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ABSTRACT To achieve high density, the spacer length of three dimensional (3D) NAND device has been
scaled down.When the program/erase cycle repeats, problems such as electrons accumulation in the inter-cell
region are occurred. To solve this problem, a method of replacing the spacer region material of 3D NAND
device with a low-k materials has been proposed. In 3D NAND, carrier’s lateral spreading occurs since all
cells in the string share a same trap layer. In this work, we observed the change of cell current (Icell) and
interference characteristic after retention time on various dielectric constant of spacer region conditions.
These two factors exhibit a trade-off characteristic. In this paper, we suggested the appropriate range of
dielectric constant value. Based on this observation, we have proposed a suitable range of dielectric constants
and suggested the Si3N4/ Air / Si3N4(N/A/N) multiple dielectric spacer structure to improve both Icell and
interference characteristics. In addition, performance improvement can be obtained through high-k / low-
k / high-k multiple dielectric spacer structure. Improving the retention characteristics of 3D NAND flash
memories through the proposed structure will contribute to improving the reliability of memory devices.

INDEX TERMS 3D NAND flash memory, multiple dielectric spacer, retention, interference, electron trap
charge, lateral migration, technology computer aided design (TCAD).

I. INTRODUCTION
The transition from two-dimensional NAND (2D NAND)
to three-dimensional NAND flash memory (3D NAND)
architecture has brought several advantages in terms of cell
lifetime, program speed, power consumption, and high den-
sity [1], [2], [3]. In the process of reducing dimension
between cells, interference of pass voltage (Vpass) within
neighbor cells become serious [4]. For reduction of Vpass
interference which is induced by neighbor cells, low-k mate-
rials were applied to spacer region material between gate
regions [5]. In the case of 2D NAND, when the dielectric
constant of spacer material is reduced, both program and
erase characteristics are improved because the capacitance
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FIGURE 1. Simulation structure of NAND flash memory array (a) Single
dielectric spacer and (b) Multiple dielectric spacer consists of x/y/x.
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FIGURE 2. Transfer curve when Vpass varied from 6 V to 9 V with various spacer materials (a) air, (b) Low-k, (c) SiO2, (d) Si3N4. (e) The variation of VTH
with Vpass varied from 6 to 9 V according to dielectric constant.

between cells decrease according to dielectric constant value
[6], [7], [8]. On the contrary to 2D NAND, the trap layer in
recent 3DNAND structure connected to each other [9], which
causes many problems such as charge lateral spreading [10]
and interference. In particular, when program/ erase cycle is
repeated, the number of trapped electrons in the inter-cell
region increases which causes a cell current (Icell) reduction.
In order to overcome this problem, research on replacing
the spacer region material with a low dielectric constant
material has been conducted [11]. As the dielectric constant
of the spacer regionmaterial decreases, the number of trapped
electrons in the inter-cell region decreases [12]. Therefore,
previous studies have reported that using low-k materials as
spacer materials can reduce the impact of the shield electric
field. It can help suppress degradation caused by trapped
charges in the inter-cell region. However, it has not been
reported that the retention characteristic change according
to dielectric constant. Since data retention characteristics in
memory devices are an important parameter for device relia-
bility, it is necessary to analyze the effect of changing spacer
materials on retention characteristics. Therefore, research in
3D NAND flash memory aimed on improving cell current in
this direction is essential.

In this study, we observe the variation of Icell and interfer-
ence characteristics after retention time on various dielectric
constant conditions and introduce the optimum range for
dielectric constant of spacer material. It would refer to mate-
rials that ensure the best reliability when designing device,
taking into account the retention state. Furthermore, we pro-
posed multiple dielectric spacer materials of low-k / high-k /
low-k and high-k / low-k / high-k to improve properties based

TABLE 1. Device operation conditions.

on the optimal range. It proposes a new form of dielectric
material confirming its characteristics in the future develop-
ment of 3D NAND technology.

