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ABSTRACT Due to the diversity of aircraft target scale and interference of background strong scattering
in synthetic aperture radar (SAR) images, it is a challenge for target detection tasks. In response to these
problems, this paper proposes a new SAR image aircraft target detection model named EST-YOLOv5s.
The proposed model integrates the Efficient Channel Attention (ECA) mechanism into the C3 module of
the backbone network, which enhances the scattering features of aircraft targets and suppresses irrelevant
background information without increasing the number of parameters. Secondly, replace the bottleneck
module in the last C3 module in the backbone network with the Swin Transformer Block. By using the
shifted window partitioning approach to obtain the global perception ability, the problem of missed detection
of small objects is improved. Finally, the Task-Specific Context Decoupling (TSCODE) head is used to
balance the relationship between classification and regression so that different contextual details can be
better utilized. In this paper, the SAR Aircraft Detection Dataset (SADD) is used as the experimental data
set to compare with the baseline model YOLOv5s. The experimental outcomes indicate that the recall of
the EST-YOLOv5s model reached 94.2%, the precision reached 97.3%, and the mAP@50 reached 97.8%,
which were 2.3%, 1.7%, and 1.7% higher than YOLOv5s respectively. Furthermore, our model also meets
the real-time requirements in terms of speed and exhibits strong anti-interference ability.

INDEX TERMS Aircraft target detection, anti-interference, SAR, EST-YOLOv5s, ECA, swin transformer,
TSCODE head.

I. INTRODUCTION
Synthetic Aperture Radar (SAR) is an important means of
obtaining ground object information using radar technology.
Fig. 1 illustrates the process of creating a SAR image. The
radar equipment transmits a sequence of pulse signals ini-
tially. These signals move at a high speed and are bounced
back by the ground. Finally, the returned echo signals are
analyzed to produce a radar image. Compared with optical
remote sensing technology, SAR has unique advantages, such
as getting high-quality images at night or under cloud cover
regardless of the type of ground objects, and has high pene-
tration capabilities. So, it is widely used in military security,
environmental monitoring, resource exploration, and other
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fields [1], [2]. Target detection is a hot research topic in
high-resolution synthetic aperture radar, receiving attention
from numerous scholars. However, aircraft targets differ from
ship and vehicle targets as they are high-value and time-
sensitive [3]. The rapid and accurate detection of aircraft
targets plays a crucial role in acquiring real-time military
intelligence, such as assessing enemy combat effectiveness.
It holds significance in operational decision-making [4] and
civil aviation schedules [5].
In the past, SAR aircraft target detection algorithmsmainly

relied on extracting features from images. Based on the num-
ber of extracted feature selections, these algorithms can be
classified into three types: algorithms with a single feature,
algorithms with multiple features, and algorithms focused on
expert systems [6]. Among them, the most common detection
algorithm based on a single feature is the constant false alarm
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FIGURE 1. SAR imaging process.

rate algorithm (CFAR) [7] based on clutter statistics and
threshold extraction. On this basis, researchers have delved
into in-depth investigations concerning statistical features
and non-uniform backgrounds. Many SAR target detection
algorithms based on CFAR have been proposed and devel-
oped rapidly, such as superpixel-based CFAR (S-CFAR)
[8], iterative-censoring CFAR (IC-CFAR) [9], intensity-
space domain CFAR (ISD-CFAR) [10], outliers-robust CFAR
(OR-CFAR) [11], segmentation and nonparametric CFAR
(SnP-CFAR) [12], etc. In addition to CFAR-based methods,
non-CFAR is mainly a target detection algorithm that takes
the region as the basic unit and extracts the regional features
using global and local regional saliency and local regional
entropy change. The detection algorithm based on a single
feature only relies on the strong scattering characteristics of
the target for decision-making. But the multi-feature-based
detection algorithm uses two or more features for detection,
which is more suitable for scenarios with high target den-
sity or a significant presence of strong scattering clutters
[13], [14], [15], [16], [17]. Expert system-based methods
are mainly classified into template-based and model-based
recognition methods. Template-based methods build a tem-
plate library by extracting features from known types of
targets and then similarly matching these features with those
of the target under test. Still, this method relies on the
similarity of the database to the test set. The model-based
approach builds a model for each target category and stores
it in the database to find the hypothesis prediction with the
highest similarity to the image to be tested [18]. Nevertheless,

due to inherent limitations in robustness and feature repre-
sentation capabilities, traditional techniques cannot achieve
desirable results for SAR target detection effects in complex
background scattering and discrete scattering distribution
scenarios.

In recent times, the rapid progress of artificial intelli-
gence technology has led to the widespread utilization of
advanced deep-learning models in object detection. Con-
volutional neural network (CNN), as the mainstream deep
learning algorithm in target detection, has strong end-to-
end feature extraction capabilities and is applied extensively
across different computer vision [19], [20]. Cui et al. [21]
proposed a pyramid network based on dense attention, which
combines prominent features with global non-fuzzy features
to enhance the accuracy of target detection in SAR images
effectively. Wei et al. [22] proposed a high-resolution feature
pyramid structure, which connects sub-networks from high-
resolution to low-resolution in parallel, thereby enhancing the
salient information of the target in the network and improving
the detection effect of the algorithm. Aiming at the problem
of redundant feature maps, Lin et al. [23] proposed a faster
R-CNN algorithm based on compression and incentive mech-
anism for ship target detection in SAR images, encoding and
screening the feature vectors extracted by the neural network,
reversely correcting the sub-feature maps, ultimately enhanc-
ing the network’s detection capabilities.

However, various interferences and noises often affect
SAR images, such as atmospheric disturbances, surface clut-
ter, electronic interference, etc., which may lead to image
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quality degradation and affect subsequent analysis and appli-
cations. When dealing with SAR images that contain aircraft
targets of varying sizes and numerous tiny targets, achieving
satisfactory results becomes challenging for the algorithm
above. In addition, during the aircraft detection process, the
strong scattering points of the background objects distributed
near the aircraft will weaken the scattering points of the
aircraft targets, causing the scattering points of aircraft com-
ponents to be confused with those of ground objects. This
makes it challenging to identify and pinpoint the aircraft.

Since YOLOv5s is a model with a lighter depth and
width in the YOLOv5 series, it performs well in terms of
target detection speed. Therefore, in response to these prob-
lems, this paper proposes an EST-YOLOv5s model with
anti-interference ability based on YOLOv5s to detect aircraft
targets in SAR images. The main contributions of this paper
are as follows:

(1) Combining Efficient Channel Attention with the C3
module in the backbone network of the YOLOv5s
model forms a new module named ECAC3. This mod-
ule enhances useful features in the network, suppresses
irrelevant and redundant feature channels, and reduces
the processing and computation of useless informa-
tion by adaptively adjusting the correlation weights
between channels. The network’s perception of critical
features is improved, making the network more sensi-
tive to capturing the details of the target object.

(2) As the network structure becomes more and more
complex, the feature information of most targets in
SAR images is gradually lost. Therefore, the Swin
Transformer Block and the C3 module are fused into
the C3STR structure. It can better capture the global
context information and establish long-distance feature
dependencies. At the same time, the features of differ-
ent positions are weighted and fused so that the global
features can better participate in the target detection
task, thereby improving the accuracy of target detec-
tion.

(3) This paper abandons the traditional coupled head
in YOLOv5s and integrates the task-specific context
decoupling head. By further decoupling the object
detection task into two sub-tasks of object classifica-
tion and bounding box regression, the network can be
more focused on learning the specific features of their
respective tasks. Introducing task-specific contextual
information can enhance the correlation between object
classification and bounding box regression, helping
the model better understand the semantic information
of targets. Thus, a high-resolution feature map with
enhanced edge details is obtained to improve the detec-
tion accuracy of small objects.

