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ABSTRACT Accurate prediction of photovoltaic (PV) power is the prerequisite for the safe and stable
operation of the power grid with high penetration of PV. Despite various machine learning models for
forecasting PV power have been developed, their accuracies are generally unstable. Toward this end, this
study proposes a novel Stacking ensemble forecast model to improve the precision of day-ahead PV power
forecasts. Different from the traditional Stacking model that uses the original training dataset to train the
base learners, the proposed model creates multiple sub-training sets from the original training dataset to
train the base learners, so as to enhance the diversity of base models and further improve the prediction
accuracy. Specifically, in the proposed Stacking ensemble model, four machine learning learners, i.e.,
generalized regression neural network (GRNN), extreme learning machine (ELM), Elman neural network
(ElmanNN), and Long shot-term memory (LSTM) neural network are incorporated, which are trained with
the diverse sub-training datasets, and a variety of candidate base models are generated. For those candidate
base models, the ones with the best performance are selected and integrated through a meta-model, namely
the back-propagation network work (BPNN), to produce the final PV power prediction. The proposed model
is evaluated using measured data from a 15kW PV power station in Ashland, Oregon, USA. Results indicate
that across three weather scenarios, the performance of the novel Stacking ensemble model consistently
outperforms single models and the traditional Stacking ensemble model in terms of the errors for out-of-
sample forecasting, which proves the effectiveness of the developed procedure in improving PV power
forecasting accuracy.

INDEX TERMS PV power forecast, day-ahead forecast, ensemble forecast, stacking forecast.

I. INTRODUCTION
Against the backdrop of global climate change and energy
supply security, vigorously developing renewable energy has
already become common targets and strategic choices for
all nations. The increased manufacturing technology of pho-
tovoltaic (PV) as well as the decreased levelized costs of
electricity has accelerated the development of solar power
generation worldwide. In 2022, the newly installed PV capac-
ity was 191 GW, implying a 27% growth compared to that
in 2021 [1]. However, influenced by solar radiation and other
meteorological factors, PV power exhibits intermittent and
uncontrollable characteristics, which brings challenges to the
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operation stability and power quality of the power grid with
high PV power integration [2]. Accurate forecasting of PV
power is one of the effective measures of circumventing
these adverse effects on power grid and facilitating the better
utilization of solar energy.

For the PV power forecast, two main categories of meth-
ods, i.e. physical modeling [3] and data analysis [4] are
adopted in the literature. The physical modelling is conducted
based upon the physics theory of PV effect. In this process,
atmospheric parameters, such as solar radiation, temperature,
and cloud cover are first obtained from the numerical weather
predictions. Subsequently, by combining these parameters
with PV system installation angle and array conversion effi-
ciency, the power generation of the PV system is calculated
through physical equations [5]. Holland et al. [6] obtained the
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solar irradiance through the radiation transfer equations first,
and then combined the forecasted solar irradiancewith the PV
module operation equations to estimate the future PV power.
Mayer et al. [7] developed a physical model consisting of the
beam and diffuse separation, tilted irradiance transposition,
reflection loss, cell temperature and module performance
modelling to forecast the day-ahead and intraday PV power.
The downside of the physical modeling is it involves numer-
ous parameters that are sensitive to environment, making the
process cumbersome and prediction accuracy poor.

