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ABSTRACT In conventional optimization problems, it is assumed that all relevant parametric constraints
remain stationary. In contrast, optimization problems encountered in practical applications are dynamic
and supervened by uncertainties. The research community has evinced a keen interest in multi-population
approaches combined with nature-inspired algorithms to manage dynamic optimization problems efficiently.
Applying multi-population approaches to solve dynamic optimization problems engenders specific vital
issues, such as reproducing sub-populations in new environments influenced by archival information.
Moreover, over-partitioning the population may lead to aberrant utilization of computational resources
among the sub-populations. These impediments are addressed using the proposed hybrid multi-population
reinitialization strategy, which is a combination of distributed differential evolution algorithmic framework
and re-initialization strategy. This scheme relies on simple reinitialization to surmount the dynamism. This
frameworkwas assessed on different instances in amoving peak benchmark problem, a proven benchmarking
function in the domain of dynamic optimization. Furthermore, this study encompasses a comparative and
statistical analysis to validate the effectiveness of the proposed approach in comparison to cutting-edge
algorithms in solving dynamic optimization problems efficiently. The experimental results consistently show
that the hybrid multi-population reinitialization strategy outperforms conventional Differential Evolution
algorithms across various parameter configurations. This hybrid multi-population reinitialization strategy
showcases its effectiveness in the successful handling of increased shift lengths and number of peaks, which
are pivotal parameters in solving moving peak benchmark function.

INDEX TERMS Dynamic optimization problem, evolutionary algorithms, differential evolution, moving
peaks benchmarking problems, multi population strategies.

I. INTRODUCTION
Evolutionary algorithms (EAs), including the highly effective
differential evolution (DE) algorithm introduced by Storn
and Price in 1995 for solving real-space optimization prob-
lems. DE offer an efficient approach for addressing global
optimization challenges without the need for gradient infor-
mation. DE is renowned for its minimal control parameters
and strong convergence capabilities, establishing itself as one
of the most powerful EAs. However, classical DE algorithms
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face challenges related to parameter configurations, evolu-
tion strategies, prolonged computational time, and the high
volume of function evaluations. Unlike static optimization
problems, many real-world optimization tasks are inher-
ently dynamic, subject to changing conditions over time.
For instance, in applications such as object detection the
performance of sensitive components is influenced by imme-
diate surroundings. Hence scheduling decisions in dynamic
resource environments are continually affected by changing
resources and incoming workpieces. Furthermore, financial
trade models experience fluctuations due to shifts in market
conditions. These challenges belong to the realm of dynamic
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optimization problems (DOPs). The complexity, uncertainty,
and diversity of these real-world problems are increasing.
Consequently, employing a single evolutionary strategy with
traditional serial processing methods faces significant chal-
lenges when adapting to these dynamic conditions.

Most of the studies apropos in the Evolutionary Compu-
tation (EC) based optimization are typified by static data
appended by static problem constraints throughout the opti-
mization process. However, exceptionally over two decades,
various real-world optimization problems around us are seen
to be non-stationary in nature. This stimulates the researchers
to explore on proposing algorithms to solve the optimization
problems whose characteristics are changing dynamically.
The data, constraints, and solutions to these problems are
naturally dynamic and inconsistent. The solution space is
obscure until unstable events are set in motion. These
optimization problems, whose characteristics change while
solving them, are known as (DOPs) [1], [2], [3], [4].

ADOPwith the maximization objective can be formulated
as shown in equation (1).

max f (X , e) = f (x1, x2, . . . . . . , xD, e) (1)

where f is the objective function to be optimized, X is the
decision vector with dimension D, xi is a decision variable
whose values are in the range of [xi.min, xi.max], and e denotes
a dynamically changing environment. Various approaches
have been reported in the literature for efficiently obtaining
the solutions to DOPs.

The EAs are a pool of optimization algorithms under the
domain of EC. Though the classical EAs can efficiently solve
the given static optimization problems, due to their natu-
ral behavior and intrinsic attributes, they render inefficient
solutions for DOPs.Loss of population diversity is one of
the major factors restraining EAs’efficacy in solving DOPs.
During the search process, diversity loss ensues from the
reduced variation among the population members. The entire
population converges into promising regions that increase the
similarity among the individual in the population. When any
dynamic event is triggered, the classical EAs cannot quickly
diverge to another promising area in the search space.