(4) After introducing the ECAC3 and C3STR modules
into the backbone network of YOLOv5s, it can more
accurately capture the important features of aircraft
targets in SAR images, while suppressing irrelevant

information such as background clutter. In addition,
introducing the TSCODE header can improve the
model’s ability to combine contextual semantic fea-
tures, thereby enhancing its ability to understand the
target and reducing its sensitivity to noise interference.
In this paper, by simulating different levels of noise,
the anti-interference experiment is carried out on the
model, which verifies that EST-YOLOv5s has a strong
anti-interference ability.

The subsequent sections of this paper are structured as
follows. First, the paper simply introduces related work on
object detection based on deep learning and object detection
based on SAR images in Section II. Subsequently, this paper
introduces the various components and functions of the EST-
YOLOv5s model in Section III. Then, Section IV presents
the basic situation of the dataset and experimental environ-
ment, along with an analysis and discussion of the detection
performance and anti-interference ability of EST-YOLOv5s.
Finally, we summarize the main work of this paper and future
work to be done.

II. RELATED WORK
A. APPROACHES TO OBJECT DETECTION USING DEEP
LEARNING ALGORITHMS
Current object detection algorithms based on convolutional
neural networks can be categorized into two types: two-stage
algorithms, which rely on candidate regions, and single-stage
algorithms based on classification and regression. In 2014,
Girshick et al. [24] proposed a two-stage target detection
algorithm R-CNN, which uses a selective search algorithm
to obtain candidate regions, CNN extraction features, image
classification, and border regression for target detection.
However, due to problems such as redundant calculation
of candidate boxes, the efficiency of this approach is low.
In 2015, Li et al. [25] introduced a spatial pyramid pooling
layer to resolve this problem and proposed SPP-net, which
greatly shortened the training time. On this basis, Girshick
[26] combined the benefits of R-CNN and SPP-net, intro-
ducing Fast R-CNN, which samples fixed-size convolutional
feature maps from candidate boxes of various sizes and only
employs one scale for grid divide and merge. The calculation
speed has been further improved, but there is still the problem
of a large amount of calculation. On the basis of Fast R-
CNN, Ren et al. [27] proposed Faster R-CNN, added the
Region Proposal Network (RPN) to the backbone network,
and extracted candidate frames in the convolutional feature
layer of RPN by setting anchor points of different scales to
achieve end-to-end training of networks. Nonetheless, relying
solely on high-level features for object prediction while disre-
garding low-level features poses difficulty in detecting small
objects. To increase the network’s sensitivity to translation
changes and improve target positioning accuracy, Dai et al.
[28] shared the calculation of the region of interest and pro-
posed the R-FCN structure. In addition, they further offered
a Feature Pyramid Network (FPN) [29], which effectively
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improves the network’s performance in small object detection
by utilizing multi-scale features and a top-down structure.
This approach enables the network to handle objects of dif-
ferent scales better and improves accuracy on small objects.

The single-stage detectionmethod eliminates the candidate
box generation and screening process used in the traditional
two-stage detection method. It integrates the detection task
directly into a single neural network. Redmon et al. [30]
introduced the You Only Look Once (YOLO) algorithm,
which predicts targets classifying and regressing the input
image. On this basis, Liu et al. [31] combined the anchor point
method of Faster R-CNN with the regression idea of YOLO
and then proposed the Single Shot MultiBox Detector (SSD).
This method attains comparable accuracy to the two-stage
approach while also operating at a swift pace. YOLOv2 [32],
uses an anchoring mechanism based on k-means clustering
to improve detection accuracy. Lin et al. [33] proposed the
single-stage detection algorithm RetinaNet by using Focal
loss to focus more on difficult-to-classify samples; the weight
of easy-to-classify pieces is reduced, and its impact on train-
ing is reduced. It surpassed the existing two-stage algorithm
in terms of accuracy. Yolov3 [34], proposed by Redmon et al.,
achieves significant improvements in accuracy and speed by
introducing a more powerful backbone network, multi-scale
detection, and improved training techniques. Although the
accuracy of the YOLO algorithm is continuously improving,
parameters and complexity are increasing sharply, and in
turn, slows down the detection speed of the network. Wang
et al. [35] propose a new backbone network, Cross Stage
Partial Network (CSPNet), which effectively facilitates fea-
ture propagation and reuse by introducing cross-stage partial
connections. YOLOv4 [36] proposed using CSPDarknet53 as
the backbone feature extraction network, further improving
the detection speed. Subsequently, YOLOv5 [37] emerges
and garners increased attention from researchers due to its
advantages in terms of speed and accuracy.

B. SAR TARGET DETECTION METHOD IN DEEP LEARNING
With the continuous progress of SAR imaging methods,
using deep learning to process SAR images has become a
new research hotspot. In 2017, Dou et al. [38] proposed a
reconstruction method for aircraft targets using shape pri-
ors to accurately extract contour shape features, providing
effective prior information for target recognition. In 2018,
He et al. [39] introduced a technique that leverages depth
shape priors to reconstruct aircraft in high-resolution SAR
images. Used deep learning to model aircraft shape features
and super-resolution reconstruction technology to achieve
more accurate and realistic aircraft reconstruction results.
In 2019, An et al. [40] proposed an improved object detec-
tor DRBox-v2, which improves the performance and effect
of object detection in SAR images by introducing rotatable
bounding boxes and Rotated Region of Interest (RROI) pool-
ing operations. At the same time, they proposed a method
that combined focus loss and difficult sample mining to

improve the imbalance between positive and negative sam-
ples. Zhang et al. [41] proposed a new high-speed SAR
ship detection method based on a deep separable convolu-
tional neural network (DS-CNN). They adopted a lightweight
network architecture and utilized D-Conv2D and P-Conv2D
instead of the traditional C-CNN, significantly increasing the
ship detection speed. In 2020, Zhang et al. [42] proposed
a cascaded three-view network to fully characterize aircraft
targets by introducing multi-view and an end-to-end training
method. On this basis, the target is detected and identified
by slice and image processing methods. In order to better
capture the feature and context information of the target,
Zhao et al. [43] introduced a pyramid attention mechanism
and dilated convolution, which improved the accuracy and
robustness of aircraft detection. And the accuracy on the
Gaofen-3 airport dataset reached 85.68%. Guo et al. [44]
introduced scatter transformation before feature extraction
and designed an attention pyramid module to adaptively
select and focus on important aircraft features, significantly
improving the aircraft detection task. In 2022, aiming at the
multi-scale problem of SAR ship targets in complex scenes,
Guo et al. [45] proposed an improved YOLOv5 detection
method named YOLOv5s_CBAM_BiFPN, using a Convo-
lutional Block Attention Module (CBAM) and Bidirectional
Feature Pyramid Network (BiFPN), which solved the prob-
lem of missed detection of multi-scale objects. Ge et al.
[46] introduced a new spatial orientation attention module
based on the YOLOX framework. And fused it with the
path aggregation feature pyramid to capture feature trans-
formations in different directions to highlight the features
of aircraft targets in SAR images. Xu et al. [47] proposed
the SBN-3D-SD model to improve shadow detection and
tracking accuracy in Video-Synthetic Aperture Radar (Video-
SAR) images. By taking advantage of the sparse properties of
shadows, the low-rank properties of the background, and the
Gaussian properties of shadows, the shadows are enhanced
by decomposition in 3D space, which improves the accu-
racy of various shadow detection and tracking algorithms.
Meanwhile, they also proposed a network model GWFEF-
Net [48] for improving the performance of dual-polarization
ship detection in synthetic aperture radar (SAR) images. This
model improved ship detection performance by leveraging
the dual-polarization property through feature enrichment,
enhancement, fusion, and channel attention mechanisms.
In 2023, Li et al. [49] proposed the model YOLOv5–L+

BiFPN + Swin Transformer + GAM. The proposed model
solved the problem of detecting small-sized aircraft targets
in SAR images by utilizing its powerful feature extraction
capability.

