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ABSTRACT In the construction industry, it is common occurrence for head injuries caused by workers
not wearing a helmet. However, the current models for detecting safety helmet either have insufficient
detection accuracy or insufficient generalization ability. For this reason, an improved convolutional neural
network model, called YOLOv7-WFD, is proposed for the detection of workers without helmets in this
paper. Firstly, a new module called DBS in this paper is proposed to strengthen the ability of model to
extract target features. This module consists of a Deformable Convolutional, a Batch Normalization layer
and a SiLU activation function. Secondly, the Content-Aware ReAssembly of Features (CARAFE) module
is introduced to perceive effective features, which improves the model’s ability to reconstruct details and
structural information during image up-sampling. Thirdly, Wise-IoU, which is a loss function with dynamic
focusing mechanism, is adopted as the loss function to calculate localization loss, which enhances the
generalization capability of model and accuracy of detection. Wise-IoU also can evaluate the ‘‘outlier’’ of
the anchor box quality, and attenuate the negative impact of low-quality samples in the dataset and enhance
the generalization ability of the model. Finally, the experiment shows that the improved YOLOv7-WFD
achieves a mAP of 92.6% and a FPS of 79.3 when tested on SHEL5K dataset.

INDEX TERMS Safety helmet detection, YOLOv7, deformable convolution, CARAFE, Wise-IoU.

I. INTRODUCTION
In recent years, object detection has become a popular
research topic in computer vision field, especially in appli-
cation scenarios such as images [1], [2], [3] and videos [4].
Due to its ability to simultaneously classify and localize
multiple object categories [5], this technology is significant
in addressing engineering safety issues [6], [7].
Within the engineering field, the construction industry is

thought of a high-risk industry because of a high fatality rate
among workers, according to statistics, the average death rate
from head injuries is more than 20%. In order to mitigate
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death rate, workers are universally mandated to wear safety
protective equipment, such as safety helmets. However, due
to inadequate on-site supervision and low safety awareness
among workers, many workers don’t wear helmets on the
construction site. Hence, an effective monitoring method is
urgently needed to monitor whether workers are wearing
safety helmet [8].

In the past, it mainly relied on manual management to
supervise the wearing of safety helmets on construction sites.
However, due to the large flow of people and the wide
scope of construction sites, the efficiency of supervision has
been low [9]. With the advancement of technology, video
surveillance has gradually become the main means of hel-
met detection [10]. However, traditional video surveillance
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relies on human judgment for final decision-making, not fully
automated. Hence, an effective automatic monitoring system
is urgently needed to monitor whether workers are wearing
safety helmet [8]. At present, most of algorithms have been
proposed to realize the automation of object detection [14].

Traditional object detection algorithms adopt region selec-
tion strategies based on sliding windows [11]. However, the
scale and aspect ratio of the sliding window is difficult to set,
and the sliding window takes much time to traverse the entire
image. In addition, these traditional algorithms are not robust
enough for extracting features of multiple targets [15].
Currently, with the development of computer hardware,

especially GPU and CPU, the advantages of models based
on deep learning method are gradually becoming promi-
nent [12]. Because, firstly, models based on traditional
machine learning method require manual design of feature
extraction methods, while models based on deep learning
method can automatically extract effective features, reduc-
ing human effort. Secondly, models based on deep learning
method can learn the correlation between features, which
enhances models’ generalization capability. Thirdly, models
based on deep learning method have faster training speed and
higher detection accuracy [13]. The flowchart of the models
based on deep learning method is shown in Fig. 1.

FIGURE 1. Flowchart of the models based on deep learning method.