In contrast, the data analysis method make predictions
by analyzing the relationship between the PV power and
its historical data, as well as the meteorological factors.
As PV power is a nonlinear, time-varying and multi-
variable coupling process, the statistical methods have
restrictions and limitations for modelling this process.
Machine Learning (ML) methods, e.g. Artificial Neural Net-
work (ANN) and Deep Learning (DL) have been widely
applied in this field due to their strong nonlinear mapping
capabilities [8], [9]. Researchers have improved the accuracy
of PV power prediction by optimizing training algorithms
and structural parameters of ML models. For example,
Boriratrit et al. [10] proposed developments of Extreme
Learning Machine (ELM) to improve the forecasting per-
formance of solar irradiance time series datasets, where
ELM was optimized by a golden eagle optimization and a
logistic map for solving overfitting and outlier sensitivity.
Zhou et al. [11] reported a stochastic configuration net-
work (SCN) for PV power prediction, which guarantees its
universal approximation properties by generating stochastic
parameters in different ranges based on innovative supervi-
sory mechanisms. In another study [12], a day-ahead PV
power prediction based on a Long Short-Term Memory
Recurrent Neural Network (LSTM-RNN) model is proposed.
This model considers the time correlation in data sequences,
providing advantages over traditional MLmodels. Numerous
ML based models have been extensively studied in the litera-
ture, and for a detailed overview of other current ML models,
one can refer to specific references [13], [14], [15], [16].
Overall, ML methods offer improved accuracy in PV power
prediction by effectively capturing the complex relationships
between various factors. These models have been continu-
ously refined and optimized, contributing to advancements
in PV power forecasting.

However, it is important to note that no single ML model
has an absolute advantage or universal adaptability [17].
As a result, ensemble forecast (EF) [18], [19] methods
have become a popular approach as they can mitigate
the risk of single model selection and enhance the relia-
bility of prediction results. Ensemble forecasting involves
training multiple base models and combining their out-
puts in a specific manner to improve prediction accuracy
and stability [20], [21]. Various ensemble methods, such
as Bagging, Boosting, and Stacking, have shown promising
results [22], [23], [24]. Bagging and Boosting algorithms

improve accuracy by aggregating the predictions of diverse
base learners through simply voting or averaging [25],
[26], [27]. On the contrary, Stacking algorithm utilizes
meta-learners to combine the learning patterns of differ-
ent base learners. Research has highlighted the importance
of diversity in constructing effective ensemble forecasting
models [28]. Stacking algorithm leverages the structural het-
erogeneity among different ML learners to generate diversity
in the ensemble model. By harnessing the strengths of various
base learners, better accuracy and generalization capabilities
can be achieved [29].
Several studies have shown that ensemble methods using

the Stacking algorithm outperform single methods in PV
power forecasting performance. For instance, Jnr et al. [30]
proposed a PV power forecast model using the Stack-
ing algorithm, which employed the group method of data
handling (GMDH), least squares support vector machine
(LSSVM), emotional neural network (ENN), and radial basis
function neural network (RBFNN) as base models, and the
backpropagation neural network (BPNN) as the meta-model.
This method outperformed four individual advanced meth-
ods, demonstrating its superiority in PV power forecasting.
Similarly, Khan et al. [31] developed a Stacking method for
day-ahead PV power prediction. This model utilized ANN
and LSTM as the base models and extreme gradient boosting
algorithm as themeta-learner to integrate the predictions from
each base model. The proposed model showed a significant
improvement in the R2 value, ranging from 10% to 12%,
compared to individual models. It also demonstrated the
best combination of consistency and stability across different
case studies, regardless of weather variations. However, tra-
ditional Stacking methods typically use an initial training set
to train multiple base learners. This method have limitations
in enhancing the diversification of base models, since they
haven’t considered the data discrepancies in the sub-training
set, which hinders the further improvement of accuracy and
reliability of PV power forecasting. To address this limitation
and improve PV power forecasting performance, it is neces-
sary to further analyze and explore new Stacking ensemble
learning mechanisms.

In this paper, we propose a novel Stacking ensemble
method that enhances the diversity of base models by adopt-
ing data and structure diversity enhancement techniques. This
method utilizes a subsampling strategy to generate multiple
sub-training sets, thereby enhancing the diversification of the
data. Four sophisticated machine learning models, namely
the generalized regression neural network (GRNN), ELM,
Elman neural network (ElmanNN), and LSTMare considered
as the base learners. By training these multiple learners with
the multiple sub-training datasets, various candidate base
models are generated. The base models with higher perfor-
mance are filtered and integrated using the Stacking strategy
through ameta-model, specifically the back-propagation neu-
ral network (BPNN), to produce the final prediction of PV
power. To evaluate the proposed method, measured data from
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a 15kW PV power station in Ashland, Oregon, USA, is used
for simulation. By comparing the performance of the pro-
posed method with the traditional Stacking method and
individual machine learning models, the improvements in PV
power forecasting accuracy and reliability are assessed.