III. METHODOLOGY
A. MODEL OF YOLOv5s
YOLOv5 is a fast and accurate object detection model
developed by Ultralytics and released in 2020. In 2022,
Xu et al. [50] proposed a lightweight SAR shipborne
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FIGURE 2. YOLOv5s network structure.

detector, Lite-YOLOv5, for detecting ships in maritime
environments using synthetic aperture radar satellites. This
method achieved high detection accuracy while reducing the
model’s size and computational requirements. Inspired by
this, the present study selects YOLOv5s as the baselinemodel
for detecting aircraft targets in SAR images.

As shown in Fig. 2, the basic structure of YOLOv5s is
mainly composed of a backbone, neck, and detection head.
The backbone network part specifically includes the CBS
module, C3 module, and SPPF module. The CBS module
comprises a convolutional layer, a batch normalization layer,
and a non-linear activation function named SiLU. The C3
module plays a crucial role in YOLOv5s as it primarily
focuses on feature fusion, reducing the model’s dimension,
and enhancing the representation ability of the feature map.
It contains three CBS modules and N bottleneck structures.
The bottleneck structure is similar to the residual structure
of ResNet, which can better perform feature functions. The
SPPF structure widens the perception area, and extracts and
fuses advanced features by using a CBS module and three
serial maximum pooling structures.

The structure of the neck part adopts an FPN structure and
a PAN structure so that advanced strong semantic features
are passed down to compensate for and enhance positioning
information.

As the last part of YOLOv5s, the head uses anchor boxes
and grid generation strategies to detect targets of different
sizes at different scales to generate prediction boxes and
corresponding category probabilities.

B. IMPROVED YOLOv5s NETWORK STRUCTURE
Based on the structure of YOLOv5s, this paper designs a
new EST-YOLOv5s model for detecting aircraft targets in
SAR images. The overall structure of the model is shown
in Fig. 3. The lightweight channel attention structure is
integrated into the first three C3 modules of the backbone
network to constitute a new ECAC3 structure, which sup-
presses complex background information and enhances the
ability to extract small objects while keeping the number of
parameters unchanged. Because most aircraft targets are in
the airport area, the targets are relatively dense, and other
obstacles near the airport will disturb the scattering signature
of the aircraft targets, which is prone to missed or false detec-
tions. Therefore, this paper proposes to replace the bottleneck
structure in the last C3 structure in the backbone network
with a Swin Transformer Block to enhance the perception
of local geometric features. Relying solely on the learning
ability of coupled-head networks to provide task-specific
contextual information from shared feature maps often shows
an imbalance between classification and regression tasks.
Traditional methods generate more computational overhead,
require longer training time, and reduce the efficiency of
reasoning. Therefore, this paper proposes using the TSCODE
head to handle complex context conflicts and improve net-
work performance.

1) ECAC3 MODULE
As a computational model, the attention mechanism simu-
lates the selectivity of human visual and cognitive processes
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FIGURE 3. EST-YOLOv5s network model structure.

FIGURE 4. Structure of the ECA module.

and is widely used in natural language processing, computer
vision, and other fields. Squeeze Excitation (SE) attention
[51] and CBAM [52] are the most representative. Due to
the high computational complexity of the former two, and
ignoring that all spatial locations share the same channel
attention weight. The ECA attention mechanism uses sim-
ple one-dimensional convolution operations, which does not
significantly increase the computational overhead. It helps
improve the feature extraction capabilities of the C3 module,
enabling the network to learn more discriminative features
and adaptively allocate attention to relevant channels. So,
this paper chooses the ECA [53] mechanism that is both
lightweight and retains information between different dimen-
sions. Fig. 4 shows the composition of the ECA attention
module.

First, the aggregated features of the feature map are
obtained using global average pooling on feature maps of
input size C × H × W , and channel weights are generated
by performing a fast one-dimensional convolution of size
k = ψ(C). Among them, the hyperparameter k = ψ(C)
calculation method involved in one-dimensional convolution

is shown in the following formula (1).

k = ψ(C) =

∣∣∣∣ log2(C)γ
+
b
γ

∣∣∣∣
odd

(1)

The parameter k in this formula represents the size of
the convolution kernel, which is adaptively determined by
the mapping of the channel dimension C . Then, the sigmoid
operation is performed on the obtained feature map to obtain
a new feature map with a size of 1 × 1 × C . Finally, the
obtained channel attention weights are multiplied with the
original feature map channel by channel to get a feature map
with an output feature size of C × H × W . Among them,
the meaning of C is the channel dimension, |t|odd means that
the upward value is the odd number closest to t , and γ and b
are 2 and 1, respectively, coefficients of a linear relationship.
This paper integrates the ECA module into the C3 module
in the backbone network of YOLOv5s. That is, after the
feature map output by the convolutional layer is subjected to
the global average pooling operation, the information on the
channel dimension is obtained, and the local cross-channel
interaction is realized through one-dimensional convolution,
which avoids the loss of information caused by the reduction
of the dimension. After adaptively weighting each channel,
the greater the weight of the obtained channel, the more
critical the feature represented by the channel. Conversely,
subsequent feature extraction layers can discard smaller
channel weights to enhance the representation of important
features and suppress unimportant features. Thereby improv-
ing the detection accuracy of the model. As shown in Fig. 5,
this figure shows the specific structure of the improved
C3 module.

2) C3STR MODULE
Originally, Transformer was proposed by Google in the paper
‘‘Attention is All You Need’’ [54] for the field of natural
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FIGURE 5. Structure of ECAC3 module.

FIGURE 6. Structure of swin transformer block.

language processing. Vision Transformer [55] was introduced
into computer vision in 2020 and achieved remarkable results.
This shift has led to a series of networks and papers such as
DeiT [56], Swin Transformer [57], DETR [58], SETR [59],
and GANsformer [60], among others. These models exhibit
excellent performance and application potential in computer
vision tasks. Researchers have opened up new possibilities
and achieved impressive achievements by applying the Trans-
former model to computer vision.

Since the original C3 module of YOLOv5s cannot obtain
enough global context information, Transformer can com-
pensate for this defect and improve the recognition effect of
small targets in complex backgrounds. However, Transformer
requires a lot of computing power, so this article chooses
Swin Transformer Blocks to improve the C3 module. The
Swin Transformer Block consists of two key self-attention
modules: W-MSA and SW-MSA, which are integral com-
ponents. A GELU nonlinear multi-layer perceptron (MLP)
follows each module. In Fig. 6, each MSA module and MLP
is connected to a LayerNorm (LN) layer, and a residual
structure is added for connection.

As a self-attention mechanism, W-MSA often divides
images without overlapping when processing images and
computes self-attention in each window, respectively. If each
window hasM×Mblocks, then the complexities of MSA and
W-MSA are calculated by formulas (2) and (3).

�(MSA) = 4HWC2
+ 2(HW)2C (2)

�(W-MSA) = 4HWC2
+ 2M2HWC (3)

In formulas (2) and (3), C represents a constant, and M
generally takes the default value of 7. According to the
formula, the computational complexity of W-MSA is linear
concerning the size of the input image, while that of MSA is

FIGURE 7. Structure of C3STR.

quadratic. In this way, W-MSA has reduced complexity but is
short of information interaction across windows. By shifting
the window division method, SW-MSA makes up for this
shortcoming with a comprehensive perception of the overall
information. Formulas (4), (5), (6), and (7) represent the
calculation process of the Swin Transformer block.

ẑ = W-MSA
(
LN

(
zl−1

))
+ zl−1 (4)

zl = MLP
(
LN

(
ẑl

))
+ ẑl (5)

ẑl+1
= SW-MSA

(
LN

(
zl

))
+ zl (6)

zl+1
= MLP

(
LN

(
ẑl+1

))
+ ẑl+1 (7)

Among them, the four parameters ẑl , zl , ẑl+1, and zl+1

represent the feature map information of the W-MSA, MLP,
SW-MSA, and MLP output in sequence. By using sliding
windows and cross-window connections, Swin Transformer
can interact with features at different spatial locations and
utilize multi-level feature extraction to obtain a more com-
prehensive image representation.