Among numerous models based on deep learning method,
the YOLO has significant advantages. Firstly, YOLO has fast
detection speed, currently reaching up to 270 FPS. Secondly,
YOLO can simultaneously detect the entire image and avoid
false positives caused by background errors. Thirdly, YOLO
can learn highly generalized features, making it suitable
for transfer learning. Therefore, YOLO is widely used in
object detection, especially for helmet detection. For exam-
ple, M. Dasgupta et al. propose a two-stage motorcycle hel-
met detection model which combines YOLOv3 with CNN.
YOLOv3 is used to identify multiple riders on motorcycle
and CNN is proposed for motorcycle rider’s helmet detection.
Thismodel is superior to other CNN-basedmodels in terms of
performance [29]. However, this two-stage architecture intro-
duces additional complexity into the model pipeline, poten-
tially increasing the computational overhead and deployment
challenges. L. Huang et al. design a modified YOLOv3
model for helmet detection. First, the model extracts feature
from the predicted anchor boxes. Then, extracted features

are multiplied the corresponding weight coefficients, and
outputs the confidence of each region. Finally, an empirical
threshold is used to determine whether the workers comply
with the helmet-wearing standard [16]. But introducing a step
where features are extracted from predicted anchor boxes
and multiplied by weight coefficients can increase the overall
complexity of the model. This might impact both train-
ing and inference times. L. Shin et al. propose a two-stage
algorithm for motorcycle helmet detection. It mainly con-
tributes to adopt two algorithms to classify whether helmets
are worn, one is based on handcrafted features, and another is
based on convolutional neural networks (CNN) [17]. Hand-
crafted features can provide more interpretability, allowing
designers to understand which specific features contribute
to the classification decision. F. Wu et al. design a YOLO-
Densebackbone model, which employs DenseNet with fewer
parameters and stronger performance to replace the origi-
nal backbone for feature extraction. Finally, the detection
accuracy has been significantly improved [18]. DenseNet,
known for its strong feature extraction capabilities, suggests
that the model might benefit from improved accuracy due to
better feature extraction. S. Tan et al. propose an improved
YOLOv5 model by introducing DloU-NMS instead of NMS,
making the model more accurate in suppressing predicted
bounding boxes [19]. DloU-NMS is designed to improve
upon traditional NMS by considering local uniformity and
optimizing the non-maximum suppression process. This
method could lead to more accurate bounding box suppres-
sion and improved object detection. W. Jia et al. design an
improved YOLOv5 model for discovering whether motor-
cycle riders are wearing helmets. The improvements involve
incorporating triplet attention and employing soft-NMS [30].
Triplet attention can enhance feature learning by considering
relationships between anchor boxes, leading to more discrim-
inative features for helmet detection.

FIGURE 2. The structure of the safety helmet detector. The input image is
passed through the safety helmet detector, which outputs the position
information and confidence scores of the detected objects.

For safety helmets detection, there exist the following
problem to be solved. Due to safety helmets have various
shapes and sizes, and they are often partially occluded, mak-
ing only a portion of them visible, false detection and missed
detection are inevitable. To solve this problem, a safety
helmet detection model YOLOv7-WFD is proposed, which
leverages the benefits of deformable convolutional layers,
CARAFE up-sampling operator and Wise-IoU loss function
to enhance the learning ability and generalization ability of
the model, and the structure of the safety helmet detector is
shown in Fig. 2.
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FIGURE 3. The structure of YOLOv7.

The contributions of this paper are summarized as follows:
1) For feature extraction, a newmodule called DBS is pro-

posed, which consists of a Deformable Convolutional
layer (DCN), a Batch Normalization layer and a SiLU
activation function.

2) For feature fusion, the CARAFE upsampling operator
is introduced to provide a larger field of view for the
model.

3) In order tomitigate the adverse influence of low-quality
samples and improve the robustness of model, Wise-
IoU is introduced to calculate the localization loss.

4) YOLOv7-WFD is compared with different variants
of YOLOv7 for helmet detection on the open-source
dataset SHEL5K, demonstrating the advantages of
YOLOv7-WFD.

The subsequent section of this paper is organized
as follows. The structure and details of the improved
YOLOv7-WFD are given in section II. Section III gives
the experimental results and analysis. The conclusion and
prospect are given in Section IV.

II. METHOLOGY
A. YOLOv7 AND YOLOv7-WFD
YOLOv7 is an improved model based on YOLOv5 proposed
by the Alexey Bochkovskiy team. It is a one-stage network

model known for its excellent detection accuracy and speed.
YOLOv7 demonstrates outstanding performance in common
object detection tasks such as the COCO dataset, making it an
ideal choice as the object detection model [20]. Fig. 3 shows
the frame diagram of the YOLOv7.

