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ABSTRACT Background: Alzheimer’s disease (AD) is an incurable neurodegenerative disease primarily
affecting the elderly population. The therapy of AD depends heavily on an early diagnosis. In this study, our
primary objective is to evaluate the classification framework, which combines graph theory and machine
learning techniques for functional magnetic resonance imaging (fMRI), to distinguish AD, early mild
cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and healthy control (HC). Methods:
A novel multi-feature selection method, incorporating the dual graph theoretical approach, is proposed
for classification. This method utilizes three different feature selection methods after brain areas selection
through graph-theory analyses in 96 subjects with brain parcellation by using the joint human connectome
project multimodal parcellation (J-HCPMMP) of 180 areas per hemisphere. Results: The classification
results show that the optimal features selected by the minimal redundancy maximal relevance (MRMR)
based on support vector machine linear (SVM-linear) from graph measures for 36 areas of 360 areas.
The classification accuracies for identifying HC vs. EMCI, HC vs. LMCI, HC vs. AD, EMCI vs. LMCI,
LMCI vs. AD, and EMCI vs. AD, are 85.60%, 92.90%, 96.80%, 83.30%, 84.90% and 89.50%, respectively.
Conclusion: The results indicate that the combination of graph measures and machine learning in fMRI
connectivity analysis might be helpful for the diagnosis of AD, especially the use of local measures, which
may better reflect functional changes in local brain regions because of cognitive impairment.

INDEX TERMS Alzheimer’s disease, functional brain network measures, feature selection, classification,
fMRI.

I. INTRODUCTION

Alzheimer’s disease (AD) is the most common type of irre-
versible neurodegenerative disorder, which is characterized
by progressive impairment of memory and other cognitive
functions in elderly people worldwide [1]. Since Alzheimer’s
disease is facing great challenges in terms of treatment,
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early screening, early warning, and early treatment are of
paramount importance for AD prevention and intervention.
To intervene in the diagnosis and treatment of AD diseases
earlier, the diagnosis and prediction of AD diseases have been
studied from multiple perspectives of brain imaging, genetics,
and pathology. The diagnostic specificity of the pathologi-
cal hallmarks of AD leads to the elucidation of biomarkers
with proposed progression patterns [2]. Consequently, it is of
clinical importance to discover highly discriminative features
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and to establish a robust classification mechanism for AD
diseases, especially to provide early warning signals to AD
patients.

Functional magnetic resonance imaging (fMRI) is an excit-
ing non-invasive tool that measures changes in blood flow
and oxygenation levels in Brain. In particular, fMRI can not
only reflect the local spatial information about brain function,
but also maintain detailed functional connectivity maps of
the brain [3]. fMRI has been utilized to analyze AD and has
revealed significant impairments in large-scale brain func-
tional network [4]. The advances in graph theory and network
neuroscience (i.e. the study of structure or function of the
nervous system) offer an opportunity to study the process
of brain abnormality in Alzheimer’s disease because of the
altered structural and functional connectivity architecture of
the brain in those suffering from this disease [5], [6]. The
combination of graph theory and fMRI has been able to be
used as a disease biomarker, revealing the abnormal connec-
tion of the structure or functional network of various brain
regions in the development of Alzheimer’s disease [7], [8],
[9]. Since most studies have motivated by the observation
of abnormal and inconsistent brain connections, many recent
studies [10], [11] have employed the development of a classi-
fication framework that combines functional brain networks
and machine learning to classify individuals with MCI or
AD. Zhang et al. [10] aimed to evaluate the classification
framework with fMRI metrics to distinguish mild cognitive
impairment non-converters (MClInc)/AD from MCI convert-
ers (MClIc) by using graph theory and machine learning.
They found that in the classifications of MClc vs. MClnc,
and MClIc vs. AD achieved the accuracies of 84.71 and
89.80%. Raamana et al. [12] constructed the brain network
based on the difference in cortical thickness, by using the
graph measures including the average clustering coefficient,
boundary number, and node degree, and employed the Bayes
classifier to achieve the classification accuracy of 64% for
MClc vs. MClnc.

With the development of graph theoretical approaches with
advanced machine learning methods, more researchers are
using data-driven techniques to discover potential neuroimag-
ing biomarkers that can automate the identification of brain
diseases. Generally, there are at least two disadvantages in
existing graph theory combine with machine learning meth-
ods for brain functional connectivity network analysis. 1)
Previous studies [13], [14] usually utilize all nodes for feature
selection and feeding them as embedding into the classifier,
which would lead to feature redundancy. Some regions of
interest (ROIs) are more informative than others in predicting
brain disorders. 2) Existing studies [15], [16], [17] generally
use the parcellation approaches (i.e., Anatomical Automatic
Labelling (AAL) template, 264 putative function areas, Brod-
mann), which not provide more detailed and accurate brain
region delineation for AD. Therefore, it is crucial to focus
more on the node features corresponding to the ROIs that are
more indicative.

VOLUME 11, 2023

The aim of this study is to distinguish different stages
of AD using the multi-feature selection method, combining
graph theoretical approach and machine learning methods,
applied to the fMRI data with a brain parcellation based
on the joint human connectome project multimodal parcel-
lation (J-HCPMMP) approach. For this, we first employ
J-HCPMMP approach to partition each brain into 360 areas
for generating brain functional connectivity work. We then
calculate the connectivity measures using the fMRI data from
the four groups, and analyse the connectivity measures using
network-based statistics (NBS) analysis to extract the key
brain areas and calculate the local and global graph mea-
sures from the connectivity matrices. Then, after choosing the
graph measures, we use the multi-feature selection based on
three different algorithms (MRMR, sparse linear regression
feature selection algorithms based on stationary selection
(SS-LR), and Fisher Score (FS)) to select the best features.
Here, we analyse the relationship between network character-
istics with global and local measures. Finally, we use SVM
with nested cross-validation to classify the sample into two
classes (HC vs. EMCI, HC vs. LMCI, HC vs. AD, EMCI vs.
LMCI, LMClI vs. AD, and EMCI vs. AD) with four situations,
including local graph measures for 360 areas, local graph
measures plus global graph measures for 360 areas, local
graph measures for 36 areas, and global graph measures for
360 areas. According to our results, using graph measures
in conjunction with a multi-feature selection approach based
on fMRI connectivity analysis may help in the diagnosis of
Alzheimer’s disease. Overall, the contributions of our work
are summarized as below:

1) To propose an effective method for classification with
fMRI in different AD stages.

2) To propose a complete pre-processing pipeline for con-
structively extracting functional connectivity matrices from
fMRI data by using fine brain parcellation approach.

3) To identify the multi-feature selection with dual graph
theory and machine learning for accurately classifying and
identifying the brain regions contributing to AD.