Several diversity-based approaches have been introduced
and categorized in the literature to overcome the mentioned
confines. Cobb et al. [5] proposed a hyper-mutation strat-
egy concomitant with the diversity-based approaches. In this
strategy, the mutation rate is increased in response to the
detection of change. It is one of the initial attempts at this cat-
egory. Similar approaches entail adjustment of crossover rates
and scaling factors triggered by encounters with dynamic
events [6], [7]. Krishnakumar et al. proposed a simple
re-initialization technique where the algorithm resets to its
initial configuration on the occurrence of a dynamic event [8].
Such routines dynamically address changing environments as
a separate static optimization problem. This superior diversity
technique is accompanied by a loss of historically acquired
information. This article serves as a fundamental concept
for the proposed approach. To overcome the limitation, the

method utilized here utilizes historical information obtained
during the process and navigates the search process in the
subsequent generations. Samples of re-initializing techniques
were addressed in [9] and [10], where a designated subset of
the population alone gets re-initialized.

In preference to incorporating techniques that increase a
population’s diversity, the diversity level can be restricted to
fall after a specific pre-defined threshold value. Self-adaptive
algorithms aiming to improve diversity in the population fall
into this category. Incorporation of an adaptive mechanism
into EAs alleviates manual tunning, besides increasing the
search behavior of the algorithm [11], [12]. Grefenstette et al.
[13] recommended an immigrant approach, where randomly
generated individuals are periodically introduced into the
population. Likewise, Branke and Blackwell [14] revealed
a similar approach for managing DOPs using multi-swarm-
based particle swarm optimization techniques.

Highly preferred approaches to solve DOPs are memory-
based and prediction-based methods. Memory-based
strategies target the maintenance of diversity. Whereas,
prediction-based methods employ an algorithm to learn pat-
terns from past generations, for predicting future changes.
These types of approaches comprise simple archives where
data of previous generations are stored, and it acts as a
crucial factor in navigating the search process. These archives
are extensively utilized for predicting future change when a
change in environment has occurred [15]. A detailed survey
on this topic is bestowed in [4], and some memory-based
methodologies are presented in [16] and [17].

The multi-population approaches increase diversity by
reorganizing the initial population into numerous sub-
populations, spreading them across a search space. This
approach effectively aids the algorithm in detecting the
change, and each sub-population is liable for diversifying
or intensifying targeted search space. Mendes et al. [18]
proposed Differential Evolution (DE) algorithm dealing with
multi-populations to solve DOPs. Each sub-population in
the experiment is assigned to different regions in the search
space. DE algorithm provided better results in solving the
Moving Peak Benchmark (MPB) problem. Yang and Li [19]
presented a fast-multi-swarm algorithm in which the popu-
lation was categorized into children and parents. The parent
swarm explored the complete search space looking for the
global optima, whereas the child swarm explore the best
individual identified by the parent swarm. Application of this
algorithm to theMPB problem produced comparative results
[20]. The same investigators proposed a swarm-based cluster-
ing algorithm where the swarm was classified by clustering
methods, which easily enabled the algorithm to track and
locate the optima. The following factors drove the endorse-
ment of the multi-population approaches as being effective
and preferred for solving DOPs [12].

i. The decomposition of the initial population into
sub-populations ensures population diversity.

ii. A concurrent search of different areas in the search
space enables efficient tracking of optima.
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iii. Any algorithm dealing with a single population can be
incorporated into a multi-population approach.