YOLOv7 consists of two parts: the Backbone and theHead.
The workflow of YOLOv7 is descripted in the following.
Firstly, the image undergoes preprocessing steps such as
enhancement and resizing. Subsequently, the image is fed into
the Backbone for feature extraction, resulting in downscaled
feature maps. Then, each of these feature maps is performed
upsampling operation in the Head, generating three feature
maps of different sizes, and fusing them to form a new feature
map. Finally, the fused feature map is passed to the Detection
module, which processes the feature information and outputs
the final detection results.

The Backbone and Head of YOLOv7 mainly consist of
CBS modules, ELANmodules, MP modules, RepConv mod-
ules and SPPCSPC modules. The modules in the Backbone
are used to extract features, and the modules in the Head
are used to fuse the extracted features. The CBS mod-
ule includes a Convolutional layer, a Batch Normalization
layer and a SiLU activation function. The ELAN module,
which controls the gradient path to promote efficient learning
and convergence, and enhances the learning ability of the
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FIGURE 4. The structure of YOLOv7-WFD.

network by combining expansion, shuffling, and merging
radix methods without destroying the original gradient path,
is composed of multiple CBS modules. The MP module
combines max-pooling layers and CBS modules. RepConv
module includes a Convolutional layer, a Batch Normaliza-
tion layer and a CBS module. SPPCSPC module includes
multiple CBS modules and three max-pooling layers with
different scales [21].
YOLOv7-WFD is an improved model based on YOLOv7.

In the final ELAN module of the Backbone, some CBS
modules are replaced with DBS modules, which introduces
deformable convolutional layers. In the Head, the CARAFE
upsampling operator is applied, and the Wise-IoU loss func-
tion is used to compute the localization loss. The frame
diagram of the YOLOv7-WFD is shown in Fig. 4.

B. DBS FOR FEATURE EXTRACTION
DBS is an improved module based on CBS, and consists
of a Deformable Convolutional (DCN), a Batch Normaliza-
tion layer and a SiLU activation function. This module has
advantages as follows: 1) The combination of deformable
convolution, batch normalization layer, and SiLU can lead to
faster convergence during training and improved generaliza-
tion performance. The gentle non-linearity of SiLU can avoid
some of the vanishing gradient issues. 2) By incorporating the
DBSmodule into the architecture of YOLOv7, the model can

potentially achieve better object detection results, especially
when dealing with complex scenes or instances that exhibit
significant variations in appearance. 3) The adaptive nature
of DCN and the regularization effect of batch normaliza-
tion layer can contribute to reduced overfitting, allowing
the model to generalize better to unseen data. 4) The DBS
module’s components can be integrated into various neural
network architectures, providing flexibility to experiment and
improve model performance.

Due to the presence of rotation and deformation in safety
helmets and faces during the detection process, traditional
convolutional layers with fixed receptive fields may not
effectively capture these details of spatial transformations.
Thus, the deformable convolutional layers are introduced to
enhancing the model’s capability of feature extraction [33].

DCN operator can achieve higher detection accuracy at
the expense of a slight decrease in detection speed. Com-
pared to traditional convolutions, DCN has advantages as
follows: 1) DCN introduces an offset at the sampling posi-
tions, which makes the structure of the convolutional kernel
non-fixed, instead, it is dynamically adjusted based on the
features of the objects in the images. This flexible mapping
between kernel and features allows for a broader cover-
age of appearance features in the detected targets, thereby
more valuable information can be captured. 2) DCN utl-
izes the depthwise separable convolution technique to detach
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the convolution weights into depth-wise part and point-
wise part. The depth part is responsible for the original
location-aware modulation scalar. The point direction part is
responsible for the shared projection weight between sam-
pling points. Compared to conventional convolutions, DCN
has fewer parameters and lower computational cost, result-
ing in faster computation speed for the model. 3) DCN
introduces multi-group mechanism, each group performing
different offset sampling, sample vector projection, and factor
modulation. This method enhances the expressive ability of
the DCN operator. 4) DCN utilizes the softmax function to
normalize the modulation scalar, which enhances the stabil-
ity of the model. 5) DCN adopts sparse sampling method,
which can enhance the feature extraction capability of model
when detecting humans and objects. Thus, DCN has greater
adaptability, and addresses the problem of traditional convo-
lutions’ inability to acquire long-range dependencies, making
the model more suitable for diverse object detection [20].
Given an input x ∈ RC×H×W and current pixel p0. DCN