The structure of the remainder paper is as follows.
Section II introduces the most relevant studies. In section III,
the materials used in this study are presented. Section IV
describes the methods employed. Section V shows the exper-
imental results. Sections VI provides the discussions on the
findings. We conclude this paper in section VII.

Il. RELATED WORK

A. FUNCTIONAL MAGNETIC RESONANCE IMAGING
Functional magnetic resonance imaging is a commonly used
non-invasive imaging technique that provides a neuropatho-
logical approach to studying the organization of the brain and
its cognitive functions. It measures hemodynamic changes
and aids in simulating the functional and structural mecha-
nisms of brain [18]. Compared to other imaging modalities
such as structural MRI and positron emission tomogra-
phy (PET), fMRI specifically provides information on brain
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functional connectivity between different regions. The study
of functional connectivity in AD provides insights into
the underlying pathophysiological processes and cognitive
impairments associated with the disease. By analyzing pat-
terns of connectivity between brain regions, researchers can
identify aberrant connectivity patterns and potentially relate
them to specific cognitive deficits observed in AD patients.
Recent researches [19], [20] have demonstrated a strong cor-
relation between behavioral characteristics and alterations in
functional connectivity as measured by fMRI. These find-
ings suggest that changes in functional connectivity patterns
are associated with neural mechanisms underlying various
behaviors.

B. GRAPH THEORY FOR BRAIN CONNECTIVITY ANALYSIS
With the development of complexity theory, the combina-
tion of graph theory and fMRI has been used as a disease
biomarker, revealing the abnormal connection of the struc-
ture or functional network of various brain regions in the
development of Alzheimer’s disease [9], [21], [22]. The fMRI
connectivity analysis has been utilized to detect alterations
in the brain network characteristic in AD, early mild cog-
nitive impairment (EMCI), late mild cognitive impairment
(LMCI), and healthy control (HC). To disclose the topologi-
cal structure of AD and give helpful information for precise
categorization, several research on the development of the
brain network and machine learning techniques based on
fMRI have been conducted [8], [23], [24]. Gao et al. [25] used
a visibility graph (VG) to construct time-dependent brain
network as well as functional connectivity networks. They
used the VG method to map the time series of individual
brain regions into the network and studied the topological
abnormalities of local complex networks, and found several
abnormal brain regions, including the left insula, right poste-
rior cingulate gyrus, and other cortical regions. This identified
that there were significant differences of local brain region
network on temporal characteristics indexes between AD and
HC. Wang et al. [26] explored network functional connec-
tivity with AD and mild cognitive impairment (MCI) in the
default mode network (DMN) and dorsal attention network
(DAN). They found that intra- and inter- network connec-
tivity was impaired in AD. Golbabaei et al. [27] used local
and global measures to assess the functional brain network
of each subject. They discovered that the olfactory cortex,
hippocampus, par hippocampal, amygdala, and superior pari-
etal gyrus all showed lower node strength, local clustering
coefficient, and local efficiency as well as increased local
characteristic path length in AD patients. Uysal et al. [28]
employed the method of constructing a brain function net-
work, and they found that the betweenness centrality in the
right inferior temporal gyrus and the nodal degree in the
left middle temporal gyrus was different in distinguishing
between EMCI and LMCI. Luo et al. [29] used graph the-
ory to characterize the brain network abnormalities of AD
and MCI with a Chinese brain template. Researchers found
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that altered graph metrics, including assortativity coefficient,
nodal degree centrality, nodal clustering coefficient, nodal
efficiency, and nodal local efficiency, reflected plasticity of
the brain in AD and MCI as compared with HC. However,
existing methods based on graph theory typically treat fea-
ture selection equally across all regions without considering
some brain regions. Besides, they employ the coarse brain
parcellation templates of ROI parcellation to construct brain
connectivity networks, which lacks detailed spatial resolution
and restrict the ability to analyze specific brain regions in
detail. Both issues may lead to sub-optimal performance of
Alzheimer’s disease classification.

C. MACHINE LEARNING FOR CLASSIFICATION

With the development of neuroimaging and artificial intel-
ligence techniques, many fMRI-based machine learning
algorithms have been proposed to distinguish the different
stages of AD and provide useful information for more accu-
rate classification. Khazaee et al. [30] combined the graph
theoretical approach with support vector machine (SVM) to
study the brain network for rest-state fMRI (rs-fMRI) with
MCI, AD, and HC. Based on a parcellation of 264 puta-
tive areas as well as the AAL template, they were able to
accurately classify three groups (i.e., HC, MCI, and AD)
with 88.4% accuracy using the optimal features extracted
from the graph measures. Seyed et al. [31] used graph theory
and machine learning approach to classify MCl-converted
(MCI-C) from MCI-non converted (MCI-NC) with rs-fMRI
features and achieved accuracies of 93%. Lama et al. [32]
applied graph theory from fMRI features to discriminate
AD, MCI, and HC using a linear support vector machine
(LSVM), and regularized extreme learning machine (RELM).
As a result of using RELM and LSVM, MCI vs. AD was
classified with 93.86%, and AD vs. HC with 90.63%. Zhang
et al. [33] investigated the efficacy of a classification frame-
work to distinguish by using functional brain network of
rs-fMRI. According to the classification findings, the fea-
ture chosen using MRMR (minimum redundancy maximal
relevance) was the best, with an accuracy rate of 83.87%
for both LMCI and EMCI. In conclusion, machine learning
based on fMRI connectivity analysis can correctly diagnose
AD, LMCI, EMCI, and HC by integrating graph theoretical
methodologies of complex networks. To this end, we propose
a multi-feature selection method Alzheimer’s disease identi-
fication based on functional connectivity networks.

Ill. MATERIALS

A. DATA ACQUISITION

The brain MR imaging data of 96 subjects are col-
lected from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) (http://adni.loni.usc.edu). Informed consent was
obtained from the volunteers in accordance with the insti-
tutional review board policy. All methods are carried out
in accordance with relevant guidelines and regulations. All
experimental protocols are approved by the institutional

VOLUME 11, 2023



L. Wang et al.: Functional Brain Network Measures for Alzheimer's Disease Classification

IEEE Access

TABLE 1. Demographic information of studied subjects in dataset.

HC EMCI LMCI AD
Number 24 24 24 24
Age(meantSD) 760+38 756+60 780+91 763+9.6
Male:Female 8:16 13:11 11:13 12:12

review board (IRB) at Hangzhou Dianzi University (IRB-
2020001).