The remainder of this paper is structured as follows:
Section II provides detailed information on the methods
employed in this study. Section III describes the adopted
datasets and the data processing process. Section IV presents
the results and discusses their implications. Finally, Section V
summarizes the paper and provides concluding remarks.

II. METHODS
In this section, the proposed novel Stacking ensemble method
based on data and structure diversity enhancement, and the
evaluation indicators for day-ahead PV power predictions are
illustrated.

A. THE NOVEL STACKING ENSEMBLE MODEL BASED ON
STRUCTURE AND DATA DIVERSITY ENHANCEMENT
TECHNIQUES
The proposed Stacking ensemble method aims to improve
the prediction accuracy of PV power by adopting structure
and data diversity enhancement techniques. The structure
diversity means the heterogeneous structures of the base
learners, while the data diversity refers to creating multiple
sub-training sets from the initial training set.

Four distinct machine learning models, namely the GRNN,
ELM, ElmanNN, and LSTM, are chosen as the base learners
due to their unique structures and advantages. GRNN has
a simple structure consisting of one hidden layer and one
output layer. The connection weights between the hidden
layer and output layer are fixed and do not require training.
GRNN uses Gaussian radial basis functions to construct the
activation function of the hidden layer, so as to realize the
feature mapping of input data. The only parameter that needs
adjustment in GRNN is the smoothing factor, which mini-
mizes the interference of manual operation on the prediction
results [32]. ELM is single-hidden layer feedforward neural
network. The connection weights as well as the threshold
between the input hidden layers are randomly initialized and
do not require adjustment during the training process. ELM
can achieve an optimum solution by adjusting the number
of hidden layer neurons. This characteristic enables ELM to
train with fast speed and exhibit good generalization perfor-
mance [33]. ElmanNN exhibits a connection pattern similar
to a feedforward network. Besides, it incorporates an inter-
nal feedback structure known as the receiving layer within
the hidden layer. The receiving layer temporarily stores the
output of the hidden layer, which is then delayed and fed
back into the input of the hidden layer. This feedback mech-
anism enables the ElmanNN to capture and utilize historical
state data, allowing for dynamic modeling and capturing the
time-varying characteristics of the prediction process [34].
LSTM is a variant of the RNN. It introduces the cell mem-
ory units and gating mechanisms, including forgetting gates,

input gates, and output gates, in the structure, which enables
LSTM to retain and selectively update information over time,
allowing for improved gradient flow and alleviating the issue
of gradient vanishing in long sequences. LSTM is therefore
particularly effective at handling long-term dependencies in
time series datasets [12].

To combine the predictions of the base learners, a meta-
learner called backpropagation neural network (BPNN) is
utilized [26]. BPNN is a flexible and effective machine learn-
ing model that can integrate the outputs of the base learners
and produce the final prediction of PV power.

The schematic diagram of the proposed Stacking ensemble
model for PV power output is illustrated in Fig. 1. The pro-
posed method consists of several steps, including generation
of initial training datasets and test datasets, generation ofmul-
tiple sub-training datasets, training of the base models using
sub-training datasets, filtering of the optimal base models,
generation of the meta-training dataset and training of the
meta-model, test of the optimal base models, and test of the
meta-model.

(1) Generation of initial training datasets and test datasets:
Partition the original dataset into an initial training dataset
(samples size is m), and an initial test dataset (samples size is
n), denoted as TR and TE, respectively.