can be formulated as follows:

y(p0) =

G∑
g=1

K∑
k=1

wgmgkxg(p0 + pkU1 +1pgk ) (1)

where, G represents the total number of groups. K represents
the total number of sampling points, and k enumerates the
sampling point. wg denotes the projection weights of the g-th
group’s sampling point.mgk represents the location-irrelevant
projection weights of the g-th group and the k-th grid sam-
pling location, which is normalized by sigmoid function.
xg ∈ RC ′

×H×W represents the sliced input feature map.
pk represents that the k-th location of the pre-defined grid
sampling is regular convolutions, and pgk represents the offset
corresponding to the g-th group and the k-th grid sampling
location. wg ∈ RC×C ′

and C ′
= C/G.

The structures of traditional convolution kernel and
deformable convolution kernels in 3 × 3 standard as shown
in Fig. 5, (a) represents traditional convolution, whereas (b),
(c), and (d) represent different states of dynamic sparse ker-
nels in deformable convolution under different offset values.

Batch normalization is a technique that normalizes the
output of a layer within a mini-batch of data. It helps in
mitigating the internal covariate shift, which can lead to
more stable and faster training. In the DBS module, batch
normalization is applied after the deformable convolution to
ensure that the input distribution remains stable during the
training process.

SiLU (Sigmoid Linear Unit), is an activation function that
smoothly combines the properties of the sigmoid and linear
functions. It is defined as SiLU(x) = x ∗ sigmoid(x), and
its smoothness allows for better gradient flow during training
compared to traditional activation functions like ReLU. SiLU
has been observed to improve convergence and generalization
in deep neural networks.

The processing of DBS is described as follows: Firstly,
the input image is convolved by DCN. DCN applies con-

volutional operations with learnable offsets, allowing the
network to adjust the sampling grid dynamically to cap-
ture deformable patterns within the image. The learnable
offsets help in adaptively aligning the convolutional sam-
pling points with relevant features, enabling the network to
capture intricate and deformable patterns effectively. Sec-
ondly, the features output from DCN are normalized by
Batch Normalization. Batch Normalization normalizes the
activations through subtracting the batch mean and divid-
ing by the batch standard deviation, improving the stability
and efficiency of the network during training. Learnable
scale and shift parameters in Batch Normalization allow
the network to adapt and fine-tune the normalized acti-
vations. Finally, the normalized features are input to the
SiLU. Sigmoid function is applied to scale the input by:
SiLU(x) = x ∗ sigmoid(x), which introduces non-linearity
to the features. SiLU has a smooth gradient, promoting
smoother gradient flow during backpropagation, which help
in efficient training of the network. After the processing of
DCN, Batch Normalization, and SiLU activation, the output
features represent the transformed and enhanced features
of the input image within the DBS module. These features
can then be further used for subsequent layers in the neural
network.

In summary, the DBS module, comprising DCN, Batch
Normalization layer, and SiLU activation, aims to enhance
the YOLO model’s capability to handle object detection
tasks by adapting to object variations and improving training
dynamics.

FIGURE 5. Traditional convolution and different representations of
deformable convolution.

113584 VOLUME 11, 2023



J. Chen et al.: YOLOv7-WFD: A Novel CNN Model for Helmet Detection in High-Risk Workplaces

FIGURE 6. The overall framework of CARAFE (σ = 2, kup is the reassembly kernel size, N(Xl , k) is the k × k sub-region of X centered at the location l, i.e.,
the neighbor of Xl ).

