are becoming a more
popular approach to network traffic classification problems
as the rapid growth of computation power enables quicker
model training [9], [17].
Krupski et al. [17] surveyed 136 papers concerning CNN

techniques in the network traffic domain, giving a specific
focus on data transformation schemes. They created a tax-
onomy to categorize different data transformation and CNN
techniques, differentiating them by their network data type,
data transformation, CNN model structure, and input dimen-
sionality. They found that 2D encodings utilizing feature
wrapping and one-hot encoding were some of the most com-
mon techniques used in the existing literature.

Lashkari et al. [9] introduced DeepImage, a tabular-to-
image pipeline for detecting and classifying Darknet traffic
using CIC-DN dataset. DeepImage synthesizes gray-scaled
images composed of the most important features from the
dataset. A custom CNN was trained on the images to detect
and characterize Darknet traffic with an accuracy of 86%
when classifying among eight application types.

C. TABULAR TO IMAGE ALGORITHMS
In order to leverage the strengths of CNNs and improve
classifier accuracy on tabular data, Tabular-to-Image (T2I)
algorithmswere introduced in previousworks [11], [17], [18].
Sun et al. [11] proposed SuperTML, a technique for trans-

forming tabular data into image data that can be paired
with pre-trained CNNs for advanced classification tasks.
SuperTML works by arranging feature values onto a 2D
image. Features of greater importance are projected with
larger font sizes. Moreover, SuperTML reduces the need for
data preprocessing as missing values are projected as ‘?’,
and non-numeric values are placed on the image without
the need for encoding. They tested SuperTML data with a
pre-trained CNN and compared it with XGBoost on three

separate datasets. SuperTML performed equally well or out-
performed XGBoost in each test.

Buturović andMiljković [18] developed a method for clas-
sifying tabular data with CNNs through an image-generating
algorithm called Tabular Convolution (TAC). This method
treats input vectors as kernels and converts the data into an
image using convolutions of a fixed base image. Features are
converted to kernels by creating a square matrix with an odd
number of rows and columns. If the number of features is
not the square root of an odd number, the square is either
padded or trimmed towards the nearest odd square. TAC was
applied to gene expression data and trained using ResNet,
and results were compared to shallow classifiers (XGBoost,
LightGBM, and Support Vector Machines). TAC outper-
formed all shallow learningmethods obtaining an accuracy of
91.1% compared to the highest performing shallow learner’s
accuracy of 89.6%. This result was obtained using several
thousand epochs of training; whereas a similar performance
to non-CNN methods was seen when using 50 epochs. They
conclude that the additional computation time required for
TAC is negligible on modern computer architecture.

Table 1 compares the research of prior literature that
explored the CIC-DN dataset, T2I techniques, or similar
classifiers.

D. MOTIVATION AND PURPOSE
From the literature review, we find that insufficient research
on T2I methods and the application of these methods for
anonymous network traffic classification have left the follow-
ing gaps in knowledge:

• Research conducted on T2I methods is often only tested
in the domain in which the technique was created, such
as genomic datasets in the case of IGTD [12] and
OmicsMapNet [19].

• Previous image generation techniques applied to net-
work traffic are primarily formed from raw packet
capture (PCAP) data as opposed to tabular data [17],
[20], [21], [22], [23], [24]. The focus has been on apply-
ing CNN architectures to a specific dataset, instead of
the importance of T2I techniques.

• There is minimal research providing direct performance
comparisons of several T2I techniques

We address the gaps in existing research by empirically
evaluating T2I methods in the network traffic domain while
providing a detailed analysis of five T2I schemes. Among all
the methods we explored, two have yet to be applied in the
network traffic domain and BIE is a novel technique, to our
knowledge.

