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ABSTRACT The combination of drones and Intelligent Reflecting Surfaces (IRS) have emerged as potential
technologies for improving the performance of six Generation (6G) communication networks by proactively
modifying wireless communication through smart signal reflection andmanoeuvre control. By deploying the
IRS on drones, it becomes possible to improve the coverage and reliability of the communication network
while reducing energy consumption and costs. Furthermore, integrating IRS with Federated Learning
(FL) can further boost the performance of the drone network by enabling collaborative learning among
multiple drones, leading to better and more efficient decision-making and holding great promise for enabling
6G communication networks. Therefore, we present a novel framework for FL meets IRS in drones for
enabling 6G. In this framework, multiple IRS-equipped drone swarm are deployed to form a distributed
wireless network, where FL techniques are used to collaborate with the learning process and optimize the
reflection coefficients of each drone-IRS. This allows drone swarm to adapt to changing communication
environments and improve the coverage and quality of wireless communication services. Integrating FL and
IRS into drones offers several advantages over traditional wireless communication networks, including rapid
deployment in emergencies or disasters, improved coverage and quality of communication services, and
increased accessibility to remote areas. Finally, we highlight the challenges and opportunities of integrating
FL and IRS into drones for researchers interested in drone networks. We also help drive innovation in
developing 6G communication networks.

INDEX TERMS 6G, drones, drone swarm, federated learning, IoT, IRS, smart environment.

I. INTRODUCTION19

Recently, the fifth Generation (5G) addresses the significant20

rise of the Internet of Things (IoT) and users by providing21
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creative communication options. Due to the capability to 22

improve the capacity of mobile infrastructure and expand 23

coverage, drones are expected to play a vital role in enhancing 24

communication reliability of upcoming wireless networks 25

and the attainable spectral efficiency [1]. Additionally, 26

drones were essentially designed to play a crucial part in 27
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data distribution to IoT devices [2]. Drones must adopt28