Equipping natural EAs to solveDOPs is a common interest
to the research society. Among EAs, the DEalgorithm is
preferred, spurred by its stochastic and meta-heuristic char-
acteristics. Brest et al. recommended an adaptiveDE (jDE) to
solve DOPs [21]. An enhanced version of the jDEalgorithm
[22] had a noticeable performance in solving Congress on
evolutionary computation 2009’sDOPs. A multi-population-
based DE, proffered by Mendes et al. in their work [18], does
not require any strategy for parameter control to solveDOPs.
Similarly, Halder et al. [23] suggested a cluster-based DE
with an external archive, in which the population is decom-
posed using a clustering strategy. Zhan et al. [24] presented a
cloud-basedDE,one of the most prominent strategies to solve
DOPs efficiently. In this experiment, an individual migration
strategy is employed among the populations. The cloud acts
as a master node, and each population member is treated as
a computing resource. The computational resources are pro-
grammed by the master node, which makes the algorithm’s
time complexity small. Zhan’s team propounded the Cloudde
algorithm, an extension of previouswork that showed promis-
ing performance in solvingDOPs. Besides theDE algorithm,
researchers used other swarm algorithms to solve DOPs
effectively [20], [25]. Following the stance of incorporating
EAs to solve DOPs, many attempts have been initiated to
solve DOPs in real-time [26], [27], [28] using DE as a base
algorithm.

A significant limitation observed in the surveyed
approaches that effectively address DOPs is the increase in
error metrics as the complexity of the problem escalates. For
instance, when dealing with problems like MPB function,
these approaches tend to exhibit a notable rise in error rates
when variables such as change frequency, shift length, and
the number of peaks are increased.

To overcome these limitations, this work proposes a simple
hybrid multi-population reinitialization strategy (HMRS) fol-
lowing the multi-population approaches. This work utilizes a
distributed DE (dDE), a native extension of the classical DE
algorithm, to solve DOPs. The dDE has proven to be fault-
tolerant [29] and has been used to solve various real-world
optimization problems [30], [31]. Fixed region-based sub-
population is used to generate individuals of a subpopulation.
The individual within a subpopulation is randomly generated
within a restricted bound, which is pre-defined. The success
rate of each sub-population is calculated after every suc-
cessful generation. The sub-population re-initialization takes
place based on the success rate and change strength. The pop-
ulation re-initialization mechanism is incorporated with the
proposed approach to avoid stagnation at local optima. The
proposedHMRS is employed on theMPB problem to evaluate
the effectiveness of the strategy. Compared to the State-
of-the-Art methods, the proposed method HMRS generates
estimable results in several instances. The key contributions
of the article are stated below.

1. Hybrid Multi-Population Reinitialization Strategy
(HMRS): The HMRS is a simple yet effective hybrid
multi-population reinitialization strategy and is a novel
approach that follows multi-population methodologies.
This strategy aims to enhance the performance and
effectiveness of evolutionary algorithms in addressing
DOPs.

2. Utilization of Distributed Differential Evolution
(dDE): The work leverages dDE, an extension of the
classicalDE algorithm, to tackleDOPs. The use of dDE
is particularly noteworthy due to its fault-tolerant prop-
erties, as demonstrated in previous research [29]. This
approach has been successfully applied to a diverse set
of real-world optimization problems, highlighting its
applicability and robustness.

3. Fixed Region-Based Sub-Population and Reinitial-
ization Mechanism: The work introduces a fixed
region-based sub-population generationmethod, where
individuals within a subpopulation are generated ran-
domly within predefined bounds. Additionally, a
mechanism for reinitializing sub-populations based on
success rates and change strength is incorporated. This
technique is crucial for preventing stagnation at local
optima and promoting exploration in the optimization
process.

These contributions collectively contribute to the proposed
HMRS’s effectiveness, as demonstrated in the evaluation on
the MPB problem, showcasing superior performance com-
pared to state-of-the-art methods.

The rest of the paper is organized as follows. An overview
of DE and dDE (distributed DE) is presented in Sections II
and III. The proposed solution is detailed in Section IV,
followed by the design of experiments in Section V.
Section VI details the results and discussions, and the
closing remarks are noted in the conclusions presented in
Section VII.