After referring to the studies of C3NRT [61] and C3-Trans
[62], this article integrates the Swin Transformer Block into
the C3 module to obtain a new C3STR module, as shown in
Fig. 7. In this new structure, the original bottleneck block is
substituted with the Swin Transformer Block. This module
utilizes the correlation between different positions to globally
model the pixels in the feature map through the selfattention
mechanism and then propagates and integrates features of
different scales in the feature map through the cross-window
attention mechanism to increase the receptive field. This
way, the association of feature information between different
windows is realized, thereby improving the network’s ability
to detect multi-scale targets.

3) TSCODE HEAD
The detection head obtains prediction results by detecting
objects of different sizes. The YOLOv5s model achieves this
task by coupling detection heads. However, YOLOX [63]
pointed out that the coupling detection head may damage
the performance and affect the accuracy of network detection
[64], [65]. It introduced the decoupling detection head into
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FIGURE 8. Semantic context encoding for classification (SCE).

FIGURE 9. Detail-preserving encoding for localization (DPE).

the YOLO family for the first time, improving the network
convergence speed and performance. The TSCODE head
decouples the feature encoding of object classification and
frame regression based on the original. It utilizes featuremaps
with different semantic contexts in the two branches. The
classification branch generates spatially coarser but seman-
tically richer feature maps. While the localization branch
provides feature maps containing more detailed texture and
boundary information. The encoding process used for classi-
fication and localization is shown in Fig. 8 and Fig. 9.
As shown in Fig. 8, for each pyramid level l, SCE utilizes

feature maps from two levels,Pl andPl+1, to generate seman-
tically rich feature maps for classification. Specifically, after
Pl is down sampled by 2 times, it is connected with Pl+1 to
generate the final Gclsl . The formula is shown in formula (8).

Gclsl = Concat(DConv(Pl),Pl+1) (8)

where Concat and DConv denote concatenation and shared
downsampling convolutional layers, respectively. In this way,
not only can the sparsity of the salient features of the Pl layer
be utilized, but it also benefits from the rich context semantics
of the Pl+1 layer. It is more helpful to infer those aircraft
targets with weak scattering characteristics in SAR images.

Likewise, as shown in Fig. 9, DPE accepts feature maps
from three pyramid levels, namely Pl−1, Pl , and Pl+1. Pl−1
provides more detail and edge features, while Pl+1 provides
a more comprehensive perspective of the object. First, Pl is
upsampled two times and then aggregated with Pl−1. After

FIGURE 10. Examples of part of the dataset’s positive sample and
negative sample slice.

the obtained feature map Hl−1 is downsampled by two times,
it is aggregated with Pl+1 and Pl after two times upsam-
pling to generate the final Glocl . The formula is shown in
formula (9).

Glocl = Pl + µ(Pl+1) + DConv(µ(Pl) + Pl−1) (9)

where µ denotes upsampling, and DConv denotes another
shared downsampling convolutional layer. This method can
obtainmore texture details and boundary information to accu-
rately predict the SAR aircraft target’s location.

This section proposes solving the conflict between classifi-
cation and regression tasks by replacing the coupling head in
YOLOv5s with the TSCODE [66] head. Deep feature maps
are richer in contextual semantic information. Classification
tasks focus more on which class the extracted features are
most similar to the existing category. Therefore, fusing each
level with its deeper feature maps is more helpful in improv-
ing classification confidence. In the positioning task, themain
focus lies in assessing the level of coincidence between the
predicted and ground-truth box position coordinates. Com-
bining the feature map of each layer with its adjacent deep
and shallow features can obtain richer spatial detail infor-
mation for bounding box parameter correction, making the
bounding box more precisely snap to the target. Therefore,
the TSCODE head can effectively improve the accuracy of
SAR aircraft target detection.

IV. EXPERIMENT
A. DATASET
This paper uses the SAR Aircraft Detection Dataset (SADD)
[67] to prove the credibility and effect of the EST-YOLOv5s
model. This dataset was obtained from the TerraSAR-X satel-
lite, and the image resolution ranges from 0.5 to 3 meters.
Some positive and negative sample slices in the dataset are
shown in Fig. 10.

The positive samples of this data set contain various
complex target backgrounds, such as airport runways, park-
ing lot airports, etc. The negative samples mainly include
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FIGURE 11. Dataset partition.

TABLE 1. Configuration parameters of experimental platform.

open spaces and forests around the airport. The dataset has
2966 slices of size 224×224, including 7835 aircraft targets.
The dataset is randomly divided into training set, verifica-

tion set, and test set using a ratio of 6:2:2. The training set
contains 533 positive samples and 1246 negative samples,
with a total of 5089 aircraft. The validation set includes
181 positive samples and 413 negative samples, with a total of
1227 aircraft. The test set includes 169 positive samples and
424 negative samples, with a total of 1915 aircraft. Fig. 11
shows the division of the dataset.

B. EXPERIMENTAL ENVIRONMENT
All experiments in this paper are carried out in the hardware
and software environment shown in Table 1.
In this paper, we set several key hyperparameters, includ-

ing training steps, warmup epoch, warmup initial momentum,
batch size, optimization algorithm, initial learning rate,
momentum, and weight decay. The specific hyperparameter
settings are shown in Table 2.

C. INDICATORS OF EVALUATION
This study evaluates the performance of EST-YOLOv5s by
comparing the performance of EST-YOLOv5s with various

TABLE 2. Hyperparameters of the model.

other models in image detection. Specifically, this paper
focuses on the localization accuracy of objects and the ratio
of missed or false detections. This paper uses some common
performance metrics to measure how good the improved
model is. These metrics include precision, recall, mAP, F1,
number of parameters, FPS, etc. In order to obtain the
final experimental data, this experiment uses the previously
divided training set and verification set to train the model and
the test set to test the trained model.

The precision refers to the ratio between the number of pos-
itive samples correctly predicted by the model and the total
number of positive samples predicted. Its specific calculation
method is shown in the following formula (10).

Precision =
TP

TP + FP
(10)

The recall is the ratio of the number of positive samples
correctly predicted by the model to the number of positive
samples in all targets. Formula (11) shows how the recall is
calculated.

Recall =
TP

TP + FN
(11)

In formulas (10) and (11), TP represents the number of
correct recognitions by the model, FP represents the number
of wrong recognitions by the model, and FN represents the
number of SAR aircraft targets not detected by the model.
In addition, the F1 score is used as a comprehensive eval-
uation index calculated based on accuracy and recall to
comprehensively evaluate the performance of the model. Its
calculation formula is shown in formula (12).

F1 =
2 × Precision × Recall
Precision + Recall

(12)

Using the P-R curve can visualize the relationship between
precision and recall, where precision is represented on the
vertical axis and recall is represented on the horizontal axis.

The proportion of the region enclosed by the curve and
the axes defines the mean precision. A good model is able
to maintain high precision with gradually increasing recall.
If the average precision value is higher, the model performs
better. Use formula (13) to calculate the average precision.

AP =

∫ 1

0
P(R)dR (13)
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TABLE 3. Comparison between five different versions of YOLOv5.

FIGURE 12. P-R curve Comparison of each model in the ablation experiment.

mAP is a metric used to evaluate the accuracy of object
recognition. It represents the average accuracy achieved
across different categories. A higher mAP indicates better
overall detection performance and increased accuracy of the
model. The calculation of average precision is expressed by
the following formula (14).

mAP =
1
n

n∑
i=1

APi (14)

FPS represents the rate at which the algorithm detects and
processes images. If it takes t seconds to process each image,
the calculation can be expressed using the formula (15).

FPS =
1
t

(15)

In the case of the target detection model, a higher
FPS implies reduced latency, indicating superior real-time
performance and faster computational speed. The model’s
efficiency improves as the FPS increases.