cutting-edge communication paradigms to fulfil the rising29

need for high data speeds, but this is difficult given their30

size and power constraints [3]. To support six Generations31

(6G), it is very difficult to characterize system models and32

ensure strict Quality of Service (QoS) requirements in such33

complex and dynamic network environments. 6G wireless34

networks are expected to provide various services, combining35

terrestrial, aerial, and space networks for universal coverage.36

Most earlier efforts have generally concentrated on commu-37

nications between ground devices and ground Base Station38

(BS) in the context of the tiny data-packet transmission39

regime. Non-line-of-sight (NLoS) wireless networks on the40

ground can sometimes handle many mobile devices while41

upholding strict mURLLC criteria. Drone can enable several42

enormous access strategies by significantly improving Line-43

of-Sight (LoS) while guaranteeing various QoS criteria.44

The benefits of deployment capabilities and high mobility45

inspired this idea. Intelligent Reflecting Surface (IRS)46

technology-empowered drone network systems, which have47

recently been introduced to resolve these problems by48

avoiding obstructions and enhancing connection in drone49

systems [4]. According to the IRS-assisted drone design,50

IRSs are in an open network environment to facilitate51

communication between drones and smart devices or users.52

By using the IRS to enable multiple LoS connections, which53

significantly decrease channel attenuation, a blocked NLoS54

transmission channel may be addressed.55

The idea of an IRS has recently come to light as a56

disruptive technology expected to completely transformwire-57

less communications by giving wireless system engineers58

complete control over the propagation environment while the59

wireless transmission is in progress [5]. In particular, IRS60

is a surface that enables the manipulation of the impinging61

communication signals to accomplish one of the following62

goals [6]: (i) extending the coverage to a dead zone, (ii) Phys-63

ical layer security, (iii) extensive Device to Device (D2D)64

communication, and (vi) wireless data and power transfer.65

IRSs have an advantage in flexible IoT ecosystems’ energy66

efficient because they do not employ active components.67

As a result, IRS-assisted drone communications can offer IoT68

networks energy-efficient communications [1].69

Drones fly closer to the implicated battery-limited IoT70

devices to accomplish energy efficiency, which enables IoT71

devices to transmit at lower power in the uplink, eventually72

resulting in decreased energy consumption and extended73

battery lives [7], [8], [9], [10]. Additionally, the employment74

of IRS-assisted drones to increase network coverage [11] and75

channel capacity significantly reduces the number of cellular76

BS, creating greener networks, smarter, and consuming77

less energy [12]. The possible use of IRS in cellular78

communications with drones that have weak signals was79

examined [13]. In such a scenario, IRS are placed on walls80

and controlled by a Base Station (BS) to direct reflected81

signals toward drones. By coordinating the reflections,82

signal strengths are boosted for the drones, enhancing the 83

wireless communication quality. The symbol error rate and 84

outage probability of multi-layer drone-powered wireless 85

communications provided by the IRS [14]. The authors of [4] 86

examined the integration of drones and IRS by illuminating 87

the uses for IRS and the benefits of drones and outlining 88

the benefits of doing so in combination with the wireless 89

network. The drone trajectory, the transmit beamforming at 90

the BS, and the passive beamforming in IRS are jointly 91

optimized [15]. 92

A potential way to deploy over-the-air intelligent reflection 93

and increase wireless coverage is by merging IRS and drones. 94

IRS-drone integrated systems can drastically lower drone 95

energy consumption and increase operating time because 96

of the attractive benefits of passive IRS. Due to drones’ 97

relatively high heights and adaptable 3Dmobility, IRS-drone- 98

integrated systems are more likely than terrestrial IRS to 99

establish robust LoS linkages with ground equipment. Addi- 100

tionally, IRS-drone integrated systems can achieve panoramic 101

full-range reflection, considerably expanding the number of 102

mobile users supported. Compared to terrestrial IRS systems, 103

several new difficulties exist, including durability, stability, 104

and controllability. Particularly, low-complexity IRS-drone- 105

integrated 3D wireless channel models are challenging to 106

describe. Additionally, 3D IRS-drone trajectories with user 107

associations must be designed and optimized to enhance 108

system performance. Characterizing the optimization issues 109

for error-rate and delay-bounded QoS is complex due to 110

high-dimensional complexity, evolving environments, and 111

time-varying action spaces, especially when considering 112

massive access applications to support mURLLC. 113

Despite the benefits of drone communication, the com- 114

plicated terrain and surroundings may obstruct the Air- 115

to-Ground (A2G) channels. Furthermore, the information 116

security of authorized users could not be assured. IRS can 117

be used in drone-assisted A2G networks to address these 118

problems by creating a favourable propagation environment 119

and enhancing the communication quality of intended 120

users. Furthermore, by appropriately configuring the passive 121

beamforming, the IRSmay cancel out the undesired signals to 122

reduce interference and stop aggressive eavesdropping. The 123

performance of A2G networks has recently been improved 124

by experiments fusing drones and IRS [16], [17], [18], [19], 125

[21]. To be more specific, the IRS enables the expansion 126

of drone coverage, supporting a variety of QoS demands 127

from consumers. Furthermore, when mounted on a mobile 128

drone rather than a stationary structure, IRS has more 129

deployment flexibility and a larger range of signal reflection. 130

Recently, research integrating the drone with IRS [22], [23] 131

has emerged to enhance the performance of A2G networks. 132

With the aid of IRS, drone coverage may be increased, and 133

therefore, various QoS requirements of users can be met. 134

When mounted on a mobile drone, IRS has more deployment 135

flexibility and a larger range of signal reflection than when 136

put on a permanent structure. Therefore, the use of drones and 137
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IRS to enhance the performance of A2G networks is still in138