II. THE CLASSICAL DE
Storn and Price [32] introduced the DE to the society of evo-
lutionary computing by solving the Chebyshev polynomial
problem. In solving numerous benchmarking and real-world
problems, DE has been evidenced as an efficient method.
Highly stochastic and meta-heuristic characteristics aid DE
in easily addressing various optimization problems. DE is a
population-based algorithm that utilizes crossover and muta-
tion techniques like other EAs. Nevertheless, DE possesses
a unique differential mutation operator, making it stand out
from all other EAs. The differential mutation operator sums
up the scaled difference between two solution vectors in
the population to generate the mutant vector. Further, DE
generates a target vector by implementing a recombination
mechanism between the mutant vector and the current vector.
A selection mechanism is employed to choose between the
target and current vectors; the extant vector can pass for
upcoming generations.
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FIGURE 1. The structure of the DE algorithm.

DE is a search-based algorithm that efficiently explores
the search space using random sampling techniques. The
initial population is created by manipulating the pre-defined
NP(Population size) vectors with D-Dimensions; each indi-
vidual member in the population is a candidate solu-
tion. The candidate solutions are represented as Xi,G ={
x1i,G, ..., xDi,G

}
i = i, . . . ,NP. Where Xi,G is the target vector.

Furthermore, uniform random techniques are used to initial-
ize the candidates, ensuring the entire search space is covered
by the population. Once the initial population is fixed, an iter-
ative process is initiated. For every succeeding generation,
a new population is produced by the DE algorithm.
During every generation, for every vector in the pop-

ulation, a new mutant vector, Vi,G =

{
v1i,G, ..., vDi,G

}
is

generated by applying the differential mutation operation.
The crossover/recombination mechanism is initiated on ter-
mination of the mutation operation. The recombination of the
target vector Xi,G and the mutant vector Vi,G produces a new
trail vector, Ui,G =

{
u1i,G, ..., uDi,G

}
.

Succeeding, the selection mechanism compares the target
vector Xi,G with the trail vector Ui,G,, allowing the survivor
for the next generation. This iterative process continues until
the termination criteria are satisfied. In addition, parameter
tuning plays a vital role in enhancing the performance of
the classical DE algorithm. The detailed working of the DE
algorithm is shown as Algorithm 1 in Figure 1.
Numerous self-adaptive parameter approaches are pro-

posed in the literature [33], [34], [35], [36] to solve dif-
ferent optimization problems. Algorithmic simplicity, ease
of implementation, and strong convergence have inspired
many researchers to employDE to solve various optimization
problems. Active research onDE for the past two decades has
yielded numerousDE variants summarized in [37]. An empir-
ical study on the performance of DE variants was studied by

FIGURE 2. The general architecture of the dDE framework.

Praveen et al. [38]. Mixing of DE variants affords promising
options to solve optimization problems, yielding vitreous
results [39], [40], [41], [42]. In [43] and [44], Shunmuga
velayutham et al. has proposed various meta-evolutionary
selections of constituents in ensemble DE, through which
the algorithm parameters can be configured automatically
based on the targeted optimization problem. They also pro-
posed a generic assembly source code-based framework that
facilitates any EA to provide antigens in malware scanners
[45]. The dDE is a native extension of DE in a distributed
framework, and is detailed in the next section.

III. THE DISTRIBUTED DE (dDE) FRAMEWORK
The exponential growth of technology and the heightened
levels of parallelism for solutions to complex optimization
problems pose collateral concerns for the research commu-
nity. To attain a maximum level of parallelism, this study
adopted the dDE framework, which reduces the computa-
tional time. The dDE framework acts as a platform for the
proposed HMRS strategy, through which a multi-population
approach is achieved.
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FIGURE 3. An illustration of the workflow of the proposed strategy.

The dDE framework follows the principles of the Island
Model (IM). The concept of natural evolution is the base for
IMs, which distribute the initial population throughout the
search space. The population is decomposed and distributed
among the islands to support the principle of simultaneous
exploration. The dDE framework in this experiment cus-
tomizes the islands to have one master node and a set of
slave nodes. The master node generates an initial population
and distributes it to all the slave. Every slave node, incor-
porated with the DE algorithm, works in parallel to ensure
synchronization. During each generation, the objective of the
slave node is to find an optimal solution for the given sub-
population. Adhering to a strict migration topology, after
certain number of generations (called migration frequency
[46]), the slave nodes can exchange their best candidates
with their neighboring nodes. A ring topology was adopted to
provide a cooperative evolutionary environment. The archi-
tecture representation of the dDE framework is shown in
Figure 2.