(2) Generation of multiple sub-training datasets: To main-
tain the sequential characteristic of the PV power time series
data, random sampling is not suitable for creating the sub-
training datasets, as it would disrupt the data order. Instead,
this study randomly extracts several consecutive PV power
time series data from the initial training dataset to create
the multiple sub-training datasets, each with a sample size
of s. Considering the balance of data diversity and computing
load, here we set the number of the sub-training datasets
as 4. These sub-training datasets are denoted as STR-A,
STR-B, STR-C, STR-D. Their corresponding inputs are
recorded as STRin-A, STRin-B, STRin-C, STRin-D, and the
output labels of the real PV power are recorded as STRl-A,
STRl-B, STRl-C, STRl-D.

(3) Training of the base models using sub-training datasets:
Eeah sub-training dataset is used to train the four machine
learning leaners (GRNN, ELM, ElmanNN, and LSTM). This
results in a total of 16 diverse base models. The optimized
hyper-parameters of each base model are determined through
inner cross-validations on the corresponding sub-training
dataset.

(4) Filtering of the optimal base models: Use the 16 trained
base models to fit the corresponding sub-training dataset
and obtain the training errors. Then, compare the over-
all training errors levels of GRNN, ELM, ElmanNN, and
LSTM on different sub-training datasets, and pick out the
sub-training dataset that yields the overall lowest training
errors of the 4 machine learning learners. Record the filtered
sub-training dataset as STR-X. Then, based on STR-X among
the 4 base models, filter the 2 base models with lower training
errors as the optimal base models (denoted as Model X1,
Model X2).
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FIGURE 1. Diagram of the proposed novel Stacking ensemble forecast model.

(5) Generation of the meta-training dataset and training of
the meta-model: Merge the fitting outputs of Model X1 and
Model X2 (both samples size are s) horizontally to create the
inputs of the meta-training dataset, and record it as STRo-X.
Combine STRo-X with the output labels of real PV power at
the corresponding time (STRl-X), to form the meta-training
dataset (samples size is also s), and record it as TR∗. Train the
meta-model BPNN using TR∗, and use the cross-validation
method to determine the best hyper-parameters of the meta-
model.

(6) Test of the optimal base models: Take the optimal base
models, Model X1 andModel X2, to predict on the initial test
dataset TE, and record the predicted output as TEo (samples
size is m).
(7) Test of the meta-model: Combine TEo and real PV

power at the corresponding time (TEl) as themeta-test dateset
(TE∗). Use the trained meta-model BPNN in step (5) to pre-
dict on the meta-test set TE∗, and record the predicted output
as TEo∗. Compare TEo∗ with the real PV power output data
to calculate the generalization error of the proposed model.

B. EVALUATION INDICATORS FOR PREDICTION
ACCURACY
To quantitatively assess the performance of the proposed
Stacking ensemble forecast model, three evaluation indica-
tors are used.

(1) The Mean Absolute Percentage Error (MAPE) repre-
sents the relative deviation between predicted values and true

values, also known as the average relative error.

MAPE =
1
N

∑N

i=1

∣∣∣∣Pf ,t − Pm,t

Pcap

∣∣∣∣ ×100% (1)

where Pf ,t is the predicted value of PV power output at time t .
Pm,t is the rated output of PV power at time t. N is the number
of samples in the dataset.

(2) The Mean absolute error (MAE) is an indicator to
compare the absolute deviation between the predicted value
and the true value.

MAE =
1
N

∑N

i=1

∣∣Pf ,t − Pm,t
∣∣ (2)

(3) The Root Mean Squared Error (RMSE) is used to
measure the degree of dispersion of the deviation between
the predicted value and the true value.