its early stages and requires more discussion, especially the139

combination of drones and IRSs with the help of advanced140

technologies and efficient techniques.141

Federated Learning (FL) is a decentralized ML paradigm142

where models are trained collaboratively across multiple143

devices or servers while keeping the raw data localized.144

FL finds applications in scenarios where data privacy,145

security, and distributed data sources are critical concerns,146

such as mobile devices, edge computing, and sectors like147

healthcare and finance. Furthermore, the authors of [24]148

created a unique framework of resource allocation and device149

selection for the FL technique by deploying numerous IRSs150

in the FL. Moreover, in [25], focused on enhancing the151

over-the-air FL (AirFL) performance while maintaining QoS152

restrictions. When an IRS facilitates the transmission from153

users to the BS in the AirFL system, [26] explored the154

model aggregation process. However, the main aim of our155

novel framework is to provide a comprehensive and novel156

approach to enhancing communication network performance157

by combining the power of FL and IRS in drone technology.158

The framework addresses the challenges and seizes the159

opportunities to deploy IRS in drones and integrate it with160

FL to enable 6G communication networks. The contributions161

of the framework can be summarized as providing a solution162

to enhance communication network coverage, capacity, and163

energy efficiency through the use of FL and IRS in drone164

technology.165

A. RELATED WORK166

1) DRONES167

Drones represent a transformative technological innova-168

tion with diverse applications across various fields. The169

drones, controlled remotely or autonomously, have gained170

prominence for their ability to traverse challenging terrains,171

collect data from inaccessible locations, and perform a wide172

range of tasks without human intervention [27], [28], [29],173

[30], [31], [32], [33], [34], [35], [36], [37], [38], [39].174

Drones come equipped with sensors, cameras, and com-175

munication capabilities, enabling them to gather real-time176

information, capture high-resolution imagery, and facilitate177

remote sensing operations. The versatility spans agriculture,178

surveillance, disaster response, environmental monitoring,179

and entertainment [40], [41], [42], [43]. UAVs offer the180

potential to revolutionize industries by providing cost-181

effective, efficient, and flexible solutions to address complex182

challenges that were previously difficult or impossible to183

tackle.184

2) IRS185

The IRS was implemented initially in drone systems [16]186

and demonstrated to increase data rate significantly; however,187

secrecy performance and power allocation should have188

been considered. The authors then presented a secrecy189

rate maximization challenge using IRS in [44], developing190

multi-antenna access points for transmit beamforming and 191

the IRS’s reflect beamforming. Furthermore, the authors 192

of [45] investigated the secrecy rate maximization issue 193

using IRS with an eavesdropper and a single receiver. 194

When the genuine receivers’ channel response was highly 195

associated with that of the eavesdroppers, the IRS was used 196

to offer extra communication lines [46]. In [47], the authors 197

examined the relevance of generated noise in IRS-aided 198

wireless communication networks. In addition, a unique deep 199

reinforcement learning-based secure beamforming technique 200

is provided for the first time in IRS-aided wireless secure 201

communication to obtain the best beamforming policy against 202

eavesdroppers [48]. The first flying IRS was suggested to 203

protect the terrestrial transmission in the availability of an 204

eavesdropper [18], with the IRS phases, user association, tra- 205

jectory, and transmit power all optimized together. However, 206

direct communications between the BS and the users were 207

believed to be prevented. Motivated by the advantages of 208

both the drone and the IRS, the authors of [49] proposed a 209

secure IRS-aided drone to support wireless communication 210

situations such as concerts where large crowds and heavy 211

communication traffic are required temporarily. 212

3) IRS IN DRONE 213

The combination of drones with IRS for sky reflection was 214

researched in [16] and [50]. These pieces may generally 215

be divided into two groups. Terrestrial IRS-assisted drone 216

communications are one, while drone IRS-assisted com- 217

munications are the other [16], [22], [51]. To increase the 218

average attainable rate for the ground user, a hybrid drone 219

trajectory and terrestrial IRS passive beamforming design 220

were examined in [16]. By concurrently designing the drone 221

movement, the terrestrial IRS phase shift, and the power 222

allocation strategy, the authors in [51] used the decaying deep 223

Q-network to reduce the energy consumption of ground users. 224

Using passive beamforming at the terrestrial IRS, a drone was 225

developed to aid the terrestrial IRS in reflecting its signals to 226

the BS and improve drone transmission [22]. 227

The transmitter and receiver are on the ground for 228

combining drone and IRS-assisted communications, resulting 229

in A2G channels. Additionally, the drone and IRS location 230

combination defines array response in the LoS passive signal 231

reflections. The combination of drones and IRS was used 232

to increase the worst-case signal-to-noise ratio in a given 233

region [52]. However, the authors did not consider A2G LoS 234

linkages. Neglected were the NLoS connections affected by 235

the combination of drone and IRS location. Furthermore, only 236

single-user beamforming was considered when the worst- 237

case SNR was maximized. Maximizing the drone trajectory 238

and the combination of drone and IRS phase shift, transmit 239

power, and user association motivated the authors of [53] to 240

explore secure up-link communications with the combination 241

of drone and IRS assistance. TheNLoSA2G links and several 242

antennae at the BS were ignored, and the combination of 243

drone and IRS height was fixed [53]. 244

130862 VOLUME 11, 2023



A. V. Shvetsov et al.: FL Meets IRS in Drones for Enabling 6G Networks: Challenges and Opportunities

Due to the considerable far-field double route loss (i.e.,245

the attenuation or loss of a wireless signal’s strength as it246

travels over a long distance through two distinct propagation247

paths), the combination of drone and IRS placement design248

is essential for the combination of drone and IRS-assisted249

communications [54]. In [52], the optimal LoS A2G route250

was presumed, and the deployment of a combination of251

drones and IRS was considered. The combination of drone252

and IRS placement between destination nodes and the fixed253

source was the main emphasis [50]. However, the random254

geographical distribution of users must be considered while255

evaluating performance. Notably, single drone networks256

focused on previous efforts that combined drones with IRS.257

The numerous drone-enabled combinations of drone and IRS258

systems need to be looked into since the swarm network of259

drones they generate makes passive signal reflections more260

effective at increasing aperture gain. References [55] and [56]261

regarded as relay BSs for multi-drone 3D deployment, with262

the Point-to-Point (P2P) signal transmissions occurring over263

the G2A or A2G channels. However, transmissions encounter264

cascading G2A and A2G channels when drones are outfitted265

with IRS to reflect signals.266

4) FL MEETS IRS IN DRONE267

The combination of FL and IRS has been used in several268

previous works, including [57] and [58]. By carefully269

choosing users and allocating resources, the developers of270

[57] reduced the FL loss function and established an explicit271

link between packet error rate and FL performance. Ni et272

al. [58] created a unique resource allocation framework and273

selected a smart device for the FL system by deploying274

numerous IRSs in the FL system.275

B. MOTIVATION AND CONTRIBUTIONS276

Integrating FL and IRS in drones can support the demands277

of emerging applications in the next generation of wireless278

communication, such as autonomous drones, aerial pho-279

tography and delivery services, environmental monitoring,280

disaster response, and infrastructure inspection. These are281

just a few examples of the potential applications of FL and282

IRS for drones. Integrating these technologies can bring new283

capabilities and opportunities to drones’ next generation of284

wireless communication. The integration of FL and IRS in285

drones is motivated by the need to improve communication286

performance, security, and efficiency in the next generation287

of wireless communication for drones.288

The motivation behind combining FL and IRS in drones289

to enable 6G networks is to address some critical challenges290

and opportunities in the next generation of wireless com-291

munication for drones. With the increasing use of drones292

for various applications, there is a growing demand for new293

solutions to handle the increasing traffic and improve com-294

munication performance. FL and the IRS have the potential295

to address these challenges by providing a decentralized and296

efficient way of training Machine Learning (ML) models297

and dynamically controlling the wireless environment for 298

drones. By combining FL and IRS for drones, 6G networks 299

can leverage the benefits of both technologies to create a 300

more intelligent and efficient communication infrastructure 301

for drones. Using FL can allow for the decentralized and 302

distributed training of ML models, taking advantage of the 303

large and diverse data generated by drones in the network. 304

In addition, the use of IRS can improve communication 305

performance and security by dynamically controlling the 306

wireless environment and reducing interference. In this 307

framework, we introduce FL meets IRS in drones to enable 308

6G networks and discuss the state-of-the-art research and 309

development in this area. In addition, we summarize the 310

current work and identify the key challenges, opportunities, 311

and future directions for this integration. The contributions of 312