D. MODEL SELECTION EXPERIMENT
By comparing the five different versions of YOLOv5, we can
conclude from Table 3 that YOLOv5n has the lowest model
parameters, but its accuracy is also the lowest. In contrast,
YOLOv5m, YOLOv5l, and YOLOv5x have slightly higher
accuracy than YOLOv5s, but their number of parameters
has dramatically increased. The FPS has also decreased

significantly, meaning it will take up more storage space
and consume more computing resources and detection time.
The SADD dataset used in this paper has a relatively small
scale, and employing a smaller model can help mitigate the
risk of overfitting. Therefore, this paper uses YOLOv5s as
the improved baseline model to find an appropriate balance
between speed and accuracy.

E. ABLATION EXPERIMENT
In this paper, there are many improvements in the EST-
YOLOv5s model. It mainly contains: integrating the ECA
mechanism into the first three C3 modules in the backbone
network, substituting the bottleneck block in the last C3
module in the backbone with the Swin Transformer Block,
and swapping the coupling head with the TSCODE head.
To prove the impact of these methods on EST-YOLOv5s,
this paper conducts ablation experiments. Table 4 shows the
final results. Where ‘‘

√
’’ represents the use of this modular

approach. Fig. 12 compares P-R curves after the fusion of
other modules and the original model.

As shown in Table 4 and Fig. 12, the performance of
the YOLOv5s model after adding various improvement
points has improved compared with the original model. The
mAP@50 of EST-YOLOv5s is approximately 1.7% higher
than that of the baseline network. The number of model
parameters in this paper has increased, but the accuracy of
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TABLE 4. Results of ablation experiments.

TABLE 5. Comparison of EST-YOLOv5s model with other models.

TABLE 6. Comparison of models with different levels of noise interference.

the model in this paper is 97.8%, which is the highest com-
pared with other models. The FPS can also meet real-time
requirements. This paper adds the ECA mechanism to the C3
structure in scheme B. The experimental results show that
mAP@50 has increased by 0.5%, precision and recall have
increased by 0.4% and 0.3%, respectively, and the parameters
remain at 7.01 M. This shows that the ECAC3 module does
not increase the complexity of the model while improving
the accuracy. In scheme C, this paper introduces Swin Trans-
former into the C3 module. SW-MSA uses a sliding window
to segment the feature map. This method allows certain win-
dows to receive information from multiple windows above,
reducing the perception area loss and thereby improving the
model’s representation ability and nonlinear expression. The
results show that mAP@50, mAP@50:95, precision, and
recall increased by 0.6%, 0.7%, 1.1%, and 0.3%, respec-

tively. Solution D is to introduce the TSCODE head into the
YOLOv5s model to replace the original coupling head struc-
ture, separate the two tasks of classification and positioning,
and introduce richer semantic information and more edge
information features for positioning. This method obtained
the highest recall rate of 82.7%. In scheme E, we com-
bine schemes A and B. The mAP, precision, and recall
values have been improved compared with schemes A and B,
respectively. Scheme F is the result of EST-YOLOv5s, these
experimental results show that mAP@50 has increased by
1.3%, mAP@50:95 has risen by 3%, the precision and recall
values have also increased by 0.9% and 1.6%, respectively,
and the number of parameters has increased significantly.
Therefore, the decoupling head is also a part that should not
be overlooked, and it is a significant approach to enhancing
the performance of the object detection model.
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FIGURE 13. Comparison of actual test results of different models. (a) Ground Truth (b) Faster R-CNN (c) RetinaNet (d) YOLOv3-SPP (e) YOLOv3-tiny (f)
YOLOv5s (g) TPH-YOLOv5 (h) YOLOv5s_CBAM_BiFPN (i) YOLOv5-L+BiFPN+SwinTransformer+GAM (j) EST-YOLOv5s.

F. COMPARATIVE EXPERIMENT
To prove the effectiveness of EST-YOLOv5s in SAR
image aircraft target detection, a comparative experiment
was carried out on the SADD dataset, and the pro-
posed EST-YOLOv5s model was compared with several
other target detection methods. Table 5 shows the perfor-
mance comparison results between different models. Among
them, Faster R-CNN, RetinaNet, YOLOv3-SPP, YOLOv3-
tiny, and YOLOv5s are classic target detection methods,
while the model YOLOv5s_CBAM_BiFPN and YOLOv5-
L+BiFPN+SwinTransformer+GAM are specially designed
for SAR ship and aircraft target detection.

In Table 5, compared with several other methods, EST-
YOLOv5s has the highest mAP@50, which is 97.8%.
Followed by YOLOv3-SPP, it realizes local fusion and global
features by adding the SPP module based on YOLOv3. This
addition is conducive to detecting situations with a signif-
icant difference in target sizes within the image. Although
TPH-YOLOv5 performs well in solving small targets and
multi-scale problems on UAV aerial photography datasets,
its mAP@50 and F1 values on SAR datasets are low, only
81.0% and 81.2%. Moreover, the parameters of the net-
work are relatively large, and the speed is relatively slow.
Due to the complex network structure of Faster R-CNN and
RetinaNet, a large number of parameters, and their anchor
generation mechanism, their recall rate is generally high, but

their precision is low, and it is easy to generate many wrong
prediction frames. Compared with other networks, YOLOv3-
tiny is more lightweight, with the least number of parameters,
only 8.67 M, and a speed of 286 f/s, which is the fastest com-
pared with other models. The Precision value and mAP@50
of the models YOLOv5s_CBAM_BiFPN and YOLOv5-
L+BiFPN+SwinTransformer+GAMare relatively high, and
they have certain applicability to SAR images. However,
these models have lower recall values, and it is easy to miss
the detection of aircraft targets. The parameter volume of
EST-YOLOv5s is 16.27 M, the computing resources con-
sumed are 73.3 GFLOPS, which is moderate compared to
other networks, and the FPS is 65 f/s, whichmeets the require-
ments of real-time detection.

In order to verify that our model has anti-interference
ability, this paper adds five different levels of salt and
pepper noise to the dataset to simulate the interference of
different degrees of complex environments on the model.
Table 6 shows the mAP@50 of different models at different
noise rates. Among them, mAP@50(5%), mAP@50(10%),
mAP@50(15%), mAP@50(20%), and mAP@50(25%) rep-
resent the mAP@50 when the noise rate is 5%, 10%, 15%,
20%, and 25%, respectively. It is not difficult to conclude
from Table 6 that as the noise level increases, the detection
accuracy of all models gradually decreases with different
trends. Among them, the model YOLOv5s_CBAM_BiFPN
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is most similar to the downward trend of YOLOv5s. From
the stability point of view, the curves of EST-YOLOv5s and
TPH-YOLOv5s models decrease slowly in the whole range
of salt-and-pepper-noise rates and remain relatively stable
compared with other models.

The model EST-YOLOv5s maintains a high mAP value at
different noise rates. As the noise rate increases, the detec-
tion accuracy gap between EST-YOLOv5s and other models
grows, which means it has a stronger anti-interference ability.
To sum up, the model can effectively filter out interference
such as noise and strong scattering through reasonable feature
representation and local information utilization and focus
on detecting and identifying objects. At the same time, the
model can better adapt to the changes in these disturbances
and produce stable and accurate detection results in different
situations.

G. VISUAL ANALYSIS
The detection results of the EST-YOLOv5s model and other
traditional target detection models are displayed in Fig. 13
alongside the actual values of the dataset, where a green
box represents the real value. Through the visualization of
test results and the comparison with the real deal, you can
see It is found that in a complex background environment,
Faster R-CNN, RetinaNet, YOLOv3-SPP, YOLOv3-tiny,
and YOLOv5s networks have produced more errors and
redundant detection frames due to insufficient feature extrac-
tion. However, the multi-scale target detection capabilities
of the models YOLOv5s_CBAM_BiFPN and YOLOv5-
L+BiFPN+SwinTransformer+GAM are poor, and there are
a large number ofmissed detections formedium-scale targets.
At the same time, TPH-YOLOv5 is not easy to identify targets
with fuzzy features, and some targets are not detected. Only
EST-YOLOv5s successfully detected all the small targets
for the first set of pictures. Based on the overall results,
EST-YOLOv5s has the best overall performance, which sig-
nificantly decreases the probability of missed detection and
bounding box positioning errors in the SAR image detection
process.