Data from 24 patients with AD (average age of 76.3 9.6,
16 females), 24 patients with EMCI (average age 75.6 £ 6.0,
11 females), 24 patients with LMCI (average age 78.0 £
9.1, 13 females), and 24 age-matched HCs (average age
76.0 & 3.8, 12 females) from the ADNI are analyzed in this
study. The detailed information of the dataset can be found
in Table 1. The brain MR imaging data of 96 subjects are
including Tlw and T2w structure data, field mapping and
resting state fMRI with eyes open.

All functional and structural MRI images are collected
by scanning on a 3-T Philips scanner according to the
ADNI acquisition protocol. Data from structural MRI are
collected for each scanner to obtain multidimensional 3D
gradient echo images (T1W-3D-MPRAGE) and volumetric
3D sagittal magnetization images. A SENSE DTI sequence
is performed using the following parameters: 170 contiguous
1 mm slices; FOV = 256 x 256 mm; TR: 6.78 ms; TE:
3.14 ms. Functional MRI data are collected using a 3.0 Tesla
field strength in the resting state of the subject, the imaging
resolution is 64 x 64; slices is 6720.0; slice thickness is
3.3 mm; TR/TE: 3000/30.0 ms; flip angle = 80°.

B. DATA PREPROCESSING

We used a new J-HCPMMP method [34] to describe the
cortical architecture, function, and connectivity, which can
accurately identify AD and MCI patients at different stages.
The HCP MMP [35] is based on surface-based registrations
of multimodal MR acquisitions and a semi-automated neu-
roanatomical approach to delineate 180 areas per hemisphere.
These areas are defined by sharp changes in cortical archi-
tecture, function, and connectivity in a group average of
210 healthy young adults. To register ADNI data into Con-
nectivity Informatics Technology Initiative (CIFTI) space
and parcellate brain areas with HCP MMP, the J-HCPMMP
divides the human brain into 180 areas per hemisphere
using multimodal cerebral cortical partition techniques and
the HCPMMP atlas. The J-HCPMMP maps the non-HCP
protocol ADNI data into the HCP CIFTI grey space using
TIW and fMRI data, without T2W data. Several brain
data processing toolkits are used in J-HCPMMP including
FreeSurfer, fMRIprep, CIFTIFY and HCP minimal pre-
processing pipeline. The brain structural data of Tlw are
preprocessed using the standard surface-based stream pro-
vided by FreeSufer 5.0. The brain cortices with smoothed,
mid-thickness, pial and inflated are extracted and saved as
GIFTI. And then fMRI and field map are pre-processed
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with fMRIprep. The cerebral cortex is registered into CIFTI
grey space, CIFTI defined 91,282 standard grey-ordinates in
which consists of 32,492 cortical vertices per hemisphere and
26,298 individual elements in 19 subcutaneous tissues and
dividing the 32,492 vertices of cerebral cortex into 180 areas.
The weighted brain connection matrix and the binary brain
connectivity matrix are then created using all the fMRI data
from these 360 areas. The 360 J-HCPMMP functional areas
are based on functional brain network and thus may be more
sensitive to brain function organization.

IV. METHODS

We attempt to deal with two challenging issues in brain con-
nectivity network analysis, i.e., 1); how to make use of dual
local and globe measures with fine brain parcellation tem-
plates; and 2) how to fuse the multi-feature selection methods
and machine learning for Alzheimer’s disease identification.
We propose a multi-feature selection method, incorporating
the dual graph theoretical approach, for classification with the
J-HCPMMP brain parcellation.

The overall procedure of this study is illustrated in
Figure 1. First, the fMRI data are pre-processed with four
groups (i.e., HC, EMCI, LMCI and AD) and parcellated into
360 areas using J-HCPMMP. We examine how global and
local measurements relate to network characteristic param-
eters with six globe and six local graph measures based
on 360 areas. And then the NBS analysis is performed to
find optimal areas with the most discriminative ability in
classification of different stages of AD. Subsequently, the
extracted connection matrix is used for analysis after select-
ing 36 areas with local measures. After the selection of
the graph measures, the best features are then chosen using
a multi-feature selection approach based on three separate
algorithms (MRMR, SS-LR, and FS). As a result, statistical
analysis of brain functions and above optimal features are
performed for identifying HC vs. EMCI, HC vs. LMCI,
HC vs. AD, EMCI vs. LMCI, LMCI vs. AD, and EMCI vs
AD. In our classification study, we compare the performances
of various classifiers, including SVM-linear [36], K-nearest
neighbor (KNN) [37], Linear Discriminant Analysis (LDA),
Convolutional Neural Network (CNN) [38], and Decision
tree [39].

A. NETWORK CONSTRUCTION AND NETWORK
MEASURES ANALYSIS

The fMRI features are constructed based on graph theory and
the connectivity matrix, reflecting the state of brain connec-
tions through structural or functional topological associations
[40]. We study the changes in brain areas in groups with
cognitive impairments using functional brain network. Each
brain area is defined as the node of the brain network, and
the correlation coefficient of the fMRI time series between
brain partitions as the weight of the graph edge between
nodes to construct the brain connection network. Thus, for
each subject, a 360 x 360 adjacency matrix is generated by
computing the correlation coefficients between any two brain
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Globe 360 areas

FIGURE 1. The overall procedure of functional network measures for classification.

areas, and the weights of all diagonals are set to 0. Then, both
weighted and binary adjacent networks are produced using
the proportion of the strong weights (PSW) [30] value to
reduce noisy and weakly correlated connectivity. The brain
connectivity matrix is sparsely processed using a data-driven
PSW to maximize the global cost efficiency (GCE) in the
brain connectivity matrix, as described in (1) and (2).

maxpsw (GCE) = E — PSW (1)
—1
1 1 2jen i 4
E_ﬁzieNEi_ﬁzieN n—1
()

where E; is the efficiency of node i, n is the total number of
nodes, N is the vector of all nodes, and dj; is the shortest path
length between node i and j. A range of candidate PSWs from
1% to 100% with a step of 1% is tested to maximize the GCE
value.

When determining the strongest weight ratio, a sparse brain
connectivity matrix is obtained. As part of the functional
complex brain network, only functional connections between
undirected brain areas of the brain are considered. Therefore,
the absolute values of all correlation coefficients in the net-
work are taken to remove negative correlations. Finally, the
weighted network and the binary undirected network with
node connection information is retained (Figure 2).