the summaries are as follows: 313

1) We provide an overview of the current status of the 314

research and development of FL and IRS in drones 315

for enabling 6G networks. The combination of FL and 316

IRS in drone technology to enhance 6G communication 317

networks is highlighted. Then, we identify the key 318

technical and implementation issues that must be 319

addressed to deploy the framework and achieve its 320

potential benefits successfully. 321

2) We introduce a novel framework that can overcome 322

the challenges of combining FL and IRS in drones to 323

enable 6G networks, providing insights into the design 324

and development of FL and IRS integration in drones. 325

3) We identify the critical challenges, opportunities and 326

future trends in integrating FL and IRS in drones for 327

enabling 6G networks. 328

C. PAPER STRUCTURE 329

The paper structure is shown as shown in Fig.1. The rest 330

of the paper is organised as follows. Section II discusses 331

the preliminaries, while Section III introduces IRS-Drones. 332

Section IV presents a framework for FL meets IRS in drones 333

to support 6G. Section V addresses the challenges and future 334

trends. Finally, the conclusion of this paper is given in 335

Section VI. 336

II. PRELIMINARIES 337

A. 6G 338

6G is the sixth generation of wireless communication 339

technology expected to succeed in the current 5G networks. 340

It is envisioned as a transformative technology that will 341

revolutionize the way we communicate and interact with 342

technology. 6G networks are expected to be faster, more 343

efficient, and more reliable than the existing wireless 344

networks, with the ability to support many devices and 345

applications. Some of the key features and capabilities that 346

are expected to define 6G networks include higher data rates, 347

ultra-low latency, greater energy efficiency, higher spectrum 348

efficiency, improved security and privacy, and the ability to 349

VOLUME 11, 2023 130863



A. V. Shvetsov et al.: FL Meets IRS in Drones for Enabling 6G Networks: Challenges and Opportunities

support new emerging applications and technologies such as350

augmented reality, virtual reality, and the IoT [59].351

One of the main challenges in developing 6G networks352

is the need for a new wireless spectrum that can support353

the high-speed and high-frequency transmissions required354

by 6G networks. Another challenge is the need for new355

and innovative network architectures and technologies to356

support the massive amounts of data and traffic generated357

by 6G devices and applications. Despite these challenges,358

the potential benefits of 6G are immense, and it is expected359

to drive innovation and growth in various industries such as360

healthcare, transportation, manufacturing, and entertainment.361

However, the development of 6G networks is still in its early362

stages, and it is expected to take several years before the363

technology is commercially available.364

B. FL365

FL is a relatively new ML paradigm that allows multiple366

parties to train a model collaboratively without sharing their367

data. The basic mechanism of FL involves the distribution368

of the ML model to multiple devices or clients, each of369

which trains the model using its local data. The model370

updates are then sent to a central server for aggregation,371

and the aggregated model is sent back to the devices for372

further training. This process is repeated multiple times373

until the model achieves the desired accuracy. The pros of374

FL include improved data privacy and security since the375

data never leaves the device, the ability to train models376

on decentralized data, and the potential for faster training377

times since the data does not need to be transmitted to a378

central server. However, the cons of FL include increased379

complexity in model optimization, potential communication380

latency and bandwidth limitations, and the need for careful381

design and implementation to ensure privacy and security.382

Table 1 illustrates the cons and pros of FL based on different383

parameters.384

1) LOCAL MODEL TRAINING385

The local model training step can involve using gradient-386

based optimization algorithms, such as Stochastic Gradient387

Descent (SGD) or its variants.388

2) GRADIENT COMPUTATION 389

For a model with weightsW and biases &b&, the gradient of 390

the loss function L with respect toW and b can be computed 391

as: 392

∇L(W , b) =
∂L
∂W

,
∂L
∂b

(1) 393

This equation represents the gradient of the loss function 394

L concerning the weights W and biases b of a model. The 395

notation ∂L/∂W and ∂L/∂b indicate the partial derivatives 396

of the loss function concerningW and b, respectively. 397

3) WEIGHT AND BIAS UPDATES 398

The weights and biases can be updated using the computed 399

gradients: 400

W ′
= W − η∇L(W , b) (2) 401

b′
= b− η∇L(W , b) (3) 402

where η is the learning rate that controls the step size of the 403

updates, and ∇L(W , b) is the gradient of the loss function L 404

with respect toW and b. 405

4) FL AGGREGATION 406

The FL aggregation process can involve weighted averaging 407

or other aggregation techniques, which can be represented 408

mathematically. 409

5) WEIGHTED AVERAGING 410

For the model updates received from each drone, the global 411

model can be computed as a weighted average of the local 412

model updates, where the weights represent the contribution 413

of each local model update: 414

Globalmodel =

N∑
i
(wi ∗ Localmodeli )

N∑
i
wi

(4) 415

where wi represents the weight assigned to the i-th local 416

model update, which is determined based on various factors 417

such as the performance or reliability of the local model. 418

FIGURE 1. Paper structure.
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TABLE 1. Cons and pros of FL for support framework.

6) REFLECTION COEFFICIENT OPTIMIZATION419

The reflection coefficient optimization can involve mathe-420

matical optimization techniques, such as convex optimization421

or heuristic algorithms, depending on the specific approach422

used in the proposed framework.423

C. IRS424

Intelligent Reflecting Surfaces (IRS) are a new and innovative425

technology being actively researched and developed for426

future wireless communication systems. An IRS consists427

of many passive reflecting elements, each of which can be428

controlled individually to manipulate the wireless signal that429

passes through it. By adjusting the phase and amplitude of430

the reflected signal, an IRS can enhance signal strength,431

improve signal quality, and reduce interference and noise.432

IRS technology has several advantages over traditional433

wireless communication technologies. First, it is much more434

energy-efficient, as it only requires passive elements to435

manipulate the signal. Second, it can provide higher data436

rates and improved coverage, especially in environments with437

obstacles and interference. Third, it can be easily integrated438

into existing wireless communication systems and coexist439

with other wireless technologies.440

IRS technology has many potential applications, including441

indoor and outdoor wireless communication, Internet of442

Things (IoT) networks, 5G and beyond 5G cellular networks,443

and satellite communication systems. IRS can also be used444

in conjunction with other technologies, such as drones and445

artificial intelligence, to enhance the performance of wireless446

communication systems further. Despite its many advantages,447

some challenges still need to be addressed before the IRS448

can be fully integrated into wireless communication systems.449

These challenges include the design and optimization of IRS450

structures, the development of efficient control algorithms,451

and the development of cost-effective and scalable manufac-452

turing processes.453

D. FL MEETS IRS454

Integrating IRS and FL involves combining the benefits of455

both technologies to improve the efficiency and effectiveness456

of wireless communications and machine learning. There are 457

several critical steps involved in this integration: 458

Incorporating IRS into the wireless communication 459

system: The first step is to incorporate IRS into the 460

wireless communication system by placing the reflecting 461

surfaces strategically to optimize signal strength and reduce 462

interference [60], [61]. Therefore, it involves modelling the 463

wireless propagation environment and using optimization 464

algorithms to determine the optimal placement of the 465

reflecting surfaces. 466

Using FL to train the ML models: The second step 467

is to use FL to train ML models that can optimize 468

the use of the wireless communication system. This can 469

involve distributing the training process across multiple 470

devices and aggregating the results to create a global model 471

that can be used to optimize the wireless communication 472

system. 473

Combining the IRS and FL components: The final step 474

is to combine the IRS and FL components to optimize the 475

wireless communication system using ML models. This can 476

involve using the global model to control the phase shifts of 477

the reflecting surfaces to optimize signal strength and reduce 478

interference. The ML models can also optimize allocating 479

resources such as bandwidth and power to different users 480

based on their specific needs. 481

Summary: The Integrating IRS and FL improve wire- 482

less communication systems’ efficiency and effective- 483

ness by optimizing resource use and reducing interfer- 484

ence. The combination of these technologies can also 485

enable new applications such as smart transportation sys- 486

tems, remote healthcare, and industrial automation. How- 487

ever, careful consideration must be given to data privacy 488

and security issues to ensure this integration’s benefits 489

are realized without compromising individual rights and 490

freedoms. 491

Figure 2 shows the steps involved in the FL algorithm for 492

optimizing reflection coefficients, including data collection 493

from the communication environment, local model training at 494

each IRS, local model updates, FL aggregation, global model 495

update, and model distribution. 496
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FIGURE 2. FL algorithm for optimizing reflection coefficients.