III. DATASET
In this work, we use the CIC-DN dataset balanced with
synthetic SMOTE data from CMU-SynTraffic-2022 (CMU)
dataset. This data was then used in conjunction with the
five T2I algorithms to create our CMU-SynTraffic2023-
ImageDataset (CMU-I). We explain these datasets further in
the next subsections.
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A. CIC-Darknet2020
Lashkari et al. [9] amalgamated the CIC-Darknet2020 (CIC-
DN) dataset by combining their ISCX-Tor2016 [25] and
ISCX-VPN2016 [26] datasets. The CIC-DN dataset is pro-
vided in both raw Packet-Capture (PCAP) files as well as
tabular data files that were preprocessed over a fixed time
interval using CIC-FlowMeter v4.0 [27]. The tabular data
samples consist of time-based features such as flow dura-
tion as well as statistical features which makes them highly
representative of traffic flows. The dataset consists of eight
anonymous traffic application types and contains 117,620
samples encompassing both Tor and VPN traffic. This dataset
was chosen for our experiments due to its comprehensive
selection of application types, having an adequate number
of samples for training, and being well researched in prior
works [9], [13], [15], [16], [28].

The eight application types comprising CIC-DN are audio
streaming (Vimeo and YouTube), browsing (Firefox and
Chrome), chat (ICQ, AIM, Skype, Facebook, and Hangouts),
email (SMTPS, POP3S, and IMAPS), file transfer (Skype,
FTP over SSH (SFTP) and FTP over SSL (FTPS) using
Filezilla and an external service), p2p (uTorrent and Trans-
mission), video streaming (Vimeo and YouTube), and VoIP
(Facebook, Skype, and Hangouts voice calls). Class imbal-
ance was an apparent problem with the original dataset as
47% of the samples are p2p traffic while VoIP and email
samples consist of less than 1% of the total data. We address
this limitation with the synthetic data generation scheme
discussed in the following section.

B. DATA BALANCING AND CLEANING
Since models trained on imbalanced datasets often perform
poorly in real-world deployment, it was necessary to balance
the CIC-DN data to improve model generalizability [30].
In our previous work, we tested the viability of several
data generation techniques to synthesize and balance the
network traffic data in the CIC-DN dataset [29]. We found
Synthetic Minority Oversampling Technique (SMOTE) to be
the top-performing upsampling technique as it improved the
F1-score over baseline by 7.5% [29]. The upsampled network
data we created was amalgamated and published as CMU-
SynTraffic-2022 (CMU) [28]. In this work, we utilize the real
network traffic data from the CIC-DNdataset upsampledwith
synthetic SMOTE data from the CMU dataset as the baseline
tabular dataset for our experiments.

From our tabular dataset, 14 zero-valued features and six
additional features–Flow-id, Source/Destination IP, Times-
tamp, and Source/Destination port–were removed as they
either overfit the model or contained duplicate informa-
tion. This process left 64 features in the resulting dataset.
After removing samples containing NaN and Inf values and
up-sampling minority classes, our final training data con-
tained 240,000 samples with 30,000 samples in each class.
We used an 80/20 train-test split for the training of our
models. This means that 80% of our data was used for training

while the remaining 20% was used for testing the models and
calculating our performance metrics.

C. TABULAR-TO-IMAGE DATASETS
We employ each of the five T2I techniques to transform
all 240,000 samples into corresponding images. The images
are grouped into folders based on their application type.
The dataset dubbed CMU-SynTraffic2023-ImageDataset
(CMU-I) is published online [31] for further scrutiny.
Section VI-C provides detailed insight into the generated
images while providing visualizations of selected samples.

IV. CLASSIFIERS
This section briefly discusses the XGBoost and ResNet-50
classifiers evaluated in our experiments as well as our rea-
soning for selecting these specific classifiers.

A. XGBoost
XGBoost is an optimized distributed gradient boosting
classifier that has become the tool of choice in many
machine-learning applications due to its high perfor-
mance [32], [33]. XGBoost is built upon gradient boosting,
which is an ensemble technique that combines the output of
multiple weaker machine learning models to produce a more
accurate prediction [34]. XGBoost provides L1 and L2 reg-
ularization to tune and further reduce overfitting and reduce
loss; mainly it enables users to tune various hyperparameters
to constrain trees, makes adjustments in the learning rate
during the learning process, and provides random sampling
techniques [34]. XGBoost was chosen as the baseline classi-
fier as it outperformed all other classifiers in previous similar
experiments and is a top-performing classifier over a wide
range of experiments [11], [29], [32], [33].