RMSE =
√
MSE =

√
1
N

∑N

i=1

(
Pf ,t − Pm,t

)2 (3)

III. DATA PROCESSING
In this section, the data source, data classification and feature
selection are introduced.

A. DATA SOURCE OF PV POWER AND METEROLOGICAL
FACTORS
The PV power output data used in this study is from a
15 kW PV power plant located in Ashland, Oregon, USA
(with an altitude of 680m, latitude of 42.19 ◦N, and longitude
of 122.70 ◦W) [35]. The corresponding meteorological data
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TABLE 1. Descriptive statistics of the original dataset.

of global horizontal irradiance (GHI) and air temperature is
collected from [36]. The data used in this study ranges from
January 1, 2018 to December 31, 2019, with a data resolution
of 15minutes. The descriptive statistics of the original dataset
is given in Table 1.

B. WEATHER CLASSIFICATION BASED ON RADIATION
INDEX
Weather classification is an effective preprocessing step to
improve the short-term prediction accuracy of PV power [37].
Various criteria can be used for weather classification, such as
radiation intensity and cloud type. In this study, the radiation
index kd is employed, which represents the ratio of Diffuse
Horizontal Irradiance (DHI) to Global Horizontal Irradiance
(GHI) [38]. The dataset is categorized into three types: Type 1
(sunny), Type 2 (cloudy), and Type 3 (rainy), as presented
in Table 2. The number of data samples for sunny, cloudy,
and rainy days is 22464, 19872, and 27744, respectively,
corresponding to 234, 207, and 289 days. Fig. 2 illustrates
the typical PV power output curves for the three weather
conditions.

TABLE 2. Weather classification of the dataset according to kd .

C. FEATURE SELECTION
To predict the PV power output Ptd at time t on day d one
day in advance, two types of candidate input features are
considered. One is the historical power output, referring to
the PV power output at the same time from the last day to
previous seven days, denoted as Ptd−1, P

t
d−2, . . . , P

t
d−7. The

other type is the meteorological factors, including the total
global horizontal irradianceGtd and the predicted temperature
T td . Using the Pearson correlation coefficient method, the
correlation test between each candidate input feature and the
PV power based on each sub-training dataset is conducted.

The candidate inputs with a correlation coefficient greater
than 0.4 (underlined) under three weather conditions are con-
sidered as the optimal input features, as shown in Table 3.

TABLE 3. The pearson correlation test and the selected optimal input
features.

IV. RESULTS
In this section, the optimized hyper-parameters of the base
models, the selection of the optimal base models, and the
optimized parameters of the meta-model are reported respec-
tively. Finally, the out-of-sample forecasting performance of
the ensemble forecast model is compared with single models
under three weather scenarios to illustrate the effectiveness of
the developed method.

A. THE OPTIMIZED HYPER-PARAMETERS OF THE BASE
MODELS
For each weather type, the original dataset is divided into an
initial training dataset, which consist of the first 2/3 of the
original dataset, and a test dataset, which consists of the last
1/3 of the original dataset. Four sub-training datasets (STR-A,
STR-B, STR-C, STR-D) are extracted from the initial training
dataset. The number of samples in each sub-training dataset
is 1/2 of the initial training dataset, which is 7488, 6624,
and 9248 for sunny, cloudy, and rainy weather, respectively.
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FIGURE 2. Typical PV output curves for the three weather conditions. (a) Sunny, (b) Cloudy,
(c) Rainy.

TABLE 4. The start-end position in the original PV power time series data
of each sub-training dataset under sunny, cloudy and rainy weather.

Since the sub-training datasets are chronological time series
data, we use the form of ‘start position-end position’ in the
original PV power time series data to describe each sub-
training dataset. The specific start and end positions in the PV
power data samples for the sub-training datasets are provided
in Table 4.

According to the chosen optimal input features in Table 2,
the number of the input and output layer neurons for each
base model on the sub training sets STR-A, STR-B, STR-
C, STR-D is {8,1},{8,1},{8,1},{8,1} under sunny weather;
{8,1}, {8,1}, {6,1}, {7,1} under cloudy weather; {3,1},
{3,1}, {2,1}, {2,1} under rainy weather.