II. DEVICE STRUCTURE
The structure of single dielectric spacer in 3D NAND is
shown in Fig. 1(a). Considering the symmetrical shape of 3D
NAND flash memory, this study used a 2D structure, which
is a cross-sectional shape. The device consists of two select
transistors and three cells, and the length of tungsten used as
the gate material is 20 nm. Source/drain doping concentration
is n-type 5 × 1018 cm−3, and channel doping concentration
is p-type 2 × 1018 cm−3. The thickness of tunneling oxide /
nitride / blocking oxide is 4 nm, 7 nm, 7 nm [13], respectively.
The channel length is 20 nm [12], and the channel thickness
is 10 nm. The spacer length is 20 nm. In order to investigate
the differences in the characteristics of 3D NAND based
on the dielectric constant, measurements are conducted by
changing the material to air (ε = 1.0), low-k (ε = 2.5), SiO2
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(ε = 3.9), and Si3N4 (ε = 7.5). There is a limitation on the
available dielectric materials and their constant when using a
single dielectric spacer. The use of multiple dielectric spacers
overcomes the limitations of single dielectric spacers and
allows high flexibility in tuning the dielectric properties as
various dielectric constants can be achieved. Furthermore,
we proposed to improve the performance of Icell and interfer-
ence by conducting simulations and interpreting the results
of the multiple dielectric spacer. In Fig. 1(b), a multiple
dielectric spacer with a length of 20 nm was configured in
an x/y/x structure. Two kinds of cases are applied to the
multiple dielectric spacer: one with 1) low-k / high-k / low-
k configuration and the other with 2) high-k / low-k / high-k
configuration. The thickness of the y layer is varied from 2 nm
to 16 nm in increments of 2 nm, and the simulation results of
that condition are analyzed. In the case of low-k / high-k / low-
k configuration using SiO2/ Si3N4/ SiO2(O/N/O). In case of
the high-k / low-k / high-k configuration using Si3N4/ Air /
Si3N4(N/A/N). The simulations are performed for structure
of Fig. 1(a) and (b) using Synopsys’ Sentaurus technology
computer aided design (TCAD). The operation conditions are
described in Table 1. Nonlocal tunneling (NLT) model was
applied for the interface of the channel and tunneling oxide
and Shockley Read-Hall (SRH) [14] is also applied.

III. RESULTS AND DISCUSSION
In this study, Icell and interference were measured to find
out the change in retention characteristics of 3D NAND
according to dielectric constant. Icell is extracted from the
bias condition that gate voltage (Vg) is 10 V and Vpass is 8 V.
The Icell was 456 µA/µm at ε = 1.0 (air) and 451 µA/µm at
ε = 7.5 (Si3N4). The Icell remains almost constant regardless
of the dielectric conditions, and this can be attributed to the
screen effect [12].
Figure 2(a)–(d) depict the threshold voltage (VTH) shift

in response to the variation of Vpass with different dielectric
constant spacers. 1VTH indicates the range of initial VTH
when Vpass is varied from 6 V to 9 V, and it can be considered
as the amount of Vpass interference [4]. VTH was extracted by
the constant current method, and the VTH extraction current
level is 1 µA/µm [15]. When the Vpass increases from 6 V
to 9 V, the VTH shift was 0.78 V at ε =1.0. the 1VTH was
0.83 V at ε = 7.5. It can be analyzed that the interference
of the Vpass increasing with the higher dielectric constant
condition, as shown in Fig. 2(e).

A. SINGLE DIELECTRIC SPACER MATERIAL
Figure 3 shows the Icell at program state before and after
1,000 s retention at 300 K depending on the dielectric con-
stant value of the spacer material, and the interference of the
Vpass variation. When the dielectric constant of spacer region
increases, the interference become worse while the change of
Icell is negligible for 0 s, as shown in Fig. 3(a). In Fig. 3(b),
when the dielectric constant of spacer region increases, the
interference also become worse. On the contrary to results at
0 s, the spacer dielectric material had a dominant effect on the

FIGURE 3. The characteristic of Icell and interference according to Vpass in
single dielectric spacer material (a) when retention time was 0 s, (b)
when retention time was 1,000 s. (c) The variation of Icell from retention
time 0 s to 1,000 s.

interference characteristic [16], [17]. If the change of Icell is
extracted separately, the 1Icell is 16 µA/µm at ε = 1.0 and
32 µA/µm at ε = 3.9 from retention time after 0 s to 1,000 s,
which is increased as the dielectric constant become higher,
as shown in Fig. 3(c). It can be explained as trapped electron
lateral migration model of Fig. 4 as below.