We used gridsearch to optimize our XGBoost model. Grid-
search, is an algorithm which automatically tries different
hyperparameter values during training to find themost perfor-
mant combination. Through the use of gridsearch we found
that our XGBoost performed optimally with a learning rate
of 1, a max depth of 9, and 180 estimators. Our implemen-
tation of XGBoost used the default values for L1 and L2
regularization which were α = 0 and λ = 1 respectively.

B. ResNet
CNNs have produced high accuracy in image classifica-
tion and increasing the depth of these networks results in
improved classification accuracy. However, deeper neural
networks are more difficult to train because simply stacking
more layers onto a network introduces the problem of van-
ishing/exploding gradients [35]. As layers are stacked, the
partial derivative of the loss functionwill either approach zero
and vanish, or approach infinity, causing it to explode. Neural
networks utilize this value during backpropagation to adjust
the weights of nodes. With a vanished or exploded partial
derivative, the network is unable to learn as it can no longer
adequately update the weights in the network.
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ResNet is a deep residual neural network introduced to
mitigate this drawback through residual learning. The resid-
ual aspect of ResNet allows for its enhancement over other
CNNs because it can create a network with more depth. In a
simple deep network, the output from each convolutional
layer is passed directly as the input to the next layer which
causes vanishing/exploding gradients. In comparison, ResNet
introduces residual connections that enable the network to
skip one or more layers. These connections allow information
to directly propagate to all layers of the networks. As a result,
ResNet models have fewer filters and lower complexity than
other neural networks, such as VGGnets [36]. ResNetmodels
also show significantly higher accuracy than previous models
in the field. In our experiments, we utilize a specific instance
of ResNet with 50 layers called ResNet-50 due to its smaller
training times and low error while being a top CNN classifier
for computer vision [35].
We apply transfer learning to our ResNet models in order

to improve performance. Transfer learning involves taking
a pre-trained model, removing its output layer, and adding
additional layers to be trained for a more specific task
(in this case anonymous traffic classification). The advantage
of transfer learning is that it can make use of the information
learned from the previous, more general training to enhance
performance on the new task [37]. Our ResNet model was
implemented using the TensorFlow Keras library and pre-
trained on ImageNet.

Our goal is to compare the top performing shallow model
trained on tabular data (XGBoost) with ResNet trained on
T2I data. We also provide empirical evidence on whether T2I
techniques are a viable approach to multi-class classification
of various application types in anonymous traffic detection
and categorization problems.

V. TABULAR-TO-IMAGE ARCHITECTURES
CNNs are effective at analyzing data with spatial differences
between features. This makes them ideal for application on
image and audio datasets where the important information
about the data is based on the order of the features [12].
In these cases, the data is homogeneous which allows for
CNNs to distinguish spatial differences. However, when it
comes to heterogeneous data, such as tabular data, CNNs can
not be directly applied. This limitation inspires the process
of transforming tabular data into images to apply CNNs.
Applying CNNs to the transformed data can result in superior
prediction performance compared to other shallow models
trained directly on tabular data. The potential for perfor-
mance improvement motivates research on the most effective
method of converting tabular data to images by evaluating
new and pre-existing T2I algorithms. The development of
DeepInsight pioneered this transformation of data to images,
followed by more effective algorithms like SuperTML, TAC,
and IGTD that improve the process.

Sections V-A through V-D explain the T2I algorithms we
use in our experiments.

FIGURE 1. Feature wrapping visualization.