Various network measures are computed for the network
of each subject. There are many measures for complex brain
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FIGURE 2. Construction of brain network from functional connectivity
datasets.

network, which can be divided into global network measures,
local network measures, and small-world characteristics mea-
sures of brain connectivity [41]. The Brain Connectivity Tool-
box (BCT toolbox) (https://sites.google.com/site/bctnet/) is
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employed to compute 6 local graph measures and 6 global
graph measures. There are 360 graph nodes in this study.
As a result, features for the following global measures are
calculated for Assortativity (ASS), Globe Efficiency (GE),
Small World (SW), Hierarchy (HI), Synchronization (SY),
and Characteristic path length (CPL). In addition, the 360 fea-
tures of each local measures in the binary network are also
calculated, including the clustering coefficient (CC), local
efficiency (LC), betweenness centrality (BC), eigenvector
centrality (EC), degree (D), and shortest path (SP). For each
subject, the features are combined to form the final feature
vector comprised of 2,166 measures (6 x 1 global measures
and 6 x 360 local measures). All the measures are standard-
ized to [—1, 1] prior to subsequent analysis. There measures
are important for fMRI classification of Alzheimer’s disease
because they provide quantitative measures of structural and
functional changes in AD brain network. The differences
in measures between AD and HC involve disruptions in
connectivity between brain regions, inefficient information
transmission, and changes in central nodes.

B. FEATURE SELECTION

Network-based measures generated candidate features for
classification. These features could be noisy and irrele-
vant, leading to overfitting issues and calculation cost and
classification accuracy. A feature selection algorithm is an
important part of machine learning, which helps to strengthen
the understanding between features and eigenvalues, reduce
the number of features, and improve classification accuracy.
In the feature selection section, three feature selection algo-
rithms are applied to classification (Figure 1).

1) MINIMAL REDUNDANCY MAXIMAL RELEVANCE
SELECTION ALGORITHM (MRMR)

As part of the feature selection process, we use the MRMR
algorithm, which is primarily used to identify the best m
features by maximizing the correlation between features and
target variables. MRMR [42] is defined as follows:

MRMR
1 1
= MAX; [m Zx,esl(xi’ c) — SP in’xjesl(xi, Xj)}
3)

The correlation between the features set S and the class C is
defined by the average value of all mutual information values
between each feature x; and C. Finally, we demand the feature
set S with the maximum correlation-minimum redundancy.

2) SPARSE LINEAR REGRESSION FEATURE SELECTION
ALGORITHMS BASED ON STATIONARY SELECTION (SS-LR)
The linear regression model [10] is defined as:

fX)=Xw “

where the coefficient of the linear regression is defined as
w = (Wi, wa, -+ ,wy),f (X) is the predicted label vector
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obtained by distinguishing unknown samples. Let L(w) be the
loss function of linear regression to control the complexity of
the model with the regularization term, which is defined as:

1
L (w) = min,, — |If (X) — Y13+ A lwly &)

where & > 0 is the regularization parameter of the model
control.

3) FISHER SCORE FEATURE SELECTION ALGORITHMS

The within-class distance is as small as possible and the
between-class distance is as high as possible, according to
the Fisher score (FS) [43], a trait with good discriminative
performance. The Fisher score for each feature in two class
problems is computed as follows:

F@ =) S +rn') (©)

where y is a positive regularization parameter, Sy, is called a
between-class scatter matrix, and S,, is called a within-class
scatter matrix.

C. CLASSIFICATION

After feature selection, the top 30 features identified by three
feature selection algorithms are used with the SVM classifier
to find an optimal classification accuracy. The LIBSVM tool-
box (http://www.csie.ntu.edu.tw/cjlin/libsvm/) is used in this
paper to apply an SVM-linear algorithm to classification in
MATLAB. The SVM-linear is defined as follows:

. lwl* N
mmw,b[ S TCD &

viw-xi+b)>1-§,

Y (xi,yi) € D& = 0) (7)

where x1 and x, are two eigenvectors and C is an optimal
value for the penalized coefficient. The constrained problem
of maximizing the soft interval is transformed into an uncon-
strained problem by the Lagrange function:

L(w,b,& o,
lwl? N
= +czi:1g,

- Z:n:l o [yi (WTXi + b) -1+ éi] - Zin:l wiéi
®)

Then, we use SVM-linear and the optimal subsets for
classification of difference stages of cognitive impairment
(EMCI, LMCI and AD) and normal group. The K-fold
(k = 5) class-validation (KCV) approach is employed to eval-
uate performance of SVM-linear. In each fold of KCV, 80%
of the data are selected for training the model, while the
remaining 20% are selected for calculating accuracy by using
SVM.

D. NETWORK-BASED STATISTIC (NBS) ANALYSIS
To identify the specific altered functional connectivity [44]
pattern in AD, the network-based statistic (NBS) [45]
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1 Prefrontal Cortex
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FIGURE 3. Nodes of the graph defined by 360 functional areas into

22 regions. Each region in different colours is displayed on lateral and
medial views of the left and right hemisphere inflated cortical surfaces.
Figures are all generated by MATLAB toolbox with BrainNet Viewer
2019 software package (www.nitrc.org/projects/bnv/).

F-threshold : 20
ZAb .
A TR 1 b

‘ ‘;.}' o &e & 3 A Mo :'.’:¢
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Network 2:

'
cot 99

Network 1:

Network 3:

p-value < 0.01. p-value < 0.01. p-value < 0.01

Number of edges: 2 Number of edges: 5 Number of edges: 11

Number of nodes: 3 Number of nodes: 6 Number of nodes: 10

FIGURE 4. Significant differences in the interregional connections (edges)
among the four groups (HC, EMCL, LMCI, AD) at an F-threshold of 20. The
statistical analysis using the NBS method identifies three significantly
altered networks at an F-threshold of 20. Figures are all generated by
MATLAB toolbox with BrainNet Viewer 2019 software package
(www.nitrc.org/projects/bnv/).

(https://www.nitrc.org/projects/nbs/) approach is utilized.
This approach is a nonparametric method, which can control
the familywise error rate when calculating multiple test statis-
tics to evaluate network connectivity. An F-threshold analysis
is performed in the NBS analysis method to determine the
functional networks that differ among the four groups. Then,
the subjects are randomly assigned to a group to perform
the permutation testing (n = 10000) to find the empirical
null distribution of the largest connected component size.
A range of primary threshold values (F-threshold) is exam-
ined from 10 to 30 by a step of 1.