Four machine learning learners of GRNN, ELM,
ElmanNN, and LSTM are trained on the four sub-training
datasets, forming a total of 16 base models. Each base
model is trained independently to optimize its model hyper-
parameters. The hyper-parameters include activation func-
tions, training algorithms, learning rate, etc. The available
options and the adjustment range of the hyper-parameters

for each base learner are provided in Table 5. To determine
the optimum parameters, an initial option or value is cho-
sen based on testing, and the best solution is obtained by
iteratively adjusting the parameters within the given search
space through error feedback over a certain number of iter-
ations. The optimum hyper-parameters for the base models
under sunny, cloudy, and rainy conditions are reported in
Table 6.

B. THE SELECTION OF THE OPTIMAL BASE MODELS
Based on the optimized hyper-parameters, the base models
(Model 1-16) are used to fit the corresponding sub-training
dataset, and the resulting error is the training error. This
training error reflects the fitting and generation capability of
the base models on the specific sub-training dataset. Table 7
presents the training errors of Model 1-16 on their respective
sub-training datasets.

For each weather condition, there exist one sub-training
dataset where the four base learners exhibit the best forecast-
ing performance compared to the other sub-training datasets.
Specifically, under sunny, cloudy, and rainy weather condi-
tions, the optimal sub-training datasets are STR-B, STR-B,
and STR-B, respectively. By comparing the training effects
of each base model on the STR-B dataset, the optimal base
models for integration are selected and marked with ‘✓’ in
Table 7. It is important to note that the number of optimal base
models should be greater than 2 since a single column of the
fitting output cannot be used as the input for the meta-model.
For sunny, cloudy, and rainy weather conditions, the filtered
optimal models are GRNN, LSTM; GRNN, ElmanNN; and
ELM, ElmanNN, respectively.
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TABLE 5. The available options and adjustment range of hyper-parameters of the base learners.

C. THE OPTIMIZED HYPER-PARAMETERS OF THE
META-MODEL
Based on the filtered optimal base models, their fitting
outputs are combined with the PV power labels at the
corresponding time to form the meta-training set of the meta-
model BPNN. The number of the input and output layer
neurons of the meta-model is equal to the dimension of input
and output of the meta-training set. According to Table 7, the
number of the input layer neurons for the meta-model BPNN
under sunny, cloudy, and rainy weather conditions is 2, 2,
and 2, respectively, and the number of output layer neurons
for the meta-model under sunny, cloudy, and rainy weather
is 1, 1, and 1.

The meta-model BPNN is trained to determine its best
hyper-parameters. The available options and adjustment
range of the hyper-parameters for the meta-model are pro-
vided in Table 8. The optimized hyper-parameters of the
meta-model under three weather scenarios are shown in
Table 9.

D. COMPARISON OF THE PROPOSED NOVEL STACKING
MODEL WITH SINGLE MODELS AND THE TRADITIONAL
STACKING MODEL
The curve comparison between the predicted and real PV
power output values based on the proposed novel Stacking

ensemble forecast model on part of the test sets is shown in
Fig. 3. It is observed that the predicted values are very close
to the true values.

The results of the forecasting performance in terms of
generalization errors on the test set predicted by the novel
Stacking ensemble model, single models, and the traditional
Stacking ensemble model under three weather types are
shown in Fig. 4. The proposed novel Stacking ensemble
forecast model demonstrates several advantages over single
models and the traditional Stacking model, as illustrated
in the performance comparison. Fig. 4 shows that the pro-
posed Stacking ensemble forecastmodel consistently exhibits
the smallest MAPE, MAE, and RMSE values across all
weather scenarios, which are 2.0%, 0.302 kW, and 0.475 kW
under sunny conditions, 3.6%, 0.542 kW, and 0.830 kWunder
cloudy conditions, 4.1%, 0.613 kW, and 1.012 kW under
rainy conditions, significantly lower than those of the single
GRNN model, ELM model, ElmanNN, and LSTM model.
What’s more, it is observed that the forecasting perfor-
mance in terms of the out-of-sample errors of the traditional
Stacking model slightly improves upon the individual mod-
els in sunny and rainy weather conditions, and it does not
improve in cloudy weather. In contrast, the proposed Stack-
ing ensemble model leverages the differences among the
base models, through the data and structure enhancement
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FIGURE 3. Comparison of the predicted and actual PV power output by the ensemble model based on a part of the
test datasets under different weather types. (a) Sunny, (b) Cloudy, and (c) Rainy.