A. FEATURE WRAPPING
Ko et al. [38] introduced a method of converting raw network
traffic data into images for classification by wrapping the
binary data of a traffic flow into square images. A similar
technique was then adapted to transform tabular data into
images as a vector of feature wrapping [17], [24]. The vec-
tor of feature wrapping technique takes a one-dimensional
tabular data sample and normalizes its values before creating
a square 2D image. We employ min-max normalization (1)
for the feature wrapping technique used in our experiments.
Since categorical features were discarded in our dataset,
we did not employ the one-hot encoding technique. After
normalization, each sample is then split into equal-length sub-
vectors which are stacked on top of each other to form a
square image. If a sample doesn’t have enough values to form
a square image, it can be padded with additional zeros [17],
[24]. This feature-wrapping method is illustrated in Figure 1.

xnormalized =
x − xmin

xmax − xmin
(1)

B. DeepInsight
To better identify variations in genomic and biological data,
Sharma et al. [39] introduced a T2I scheme called DeepIn-
sight. The algorithm clusters similar or related features into
a two-dimensional feature space using different dimension-
ality reduction techniques such as t-SNE or PCA. Then the
convex hull algorithm is used to find the smallest bounding
rectangle of the feature data points. Once the rectangle has
been calculated, it is rotated to be horizontal or vertical and
then converted to a pixelated image. They tested DeepInsight
by generating image data from four different datasets (text,
gene data, and 2 artificial datasets) and trained CNNs on these
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datasets. The performance of the CNNs was then compared
to traditional machine learning methods. The DeepInsight
system achieved the highest accuracy metrics across each
dataset, with an accuracy of 95% on average.

C. IGTD
Zhu et al. [12] introduced Image Generator for Tabular Data
(IGTD) to improve existing image generation techniques. The
optimization algorithm converts tabular data to images by
assigning each feature to a pixel. The assignment is deter-
mined by ranking the pairwise distances between features
and the pairwise distances between the assigned pixels. The
algorithm then minimizes the difference between these two
measurements. Pairwise distances are calculated through a
distance measure such as the Euclidean distance or the Pear-
son Correlation Coefficient. This assigns similar features to
pixels close to one another and dissimilar features to ones
farther apart. The efficiency of this method stems from a
greedy iterative process of swapping the pixel assignments
of features to best reduce the distance between them.

Unlike DeepInsight, IGTD produces dense image repre-
sentations where each pixel represents a unique feature. This
results in smaller images that take less time when train-
ing CNNs. IGTD also does not require domain knowledge
and has excellent feature preservation as closer features are
more similar. The size and shape of the image generated
can be adjusted, which makes it more applicable to a variety
of domains. They compared IGTD to CNNs trained with
DeepInsight and REFINED images on datasets for gene
expression profiles of cancer cell lines andmolecular descrip-
tors of drugs. CNNs trained on IGTD provided similar or
better prediction performance when compared to the other
T2I methods and models trained on the original tabular data.
Despite its origination in a different domain, we wanted to
examine IGTD’s applicability in the network traffic domain.

D. BINARY IMAGE ENCODING
Inspired by the one-hot-encoding technique, we introduce
Binary Image Encoding (BIE), a novel T2I scheme. The
one-hot encoding method was originally introduced by
Wang et al. [22] and involved converting binary network flow
data into a 2D image by applying one-hot encoding on each
byte of the sample. The reasoning for this process is that raw
network data often does not have an ordering and its values
are better represented as categorical features. This is because
the information in raw network data are features like protocol
types or flags rather than meaningful numerical values [17].
Instead of treating features as unordered categorical values,

BIE makes use of the structure of binary representations of
floating point values. Fig. 2 outlines a binary encoded double
as well as the conversion to a decimal representation. Double
precision binary numbers consist of a sign bit, the exponent
which dictates the magnitude of the number, and the mantissa
which represents the significant digits of the value.

The technique converts each numerical sample value
into a double precision binary string as discussed above.

FIGURE 2. Binary encoded double precision floating point value.