V. RESULTS

A. GLOBAL AND LOCAL STATISTICAL ANALYSIS OF GRAPH
MEASURES

By analyzing the connectivity matrices of all subjects,
we conduct NBS analysis with 10,000 random permutations
to determine if there are any disrupted patterns of connectivity
for the largest connected component. At a high F-threshold,
there is no significant network, but at a low F-threshold,
there are significant networks with many connections. Three
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FIGURE 5. Six global measures in the binary network and global
measures in the binary network after NBS between the four groups (HC,
EMCI, LMCI and AD). Figures are all generated by MATLAB toolbox with
GRETNA software package.

networks of 2, 5 and 11 are found to have disturbed functional
connectivity patterns in the four groups when NBS is applied
on the raw connectivity with the F-threshold of 20 (p <
0.001, corrected for multiple comparisons) in Figure 4. The
first network comprises two edges (i.e., connections) and
three nodes (i.e., brain areas) with Right Area 55b (R_55b),
Right Posterior InferoTemporal (R_PIT), and Left Area TF
(L_TF). The second network comprises five edges and six
nodes with Right Primary Auditory Cortex (R_A1), Right
Area 6m anterior (R_6ma), Right Area 3a (R_3a), Right Area
10d (R_10d), Right Area posterior 10p (R_p10p), and Right
Area STSv anterior (R_STSva). The third network comprises
eleven edges and ten nodes with Left Area 3a (L_3a), Left
Area 45 (L_45), Left Area IFSa (L_IFsa), Left Area anterior
9-46v (L_a9-46v), Left Area 52 (L_52), Left ProStriate Area
(L_ProS), Left Area TE1 posterior (L_TElp), Left Medial
Belt Complex (L._MBelt), Left Auditory 4 Complex (L_A4),
and Left Area STSv anterior (L_STSva). As a result, the
results remain unchanged when using the false discovery rate
(FDR) method with 10,000 permutations.

The NBS analysis is performed to identify disrupted con-
nectivity patterns in patients with AD, EMCI, LMCI and HC,
and there are found the significant networks of 19 nodes,
including R_55b, R_PIT, R_Al, R-6ma, R_3a, R_10d,
R_p10p, R_STSva, L_3a, L_45,L._TFSa, L_a9-46v, L_52,
L-ProS, L_TElp, L_TF, L_MBelt, L_A4, and L_STSva.
Thus, the 19 x 19 connectivity matrix is generated as binary
network-NBS, with 19 being the number of areas included in
the significant network for each participant. The six global
measures with ASS, Globe GE, SW, HI, SY, and CPL in
the binary network of the 360 x 360 connectivity matrix
and binary network-NBS of the 19 x 19 connectivity matrix
are shown in Figure 5. For D, BC, LC, CC, EC, and SP,
there are no significant differences in the six globe measures
with binary network and binary network-NBS based on local
measures of binary networks.

Each local measure has 360 values for each subject, and
each subject has a total of 2160 local values (360 x 6).
The 61 local values with a P value < 0.01 for significant
differences among the four groups (i.e., HC, EMCI, LMCI
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TABLE 2. The 36 brain areas of 360 brain areas have local measures that are significantly different among the four groups (HC, EMCI, LMCI and AD). The
right six columns correspond to local measures. The numbers in these columns represent a p-value < 0.01 in the four groups of corresponding areas.

Areas 22 regions EC LC D CcC SP BC
R_VS8 the ventral stream visual cortex 0.0032 — 0.0078 — — —
R_55b the premotor cortex 0.0029 0.0077 0.0027 0.0096 — —
R_Al early auditory cortex — 0.0021 — 0.0005 — —
R_6ma the sensori-motor associated paracentral 0.0009 — 0.0021 — 0.0011 —
lobular and mid cingulate cortex
R_3a somatosensory and motor cortex 0.0043 — — — 0.0071 —
R_6mp the sensori-motor associated paracentral — — — — — 0.0034
lobular and mid cingulate cortex
R _8Av the dorsolateral prefrontal cortex 0.0039 — — — 0.0099 —
R_9m anterior cingulate and medial prefrontal cortex ~ 0.0071 — — — —
R_8BL the dorsolateral prefrontal cortex 0.0033 — — — 0.0017 0.0092
R_10d orbital and polar frontal cortex 0.0071 0.0011 0.0001 0.0076 — —
R 8C the dorsolateral prefrontal cortex — — — — — 0.0015
R 44 inferior frontal cortex — — — 0.0063 — —
R_ad47r orbital and polar frontal cortex 0.0006 — — — — —
R_PBelt early auditory cortex — 0.0050 — 0.0001 — 0.0007
R_PHA3 medial the temporal cortex — — 0.0073 — — —
R_STSvp association auditory cortex — — — 0.0044 — —
R_TElp lateral temporal cortex — — — 0.0056 — —
R_pl0p orbital and polar frontal cortex 0.0083 — — — — —
R_STSva association auditory cortex — — — — — 0.0016
L V3 early visual cortex — 0.0076 — 0.0075 — —
L 3b somatosensory and motor cortex — — — — — 0.0078
L 3a somatosensory and motor cortex — 0.0062 — 0.0090 — —
L 9m anterior cingulate and medial prefrontal cortex ~ 0.0034 — — — 0.0069 —
L_10d orbital and polar frontal cortex 0.0002 0.0016 0.0028 — — —
L 45 inferior frontal cortex — 0.0081 — — — —
L _IFSa inferior frontal cortex — 0.0053 — 0.0035 — —
L a9-46v the dorsolateral prefrontal cortex 0.0078 — — — 0.0052 —
L 9-46d the dorsolateral prefrontal cortex 0.0080 — — — — —
L 47s orbital and polar frontal cortex — — 0.0035 — — —
L_ProS the posterior cingulate cortex 0.0096 — — — — —
L_STSda association auditory cortex — — 0.0069 — — —
L_STSvp association auditory cortex — 0.0058 — — 0.0034 —
L _TElp lateral temporal cortex — — — 0.0085 — —
L TE2a lateral temporal cortex — — 0.0070 — — 0.0030
L TF lateral temporal cortex — — — — — 0.0021
Llg the insular and frontal opercular cortex — 0.0089 — — — —

Note: Nodal degree (D), betweenness centrality (BC), local efficiency (LC), clustering coefficient (CC), eigenvector centrality (EC) and shortest path (SP).