V. CONCLUSION
This paper proposes a new target detection model named
EST-YOLOv5s to detect dense aircraft small targets and
multi-scale aircraft targets in SAR images in complex envi-
ronments. First, introducing a lightweight ECA mechanism
can enhance the detailed features of the aircraft target while
maintaining constant parameters. Then, the Swin Trans-
former is introduced in the last C3 module of the backbone
network, and the global features are made more fully utilized.
Finally, the TSCODE head replaces the traditional coupled
detection head, enabling the model to have the ability to
introduce task-specific contextual informationwhile focusing
on learning the respective specific features of classification
and regression. These characteristics of the model also make
it have stronger anti-interference ability and better robustness

under complex conditions, but the model has the disadvan-
tages of a complex model and long model training time.

In order to evaluate the ability of EST-YOLOv5s to
detect aircraft targets in SAR images, this paper conducts
comparative experiments on the SADD dataset. The exper-
imental results show that the mAP@50 and F1 values
of EST-YOLOv5s are higher than those of the original
YOLOv5s, reaching 97.8% and 95.7%, respectively. In addi-
tion, this paper also conducts ablation experiments and
anti-interference experiments to verify the effectiveness of
the proposed module and the anti-interference performance
of the model. EST-YOLOv5s can be widely used in essential
fields such as military surveillance, natural disaster moni-
toring, and search and rescue. However, it is ineffective in
automatic driving and video tracking. In the future, we will
consider further developing the model in the direction of
lightweight while ensuring the accuracy of the model.

REFERENCES
[1] B. van den Broek, E. den Breejen, R. Dekker, and A. Smith, ‘‘Change

detection and maritime situation awareness in the channel area–feasibility
of space borne SAR for maritime situation awareness,’’ in Proc.
IEEE Int. Geosci. Remote Sens. Symp., Jul. 2012, pp. 7436–7439, doi:
10.1109/IGARSS.2012.6351942.

[2] L. Cai, W. Shi, H. Zhang, and M. Hao, ‘‘Object-oriented change detection
method based on adaptive multi-method combination for remote-sensing
images,’’ Int. J. Remote Sens., vol. 37, no. 22, pp. 5457–5471, Nov. 2016,
doi: 10.1080/01431161.2016.1232871.

[3] Z. Wang, N. Xu, J. Guo, C. Zhang, and B. Wang, ‘‘SCFNet: Semantic
condition constraint guided feature aware network for aircraft detection
in SAR images,’’ IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5239420, doi: 10.1109/TGRS.2022.3224599.

[4] Y. Luo, H. Song, R. Wang, Y. Deng, F. Zhao, and Z. Xu, ‘‘Arc
FMCW SAR and applications in ground monitoring,’’ IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 9, pp. 5989–5998, Sep. 2014, doi:
10.1109/TGRS.2014.2325905.

[5] N. Liu, Z. Cui, Z. Cao, Y. Pi, and S. Dang, ‘‘Airport detection in large-
scale SAR images via line segment grouping and saliency analysis,’’ IEEE
Geosci. Remote Sens. Lett., vol. 15, no. 3, pp. 434–438, Mar. 2018, doi:
10.1109/LGRS.2018.2792421.

[6] K. El-Darymli, P. McGuire, D. Power, and C. Moloney, ‘‘Target detec-
tion in synthetic aperture radar imagery: A state-of-the-art survey,’’
J. Appl. Remote Sens., vol. 7, no. 1, Mar. 2013, Art. no. 071598, doi:
10.1117/1.JRS.7.071598.

[7] G. Gao, L. Liu, L. Zhao, G. Shi, and G. Kuang, ‘‘An adaptive and fast
CFAR algorithm based on automatic censoring for target detection in high-
resolution SAR images,’’ IEEE Trans. Geosci. Remote Sens., vol. 47, no. 6,
pp. 1685–1697, Jun. 2009, doi: 10.1109/TGRS.2008.2006504.

[8] W. Yu, Y. Wang, H. Liu, and J. He, ‘‘Superpixel-based CFAR target detec-
tion for high-resolution SAR images,’’ IEEE Geosci. Remote Sens. Lett.,
vol. 13, no. 5, pp. 730–734,May 2016, doi: 10.1109/LGRS.2016.2540809.

[9] W. An, C. Xie, and X. Yuan, ‘‘An improved iterative censoring
scheme for CFAR ship detection with SAR imagery,’’ IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 8, pp. 4585–4595, Aug. 2014, doi:
10.1109/TGRS.2013.2282820.

[10] C. Wang, F. Bi, W. Zhang, and L. Chen, ‘‘An intensity-space domain
CFAR method for ship detection in HR SAR images,’’ IEEE Geosci.
Remote Sens. Lett., vol. 14, no. 4, pp. 529–533, Apr. 2017, doi:
10.1109/LGRS.2017.2654450.

[11] J. Ai, Q. Luo, X. Yang, Z. Yin, and H. Xu, ‘‘Outliers-robust CFAR
detector of Gaussian clutter based on the truncated-maximum-likelihood-
estimator in SAR imagery,’’ IEEE Trans. Intell. Transp. Syst., vol. 21, no. 5,
pp. 2039–2049, May 2020, doi: 10.1109/TITS.2019.2911692.

[12] J. Karvonen, A. Gegiuc, T. Niskanen, A. Montonen, J. Buus-Hinkler,
and E. Rinne, ‘‘Iceberg detection in dual-polarized C-band SAR
imagery by segmentation and nonparametric CFAR (SnP-CFAR),’’ IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 4300812, doi:
10.1109/TGRS.2021.3070312.

VOLUME 11, 2023 113039

http://dx.doi.org/10.1109/IGARSS.2012.6351942
http://dx.doi.org/10.1080/01431161.2016.1232871
http://dx.doi.org/10.1109/TGRS.2022.3224599
http://dx.doi.org/10.1109/TGRS.2014.2325905
http://dx.doi.org/10.1109/LGRS.2018.2792421
http://dx.doi.org/10.1117/1.JRS.7.071598
http://dx.doi.org/10.1109/TGRS.2008.2006504
http://dx.doi.org/10.1109/LGRS.2016.2540809
http://dx.doi.org/10.1109/TGRS.2013.2282820
http://dx.doi.org/10.1109/LGRS.2017.2654450
http://dx.doi.org/10.1109/TITS.2019.2911692
http://dx.doi.org/10.1109/TGRS.2021.3070312


M. Huang et al.: EST-YOLOv5s: SAR Image Aircraft Target Detection Model

[13] X. Hou, W. Ao, Q. Song, J. Lai, H. Wang, and F. Xu, ‘‘FUSAR-ship:
Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship
detection and recognition,’’ Sci. China Inf. Sci., vol. 63, no. 4, pp. 36–54,
Apr. 2020, doi: 10.1007/s11432-019-2772-5.

[14] W. Ao, F. Xu, Y. Li, and H. Wang, ‘‘Detection and discrimination of ship
targets in complex background from spaceborne ALOS-2 SAR images,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 2,
pp. 536–550, Feb. 2018, doi: 10.1109/JSTARS.2017.2787573.

[15] X. Leng, K. Ji, X. Xing, S. Zhou, and H. Zou, ‘‘Area ratio invariant feature
group for ship detection in SAR imagery,’’ IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 11, no. 7, pp. 2376–2388, Jul. 2018, doi:
10.1109/JSTARS.2018.2820078.

[16] C. He, M. Tu, D. Xiong, F. Tu, and M. Liao, ‘‘Adaptive compo-
nent selection-based discriminative model for object detection in high-
resolution SAR imagery,’’ ISPRS Int. J. Geo-Inf., vol. 7, no. 2, p. 72,
Feb. 2018, doi: 10.3390/ijgi7020072.