The binary values are then stacked on top of each other
to create a two-dimensional matrix to be interpreted as
an image where zero values become black pixels and one
values become white pixels. This process is illustrated in
Fig. 3, which depicts numerical feature values being con-
verted into 64-bit binary strings and then being situated on
top of each other to form the full BIE image. The pseudocode
for converting an input sample into an image is provided
in Fig. 4.

FIGURE 3. Binary image encoding process.

We believe that representing feature values as vectors of
binary encoded floating point numbers could have many ben-
efits for network traffic classification. First, this method does
not rely on normalization as many of the previously discussed
T2I techniques do. This is advantageous because normaliza-
tion reduces the range of potential feature values and can also
be heavily affected by outliers. Secondly, a binary decimal
string isolates the magnitude of a value (exponent) from the
precise value of each digit (mantissa). When differentiating
network traffic flows, one important factor to consider is the
magnitude of the packets exchanged during the flow. For
example, video streaming applications will have thousands
of packets exchanged in a short time, whereas an email may
typically have a lot fewer. To this end, isolating the magnitude
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FIGURE 4. BIE pseudocode.

FIGURE 5. Binary image encoding process.

of the value in the image representation may make a classifi-
cation based on packet quantity in a flow easier. Finally, the
method expands the information of each value by partitioning
it intomeaningful parts as opposed to IGTD, where each pixel
corresponds to a given feature, limiting image’s information
by the number of available features.

VI. RESEARCH METHODOLOGY
Fig. 5 outlines our research methodology. Subsequent
sections present the experimental outline, processes for
collecting metrics, tabular-to-image algorithmic conversion
processes, and model training.

A. EXPERIMENTAL OUTLINE
First, we establish baseline results by training the shal-
low learning XGBoost classifier on CMU dataset. The
XGBoost classifier was trained to distinguish among
eight application types and its performance metrics were
recorded.

Next, we generate five (5) new image datasets using each
of the T2I algorithms which are then used to train five
ResNet-50 models. After collecting performance metrics on
these models, we compared their performance to XGBoost
with an eye toward providing empirical evidence of the
importance of T2I techniques.

B. PERFORMANCE METRICS
We report accuracy, F1-score, Area Under the Curve (AUC),
mean squared error (MSE), mean absolute error (MAE),
and tabular-to-image encoding time to evaluate model per-
formance. True positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) are used to calculate
the aforementioned metrics [40].

F1-score is the harmonic mean of precision and recall
where precision is the proportion of correctly classified pos-
itive classifications and recall is the percent of TPs that a
model predicted accurately. ROC curves are a visual rep-
resentation of the TP rate in relation to the FP rate. The
area under the curve (AUC) is calculated by finding the total
area under a ROC curve. MAE is simply the average of the
absolute differences between the model’s predicted values
and actual values, whereas MSE is the squared differences
between the predicted and actual values. MAE reflects the
overall error giving equal consideration to all data samples.
In contrast, MSE is more affected by outliers so a larger
MSE can indicate that there are large outliers potentially
from class confusion. Our loss function is categorical cross
entropy, which is a standard loss function for measuring the
general fit for multi-class models [41]. F1-score and AUC are
less susceptible to imbalanced data and can help determine
whether a model is overfitting to training data. We primarily
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use F1-score to compare model performance. Tabular-to-
image encoding time (in seconds) is also reported as it can be
an important metric to consider when performing real-time
anonymous traffic detection and continuous model learning.

Accuracy =
(TP+ TN )

(TP+ FP+ TN + FN )
(2)

Precision =
TP

TP+ FP
∗ 100 (3)

Recall =
TP

TP+ FN
∗ 100 (4)

F1 − score =
TP

TP+
1
2 (FP+ FN )

∗ 100 (5)

C. TABULAR TO IMAGE ENCODINGS
Our preliminary experimentation found that image size had
minimal effect on model performance; however, conversion
time reduces considerably when generating smaller images.
All T2I algorithms were given the same input dataset and
generated 240,000 corresponding images. The image samples
shown in Figures 6, 7, 8, 9, and 10 were generated from the
same samples for each of the T2I techniques.