C. CARAFE FOR FEATURE FUSION
Feature upsampling is a key operator in object detection
tasks. In YOLOv7-WFD, CARAFE operator is used for
feature upsampling. The integration of the CARAFE mod-
ule into the YOLOv7 model amplifies its proficiency in
object detection tasks through a refined upscaling process.
First of all, the CARAFE module takes a downsampled fea-
ture map as input, which encapsulates high-level semantic
information extracted from the image. Secondly, CARAFE
employs the subpixel convolution operation for expanding the
spatial dimensions of the input feature map to the desired
resolution. However, rather than executing a conventional
convolution, CARAFE undertakes a content-aware reassem-
bly approach. During this phase, the module judiciously
reassembles feature values within each pixel’s receptive field
by employing learned weights for a weighted combination
of neighboring feature values. This adaptive amalgamation
harnesses contextual cues from proximate pixels, yield-
ing an output that aligns with the image’s content and
structure. At last, the reassembled feature values undergo
aggregation to their corresponding positions in the higher-
resolution output, assuring the retention of fine-grained
details and semantic fidelity during the upscaling process.
The CARAFE upsampling operator has several character-
istics as follows: 1) CARAFE has large receptive field.
Conventional methods typically use nearest-neighbor inter-
polation and bilinear interpolation, which limit the receptive
field of the model to 1 × 1 or 2 × 2. However, CARAFE
considers the entire feature map during the upsampling
process, which expands the receptive field of the model,

thus better preserving image details and edge information
while reducing the occurrence of jagged edges and blurring
effects during upsampling. 2) CARAFE supports instance-
specific content-aware processing by dynamically generating
adaptive kernels that are suitable for different target. But
nearest-neighbor interpolation and bilinear interpolation rely
on fixed rules for upsampling and cannot adjust the size of
kernel according to the content. 3) CARAFE introduces little
computational overhead and has good adaptability to existing
network models [22]. CARAFE can be seamlessly inte-
grated into any position of deep neural networks. Compared
to nearest-neighbor interpolation or bilinear interpolation,
CARAFE is easier to be combined with other network
layers such as convolutional layers or pooling layers. The
overall framework of the CARAFE module is shown in
Fig. 6.
During the calculation of CARAFE, if a feature map X

with dimension C × H × W and upsampling factor σ is
provided, CARAFE will generate a new feature map X ′ of
size C × σH × σW [26]. For any position l = (i, j) in the
input X , there is a corresponding position l ′ = (i′, j′) in the
output X ′, Here, i = [i′/σ ] and j = [j′/σ ]. Specifically, the
CARAFE upsampling operator can be further subdivided into
two modules: kernel prediction module and content-aware
reassembly module [22].

1) KERNEL PREDICTION MODULE
CARAFE generates adaptive reassembly kernels through pre-
diction based on the content of the target location. The role
of reassembly kernels is to recombine and adjust the features
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to obtain more accurate and richer upsampling results. This
prediction process ensures the effective capture of features
by the CARAFE operator, and the size of reassembly kernels
is kup × kup.

Equation (2) is the recombination kernel generation
expression. The kernel prediction module ψ generates a
recombination kernel based on the perception of the content
and the neighborhood, and predicts a location-based ker-
nel wl′ for each location l ′.

wl′ = ψ(N (xl, kencoder )) (2)

where, xl is the coordinate of a certain pixel on X , kencoder =

kup − 2 is size of convolution kernel.
The kernel prediction module can be subdivided into three

sub-modules: channel compressor, content encoder, and ker-
nel normalizer. These sub-modules are explained in detail as
follows:

a: CHANNEL COMPRESSOR
By employing a 1 × 1 convolutional layer to compress
the input feature channels from C to Cm, the number
of parameters and computational cost of the model are
reduced, resulting in improved computation speed. Addition-
ally, this allows for a larger kernel size in the subsequent
contentencoder.

b: CONTENT ENCODER
A convolution layer of kernel size kencoder is applied to gener-
ate reassembly kernels base on the content of input features.
The parameter of the encoder is kencoder × kencoder × Cup,
Cup = σ 2k2up.

c: KERNEL NORMALIZER
The softmax function is applied to each reassembly kernel for
normalization, ensuring the weights and adaptiveness of the
kernels.

2) CONTENT-AWARE REASSEMBLY MODULE
In the content-aware reassembly module, a weighted sum
operator φ is applied to perform feature reassembly on
N (xl, kup) centered at l = (i, j), the reassembly is shown in
equation (3), where r = [kup/2].