IV. THE PROPOSED HMRS STRATEGY
The proposed hybrid strategy is a commix of re-initialization
techniques through which dynamism is managed efficiently.
It combines the memory-based approach with the popula-
tion reinitialization-based approach. The random test point
method is used to detect the change in the environment. If the
change is detected, its severity is calculated which is crucial
in the proposed strategy. This strategy utilizes a popula-
tion aging mechanism and success rate-based reinitialization
technique to reinitialize each sub-population. It requires a
cooperative evolutionary environment to synchronize master
and slave nodes.

The master node detects the entire search space, and based
on the number of slave nodes, population bounds are pro-
duced, the search space and bounds are equally segregated.
Random individuals are generated within the given bounds

TABLE 1. Parameter setting for HMRS.

(user-specified) until every sub-population reaches a pre-
defined NP. Through this fixed region-based sub-population
generating mechanism, the framework can cover the entire
search space and explore promising areas during the opti-
mization process. Further, the sub-population is distributed
by the master node to all the slave nodes in the framework.
Every slave node will concentrate on a specific search-space
region and initiate the optimization process with the dis-
pensed sub-population. A partial illustration displaying the
evolution of the proposed algorithm to solve the DOP is
presented in Figure 3.

Once the slave node initiates the optimization process,
it directs the best candidates to the master node for every
succeeding generation. The master node creates an archive
(Archive_1) to store the best candidates received from all the
slave nodes. Periodically, after certain generations (histpro),
the master node starts processing the best candidates aggre-
gated in the archive equipped with the DE algorithm. The
number of runs themaster node needs to run theDE algorithm
is customized as (DErun). The processed result is stored in
Archive_2, the best candidate up to the current generation
is held here, and the archive is cleared. The Archive_2 is
updated after every successive generation; it compares the
results produced by the master node and all slave nodes.
Similarly, after every generation, the master node monitors
the success rate (sr) of each slave node in the framework to
find the non-contributing sub-populations. The sr values are
calculated using equation (2).

sr =
number of improved individuals
total number of individuals

(2)

Detection of dynamic events plays a crucial role in solving
DOPs; this work utilized a commonly pursued procedure to
detect the change, the random test point method [47]. In this
technique, individual candidates are randomly chosen from
the search space. At each generation, the candidate’s fitness
is evaluated. The dynamic event will be detected if there
is a change in the fitness of the chosen individual and the
algorithm of the framework responds to it. Further, if a change
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FIGURE 4. Algorithm for the population-aging mechanism.

FIGURE 5. The algorithm for working of the master node.

is detected, the framework calculates the change strength (Cs)
as given in equation (3).

Cs = f
(
bestbefore

)
− f

(
bestafter

)
(3)

where f
(
bestbefore

)
and f

(
bestafter

)
are the fitness of the best

candidates before and after the change is detected. A pre-
defined change strength threshold (CSthresh) value is fixed.
When the Cs value increases beyond the pre-defined CSthresh
value, the non-contributing sub-population is re-initialized
with random individuals based on the corresponding bounds.
The optimization process is re-initiated in the respective slave
node.

In a dynamic environment, if the similarity between indi-
viduals in a population is low, the optimization process
will likely stagnate at local optima. To address this limi-
tation, at each sub-population level, the proposed strategy

incorporates a mere population re-initialization strategy,
which is the population-aging mechanism. A threshold value
(populationage) is set in advance to ensure that a population
aging mechanism should be initiated after a certain number
of generations. A counter variable is customized to count the
age of the sub-population in each slave node separately, and
the variable is reinitialized once the population-aging mech-
anism is successful. The working of the population-aging
mechanism is presented in Algorithm 2 (in Figure 4). The
Algorithm 3 (in Figure 5) andAlgorithm 4 (in Figure 6) depict
the working of master and slave nodes, respectively. The
parameter configuration for deploying HMRS is displayed in
Table 1.
In the implementation part, the proposed HMRS was

deployed using mpi4py library. Mpi4py serves as a python
module that simplifies parallel programming by adhering
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FIGURE 6. The algorithm for working of slave node.