Our novel BIE scheme generates images (Fig. 6) contain-
ing 64 rows and 64 columns. Each row represents a feature
and each column is the corresponding 64-bit binary represen-
tation for that feature where ones (1) are represented as light
pixels and zeros (0) as dark pixels.

Images generated by IGTD (Fig. 7) consist of 8 rows and
8 columns for a total of 64 squares. Each square represents a

FIGURE 6. Sample images generated using binary encoding.

FIGURE 7. Sample images generated using IGTD.

FIGURE 8. Sample images generated using DeepInsight.

FIGURE 9. Sample images generated using feature wrapping.

FIGURE 10. Sample images generated using feature wrapping normalized.

feature where a darker value indicates a higher feature value
and vice-versa.

Unlike the other algorithms, DeepInsight does not create
a grid-based image. The image (Fig. 8) is constructed as a
bounding box that encompasses all the features using the
convex hull algorithm. Dark pixels indicate no value and the
lighter the color, the higher the feature value.

Similar to IGTD, each box in the FeatureWrapping images
(Fig. 9) contains the value of a single feature. The Feature
Wrapping Normalized follows the same process, but the fea-
tures are normalized before encoding (Fig. 10).

D. ResNet MODEL TRAINING
The system used to train the models ran on Ubuntu
20.04.3 LTS with an Intel i7-7700k CPU, GTX 1080 GPU,
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TABLE 1. Performance metric comparison.

and 16 Gigabytes of RAM. All ResNet models were trained
on the GPU while T2I algorithms were conducted on the
CPU. Each model took on average 7,950 seconds (2 hours,
12 minutes and 30 seconds) to train for 100 epochs with
192,000 samples in the training dataset. Since the datasets
all had the same number of samples and identical image
dimensions, the models took approximately the same time
train only varying by a few seconds.

We employed the ResNet-50 model pre-trained on the
ImageNet database as our deep learning model. The output of
the model was flattened before being passed to a custom fully
connected network. The fully connected network consisted
of two dense layers with respective output sizes of 512 and
8 units. The first dense layer incorporated a ReLU activation
function while the second layer utilized the softmax function.

Through experimentation, we found the stochastic gradi-
ent descent optimizer to outperform other optimizers when
implemented with a learning rate of 0.01 and momentum
of 0.7. The learning rate is monitored with the ReduceL-
ROnPlateau callback which will reduce the learning rate by a
factor of 0.05 with a minimum learning rate of 0.000002 if
the loss fails to improve. The model was set to train for
100 epochs with an early stopping callback to terminate
training if the loss did not improve in five subsequent epochs.
After each epoch, the model weights were saved and a
real-time graph was updated using Tensorboard. 5-fold cross-
validation was used to train the model to ensure that the
models are generalizable.

VII. RESULTS AND DISCUSSION
In this section, we present the results of the five ResNet
classifiers trained on the CMU-I image datasets compared
to the XGBoost classifier trained on tabular CMU dataset.
Then, we discuss the tradeoffs of the structured data and
T2I approaches providing insights into the viability of each
method in a potential real-world deployment.

A. CLASSIFIER RESULTS
Table 1 compares the performance metrics among the five
ResNet-50 classifiers trained on each T2I method and
XGBoost in the classification of eight application types.
Values highlighted in green are the top metric across all
classifiers whereas blue-highlighted values are metrics that
exceed those of XGBoost. It can be seen that the pro-
posed Binary Image Encoding is the top-performing method
across all measured metrics (excluding image generation
time), improving over XGBoost’s F1-score by 2.4 percentage
points. IGTD was the only other method that saw higher
metrics over the baseline, improving upon F1-Score by
approximately 1 percentage point. Figure 11 provides better
visual comparisons among the evaluated methods.