[17] C. He, S. Li, Z. Liao, and M. Liao, ‘‘Texture classification of PolSAR
data based on sparse coding of wavelet polarization textons,’’ IEEE Trans.
Geosci. Remote Sens., vol. 51, no. 8, pp. 4576–4590, Aug. 2013, doi:
10.1109/TGRS.2012.2236338.

[18] Y. Pei, Y. Huang, Q. Zou, X. Zhang, and S. Wang, ‘‘Effects of image
degradation and degradation removal to CNN-based image classification,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 4, pp. 1239–1253,
Apr. 2021, doi: 10.1109/TPAMI.2019.2950923.

[19] H.-Y. Han, Y.-C. Chen, P.-Y. Hsiao, and L.-C. Fu, ‘‘Using channel-wise
attention for deep CNN based real-time semantic segmentation with class-
aware edge information,’’ IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2,
pp. 1041–1051, Feb. 2021, doi: 10.1109/TITS.2019.2962094.

[20] Z. Tian, C. Shen, H. Chen, and T. He, ‘‘FCOS: Fully convolutional one-
stage object detection,’’ inProc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9626–9635, doi: 10.1109/ICCV.2019.00972.

[21] Z. Cui, Q. Li, Z. Cao, and N. Liu, ‘‘Dense attention pyramid net-
works for multi-scale ship detection in SAR images,’’ IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 11, pp. 8983–8997, Nov. 2019, doi:
10.1109/TGRS.2019.2923988.

[22] S. Wei, H. Su, J. Ming, C. Wang, M. Yan, D. Kumar, J. Shi, and X. Zhang,
‘‘Precise and robust ship detection for high-resolution SAR imagery based
on HR-SDNet,’’ Remote Sens., vol. 12, no. 1, p. 167, Jan. 2020, doi:
10.3390/rs12010167.

[23] Z. Lin, K. Ji, X. Leng, and G. Kuang, ‘‘Squeeze and excitation
rank faster R-CNN for ship detection in SAR images,’’ IEEE Geosci.
Remote Sens. Lett., vol. 16, no. 5, pp. 751–755, May 2019, doi:
10.1109/LGRS.2018.2882551.

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierar-
chies for accurate object detection and semantic segmentation,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587, doi:
10.1109/CVPR.2014.81.

[25] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in
deep convolutional networks for visual recognition,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015, doi:
10.1109/TPAMI.2015.2389824.

[26] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448, doi: 10.1109/ICCV.2015.169.

[27] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards
real-time object detection with region proposal networks,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi:
10.1109/TPAMI.2016.2577031.

[28] J. Dai, Y. Li, K. He, and J. Sun, ‘‘R-FCN: Object detection via
region-based fully convolutional networks,’’ in Proc. 30th Int. Conf. Neu-
ral Inf. Syst. (NIPS), Barcelona, Spain, Dec. 2016, pp. 379–387, doi:
10.5555/3157096.3157139.

[29] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944, doi:
10.1109/CVPR.2017.106.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only
look once: Unified, real-time object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788, doi:
10.1109/CVPR.2016.91.

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ Proc. Eur. Conf. Com-
put. Vis. (ECCV), Amsterdam, The Netherlands, Oct. 2016, pp. 21–37, doi:
10.1007/978-3-319-46448-0_2.

[32] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517–6525, doi: 10.1109/CVPR.2017.690.

[33] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2,
pp. 318–327, Feb. 2020, doi: 10.1109/TPAMI.2018.2858826.

[34] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[35] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and
I.-H. Yeh, ‘‘CSPNet: A new backbone that can enhance learning
capability of CNN,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit. Workshops (CVPRW), Jun. 2020, pp. 1571–1580, doi:
10.1109/CVPRW50498.2020.00203.

[36] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[37] G. Jocher, ‘‘YOLOv5 by ultralytics (version 7.0) [computer
software],’’ Tech. Rep., 2020. [Online]. Available: https://zenodo.
org/record/7347926/export/hx, doi: 10.5281/zenodo.7347926.

[38] F. Dou, W. Diao, X. Sun, Y. Zhang, and K. Fu, ‘‘Aircraft reconstruction in
high-resolution SAR images using deep shape prior,’’ ISPRS Int. J. Geo-
Inf., vol. 6, no. 11, p. 330, Oct. 2017, doi: 10.3390/ijgi6110330.

[39] C. He, M. Tu, D. Xiong, F. Tu, and M. Liao, ‘‘A component-based multi-
layer parallel network for airplane detection in SAR imagery,’’ Remote
Sens., vol. 10, no. 7, p. 1016, Jun. 2018, doi: 10.3390/rs10071016.

[40] Q. An, Z. Pan, L. Liu, and H. You, ‘‘DRBox-v2: An improved detector
with rotatable boxes for target detection in SAR images,’’ IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 11, pp. 8333–8349, Nov. 2019, doi:
10.1109/TGRS.2019.2920534.

[41] T. Zhang, X. Zhang, J. Shi, and S. Wei, ‘‘Depthwise separable convolution
neural network for high-speed SAR ship detection,’’ Remote Sens., vol. 11,
no. 21, p. 2483, Oct. 2019, doi: 10.3390/rs11212483.

[42] L. Zhang, C. Li, L. Zhao, B. Xiong, S. Quan, and G. Kuang,
‘‘A cascaded three-look network for aircraft detection in SAR
images,’’ Remote Sens. Lett., vol. 11, no. 1, pp. 57–65, Jan. 2020,
doi: 10.1080/2150704X.2019.1681599.

[43] Y. Zhao, L. Zhao, C. Li, and G. Kuang, ‘‘Pyramid attention dilated
network for aircraft detection in SAR images,’’ IEEE Geosci. Remote
Sens. Lett., vol. 18, no. 4, pp. 662–666, Apr. 2021, doi: 10.1109/LGRS.
2020.2981255.

[44] Q. Guo, H. Wang, and F. Xu, ‘‘Scattering enhanced attention pyra-
mid network for aircraft detection in SAR images,’’ IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 9, pp. 7570–7587, Sep. 2021, doi:
10.1109/TGRS.2020.3027762.

[45] Y. Guo, S. Chen, R. Zhan, W. Wang, and J. Zhang, ‘‘SAR ship
detection based on YOLOv5 using CBAM and BiFPN,’’ in Proc.
IEEE Int. Geosci. Remote Sens. Symp., Jul. 2022, pp. 2147–2150, doi:
10.1109/IGARSS46834.2022.9884180.

[46] J. Ge, C. Wang, B. Zhang, C. Xu, and X. Wen, ‘‘Azimuth-sensitive object
detection of high-resolution SAR images in complex scenes by using a
spatial orientation attention enhancement network,’’ Remote Sens., vol. 14,
no. 9, p. 2198, May 2022, doi: 10.3390/rs14092198.

[47] X. Xu, X. Zhang, T. Zhang, Z. Yang, J. Shi, and X. Zhan, ‘‘Shadow-
background-noise 3D spatial decomposition using sparse low-rank
Gaussian properties for video-SAR moving target shadow enhance-
ment,’’ IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi:
10.1109/LGRS.2022.3223514.

[48] X. Xu, X. Zhang, Z. Shao, J. Shi, S. Wei, T. Zhang, and T. Zeng, ‘‘A group-
wise feature enhancement-and-fusion network with dual-polarization
feature enrichment for SAR ship detection,’’ Remote Sens., vol. 14, no. 20,
p. 5276, Oct. 2022, doi: 10.3390/rs14205276.

[49] J. Li, W. Zhu, Y. Yang, L. Qiu, and B. Zhu, ‘‘Detection of aircraft targets
in SAR images based on improved YOLOv5,’’ Electron. Opt. Contr.,
vol. 30, no. 8, pp. 61–67, Aug. 2023, doi: 10.3969/j.issn.1671-637X.
2023.08.011.