to the Message Passing Interface (MPI) standard, allowing
for efficient interaction and coordination among dispersed
processes. This tool is particularly valuable for scientific and
data-intensive tasks, where parallelization can significantly
accelerate computational and analytical processes. In the
realm of parallel computing,mpi4py establishes synchroniza-
tion among nodes through the widely embraced MPI stan-
dard, which serves as a prevalent protocol for communication
and coordination in distributed systems. Beyond its primary
focus on message passing, MPI extends its capabilities to
shared-memory functionality via one-sided communication
and shared memory windows. These functionalities empower
processes on separate nodes to synchronize their actions
effectively by locking and accessing shared data structures.
Here the core allocation has been done manually, while
launchingMPI job using command-line options.

Furthermore, mpi4py furnishes synchronization primitives
such as mutexes and condition variables, affording precise
control over synchronization within nodes. These primi-
tives enable the orderly coordination of thread execution
within a node, ensuring synchronization as required. This
enables HMRS to harness the power of parallelism and effi-
ciently address complex DOPsleveraging the strengths of
both mpi4py and the HMRS strategy for improved perfor-
mance and effectiveness in various computing environments.

Incorporating HMRS in dDE framework for optimiza-
tion yields numerous benefits. Its parallel computing

capabilities distribute the optimization process among mul-
tiple nodes, significantly expediting convergence and render-
ing it well-suited for extensive problem domains. The fault
tolerance inherent in dDE ensures its continuous operation
even in the event of node failures, enhancing robustness
in distributed settings. Concurrent exploration of multiple
sub-populations by dDE fosters diverse search trajectories,
heightening the likelihood of discovering global optima. This
adaptability extends DOPs, allowing dDE to tailor its strate-
gies for evolving conditions. In addition, dDE effectively
leverages distributed computing resources, rendering it suit-
able for tasks demanding substantial computational prowess.
In essence, dDE streamlines computation time, positioning it
as a valuable tool for intricate, large-scale, and time-critical
optimization endeavours across diverse fields.

V. DESIGN OF EXPERIMENTS
This section discusses benchmarking suites, evaluation met-
rics used in the experiment, the parameter settings for the
proposed algorithm, and the comparative analysis with State-
of-the-Art methods.

A. BENCHMARKING SUITE
The Moving Peak Benchmarking (MPB) is a maximization
problem proposed in [2] and [4] that was first proposed by
Branke et al. is a dynamic and continuous optimization prob-
lem; by nature. The MPB problem was used to evaluate the
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TABLE 2. Parameter setting for MPB.

performance of HMRS. Researchers around the globe widely
use MPB because of its ease of implementation and high
configurability. MPB comprises sets of peaks that change
over a period of time (after specific functional evaluations).
The return value of the benchmark represents the quality of
the solution. The mathematical representation of the fitness
function ofMPB is expressed in equation (4).

F (x, t) = max
i=1,...,p

(
Hi(t)

1 + wi (t)
∑D

j=1 (xj (t) − Xij(t))2

)
(4)

where, F (x, t) – solution (x) quality at time t , p- number
of peaks, D- search-space dimension, Hi(t) defines the peak
height, and wi (t) representing the peak width, describes the
peak location of the jth element. The height and width param-
eters follow a random Gaussian distribution (σ ). The peak
change performed dynamically by adding height and width
severity, is mathematically expressed in equations (5) and (6):

Hi (t) = Hi (t − 1) + height_severity ∗ σ (5)

Wi (t) = Wi (t − 1) +Width_severity ∗ σ (6)

Based on problem severity, height and width severity are
calculated. The positional change by velocity vector (vi) is
expressed in equation (7).

Xi (t) = Xi (t − 1) + vi(t) (7)

The change frequency (cf) happens every 5000 functional
evaluations (FEs) [48]. The parameter settings of MPBused
for the experiment are presented in Table 2.

B. EVALUATION METRICS
Two popularly used evaluation metrics in the DOP com-
munity were chosen to analyze the proposed strategy’s
performance.
(1) Offline error (OFFe) and
(2) Best before change error (BBce) [48].

TABLE 3. Optimization algorithm settings, for DE/rand/1/bin.