There are distributions of the etrappedcharge after reten-
tion 0 s and the 1,000 s when the dielectric constant of space
material is 1.0, 2.5, 3.9 and 7.5, as shown in Fig. 4(a)–(d).
Higher dielectric constant is observed to result in an increased
etrappedcharge in the selected cell after programming which
means retention time is 0 s. Since all cells in the string
share the charge trap layer (CTL), the electrons can move
to inter-cell region after retention at 300 K. Figure 4(e)
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FIGURE 4. The etrappedcharge distribution in nitride layer after program operation with (a) ε = 1.0, (b) ε = 2.5, (c) ε = 3.9, (d) ε = 7.5. The
etrappedcharge distribution about cutting the middle of CTL after retention 0 s and 1,000 s with (e) ε = 1.0, (f) ε = 2.5, (g) ε = 3.9, (h) ε = 7.5. (i) The
etrappedcharge values at points ‘A’ and ‘B’. (j) 1etrappedcharge in selected cell region and 1VTH after 1,000 s on various dielectric constant conditions.

shows the amount of etrappedcharge decreased in selected
cell region and the amount of VTH change after retention
1,000 s. The distribution of etrappedcharge cut along the
cutting line in the middle of the CTL in Fig. 4(a)–(d) is
measured in the initial state (retention time = 0 sec), and
after 1,000 sec, the distribution changes as shown in Fig. 4.
In Fig. 4(e)–(f), the point ‘A’ refers to the etrappedcharge
value at the center of the selected cell for after retention
0 s, the point ‘B’ refers to the etrappedcharge value at
the center of the selected cell for after retention 1,000 s.

In Fig. 4(i), the values of points ‘A’ and ‘B’ are formed at
similar levels after retention 0 s and 1,000 s, regardless of
the dielectric constant. However, they are distributed in trap
charge distribution range at the border area, as shown in
Fig. 4(e)–(h). The changes in the etrappedcharge formed in
the selected cell and the remaining etrappedcharge after reten-
tion 1,000 s, as shown in Fig. 4(j). As the dielectric constant
is increased, the significant lateral migration was observed.
As a result, the difference in etrappedcharge amount change
for each dielectric constant is shown, in Fig. 4(j) [18], [19],
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FIGURE 5. Measurement data from retention time 0 s to 20,000 s, increasing 5,000 s (a) the amount of change of etrappedcharge in selected
cell region. (b) the variation of Icell.

FIGURE 6. The characteristic of Icell and interference according to Vpass in single and O/N/O multi dielectric spacer material (a) when retention
time was 0 s, (b) when retention time was 1,000 s.

FIGURE 7. The characteristic of Icell and interference according to Vpass in single and N/A/N multi dielectric spacer material (a) when retention
time was 0 s, (b) when retention time was 1,000 s.

[20], [21]. The etrappedcharge in the cell area, which is
caused by being proportional to the change in VTH, has
a direct effect on the change in Icell. It means that Icell

increases when the spacer material has a high dielectric con-
stant due to a low cell VTH after 1,000 seconds, as shown
in Fig. 4(j).
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FIGURE 8. (a) The measurement sequence of 1etrappedcharge. (b) The variation of etrappedcharge cell and inter-cell at CTL.

In Fig. 5(a), the total number of electrons stored in the CTL
of the selected cell region is measured by increased time from
0 s to 20,000 s. The lateral migration rate gradually decreased
with the retention time. Most of the electrons trapped in
the program cells do not spread even after a considerable
amount of time has passed [18]. Figure 5(b) represents the
measurement of Icell as time increases from 0 s to 20,000 s.
As the retention time increases, the Icell is saturated. Similar
to the result of Fig. 4(j), this cause by1VTH due to the differ-
ence in etrappedcharge changes in the selected cell region of
Fig. 5(a). It can be explained by the effect of the spreading
of the etrappedcharge from the selected cell region to the
inter-cell region is larger than the screen effect, regardless
of the dielectric constant of the spacer material. As a result,
it can be concluded that lowering VTH increases Icell.

B. MULTIPLE DIELECTRIC SPACER MATERIAL
In chapter A, considering Icell and interference at the same
time, the optimum dielectric constant was in the range of
3.5 to 4.5. However, considering that dielectric materials used
in semiconductor processes are limited, it will be difficult
to match the optimal dielectric constant value with a single
dielectric. If dielectrics with multiple dielectric constants
are combined according to their thickness, spacer dielectrics
with various equivalent dielectric constants can be obtained.
A multiple material spacer can enhance the characteristics of
Icell while minimizing the degradation of interference. The
simulation is conducted to investigate the changes in Icell
and interference characteristics based on the ratio difference
between SiO2 and Si3N4, as shown in Fig. 1(b).