X ′

l′ = φ
(
N

(
Xl, kup

)
,Wl′

)
=

∑r

n=−r

∑r

m=−r
Wl′(n,m) · X(i+n,j+m) (3)

CARAFE adopts a fixed set of hyper-parameters in exper-
iments, where Cm is 64 for the channel compressor and
kencoder = 3, kup = 5 for the content encoder.

D. WISE-IoU
When training the network model, different loss functions
will have varying impacts on the training results of the
model [25]. The loss function of YOLOv7, as shown in

Equation (4), consists of three components: the confidence
loss Lconf , the classification loss Lcls, and the localization
loss Lloc [24]. Both Lconf and Lcls are calculated by BCE
with logits loss function, and Lloc is calculated by CIoU.
Equation (5) is the BCE with logits loss function calcu-
lation formula, and Equation (6) is the CIoU calculation
formula.

Loss = Lconf + Lcls + Lloc (4)

LossBCE = −
1
N

∑N

i=1
[yilog(pi) + (1 − yi)log(1 − pi)]

(5)

LossCIoU = 1 − Iiou +

p2(b,bgt )
d2

+ αv (6)

In Equation (5), yi represents the the binary label of the
sample, pi represents the probability of the sample, and d is
the diagonal distance of the smallest enclosed region that
contains both the predicted bounding box and the ground
truth bounding box. In Equation (6), b represents the centroid
of the predicted bounding box, bgt represents the centroid of
the ground truth bounding box, p represents the euclidean
metric between b and bgt . The following formulas are defined
to calculating α, v, Iiou, and the meaning of parameters are
represented in Fig. 7.

FIGURE 7. Schematic diagram of Calculation parameters.

α =
v

(1 − IoU ) + v
(7)

v =
4
π2 (arctan

Wgt

Hgt
− arctan

W
H

)2 (8)

Iiou = 1− |
A ∩ B
A ∪ B

| (9)

where A represents the area of the ground truth bounding box,
B represents the area of the predicted bounding box. In Fig. 7,
the green region represents the ground truth bounding box,
and the yellow region represents the predicted bounding box.
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Hgt and Wgt are the height and width of the ground truth
bounding box. H and W are the height and width of the
predicted bounding box. Hg andWg are the height and width
of the smallest rectangle that simultaneously encloses both
the predicted and ground truth bounding boxes. (xgt , ygt ) and
(x, y) are the centroids of the ground truth bounding box
and the predicted bounding box, respectively. Hi and Wi are
the height and width of the overlop between ground truth
bounding box and predicted bounding box.

FIGURE 8. The performance of model with or without Wise-IoU.

Although CIoU possesses well stability, it is not suitable
for safety helmet detection task that requires well generaliza-
tion capability. For safety helmet detection tasks, the datamay
exhibit class imbalance or sample imbalance. In such cases,
the CIoU loss function may not effectively address these
problems. In addition, the overlap between predicted boxes
and ground truth boxes varies for different training samples,
and low-quality samples will generate harmful gradients.
In order to enhance the generalization capability of model
and mitigate the negative impact of low-quality samples on
the training results, the model adopts Wise-IoU. As shown
in Fig. 8, there are two workers in different lighting and
the face of one worker is blocked. In addition to different
detection accuracies, the model without Wise-IoU failed to
detect the occluded face. Wise-IoU combines a dynamic
non-monotonic focusing mechanism that utilizes ‘‘outlier’’ to
evaluate the quality of anchor boxes. A bigger outlier degree
indicates lower quality for an anchor box, and this anchor box
will be assigned a smaller gradient gain to focus the bounding
box regression on anchor boxes of higher quality. The formula
of Wise-IoU is as follows:

LossWise−IoU = r · exp(
ρ2(b,bgt )

(d2)∗
) · (1 − IoU ) (10)

r =
β

δαβ−δ
, β =

(1 − IoU )∗

¯1 − IoU
∈ [0,+∞) (11)

where ∗ indicates that Wg and Hg are separated from the
computed graph to avoid creating gradients that affect conver-
gence, r represents the gradient gain. β represents the degree
of the outliers, α and δ are hyperparameters, with α set to
1.9 and δ set to 3 [32]. Since IoU is dynamic, the quality
demarcation standard of anchor boxes is also dynamic, which
allowsWise-IoU tomake the gradient gain allocation strategy
that is most in line with the current situation at every moment.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET AND EXPERIMENTAL ENVIRONMENT
The dataset used in this experiment is SHEL5K, a publicly
available dataset from the Kaggle website [27], [28]. This
dataset is an enhanced version of the SHD dataset [27] and
consists of 5000 images with a resolution of 416×416 pixels
and 75570 complex background labels.