The Offline error is formulated in equation (8).

OFFe =
1

C ∗ N

∑C

i=1

∑N

j=1
Eij (8)

where C denotes the environmental change, Nrepresents
Max_FEs spent in each environment, and Eij indicates the
error of the jth functional evaluation under the ith environ-
ment. Erroris the difference between the fitness of the best
candidate identified by the strategy and the actual optimum
solution in current environment. TheOFFe indicates the abil-
ity of the algorithm to respond when environmental change
occurs.

The BBce indicates ability of the algorithm to perform the
global search. It is mathematically expressed in equation (9):

BBce =
1
C

∑C

i=1
Eij (9)

The combination of these two-performance metrics
(OFFe,BBce) is widely used to provide an evident perfor-
mance measure for the algorithms that can solve DOPs
efficiently.

C. EXPERIMENTAL SETTINGS
This work is a simulation of distributed system in a laptop
with multiple processors. The experiments were conducted

on a laptop (MacBook Pro- 2019) whose features included
the following:

• graphics card (Intel Iris Plus Graphics 645 1536 MB)
• memory (8 GB 2133 MHz LPDDR3), and
• processor (1.4 GHz Core Intel Core i5 9th gen)
As the proposed strategy relies upon a fixed region-

based sub-population mechanism, the process of migration
is not incorporated as the core. The parameter used for
DE/rand/1/bin are listed in Table 3.

TheHMRSwas evaluated on different parameter combina-
tions using the MPB test suite. Each parametric combination
arises with varying environmental characteristics. To mini-
mize the error that occurred from randomness, each instance
was run 20 times. The environment change happened every
5000 FEs; the termination condition was set to 5e5 FEs.
Therefore, there were 100 changes in the environment for
every single instance. Standard deviation and the average
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TABLE 4. Experimental results of HMRS against other methods with p = 5.

TABLE 5. Experimental results of HMRS against other methods with P = 10.

TABLE 6. Experimental results of HMRS against other methods with P = 20.

value of the error were taken as the comparison factors for
comparison with other State-of-the-Art algorithms.

VI. RESULTS AND DISCUSSIONS
As additional measures for verification of the solution were
put forth, the proposed approach was compared with the
following State-of-the-Art methods - jDE [22], CESO [49],

CPSO [20], and Cloudde [50]. The performance of the latter
algorithms was inferred from recent work that has efficiently
solved DOP, the HIDE [51] algorithm. To provide a fair
empirical analysis, the proposed strategy parameters were set
based on the parameter configuration of the HIDE algorithm.
Tables 4, 5 and 6 depicts the proposed strategy’s perfor-
mance with other algorithms, where the number of peaks
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TABLE 7. Statistical results – One sample t-test.

P (5, 10, 20) changes with corresponding tables. Eo and Eb in
the Table 7 represents offline errors and best before change
error.

The experimental results in Table 4, 5 and 6 summa-
rize HMRS performance in terms of offline and best before
change errors. The value inside the parenthesis indicates

the standard deviation of 20 runs. The best results of the
corresponding instance are highlighted in bold font. ‘‘+,’’
‘‘−,’’ and ‘‘=’’ symbols in Tables 4, 5 and 6 represent
the HMRSperformance in comparison to the State-of-the-
Art methods as better, worse, and equals to, respectively.
These results affirm that the dDE framework outfitted with
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FIGURE 7. Exemplification of offline error and best before change error
with instances chosen randomly. a) Peaks (P) = 5 and b) Peaks (P) = 20.

FIGURE 8. Illustrating the searchability of the HMRS after the change is
detected.

HMRS is more likely to find global optima under dynamic
environments. The proposed strategy has outperformed other
comparable algorithms in 12 MPB test cases, which testifies
the efficacy of the proposed algorithm. The results unequivo-
cally highlight HMRS’s consistent superiority over the other
five algorithms in various configurations when tacklingMPB
problems with different degrees of shift severity. As shift
lengths increase, tracking peaks becomes progressively more
challenging, causing the performance of all algorithms to
naturally deteriorate. However, HMRS demonstrates mini-
mal sensitivity to elongating shift lengths in terms of OFFe
compared to the other algorithms, showcasing its remarkable
resilience in detecting and tracking multiple optimal points
even in dynamically changing environments.