“«

—” represents p-value>0.01

and AD) are selected from 2160 local values. According to
Table 1, 61 values of significantly different local measures
are shown for the 22 regions of the multimodal cortical
parcellation, which correspond to the 36 brain areas. With
reference to the 22 regions in Fig.3, these 36 brain areas are
mainly located in the early visual cortex (RGN 2; Left Third
Visual Area (L_V3)), ventral stream visual cortex (RGN 4;
Right Eighth Visual Area (R_V8)), somatosensory and motor
cortex (RGN 6; R_3a, Left Primary Sensory Cortex (L_3b),
and L_3a), sensorimotor-associated paracentral lobular and
mid cingulate cortex (RGN 7; R_6ma and Right Area 6mp
(R_6mp)), premotor cortex (RGN 8; R_55b), early audi-
tory cortex (RGN 10; R_A1 and Right ParaBelt Complex
(R_PBelt)), association auditory cortex (RGN 11; R_STSva,
Right Area STSv posterior (R_STSvp), Left Area STSd ante-
rior (L_STSda), and Left Area STSv posterior (L_STSvp)),
insular and frontal opercular cortex (RGN 12; Left Insular
Granular Complex (L_lg)), medial temporal cortex (RGN
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13; Right ParaHippocampal Area 3 (R_PHA3)), lateral tem-
poral cortex (RGN 14; Left Area TE1 posterior (R_TElp),
L_TElp, Left TE2 anterior (L_TE2a), and L_TF), posterior
cingulate cortex (RGN 18; L_ProS), anterior cingulate and
medial prefrontal cortex (RGN 19; Right Area 9 Middle
(R_9m) and Left Area 9 Middle (L_9m)), orbital and polar
frontal cortex (RGN 20; R_10d, R_p10p, Left Area 10d
(L_10d), and Left Area 47s (L._47s)), inferior frontal cortex
(RGN 21; Right Area 44 (R_44), Left Area 45 (L_45), Left
Area IFSa (L_IFSa), and Right Area anterior 47r (R_a47r)),
and dorsolateral prefrontal cortex (RGN 22; Right Area
8Av (R_8Av), Right Area 8B Lateral (R_8BL), Right Area
8C (R_8C), Left Area anterior 9-46v (L_a9-46v), and Left
Area 9-46d (L_9-46d)), as shown in Table 2. As a result,
most of these brain areas are located within one of the six
multimodal cortical parcellation regions (somatosensory and
motor cortex (RGN 6), association auditory cortex (RGN 11),
lateral temporal cortex (RGN 14), orbital and polar frontal
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cortex (RGN 20), inferior frontal cortex (RGN 21) and dor-
solateral prefrontal cortex (RGN 22)) with more than three
areas. The following 14 brain areas are found to be identical
between the 19 brain areas extracted by NBS analysis and the
36 brain areas: R_55b, R_A1, R-6ma, R_3a, R_10d, R_p10p,
R_STSva,L_3a,L._45,L_TFSa,L_a9-46v, L-ProS,L_TElp,
and L_TF.

B. CLASSIFICATION RESULTS USING GLOBAL AND LOCAL
MEASURES

As we all know, using a high-dimensional feature space
for classification is time-consuming, and the classification
performance is poor due to the existence of redundant and
irrelevant features. We classify the HC vs. EMCI, HC vs.
LMCI, HC vs. AD, EMCI vs. LMCI, LMCI vs. AD, and
EMCI vs. AD in four different situations, including 360 areas
using local graph measures, 360 areas using local graph mea-
sures plus global graph measures, 36 areas using local graph
measures again, and 360 areas using global graph measures.
Thus, the corresponding feature vector sizes are 2,160 (6 x
360 = 2,160 local features), 2,166 (6 x 360 local features +
6 global features = 2166), 216 (6 x 36 = 216 local features),
and 6 (6 global features), respectively. After the calculation
of graph measures, we utilize these features as input features
of three feature selection algorithms to identify the optimal
features. Feature selection algorithms are performed on the
above three sets of feature vectors to select the optimal fea-
tures, excluding the features of 360 areas using global graph
measures.

The classification accuracy of classifiers under different
feature selection algorithms is compared with significant
difference. The top 30 features of the list with maximum
discrimination by the MRMR algorithm are selected in a
wrapper algorithm to find the optimal subset of features.
21 out of the 30 features contained information that could
be associated with one of the six major brain regions: the
somatosensory and motor cortex (RGN 6), association audi-
tory cortex (RGN 11), lateral temporal cortex (RGN 14),
orbital and polar frontal cortex (RGN 20), inferior frontal
cortex (RGN 21), and dorsolateral prefrontal cortex (RGN
22). Then, the classification results of the 216 local features
in 36 areas using three different feature selection algorithms
(i.e., MRMR, SS-LR and FS) with SVM-liner are compared,
as shown in Table 3. For the MRMR algorithm, the average
accuracies with local measures for 36 areas achieves the
best scores: 85.60%, 92.90%, 96.80%, 83.30%, 84.90% and
89.50% in terms of HC vs. EMCI, HC vs. LMCI, HC vs.
AD, EMCI vs. LMCI, LMCI vs. AD, and EMCI vs. AD,
respectively (Table 3). According to the quantitative results in
Table 3, the MRMR algorithm achieves the best classification
performance compared with the SS-LR and FS algorithms.
In brief, the appropriate method may enhance the classifica-
tion impact based on the classification outcomes of the three
feature selection algorithms.

Subsequently, we train and test the different classifiers
(SVM-linear [46], KNN, LDA, CNN, and Decision tree)
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using the optimal feature subset of the MRMR, and the
classification accuracies corresponding to the four situations
are shown in Table 4. The classification results are obtained
by local measures for 36 areas with SVM-linear for distin-
guishing HC vs. EMCI, HC vs. LMCI, HC vs. AD, EMCI
vs. LMCI, LMCI vs. AD, and EMCI vs. AD are 85.60%,
92.90%, 96.80%, 83.30%, 84.90% and 89.50%, respectively
(Table 4). In short, based on the classification results of
the three feature selection algorithms, the right approach
may improve the classification effect. Then, we find that
the accuracies of classification are higher with 36 areas for
local measures than with direct local measures calculation
for 360 areas in Table 4. The classification accuracies in
globe measures of 360 areas for distinguishing HC vs. EMCI,
HC vs. LMCI, HC vs. AD, EMCI vs. LMCI, LMCI vs. AD,
and EMCI vs. AD are 44.50%, 49.80%, 54.20%, 42.20%,
43.90% and 37.50%, respectively. The maximum classifi-
cation accuracy of the globe measures is less than 58%.
As shown in Table 4, we compare the results of the four
classifiers using the SVM-linear, KNN, LDA, CNN and Deci-
sion tree algorithms, respectively. The classification results
of the SVM-linear are better than KNN, LDA, CNN, and
Decision tree in four situations. Overall, such results further
demonstrate the advantage of the classification framework
with dual graph measures of the MRMR and SVM-linear in
the 36 local areas (Tables 3 and 4).

In particular, some previous studies have used imaging data
from the ADNI dataset to assess the classification perfor-
mance of different methods used to distinguish the stages of
Alzheimer’s disease. Table 5 shows the comparative results.
It can be seen that the classification results of constructing
brain function network with the multi-feature selection in dif-
ferent stages of AD are significantly higher accuracy than the
results of other previous studies. In brief, our study provides
the valuable insights into the prediction of HC — EMCI —
LMCI — AD, and reveals that graph measure of fMRI is
the potential predictor of classification. Consequently, this
study demonstrates the usefulness of features obtained from
function brain network measurements and machine learning
methods based on fMRI for more accurate classification.