E. FL IN UAV-ENABLED NETWORKS497

FL in UAV-enabled networks involves multiple UAVs498

collaboratively improving machine learning models while499

keeping data local [62], [63]. Each UAV collects data from500

its environment and trains its model on the device. Instead of501

sharing raw data, UAVs transmit model updates to a central502

coordinator, aggregating these updates to create an improved503

global model. The model is then returned to UAVs for504

integration into their local models. The approach preserves505

data privacy, reduces communication overhead, and adapts506

to diverse environments, aligning well with UAV networks’507

distributed nature and limited communication capabilities.508

Compared to traditional centralized learning, FL offers509

distinct advantages. It safeguards sensitive data by avoiding510

data transmission and ensuring privacy. Communication511

efficiency is enhanced since only model updates are shared,512

reducing bandwidth demands. The decentralized nature513

improves resilience and scalability, accommodating the514

dynamic UAV network. Moreover, FL allows UAVs to adapt515

models locally to context-specific conditions, resulting in516

more accurate insights. The energy-efficient approach caters517

to UAVs’ limited power resources and facilitates real-time518

decision-making. Table.2 provides a simplified comparison519

Algorithm 1 Processing Flowchart
1 : Initialization: The ensemble process initialises the IRS
reflection coefficients to a random value and the global model
weights to zero.
2 : Local model training: Each drone in the swarm trains a
local model on its data using FL. The local model is updated
using the gradient descent algorithm with the learning rate.
The loss function used for optimization is a weighted average
of the mean squared error (MSE) of each drone’s data, with
weights determined by their performance or reliability.
3 : Model aggregation: The local models are sent to
the central controller, aggregating them using a weighted
average. The weights assigned to each local model are
determined by their performance or reliability.
4 : IRS reflection coefficient optimization: The central
controller then uses the aggregated model to optimize the
IRS reflection coefficients. This is done by minimizing the
loss function using the gradient descent algorithm with the
learning rate.
5 : Global model update: The central controller updates the
global model weights using the aggregated local models and
the optimized IRS reflection coefficients. This is done using
the formula

W ′
= W − ∗L(W ), (5)

where W is the global model weights and L(W ), is the
gradient of the loss function concerningW .
6 : Repeat: The ensemble process is repeated for multiple
iterations until convergence is achieved.

comparison table between FL and traditional centralized 520

learning in the context of UAV-enabled networks 521

1) WILDLIFE CONSERVATION AND MONITORING 522

UAVs equipped with cameras and sensors can be deployed 523

to monitor wildlife habitats. Each UAV collects data on 524

animal behavior, habitat conditions, and ecological changes. 525

Federated Learning enables UAVs to collaboratively train 526

models to identify animal species, track migration patterns, 527

and detect unusual behavior without sharing sensitive loca- 528

tion data. This approach ensures data privacy, as raw images 529

and locations remain localized while contributing to a global 530

model that improves species protection and conservation 531

efforts. 532

2) DISASTER RESPONSE AND RECOVERY 533

In disaster-stricken areas, UAVs can rapidly assess dam- 534

ages and identify survivors. Federated Learning empowers 535

UAVs to develop models for damage detection, survivor 536

identification, and emergency resource allocation. Each 537

UAV processes images and sensor data locally to enhance 538

situational awareness while respecting individuals’ privacy. 539

These models can quickly adapt to changing conditions and 540
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TABLE 2. Comparison between FL and traditional centralized learning in the context of UAV-enabled networks.

improve disaster response efficiency by facilitating accurate541

decision-making without centralized data accumulation.542

3) PRECISION AGRICULTURE543

UAVs play a vital role in precision agriculture by monitoring544

crop health, irrigation needs, and pest infestations. Federated545

Learning enables UAVs to train models that provide real-time546

insights to farmers. Each UAV collects data on crop547

conditions and environmental factors, allowing models to548

optimize irrigation, pest control, and crop yields. Privacy is549

preserved since raw data, such as field images, remains on550

UAVs, ensuring sensitive farming practices stay confidential.551

4) TRAFFIC MONITORING AND CONTROL552

UAVs can manage traffic by monitoring road conditions,553

congestion, and accidents. Federated Learning allows UAVs554

to developmodels that predict traffic patterns, optimize traffic555

flow, and detect road hazards. Each UAV gathers traffic data556

from its vantage point while avoiding data centralization. This557

approach enhances urban mobility while addressing privacy558

and data security concerns.559

5) ENVIRONMENTAL SURVEILLANCE560

UAVs are essential for monitoring environmental changes561

such as pollution, deforestation, and climate-related events.562

Federated Learning enables UAVs to build models that563

analyze air quality, vegetation health, and natural disaster564

impacts. Each UAV gathers data specific to its loca-565

tion, contributing to global insights while preserving data566

confidentiality. This approach enhances our understanding567

of environmental trends without compromising sensitive568

geographic information.569

III. IRS-DRONES570

IRS and drones are two emerging technologies that have571

gained significant attention recently. For example, IRS572

is a passive and intelligent radio environment that can573

manipulate radio waves through many low-cost, low-power,574

and controllable phase shifters. On the other hand, drones can575

fly autonomously or be remotely controlled. Integrating IRS576

and drones presents a promising solution for various com-577

munication and networking applications, such as enhancing578

network coverage [64], increasing network capacity [64], 579

and reducing energy consumption [65], [66]. In particular, 580

the deployment of IRS in drones can allow on-demand radio 581

environment control and dynamic adjustments to commu- 582

nication links, leading to improved network performance. 583

Additionally, by integrating IRS into drone technology, it is 584

possible to increase the network coverage area and provide 585

communication support to remote or difficult-to-reach areas. 586

The IRS-drone integration represents a novel approach to 587

enhancing communication networks and is expected to 588

impact the development of 6G communication networks 589

significantly. 590

A smart IRS may be able to intellectually manipulate 591

the FL-aware IRS Task Scheduling (FL-IRSTS) approach 592

to extend flag concentration attained at the objective [67]. 593

This is frequently contrasted to earlier practices that improved 594

distant communications by modifying the recipient or sender. 595

An IRS is composed of many IRS, each of which is 596

capable of speaking to the occurrence flag at various points. 597

In IRS-assisted communications, the remote connection 598

from the source to the IRS optimized the objective. Such 599

a communication strategy is invaluable when there is no 600

clear LoS between the origin and destination or a weak 601

distant channel due to borders or poor natural circumstances 602

[68].Many experts in remote communications anticipate that 603

the IRS will significantly enhance 6G systems by effectively 604

tailoring remote communication scenarios. 605

The IRS is known as metasurfaces [6] and is an emerging 606

technology that can help wireless data transmission networks 607

work more efficiently. IRS’ major goal is to increase the 608

quality of wireless communications by raising their total 609

energy by managing the propagation medium. Because of 610

its tremendous influence on energy and spectral efficiency, 611

IRS technology is predicted to play a vital role in enhancing 612

6G networks. The IRS consists of passive antenna elements 613

capable of adjusting the phase of wireless signals before 614

reflecting them to the intended targets. To optimize trans- 615

mission efficiency, multiple reflectors are employed for a 616

given target, each with chosen phase shifts that align the 617

reflected signals coherently in the channel. The wireless 618

signal propagation environment is intentionally altered by 619

manipulating numerous small reflecting elements, making 620

IRS a potential candidate for improving diverse aspects 621
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of forthcoming wireless communication. While individual622