This dataset is specifically designed for safety helmet
detection and includes images from various environments,
angles, lighting conditions, and scenarios. For example,
it encompasses both indoor and outdoor scenes, scenar-
ios with dense and sparse crowds, partially or completely
occluded safety helmets, and helmets under diverse lighting
conditions. However, the dataset exhibits imbalance in terms
of sample quantities of different classes, which could poten-
tially influence training and evaluation of model. The dataset
includes six categories: helmet, head, head_with_helmet,
person_with_helmet, people_no_helmet, and face. Fig. 9
illustrates the distribution of each class in the dataset in
terms of percentages. Fig. 10 shows some samples in the
dataset [26].

FIGURE 9. Scale of different categories in SHEL5K.

In this experiment, the dataset is divided into three
parts: training (4000 samples), validation (500 sam-
ples), and testing (500samples). All the experiments
are conducted in Windows 10 system environment,
in which the Pycharm software used in this experiment
is equipped with the following environment: pytorch1.7,
python3.7, CUDA11.1; hardware environment and related
model parameters are shown in Table 1 and Table 2,
respectively.

TABLE 1. Experimental environment configuration.
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FIGURE 10. Image samples in SHEL5K.

TABLE 2. Experimental model parameters.

B. EVALUATION METRICS
Precision (P), Recall (R), Average Precision (AP) and mean
Average Precision (mAP) are used to measure the detection
tasks.

Precision and Recall provide measures of accuracy and
coverage in object detection. Precision refers to the pro-
portion of samples predicted as positive by the model that
are actually positive. Recall refers to the proportion of true
positive samples correctly detected by the model [31]. The
Precision and Recall are calculated as follows:

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

where T/F represents true/false of prediction results.
P/N stands for positive/negative of prediction results.

AP is a metric commonly used in object detection tasks,
which combines precision and recall to evaluate the model’s
performance at different thresholds. mAP, on the other hand,
represents the average AP across all classes and is used to
comprehensively assess the model’s performance on multiple
categories. Steps for calculating AP and mAP are as follows:
Step1: For each class, calculate the Precision-Recall curve
based on the model’s predictions and the ground truth labels.
Step2: Compute the area under the curve, which represents
the Average Precision (AP).
Step3: Average the AP values across all classes to obtain
the mAP.
AP and mAP are calculated as follows:

AP =

∫ 1

0
P(R)dR (14)

mAP =
1
n

∑
AP (15)

where n represents the number of classes.

C. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the effectiveness of the proposed YOLOv7-
WFD is demonstrated through experiments. The Precision-
Recall curve of YOLOv7-WFD is shown in Fig. 11. The
fluctuation of the P-R curve indicates the training perfor-
mance of the model. Fig. 11 demonstrates that the model
exhibits excellent training performance.

FIGURE 11. Precision-Recall curve of YOLOv7-WFD.

Since the performance of YOLOv7 has been demonstrated
to be superior to other models in the YOLO family as well as
classical models such as Faster R-CNN in the paper [31], this
paper do not repeat the comparative experiments in this study.
YOLOv7-WFD was compared with YOLOv7, YOLOv7-X,
YOLOv7-W6, YOLOv7-E6, YOLOv7-D6, YOLOv7-E6E
on the dataset SHEL5K. The mAP of each model is respec-
tively shown in Table 3, in which C1-C6 represent different
categories, where C1 represents ‘‘helmet’’, C2 represents
‘‘head_with_helmet’’, C3 represents ‘‘person_with_helmet’’,
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TABLE 3. mAP and FPS of each model on each category.

FIGURE 12. mAP of each model on each category.

TABLE 4. Pression, recall and F1 score of each model.

TABLE 5. mAP of YOLOv7-WFD at different learning rates.