VI. DISCUSSION

Using the NBS analysis, we identify three fMRI networks
that are significantly different in HC, EMCI, LMCI, and AD.
The first network comprises two edges in three areas: R_55b,
R_PIT, and L_TF. In this network, R_PIT is connected to
the R_55b and L_TF. With reference to the 22 regions in
Figure 3, R_PIT corresponds to the ventral stream visual
cortex, which plays an essential role in DAN. Previous studies
reported the existence of atrophy of visual cortices in late
MCI [51]. The second network comprises five edges in six
areas: R_Al, R_6ma, R_3a, R_10d, R_p10p, and R_STSva.
R STSva corresponds to the auditory association cortex with
reference to the 22 regions in Figure 3, which plays a crucial
role in the DMN for AD [52]. Sheng et al. [1] found that 10d
was one of five key brain areas, which had been confirmed
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TABLE 3. Classification of results and performance of different feature selection algorithms using svm-linear for local 36 areas in the identification of
four groups of HC, EMCI, LMCI and AD.

Feature selection HC vs. EMCI HC vs. LMCI HC vs. AD EMCI vs. LMCI LMCI vs.AD EMCI vs. AD
MRMR 85.60% 92.90% 96.80% 83.30% 84.90% 89.50%
SS-LR 83.40% 90.80% 94.90% 84.70% 84.80% 87.80%
FS 85.80% 91.20% 93.80% 80.40% 82.60% 88.80%

TABLE 4. Comparison of classification performance of different classifiers using local graph measures for 360 areas, local graph measures plus globe
graph measures for 360 areas, local graph measures for 36 areas, and globe graph measures for 360 areas in the identification of four groups of HC,

EMCI, LMCI and AD.

Classifier HC vs. EMCI HC vs. LMCI HC vs. AD EMCI vs. LMCI LMCI vs.AD EMCI vs. AD
Local 36 areas 85.60% 92.90% 96.80% 83.30% 84.90% 89.50%
SVM-linear Local 360 areas 79.70% 84.40% 93.00% 77.60% 82.70% 83.80%
Local + Globe 360 areas 77.90% 82.90% 84.70% 75.40% 77.90% 80.40%
Globe 360 areas 44.50% 49.80% 54.20% 42.20% 43.90% 37.50%
Local 36 areas 79.40% 82.80% 90.90% 70.70% 68.80% 73.80%
LDA Local 360 areas 76.20% 77.30% 88.80% 69.90% 67.70% 70.70%
Local + Globe 360 areas 74.30% 76.90% 78.90% 66.50% 68.90% 65.30%
Globe 360 areas 44.8% 49.7% 50.8% 40.9% 40.6% 37.8%
Local 36 areas 83.40% 84.80% 88.20% 72.40% 76.80% 80.10%
KNN Local 360 areas 79.20% 82.30% 84.50% 72.60% 73.70% 79.70%
Local + Globe 360 areas 69.50% 73.70% 80.90% 66.50% 65.00% 69.30%
Globe 360 areas 40.60% 37.70% 57.80% 29.90% 32.60% 38.80%
Local 36 areas 74.30% 70.60% 80.80% 62.80% 66.40% 75.80%
Decision tree Local 360 areas 66.80% 69.30% 75.90% 58.90% 67.90% 72.60%
Local + Globe 360 areas 70.80% 73.80% 72.40% 47.90% 64.70% 70.90%
Globe 360 areas 40.8% 48.2% 40.8% 30.4% 39.6% 33.8%
Local 36 areas 82.7% 91.0% 95.5% 82.1% 85.0% 87.6%
CNN Local 360 areas 80.2% 84.2% 91.8% 77.2% 83.2% 81.9%
Local + Globe 360 areas 75.8% 80.9% 85.7% 76.8% 70.5% 80.1%
Globe 360 areas 34.9% 56.8% 52.4% 39.0% 40.4% 42.7%

TABLE 5. Classification performance of different methods to distinguish different stages of AD.

Authors Target Modality Method Brain Segmentation Method Accuracy (%)
HC vs. LMCI 87.81
Alorf et al.[47] HC vs. EMCI fMRI SSAE AAL 86.79
HC vs. AD 94.17
HC vs. AD 98.2
HC vs. MClIc 87.7
i HC vs. MClIs 76.4
Basaia et al.[48] AD vs MClc sMRI CNN GM, VM, CSF 75.8
MCIs vs. AD 86.3
MClc vs MCIs 74.9
Zhang et al.[10] ﬁgiz Z: XIISIHC Rs-fMRI + sMRI Graph theory + RSFS + SVM AAL g;;(lj
Duc et al.[49] HC vs. AD fMRI SVM-REF + 3D-CNN AAL 85.27
AD vs. HC 91.40
Li et al.[50] Xlg IVZQNII-{CCI MRI+PET Multi-task deep learning with dropout + SVM 93 volumetric regions ;g]‘g
MClIc. vs. MCInc 57.40
HC vs. EMCI 85.60
HC vs. LMCI 92.90
Our Method ;\CA o V’:DLM - MRI Graph theory + MRMR + Lincar-SVM J-HCPMMP (36 arcas) zg'gg
LMCI vs.AD 84.90
EMCI vs. AD 89.50

Note: “MCIc” means MCI-converted, “MCInc” means MCI-non converted, “MCIs” means MCl-stable