FIGURE 4. The generalization errors on the test set of the proposed Stacking ensemble forecast model, the traditional Stacking
model and single models under different weather conditions. (a) Sunny, (b) Cloudy, and (c) Rainy.
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TABLE 6. The optimized hyper-parameters of the trained base learners based on the corresponding sub-training dataset under sunny, cloudy, and rainy
weather.
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TABLE 6. (Continued.) The optimized hyper-parameters of the trained base learners based on the corresponding sub-training dataset under sunny,
cloudy, and rainy weather.

TABLE 7. Training error of each base model on the corresponding sub training dataset based on the optimal hyper-parameters under different weather
conditions.

TABLE 8. The available options and adjustment range of hyper-parameters of the meta-model.

techniques, resulting in the strongest generalization capacity
across all weather conditions.

Additionally, the generation performance of each single
model under different weather circumstances is inconsistent,
as observed in Fig. 4. For example, compared with the other
single models, the ElmanNN model performs best under
cloudy weather but is weaker under sunny weather. The
LSTM model has the best performance under sunny weather

but is not the best for other weather conditions. This incon-
sistency highlights the risk of relying on a single model for
forecasting. By enhancing the diversity of base models, the
proposed novel Stacking ensemble model achieves a robust
performance and avoids the problems of forecasting instabil-
ity caused by reliance on a single model.

The superiority of the novel Stacking model can be
attributed to its inner structure and data diversity enhance-
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TABLE 9. The optimized hyper-parameters of the meta-model under sunny, cloudy, and rainy weather.

ment mechanisms. The combination of multiple sub-training
sets and multiple neural network learners allows for the pro-
duction of multiple base models with different parameters
under each weather condition, providing a multiplicity basis
for the establishment of the ensemble model. The critical
step of selecting the models with prime performance for
integration from diverse base models and discarding the
underperforming ones ensures the accuracy improvement of
the ensemble forecast model.

V. CONCLUSION
This study proposes a novel Stacking ensemble method
for day-ahead prediction of the PV power output, which
utilizes the data and structure diversity enhancement tech-
niques to increase the diversity among base models. This
method incorporates multiple machine learning learners with
different structures, namely GRNN, ELM, ElmanNN, and
LSTM to ensure structure diversity. Additionally, it gen-
erates multiple sub-training sets from the initial training
set to achieve data diversity. Using multiple sub-training
sets to train the four heterogeneous learners, diverse can-
didate base models are produced and the best-performing
ones are filtered and then integrated using a meta-model,
i.e. BPNN to obtain the final prediction of the PV power
output.

Real measured data from a 15kW PV power station in
Ashland, Oregon is used to evaluate the proposed model.
Results demonstrate that the proposed novel Stacking ensem-
ble model consistently outperforms the single models as well
as the traditional Stacking model in terms of MAE, MAPE,
and RMSE, regardless of weather variations. This confirms
the effectiveness of the proposed method in improving the
generalization performance of the PV power prediction.

Overall, the proposed method leverages the strengths of
the Stacking ensemble approach while introducing a novel
approach to training the base learners. This enhances the
diversity of the base models and ultimately improves the
accuracy of PV power prediction. The proposed method
enriches the theories of PV power ensemble forecast. Addi-
tionally, this method can be applied to other renewable energy
forecasting tasks to evaluate its generalizability and effec-
tiveness in different contexts. By applying this model in
practice, it will contribute to promoting the stable operation
and economic dispatch of power systemswith high renewable
energy integration.
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