Furthermore, HMRS maintains its stability when faced
with an increasing number of peaks, a situation that typically
poses a greater challenge for algorithms to converge effec-
tively to optimal solutions. This intriguing phenomenon can
be attributed to the emergence of numerous local optima with
heights resembling that of the global optimum as the number
of peaks grows. Consequently, HMRS have a higher prob-
ability of identifying these relatively superior local optima,

contributing to its consistent performance even as the number
of peaks expands.

In direct comparisons, HMRS consistently achieves sig-
nificantly lower OFFe and BBce compared to all other
algorithms, even when the number of peaks increases. The
results of HIDEalgorithms slightly lag behind HMRS as the
number of peaks rises. Nevertheless, it still outperforms other
state-of-the-art algorithms. Additionally,HMRS exhibits sub-
stantial performance gains over HIDE when the change
frequency is increased.

Results of a Statistical study focusing on HIDE versus
HMRS are presented in Table 7. The t-value represents the
ratio of the difference between the mean of two sample sets,
and SDE represents the standard error of the difference. The
‘‘+’’ and ‘‘=’’ in Table 7 represents whether the proposed
HMRS is statistically significant or insignificant. The pro-
posed strategy outperforms the HIDE algorithm in many
instances. This detailed empirical and statistical analysis con-
cludes that the HMRS solves DOPs efficiently.
Figures 7. a and 7. b present the convergence graph of

the proposed strategy with a change in the number of peaks
P (5, 20). From Figure 7, it is evident that HMRS has
demonstrated high convergence capability. Due to random
population initialization, the proposed strategy has lost track
of global optima periodically, but it is capable of recovering of
the global optima in the promising region. Further to under-
score the significance of the proposed strategy statistically,
a sample t-test was also performed. Among the State-of-the-
Art algorithms, the HIDEperformed significantly better than
other algorithms.

An illustration representing the searchability of the pro-
posed algorithm, concerning 15 changes in single dimension
search space with random parameter settings, is presented
in Figure 8. And it is clear that during every environ-
mental change, the proposed HMRSfinds the global optima
efficiently.

VII. CONCLUSION
This study incorporated a HMRS within the dDE frame-
work to tackle multimodal dynamic optimization problems.
The proposed strategy consistently achieved high population
diversity through population re-initialization mechanisms.
Incorporation of the proffered scheme into the dDE frame-
work further balances the local and global search routines in
a dynamic environment. Manipulation of historical informa-
tion that emanates during the optimization process aids the
strategy to achieve effective results. The experiments were
conducted in theMPB problem, a commonly used benchmark
suite. The empirical and statistical analysis proves that the
HMRS outperforms the State-of-the-Art methods under dif-
ferent parameter settings.
HMRS, serves practical purposes across diverse domains.

For instance, it can enhance aircraft design by optimiz-
ing wing profiles and engine configurations, resulting in
improved fuel efficiency and overall performance within
the aviation sector. In realm of healthcare, HMRS proves
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valuable by optimizing resource allocation, encompassing
staff scheduling and equipment utilization. This ensures
cost-effective patient care and operational efficiency. Addi-
tionally, HMRS can enhance renewable energy grids by
optimizing the integration of sources such as wind and solar
power, maximizing energy output and grid stability, and ulti-
mately diminishing reliance on fossil fuels. These examples
emphasize the adaptable and impactful role of HMRS in
practical applications.

Despite HMRS offers several advantages, it also presents
limitations that require careful consideration. These include
the computational overhead associated with managing mul-
tiple populations and periodic reinitialization. In addition
based on the targeted optimization task, adaptive parameter
tuning is necessary to achieve comparable results. And the
algorithm fails to detect change when exposed to noisy envi-
ronment. Addressing these limitations is essential to harness
HMRS effectively for diverse optimization tasks.

The future research direction focuses on incorporating
multi-threaded architecture and adaptive migration topology.
Evaluation of the framework’s performance with real-world
dynamic optimization problems is one of the significant
directions.
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