nodes within the IRS gain empowerment, the central node’s623

involvement remains vital for decision-making and data624

learning during the IRS process. IRS is a new reflecting625

radio technology that has gotten much buzz recently [69].626

Furthermore, IRS has a 2D artificial structure such as an627

array of reflective elements that can be strategically con-628

figured to control signal propagation and enhance wireless629

communication, withmany passive reflective elements whose630

electromagnetic properties, such as reflection, scattering, and631

refraction, can be controlled electronically and independently632

in real-time by applying various control signals.633

The reflected signal’s direction may be precisely regu-634

lated for a particular receiver [70], allowing for a fully635

programmable radio environment. The ability to program636

the radio space in such a way has enormous potential637

for wireless networks. For example, IRS can enhance the638

received SNR and improve the throughput and coverage of639

wireless communication networks by reflecting signals from640

a transmitter (TX) to the receiver (TR) [71]. Furthermore,641

the SNR improves significantly, allowing high modulation642

orders to be used to enhance spectral efficiency. Holographic643

MIMO surfaces, which may shape electromagnetic waves to644

meet specific goals, has recently received a lot of interest [72].645

Similarly, by regulating the propagation of radio waves in a646

specified region of interest, IRS may be used to cancel or647

decrease hazardous wireless interference [73]. The authors648

of [74] consider merging IRS with Simultaneous Wireless649

Information and Power Transmission (SWIPT). In [75], the650

authors proposed a solution for joint optimization issues to651

adjust transmit and reflection beamforming to achieve the652

minimal weighted received signal strength to interference653

plus noise ratio at users with transmit power limits. IRS654

is utilized in [76] to improve the coverage of network by655

using multi-hop transmission with numerous IRS panels656

and deep reinforcement learning to create the beamforming657

matrices.658

IRS may change the amplitude and phase of incident659

signals using many low-cost passive reflecting pieces,660

making it a viable technology for reconfiguring propagation661

conditions and improving network performance [6]. IRS662

consumes significantly less energy than current systems663

like active relay and backscattering communication, and it664

can be installed on building facades, walls, and ceilings.665

IRS has recently been studied in terrestrial networks to666

improve energy efficiency, capacity, and security [44], [77],667

and [78]. The phase shifts of reflecting components can668

be adjusted in conjunction with the transmission control of669

transceivers in various network configurations to achieve670

various communication goals. IRS has recently been touted671

as a possible method for quicker and more reliable data672

transfer [79]. In the last few months, a slew of novel research673

has been committed to the IRS due to its controllability,674

energy efficiency, and environmental adaptability. Three675

more features of the IRS are critical to implementing the676

utilities mentioned above and their widespread deployment.677

First, IRS comprises energy-efficient, cost-effective passive 678

devices such as printed dipoles [78]. Second, IRS can bemade 679

in a high-density configuration [80]. Third, the IRS may be 680

controlled electronically with a rapid switching rate between 681

states, allowing real-time reconfiguration of reflected waves. 682

A. IRS-ENABLE DRONE 683

The use of IRS is a potential technique for 6G networks. The 684

IRS’s cutting-edge technology controls wireless propagation 685

and directs the signal in a specific direction using passive 686

reflecting components. To improve spectrum efficiency, some 687

contemporary literary works have suggested fitting drones 688

with IRSs and using the IRS to reflect the signal in the 689

direction of drones flying BSs. However, Figure 3 depicts 690

these two various IRS-drone coupling scenarios: (i) drones 691

for IRSs, where the drones carrying the reflective surfaces 692

can function as a passive relay in both downlink and uplink 693

communications between ground users and terrestrial BSs, 694

and (ii) IRSs for drones, where IRS-equipped buildings aid 695

the drone’s communication. 696

FIGURE 3. Empowering Drone Communication Networks with Drone-IRS
and IRS-Enhanced Infrastructure.

The authors of [18] presented an effective deployment of 697

IRS-equipped drones to service a mobile user who does not 698

reach LoS with the BS in supporting mmWave technology. 699

IRS collects energy from the drone and reflects mmWave 700

signals. The deep Q network is utilized to define the location 701

of the drone, and the IRS reflecting parameters to maximize 702

the capacity of the downlink. The same authors discussed 703

using IRS-equipped drones for numerous users to get through 704

the bottleneck caused by the buildings [18]. The position 705

of the drone, the BS precoding matrix, and the reflection 706

parameters are optimized using distributional reinforcement 707

learning. In contrast to [18], the study [51] focused on 708

reducing drone energy usage rather than considering energy 709

harvesting. The position, IRS phase shift, and power dis- 710

tribution to mobile users are all optimized in the research 711

on increasing drone-IRS’s service quality. In addition, 712

a non-orthogonal multiple access approach is employed to 713

increase downlink communication efficiency. Compared to 714
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the traditional Q-learning technique, the degrading deep Q715