to be involved in AD. The third network comprises eleven
edges in ten areas: L_3a, L_45, L_IFsa, L._a9-46v, L_52,
L_ProS, L_TElp, L_MBelt, L_A4, and L_STSva. The Our
finding for association of L_a9-46v to AD is in agreement
with previous studies [53] reporting. The maximum power
in the left a9-46v shows high performance of AD-MCI and
cognitively unimpaired participants classification. Consistent
with our findings, previous studies [53], [54] demonstrated an
association of ProS, STSva, A4, MBelt, and a9-46v to AD.
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As listed in Table 2, the brain network properties of the four
groups are compared using local measures. These 36 areas
are corresponded to the 14 regions of multimodal cortical
parcellation regions. However, there are more than three areas
in each of the six main regions of the multimodal cortical
parcellation region. Dorsolateral prefrontal cortex (R_8Av,
R_8BL, R_8C, L_a9-46v, and L_9-46d), orbital and polar
frontal cortex (R_10d, R_p10p, L_10d, and L_47s), and asso-
ciation auditory cortex (R_STSva, R_STSvp, L_STSda, and
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L_STSvp) are part of DMN and DAN. It agrees with previous
[71, [52], [55], [56] studies that alterations of DMN and
DAN take an important role during the process in different
stages of AD. It is noteworthy that 36 areas are selected
from 360 areas by calculating local measures. The 21 features
of the 30 optimal features selected using MRMR algorithm
are related to the six main regions with RGN 6, RGN 11,
RGN 14, RGN 20, RGN 21, and RGN 22. The six primary
brain areas match the six primary regions that are previously
mentioned. These findings are in line with other research
[57], [58] that indicates these brain areas play a significant
role in the progression of AD. Duc et al. [49] revealed that the
medial visual, default mode, right dorsal attention, executive,
salience, auditory related, cerebellar, left dorsal attention, and
frontal networks statistically differed between AD and HC
conditions. Albers et al. [59] that the sensory and motor areas
of the central nervous system were obviously affected by AD
pathology, and the intervention measures aimed at improv-
ing AD sensorimotor defects might enhance the patient’s
function with the progress of AD. The auditory association
cortex is activated in the LANGUAGE STORY, MATH, and
STOEY-MATH contrasts [35]. As compared to patients with
greater cognitive function, Alana et al. [60] reported that
individuals with mini-mental state examination (MMSE) <
25 and AD had lower grey matter density in the association
auditory cortex. Buchanan et al. [61] revealed that synaptic
loss, endoplasmic reticulum stress and neuro-Inflammation
emerged late in the lateral temporal cortex, and selectively
correlated with cognitive decline in Alzheimer’s disease.
Yao et al. [62] found interregional correlation changes were
detected in the para hippocampus gyrus, medial temporal
lobe, cingulum, fusiform, medial frontal lobe, and orbital
frontal gyrus in groups with MCI and AD. Dekosky et al.
[63] found that cortical and hippocampal choline acetyltrans-
ferase activity in the superior frontal cortex were significantly
elevated above normal controls in MCI subjects. Kumar
et al. [64] suggested that the dorsolateral prefrontal cortex
plasticity was significant deficits in Alzheimer’s patients,
compared with controls. Joseph et al. [65] revealed that
Alzheimer’s patients had increased dorsolateral prefrontal
cortex excitability, which was negatively correlated with
overall cognitive and executive function. Our findings are
consistent with those associated with selected brain regions
that have previously been shown to be associated with AD.
These regions are among the earliest to show abnormal amy-
loid deposition, which play an important role in EMCI, LMCI
and AD.

In this study, we use the fMRI and dual graph theory
with the multi-feature selection method to accurately clas-
sify patients. In the classification of HC vs. EMCI, HC vs.
LMCI, HC vs. AD, EMCI vs. LMCI, LMCI vs. AD, and
EMCI vs. AD, compared with other algorithms, MRMR
algorithm and SVM-liner with based on local measures for
36 areas achieve the best accuracies (Table 3 and 4), which
demonstrates that the high-level topological information of
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the brain connectivity selected by multi-feature algorithm is
useful for classifying Alzheimer’s disease. Table 4 illustrates
that only local measures for 36 areas produce the highest
classification accuracy (local measures for 36 areas > local
measures for 360 areas > local measures plus globe mea-
sures for 360 areas > only globe measures for 360 areas).
As a result of our analysis, it is evident that local measures
in the functional network contain more disease informa-
tion, and the top 30 selected features are more sensitive
to efficient classification. Furthermore, some local graph
measures are significantly different within certain brain
regions, such as medial temporal lobe region, occipital region,
precuneus region, sensory/somatomotor region, and visual
region. It suggests that selecting the appropriate feature
selection algorithm and local measures can improve the clas-
sification accuracy of the difference stages of AD. Ultimately,
local network measures can effectively select key brain areas,
greatly expand our understanding of AD classification, and
provide clues to new potential diagnostic markers (highly
sensitive features) located in brain areas.

The maximum classification accuracy of the global mea-
sures is lower than 58%, which shows that there are no
noteworthy variations in the global measurements for the HC,
EMCI, LMCI, and AD groups, it is consistent with the results
in Figure 5. Some studies [34], [66], [67] have shown that
the functional changes of cognitive impairment in the whole
brain are weaker than those in local brain areas. It has been
reported there were no significant difference in values of
global efficiency [68] and clustering coefficient [68], [69]
between HC and AD groups. Khazaee et al. [30] did not
find any significant differences among HC, MCI, and AD
groups in global measures, including clustering coefficient,
characteristic path length, global efficiency, and assortativity.

Thus, binary networks are constructed for four groups
based on fMRI and J-HCPMMP parcellation. The main
36 areas are derived from 360 areas by using local mea-
sures. The use of multi-feature extraction method can obtain
more accurate classification and better reflect the functional
changes of cognitive impairment in local brain areas. 36 dis-
eases’ extremely sensitive areas are chosen as they help with
categorization more effectively. In addition, cognitive impair-
ment fails to respond effectively to global measures. In short,
our study provides the valuable insights into the prediction
of HC — EMCI — LMCI — AD, graph theory and multi-
feature selection algorithm are used to study brain network,
discover the differences caused by AD. Consequently, this
study demonstrated the usefulness of features obtained from
function brain network measurements and machine learning
methods based on fMRI for more accurate classification.

Here are some possible directions for future work in
relation to the classification of functional brain network in
Alzheimer’s disease. Firstly, we can expand the sample size
to include more patients and healthy control groups to more
accurately capture the impact of Alzheimer’s disease on the
brain network. Additionally, longitudinal study designs can
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be adopted to track changes in brain network metrics as the
disease progresses, providing insights into their relationship
with disease development. Secondly, we can explore methods
for multimodal data (i.e., sMRI data, genetic data, biomark-
ers or clinical data) fusion and evaluate their effectiveness
in Alzheimer’s disease classification. Thirdly, to confirm
the reliability and consistency of the classification model,
future work can conduct validation and replication studies
on multiple independent datasets. This helps determine the
applicability of the model to different datasets and different
populations. There are some potential directions for future
work on the classification of Alzheimer’s disease with fMRI,
helping to future advance research in this field and facilitate
the development of clinical applications.

VII. CONCLUSION

In summary, we develop and evaluate the multi-feature selec-
tion model using graph measures and machine learning to
identify optimal features for classifying HC, EMCI, LMCI
and AD. Specifically, we first employ J-HCPMMP brain par-
cellation approach to construct brain functional connectivity
network for each subject. Then, the multi-feature selection
model with dual graph measures is designed to identify
optimal features. Thirty features are selected to achieve the
optimal classification accuracies of 85.6% for HC vs. EMCI,
92.9% for HC vs. LMCI, 96.8% for HC vs. AD, 83.3% for
EMCI vs. LMCI, 84.9% for LMCI vs. AD, and 89.5% for
EMCI vs. AD respectively by using MRMR algorithm and
SVM based local measures. By comparing the classification
results, we find that the selected local measures show more
effective features derived from the functional brain network
than the global measures. Informative graph measures are
related to the brain cortical regions and provided information
about disrupted brain functional regions. In light of this, our
results show that cognitive impairment based on functional
connectivity networks with graph measures may enhance the
classification accuracy of the various phases of AD.
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