[50] X. Xu, X. Zhang, and T. Zhang, ‘‘Lite-YOLOv5: A lightweight deep
learning detector for on-board ship detection in large-scene Sentinel-1
SAR images,’’ Remote Sens., vol. 14, no. 4, p. 1018. Feb. 2022, doi:
10.3390/rs14041018.

[51] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141, doi: 10.1109/CVPR.2018.00745.

[52] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, ‘‘CBAM: Convolutional block
attention module,’’ in Proc. Eur. Conf. Comput. Vis., Jun. 2018, pp. 3–19,
doi: 10.1007/978-3-030-01234-2_1.

113040 VOLUME 11, 2023

http://dx.doi.org/10.1007/s11432-019-2772-5
http://dx.doi.org/10.1109/JSTARS.2017.2787573
http://dx.doi.org/10.1109/JSTARS.2018.2820078
http://dx.doi.org/10.3390/ijgi7020072
http://dx.doi.org/10.1109/TGRS.2012.2236338
http://dx.doi.org/10.1109/TPAMI.2019.2950923
http://dx.doi.org/10.1109/TITS.2019.2962094
http://dx.doi.org/10.1109/ICCV.2019.00972
http://dx.doi.org/10.1109/TGRS.2019.2923988
http://dx.doi.org/10.3390/rs12010167
http://dx.doi.org/10.1109/LGRS.2018.2882551
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.5555/3157096.3157139
http://dx.doi.org/10.1109/CVPR.2017.106
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/CVPR.2017.690
http://dx.doi.org/10.1109/TPAMI.2018.2858826
http://dx.doi.org/10.1109/CVPRW50498.2020.00203
http://dx.doi.org/10.5281/zenodo.7347926
http://dx.doi.org/10.3390/ijgi6110330
http://dx.doi.org/10.3390/rs10071016
http://dx.doi.org/10.1109/TGRS.2019.2920534
http://dx.doi.org/10.3390/rs11212483
http://dx.doi.org/10.1080/2150704X.2019.1681599
http://dx.doi.org/10.1109/LGRS.2020.2981255
http://dx.doi.org/10.1109/LGRS.2020.2981255
http://dx.doi.org/10.1109/TGRS.2020.3027762
http://dx.doi.org/10.1109/IGARSS46834.2022.9884180
http://dx.doi.org/10.3390/rs14092198
http://dx.doi.org/10.1109/LGRS.2022.3223514
http://dx.doi.org/10.3390/rs14205276
http://dx.doi.org/10.3969/j.issn.1671-637X.2023.08.011
http://dx.doi.org/10.3969/j.issn.1671-637X.2023.08.011
http://dx.doi.org/10.3390/rs14041018
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1007/978-3-030-01234-2_1


M. Huang et al.: EST-YOLOv5s: SAR Image Aircraft Target Detection Model

[53] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, ‘‘ECA-Net: Effi-
cient channel attention for deep convolutional neural networks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11531–11539, doi: 10.1109/CVPR42600.2020.01155.

[54] A. Vaswani, ‘‘Attention is all you need,’’ in Proc. 31st Int. Conf. Neural Inf.
Process. Syst., Dec. 2017, pp. 6000–6010, doi: 10.5555/3295222.3295349.

[55] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words: Trans-
formers for image recognition at scale,’’ 2020, arXiv:2010.11929.

[56] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
‘‘Training data-efficient image transformers & distillation through atten-
tion,’’ 2020, arXiv:2012.12877.

[57] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
‘‘Swin transformer: Hierarchical vision transformer using shifted win-
dows,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 9992–10002, doi: 10.1109/ICCV48922.2021.00986.

[58] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, ‘‘Deformable
DETR: Deformable transformers for end-to-end object detection,’’ 2020,
arXiv:2010.04159.

[59] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y.Wang, Y. Fu, J. Feng, T. Xiang,
P. H. S. Torr, and L. Zhang, ‘‘Rethinking semantic segmentation from a
sequence-to-sequence perspective with transformers,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 6877–6886,
doi: 10.1109/CVPR46437.2021.00681.

[60] D. A. Hudson and C. L. Zitnick, ‘‘Generative adversarial transformers,’’
2021, arXiv:2103.01209.

[61] Y. Liu, G. He, Z. Wang, W. Li, and H. Huang, ‘‘NRT-YOLO: Improved
YOLOv5 based on nested residual transformer for tiny remote sens-
ing object detection,’’ Sensors, vol. 22, no. 13, p. 4953, Jun. 2022, doi:
10.3390/s22134953.

[62] X. Zhu, S. Lyu, X. Wang, and Q. Zhao, ‘‘TPH-YOLOv5: Improved
YOLOv5 based on transformer prediction head for object detec-
tion on drone-captured scenarios,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. Workshops (ICCVW), Oct. 2021, pp. 2778–2788, doi:
10.1109/ICCVW54120.2021.00312.

[63] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, ‘‘YOLOX: Exceeding YOLO
series in 2021,’’ 2021, arXiv:2107.08430.

[64] G. Song, Y. Liu, and X.Wang, ‘‘Revisiting the sibling head in object detec-
tor,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 11560–11569, doi: 10.1109/CVPR42600.2020.01158.

[65] Y. Wu, Y. Chen, L. Yuan, Z. Liu, L. Wang, H. Li, and Y. Fu,
‘‘Rethinking classification and localization for object detection,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 10183–10192, doi: 10.1109/CVPR42600.2020.01020.

[66] J. Zhuang, Z. Qin, H. Yu, and X. Chen, ‘‘Task-specific context decoupling
for object detection,’’ 2023, arXiv:2303.01047.

[67] P. Zhang, H. Xu, T. Tian, P. Gao, L. Li, T. Zhao, N. Zhang, and J. Tian,
‘‘SEFEPNet: Scale expansion and feature enhancement pyramid network
for SAR aircraft detection with small sample dataset,’’ IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 15, pp. 3365–3375, 2022, doi:
10.1109/JSTARS.2022.3169339.

MIN HUANG received the B.Eng. degree in elec-
trical information engineering from the Hebei Uni-
versity of Science and Technology, Shijiazhuang,
Hebei, China, in 2002, and the M.Eng. degree
in software engineering from the Beijing Institute
of Technology, Beijing, China, in 2004. He is
currently pursuing the Ph.D. degree in electri-
cal engineering with the National Key Laboratory
on Electromagnetic Environment Effects, Shiji-
azhuang. He is an Associate Professor with the

Hebei University of Science and Technology. His research interests include
machine learning, natural language processing, big data processing, and
artificial intelligence.

WEIHAO YAN is currently pursuing the master’s
degree with the Hebei University of Science and
Technology. His research interests include image
processing and machine vision.

WENHUI DAI is currently pursuing the master’s
degree with the Hebei University of Science and
Technology. His research interests include com-
puter vision and deep learning.

JINGYANG WANG received the B.Eng. degree
in computer software from Lanzhou University,
China, in 1995, and the M.Sc. degree in soft-
ware engineering from the Beijing University of
Technology, China, in 2007. He is currently a
Professor with the Hebei University of Science
and Technology, Shijiazhuang, Hebei, China. His
research interests include machine learning, deep
learning, natural language processing, and big data
processing.

VOLUME 11, 2023 113041

http://dx.doi.org/10.1109/CVPR42600.2020.01155
http://dx.doi.org/10.5555/3295222.3295349
http://dx.doi.org/10.1109/ICCV48922.2021.00986
http://dx.doi.org/10.1109/CVPR46437.2021.00681
http://dx.doi.org/10.3390/s22134953
http://dx.doi.org/10.1109/ICCVW54120.2021.00312
http://dx.doi.org/10.1109/CVPR42600.2020.01158
http://dx.doi.org/10.1109/CVPR42600.2020.01020
http://dx.doi.org/10.1109/JSTARS.2022.3169339