Figure 12 depicts the differences in image generation time
among the T2I methods. Notably, Binary Encoding took sig-
nificantly longer (210 seconds) to convert the 240,000 tabular
samples to their corresponding image representation which
amounts to 0.9 ms per sample on average. This could be
attributed to the fact that this technique is novel to this work
and there may be room for further optimization. DeepInsight
also took considerably longer, potentially due to its reliance
on the computationally expensive Convex Hull and t-SNE
algorithms. The other T2I methods had relatively shorter
generation times, taking only 20-30 seconds to produce all
240,000 samples ( 0.1 ms per sample).

B. OCCLUSION SENSITIVITY ANALYSIS
To better understand our BIE ResNet model’s predictions,
we employed occlusion sensitivity analysis. Occlusion sen-
sitivity analysis is a popular way to visualize CNNs by
blocking out a portion of a predicted image and seeing how
the model’s confidence is affected [42], [43]. More important
areas for the classification of that image should yield lower
predicted confidence when covered. This process allows us to
create occlusion sensitivity maps which visualize the parts of
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FIGURE 11. F1-score comparison for ResNet-50 models trained on T2I methods vs. XGBoost.

FIGURE 12. Image generation times for T2I methods (240,000 samples).

BIE images that are important for classification for different
classes.

We generated our occlusion sensitivity maps by replacing
part of the target image with a gray patch, classifying the
image, and thenmapping the model’s confidence value to that
region. We repeated this process for 1000 images for each
class and averaged the values to find the most salient regions.
Figure 13 shows the average occlusion sensitivity maps for
all classes.

Observing these figures we can see that critical regions
are distinct among the classes. For instance, we observe that
audio streaming is affected most by the group of features in

the top half of the image, but only the part of the feature
comprising the exponent and most significant digits of the
mantissa. Chat also appears to be most affected by occluding
information on the left side of the image, but does not see a
significant drop in confidence when the right side is omitted.
This could support the idea that for some traffic classes, the
magnitude of certain features is the most relevant piece of
information for classification. However, the critical regions
of other classes like browsing and Email are more broad and
scattered across the entire image.

Figure 14 shows individual traffic samples overlaid with
their occlusion map. These images can provide a more
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FIGURE 13. Averaged occlusion maps for all classes (1,000 samples).

FIGURE 14. Traffic samples overlaid with their corresponding occlusion map.

detailed look at the critical regions. Once again we see that
audio, browsing, and chat have critical regions on the leftmost
side of the image. The lower middle part of the image seems
to be the most salient region for the File, P2P, and Video
samples.

It should be noted that occlusion sensitivity analysis is
highly dependent on patch size, so salient regions may be
different when analysis is conducted with different patch
sizes. Additionally, our averaged maps were conducted on
a relatively small number of images, so they may not rep-
resent the entire distribution of the data. Drawing concrete
inferences about how BIE images are classified is currently
not possible, but these visualizations give a better idea
of how the ResNet classifier differentiates different traffic
types.

C. DISCUSSION
In this section we analyze the results of our experiments in
context with prior works while discussing the viability of the
T2I techniques.

Both IGTD and DeepInsight achieved competitive met-
rics proving their ability to generalize in disparate problem
domains. These methods also outperformed feature wrap-
ping, which is a more established T2I technique for network
classification problems [17]. While it is hard to draw direct
comparisons of metrics to other research (as their data,
features, classification objective, or number of classes may
differ), our models trained on IGTD and BIE data obtained
>96% accuracy in classification of eight network application
types which was greater than any of the reviewed literature
using the same dataset and classification task [9], [13].
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When considering the applicability of the evaluated T2I
methods, there is a definite tradeoff between computation
time and accuracy. A real-time detection system would
require the additional overhead of transforming collected
network traffic into images before being evaluated by the
model. Depending on available computational resources and
the amount of network traffic, the added latency of detec-
tion could make the system unsuitable. However, we have
demonstrated that T2I methods can noticeably increase clas-
sification accuracy over shallow classifiers. Furthermore,
IGTD offers an increase in accuracy while also keeping the
image generation time comparatively lower.