network converges and prevents oscillations when used to716

alter the drone’s location dynamically.717

The authors of [82] investigated the application of the718

drone-IR as a passive relay for transmitting smart devices719

to BS from the viewpoint of uplink. To reduce the average720

age of the information, deep reinforcement learning is used721

to optimize the location of the drone-IRS, the transmission722

timing, and the phase shift. In contrast to theworksmentioned723

above, which focus on IRS-equipped drones, the authors724

of [83] discussed how a drone-IRS is positioned on the725

top of nearby buildings to enhance the channel condition726

between the drone and multiple users. Drone trajectory, data727

throughput, and IRS phase changes are just a few of the728

variables optimized in this arrangement. The findings showed729

two distinct types of solutions for the reinforcement learning730

technique: (i) a continuous action space utilizing the deep731

deterministic policy gradient (DDPG) technique and (i) a732

discrete action space based on a deep Q network.733

Summary: By integrating IRS into drones, the quality of734

the drone and other network nodes can be improved, leading735

to better connectivity and more reliable communication. For736

example, IRS can be used to mitigate the impact of obstacles737

and reflections, providing clear line-of-sight communication738

between the drone and the other nodes, reducing communi-739

cation latency, and increasing the communication data rate.740

IRS can also be used to offload computation tasks from the741

drone to the edge devices, reducing the computation load742

on the drone and extending its battery life. This enables the743

drone to perform more computation-intensive tasks like real-744

time data analysis and decision-making. Additionally, IRS745

can enhance the security of the drone network by providing746

a secure communication channel between the drone and the747

other nodes. IRS dynamically controls the reflection of the748

signals, enabling the secure transmission of sensitive data749

without being intercepted by unauthorized nodes. IRS enable750

drones to achieve enhanced communication and computation751

capabilities, improving connectivity, reliability, security, and752

performance. Integrating IRS into drones is a promising753

direction for future drone networks, enabling more advanced754

and efficient drone applications.755

B. HARNESSING IRS FOR ENHANCED DRONE756

COMMUNICATION NETWORK757

IRS installations are not confined to indoor and outdoor758

contexts, but when placed over drones for wireless coverage759

extension, they considerably boost capacity. IRS-integrated760

drone-based wireless networks have two types of IRSs: (a)761

IRS for drone-enabled data communication, where drones762

gather data from scattered nodes, and (b) IRS for drone-aided763

ubiquitous coverage, where IRSs are installed in drone764

networks to increase ubiquitous coverage area, (c) IRS for765

information transfer and energy in SWIPT networks with766

drones, (d) IRSs can be placed near customers as a gateway767

to boost backhaul capacity in cases when drones cannot768

be deployed near consumers owing to insufficient wireless 769

capacity, (e) IRS for drone-aided secrecy communication, 770

here the IRS may be used to improve security in the 771

drone by weakening eavesdropper communication channels, 772

and (f) IRS for cellular-connected in drone communication 773

networks, where IRS passive beamforming may be improved 774

to enhance drone communication downlink and uplink 775

[64]. However, drone communications may be blocked and 776

eavesdropped because of the enormous hurdles and high 777

node mobility in a wireless network. In this regard, IRS 778

installations can improve the performance of future non- 779

terrestrial networks by creating a favourable and controlled 780

wireless environment by managing drones’ trajectory. 781

The IRS mounted on buildings can help the drone-based 782

integrated A2G network, where the drone trajectory can be 783

tuned and combined with passive and active beamforming 784

to increase the secrecy rate. The main problem, however, 785

is optimizing the drone’s trajectory in conjunction with the 786

IRS passive beamforming. The IRS components’ location is 787

a significant aspect of enhancing reflection efficiency. Thus, 788

it must be determined appropriately [4]. Multiple drones are 789

used in recent research [84] to plan the IRS deployment to 790

optimize the average attainable rate. The authors of [19] used 791

a downlink NOMA to optimize the position of the drone-IRSs 792

to increase the user rate while keeping the weak user rate 793

constant. Optimizing the received power at the user is defined 794

by maximizing active beamforming at the drone, passive 795

beamforming at the IRSs, and the drone’s trajectory during 796

a certain flight period. The authors developed a semi-definite 797

relaxation iterative technique to improve the IRS phase shifts 798

and transmit beamforming. 799

Drone-IRS trajectory optimization with passive beam- 800

forming to maximize capacity is one of the most critical 801

design elements for IRS deployment. However, the two 802

biggest hurdles to optimizing the drone’s trajectories are 803

low power consumption and consistent user communication. 804

To overcome the problem, the authors of [16] propose 805

using IRSs to improve the signal quality of communication 806

between a drone and its users. In addition, the authors of 807

[85] investigated IRS deployment for achieving high gains 808

from the drone-IRS arrangement for user connections. The 809

findings showed that the IRS-assisted cellular system might 810

significantly enhance SINR throughout the area where drone 811

trajectory can be adjusted [13], [14]. Moreover, the authors 812

of [18] presented the influence of phase compensation error 813

on the IRS ergodic capacity aided by drone communications. 814

As a result, successful IRS deployment in the non-terrestrial 815

network can assist in enhancing connection quality and offer 816

flexibility in A2G networks. 817

Summary: IRS deployment in drones involves integrating 818

IRS components into the drone’s hardware and software 819

architecture. The deployment process consists of design, 820

implementation, and testing. The deployment of IRS in 821

drones is a complex process that requires a comprehensive 822

understanding of the IRS technology, the drone hardware 823

and software architecture, and the communication and 824
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computation requirements. The deployment process can be825