C4 represents ‘‘head’’, C5 represents ‘‘person_no_helmet’’,
and C6 represents ‘‘face’’. FPS represents the number of
images the model can process per second. The visual results
of the data from Table 3 are shown in Fig. 12. The Pression,
Recall and F1 score of each model is shown in Table 4.
Combining Table 3 and Fig. 12, it can be found that the

mAP of the model proposed in this paper has been improved

to varying degrees in each category. Especially, the mAP of
the C6 (face) has been improved significantly. By introduc-
ing CARAFE and deformable convolution, YOLOv7-WFD
gains a stronger ability to capture complex details. Further-
more, it can be observed that the FPS of YOLOv7-WFD has
decreased. There are several reasons for this: Deformable
convolution and CARAFE introduce additional operations
and parameters, leading to increased computational overhead,
which can result in longer processing times per frame; the
hardware acceleration is not fully utilized, which also leads
to the reduction of FPS. The introduction of the DBS module
is likely to increase the computational cost. Depending on the
specific operations within the DBS module, such as convo-
lutions and activations, the module’s computational demand
may vary. The added computations could affect both training
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TABLE 6. The result of ablation study.

FIGURE 13. Target detection results obtained using different methods.

and inference times. The CARAFE module’s purpose is to
improve the model’s feature perception during image up-
sampling. While it enhances detail reconstruction, it can
also increase computational requirements due to additional
convolutional operations and calculations associated with the
CARAFE mechanism.

In addition, the adoption of the Wise-IoU loss function
introduces a change in the loss calculation process during
training. Depending on its complexity compared to traditional
loss functions, it might have a minor impact on training time
due to the additional calculations required during each train-
ing iteration. Also, the inference process involves forwarding
an image through the model to make predictions. The intro-
duced DBS and CARAFE modules could increase inference
time due to the added computation in feature extraction and
up-sampling stages.

To validate the effectiveness of YOLOv7-WDF, ablation
experiments is conducted. The mAP of YOLOv7-WFD at
different learning rates are shown in Table 5, and the results
of the ablation experiments are shown in Table 6.
In Table 6, 0.5 and 0.5:0.05:0.95 represent IoU thresholds.

GFLOPs refers to the number of billions of floating-point
operations per second, which measures the complexity of
the model. Params represents the number of parameters in

the model. It can be observed that the introduction of DCN
in the model resulted in a decrease in GFLOPs and Params.
There are several reasons for this: the deformable convo-
lution requires additional calculation for learning offsets
and weights, leading to a decrease in GFLOPs. Addition-
ally, Deformable convolutions may have replaced some
parameters of the original convolutional layers, such as
substituting certain position-sensitive convolutions or spe-
cific convolutional operations, leading to a decrease in
Params. From Table 4, it can be found that the proposed
model achieves improved accuracy compared to the original
YOLOv7, while still meeting the real-time detection require-
ments. Therefore, the ablation results prove the effectiveness
of the improved model in this study.

Fig. 13 shows an example of target detection results
obtained using different methods. From Fig. 13, it can be
observed that the model proposed in this paper has better
capability of detection for each category and better capability
of localization.

IV. CONCLUSION AND PROSPECT
In this paper, an improved model YOLOv7-WFD, based on
YOLOv7, is proposed to enhancemodel’s capability of object
detection. The improvements include:
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1) A new module called DBS in this paper is pro-
posed. In the DBS, traditional convolutional layer is
replaced with deformable convolutional layer. This
approach strengthens the ability of model to extract
target features.

2) The introduction of the CARAFE upsampling opera-
tor enables the model to better reconstruct details and
structural information during the image upsampling
process.

3) By adopting Wise-IoU instead of CIoU, the adverse
influence of low-quality samples in the dataset on the
model is mitigated, and the generalization capability is
improved.

In addition, the experimental results show the rationality
and effectiveness of YOLOv7-WFD.

In the following directions, wewill make efforts to improve
the model to better meet the requirements of the safety helmet
detection project:

1) Construct a more suitable dedicated dataset that better
reflects real-world scenarios and features.

2) Make appropriate parameter adjustments to improve
detection speed while ensuring accuracy.

3) Design a complete system to apply YOLOv7-WFD to
actual construction sites environments.
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