Online learning, the process of continually updating a
model based on new data, can be negatively impacted by the
slow training time of deep learning models. Training each of
our ResNet models took 2 hours ( 30 times longer than the
same byXGBoost) on our hardware. If the proposed RestNet-
50 models are deployed for anonymous traffic classification,
online learning may not be viable depending on available
computational resources.

Our experiments also showed that the choice of T2Imethod
is important to the overall performance of the classification
system as most of the T2I methods failed to improve upon or
match the performance of XGBoost. IGTD and BIE also out-
perform previous similar works [9] and [13] which achieved
accuracies of 86% and 92% on the same eight application
types. BIE may have performed well for the reasons stated in
section V-D. IGTD has similarities to feature wrapping in the
sense that each feature corresponds to a pixel value; however,
IGTD is unique in that it correlates features by importance
which may have contributed to its superior performance.

Finally, with >2% improvement on base-line classifier
(XGBoost) and >1% improvement on the state-of-art T2I
technique (IGTD) especially in a multi-class classification
problem of determining various application types in anony-
mous network traffic data, we argue that our novel BIE
scheme is a viable T2I technique in this domain.

VIII. LIMITATIONS AND FUTURE WORK
Due to limitations in computational resources, minimal
hyper-parameter tuning was performed. Future works may
benefit from experimenting with additional hyper-parameter
tuning on the ResNet models and T2I parameter tuning
(such as the dimensionality reduction technique used in
DeepInsight and the image generation size). Moreover, other
pre-trained CNN classifiers (such as ResNet-N with varia-
tion in depth, N [35]) should be evaluated and compared
to non-pre-trained CNN-based models in addition to other
computer vision techniques such as transformers. Finally,
more visualization methods and sensitivity analysis should
be applied to BIE trained models to better understand feature-
class relationships.

We trained models to classify eight application types from
the Tor and VPN protocols, but there are many anonymous
protocols unexplored in this work. For instance, SSL/TLS,
SSH, and HTTPS may not be detected or falsely classified by

the current models as they were not provided in the training
data. Additionally, deep learning models benefit from larger
datasets, so model performance may have been impacted
by the relatively small dataset. Though synthetic data was
generated using SMOTE to alleviate this concern, future
work could look into gathering more anonymous network
traffic to address this limitation. Nonetheless, two of the CNN
models still outperformed the shallow counterpart, possibly
mitigating the concern.

The CIC-DN dataset did not provide the flow interval
used to generate the tabular dataset from the raw pcap file.
A variety of flow intervals should be tested to find the interval
that optimizes model performance.

The CMU-I dataset may be used to train/optimize addi-
tional classifiers or be used as a baseline for other T2I
techniques not considered in this work. Furthermore, the
experimental workflow utilized to generate the CMU-I
dataset should be applied to other domains to determine
the general applicability of the approach. Since BIE is a
novel technique, future work should test this method on other
datasets and classifiers.

IX. CONCLUSION
This work explored the viability of five T2I methods (IGTD,
DeepInsight, vector-of-feature wrapping (normalized and
non-normalized), and the novel BIE) and their efficacy in
classification of eight anonymous network application types.
These techniques were used to generate five image traf-
fic datasets (CMU-I) for training ResNet-50. To establish
baseline results for comparison, the XGBoost classifier was
trained on the balanced tabular dataset (CMU). From these
experiments, we found that IGTD and BIE introduced in
this paper improved classification metrics when compared to
XGBoost, with a tradeoff of greater computation time while
encoding structured samples into images. As a novel method,
the results from BIE are promising; however, further evalu-
ation is warranted for general applicability of the technique
across other problem domains.

While many network traffic classification schemes based
on CNNs have been proposed, only a smaller subset pri-
oritizes data transformation, and even fewer apply image
generation techniques to this field. This paper sought to
demonstrate the potential of these techniques while also eval-
uating their real-world practicality and generalizability in the
domain of anonymous network data classification. Further-
more, we have published our datasets for further scrutiny in
the field.
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