Figure 6 shows the Icell and interference characteristics
before and after retention. The Icell of O/N/O multiple
dielectric spacers is similar with the Icell of a single dielectric
spacer regardless of Si3N4 thickness due to stronger screen
effect at after retention 0 s as shown in Fig. 6(a). After 1,000

s retention, the Icell of the multiple dielectric spacers shows
the Icell characteristics combining SiO2 and Si3N4 material
as shown in Fig. 6(b). Since the dielectric constant of O/N/O
multiple dielectric spacers are determined by the combination
of SiO2 and Si3N4 resulting in values between the dielectric
constants of SiO2 and Si3N4 materials. Interference char-
acteristic deteriorated as the increase Si3N4 layer thickness
influenced by the overall dielectric constant. Similar with the
before retention state, interference characteristics increased
that influenced by the overall dielectric constant.

In Fig. 6 the Icell are not significantly affected by the overall
dielectric constant in the O/N/O multiple dielectric spacers.
But interference is affected by the overall dielectric constant
of the spacer. Based on these results, we propose a modified
multiple spacer dielectric layers to achieve high Icell while
minimizing interference by using an N/A/N multiple dielec-
tric spacer. Additional analyzes were performed by splitting
the air layer thickness from 2 nm to 16 nm in increments of
2 nm. Figure 8 represents the Icell and interference character-
istics after retention 0 s and 1,000 s. In Fig. 7(a), the increase
of air layer thickness leads to reduction of the screen effect,
resulting in an increase of Icell at initial state (0 s) [12]. The
interference is improved as the portion of air increases due
to the lower capacitance effect by the decrease of effective
dielectric constant of the N/A/N structure. Figure 7(b) shows
that the Icell gradually decrease by 6 nm and then abruptly
increases after 1000 s retention. Also, the interference charac-
teristics are improvedwith increasement of air layer thickness
as expected.

In order to investigate the cause of the variation in Icell,
the 1etrappedcharge in both inter-cell and cell region were
extracted, as shown in Fig. 8. The etrappedcharge in the cell
region spreads to the inter-cell region, as shown in Fig. 8(a)
[23], [24], [25]. Figure 8(b) represents the difference between
the values at 1,000 s and 0 s in the inter-cell region, and
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the difference between the values at 0 s and 1,000 s in the
cell region. When the air layer thickness is between 2 nm
and 6 nm, 1etrappedcharge in the cell region increases. This
increase of 1etrappedcharge leads decrease in Icell. How-
ever, when the air layer thickness is over 6 nm, reduction
of 1etrappedcharge in the cell region remains relatively
constant. On the other hand, 1etrappedcharge significantly
decrease in the inter-cell region. This is because when the
thickness of the air layer is increased, the electric field effect
toward the spacer is weakened and the screen effect is reduced
[12], [26]. This phenomenon arises from the reduction of
electron charge in the previously shielded inter-cell region
due to the screen effect. The mitigation of screen effect in
the inter-cell region leads Icell increasing. As a result, the
variation of Icell after retention is directly influenced by the
migration of etrappedcharge, as well as the screen effect
caused by the inter-cell region.

IV. CONCLUSION
In this study, the characteristics of Icell and interference were
investigated with the retention state considering the dielectric
constant variation. In addition, the structure of O/N/O and
N/A/N multiple dielectric spacer are proposed to examine
the characteristics of both Icell and interference. In single
dielectric spacer, the Icell increased as the VTH shifted due
to the change of etrappedcharge between retention states.
In this case, a higher dielectric constant resulted in a larger
quantity of electrons stored in the cell, causing the tendency
of spreading a greater number of electrons during retention.
Regardless of retention, interference was directly influenced
by the dielectric constant. As a result, it was concluded that
there is a trade-off relationship between Icell and interfer-
ence with a single dielectric spacer. The optimal point is
determined to be in the range of ε = 3.5 to 4.5, which is
the midpoint between ε = 1.0 and ε = 7.5. In the O/N/O
multiple dielectric spacer structure, the increase in Icell was
not significant which was attributed to the influence of the
vertical electric field formed in the blocking oxide. However,
in the N/A/N multiple dielectric spacer structure, the Icell
showed a decreasing trend followed by an increasing trend.
This is because the decrease of the etrappedcharge in the cell
region is followed by an increase trend.While in the inter-cell
region, the previously shielded electrons due to the screen
effect decreases. Similar to the case of a single dielectric
spacer, interference is primarily influenced by the effective
dielectric constant. In conclusion, it was confirmed that using
the N/A/N multiple dielectric spacer can improve both Icell
and interference factors during retention in the 3D NAND
flash memory array.
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