optimized using advanced design tools, simulation platforms,826

and testing frameworks, enabling IRS’s efficient and effective827

drone integration. The deployment of IRS in drones involves828

integrating IRS components into the drone architecture,829

facilitating enhanced communication and computation capa-830

bilities. The deployment process requires a comprehensive831

understanding of IRS technology, drone architecture, and832

advanced design and testing tools.833

C. DRONE-IRS FOR COMMUNICATION834

A novel network architecture, drone-IRS, was developed to835

expand the service region [86], where the IRS is installed on836

a drone to implement over-the-drone IRS. Due to the com-837

paratively higher altitude of the drone, drone-IRS is likely to838

establish more robust LoS linkages with the ground nodes839

than terrestrial IRS, minimizing the likelihood of blockage.840

Drone-IRS can achieve 360 panoramic full-range reflections,841

i.e., one drone IRSmay help communicate between any nodes842

within the coverage area, considerably boosting the number843

of serviceable users. Furthermore, the drone-IRS coverage844

area can be expanded further by utilizing its high mobility845

to move closer to multiple area-separated users sequentially846

to enhance their communication performance by utilizing847

short-range LoS channels and minimizing the IRS-reflected848

link product distance. On the other hand, terrestrial IRS849

can improve drone-ground communication performance by850

reducing signal reflections [13], [16].851

The literature has also looked at the integration of the852

IRS with drones. For example, Lu et al. [86] recommended853

that terrestrial users be served by flying platforms such854

as balloons or drones outfitted with IRS. Because of the855

capacity to reposition the IRS to maximize specific system856

characteristics, such as maximizing the SNR, the reported857

findings indicate that flying the IRS has an additional degree858

of freedom. Furthermore, it is demonstrated that, as compared859

to terrestrial IRS, flying IRS requires fewer parts to produce860

a given benefit. The IRS was utilized to guide the drone’s861

signal to boost its received signal intensity [13]. The results862

demonstrate that by optimizing the IRS position and phase of863

the reflected signals, considerable signal enhancement may864

be achieved with a limited number of reflectors. A system865

in which a single drone broadcasts to numerous terrestrial866

IRS was investigated [23]. The research focused on the best867

beamforming architecture for the drone, IRS, and trajectory868

to optimize the received power for ground users. The authors869

of [21] introduced the downlink of a multi-antenna BS using870

an IRS-drone platform to connect with a single antenna user.871

The work assesses the IRS’s ability to maximize the872

system’s total energy efficiency by beamforming the opti-873

mization vector at BS and the IRS’s phase shift matrix.874

Many optimisation strategies are used under the premise875

of efficient channel state information. Several additional876

publications have looked at using an integrated IRS-drone to877

reduce transmitting power, increase SNR, improve spectral878

efficiency, or increase the sum rate [16], [50], [87], [88]. 879

However, they did not consider the risk of a mistake or 880

outage or the consequence of an inadequate phase estimate 881

and control method. The capability of IRS-based drone 882

communications with unsatisfactory phase adjustment is 883

assessed [77]. 884

The IRS technology offers a promising yet low-cost 885

solution to this problem since it can simulate significant 886

MIMO gain with active antennas [89]. Therefore, single- 887

antenna drone-assisted communications have received a lot of 888

research [90], [91]. Nonetheless, by intelligently modifying 889

its reflection coefficients, an IRS may provide a high passive 890

beamforming gain without needing many antennas on a 891

drone. As a result, one of the critical reasons for this effort 892

is to ‘‘recycle’’ some of the dissipated signals by reflecting 893

them on the targeted consumers. IRS in drone-enabled 894

communication systems can increase the freedom to design 895

a drone’s trajectory. For example, if a user is far from the 896

drone but near an IRS, the drone does not need to change 897

trajectory and fly close to the end user to establish strong 898

communication linkages, which takes energy and time in 899

consideration. Instead, an IRS can work with the drone to 900

conduct beamforming on the reflected signals to boost the 901

received signal strength at the remote ground user, allowing 902

for reasonable data throughput. 903

Incorporating an IRS into drone-enabled communication 904

systems presents possibilities and problems in determining its 905

combined trajectory and resource allocation. The composite 906

channel power gain combining the direct link from the drone 907

to ground users and the reflected link through the IRS is 908

a complex function of the drone’s trajectory because of 909

the IRS. Furthermore, properly scheduling users for IRS 910

assistance is still unclear, and it is worth our time to 911

investigate. Finally, because broadband communications are 912

widely used in today’s cellular networks, the reflected path 913

of IRS results in a frequency- and spatial-selective fading 914

channel, posing a significant challenge for drone trajectory 915

design that has previously been overlooked by works based 916

on frequency-flat channel models [91], [92], [93]. Although 917

[94] developed amulti-carrier channelmodel for IRS-assisted 918

communications, it is irrelevant to drone communication 919

systems since it ignores the drone’s mobility. The authors 920

of [18] outfitted a drone with an IRS to increase the 921

dependability of terrestrial millimetre-wave communication 922

networks. An RL strategy was used to optimize the location 923

of a drone and the IRS reflection coefficients to maximize the 924

system sum rate. 925

Summary: Drones integrated with IRS can significantly 926

enhance communication capabilities compared to traditional 927

drone networks. IRS are smart surfaces that can dynamically 928

control the reflection of radio frequency (RF) signals, 929

enabling the manipulation of the propagation environment 930

and improving communication quality. By integrating IRS 931

into drones, the communication quality between the drone 932

and other network nodes can be improved, leading to better 933

connectivity and more reliable communication. Additionally, 934

130870 VOLUME 11, 2023



A. V. Shvetsov et al.: FL Meets IRS in Drones for Enabling 6G Networks: Challenges and Opportunities

the IRS can enhance the security of the drone-IRS com-935

munication network by providing a secure communication936

channel between the drone and the other nodes. IRS can937

dynamically control the reflection of the signals, enabling938

the secure transmission of sensitive data without being939

intercepted by unauthorized nodes. As a result, drone-940

IRS communication networks can significantly enhance941

communication capabilities, providing better connectivity,942

reliability, security, and performance. Integrating IRS into943

drones is a promising direction for future drone networks,944

enabling more advanced and efficient drone applications.945

D. APPLICATIONS OF IRS-DRONE946

Combining IRSs and drones can be advantageous in various947

communications and networking applications. This section948

discusses how combining both technologies may affect949

coverage, interference, security, and SWIPT.950

1) COVERAGE951

A drone offers this capacity by carrying the Intelligent Omni952

Surface (IOS) below it and flying at an appropriate altitude953

to produce reflecting RF surfaces when necessary. IRS-954

assisted drone technology increases the range of incident955

signal SNR at the periphery of a BS coverage area. As shown956

in Figure 4, the initial cell coverage is effectively extended957

in the required direction by optimizing the drone trajectory958

and phase shift vectors to reach the intended end users,959

whether static or mobile. Mahmoud et al. [95] introduced the960

use of IRS in drone-powered communications networks to961

increase coverage and boost dependability regarding spectral962

efficiency while considering the IoT paradigm. The research963

investigated the ergodic capacity and outage probability after964

first deriving tractable analytical formulations.965

FIGURE 4. Drone-IRS coverage areas.

The deployment of IRS on drones can significantly966

enhance the coverage of wireless communication networks.967

With IRS, the signal quality can be improved by reflecting968

the radio waves in a desired direction, reducing the impact of969

obstacles and reflections, and increasing the coverage range. 970

IRS on drones can also provide an alternative to traditional 971

wireless communication networks, such as cellular networks. 972

In areas with limited or no network coverage, IRS-equipped 973

drones can be deployed to create a communication network 974

that provides coverage in these areas. In addition, IRS drones 975

can provide temporary coverage in emergency response 976

situations, such as disaster zones, urban canyons, and remote 977

locations. IRS-equipped drones can be deployed quickly to 978

provide communication coverage in these areas, improving 979

the efficiency and reliability of emergency response efforts. 980

The integration of IRS into drones has the potential to 981

revolutionize wireless communication networks, providing 982

improved coverage, quality, and reliability. 983

2) CAPACITY 984

In contrast to half-duplex mode, the IRS typically operates 985

in full-duplex mode, increasing spectral efficiency. IRS is 986

passive, in which any antenna self-interference and noise 987

amplification are eliminated by its relaying technique, 988

resulting in lower power consumption and less computation 989

than active full-duplex relays. Under the premise of knowing 990

CSI at the IRS controller, interference cancellation can be 991

accomplished by adjusting the phase shifts of particular IRS 992

parts to invert the interference signal and eliminate or lessen 993

it. 994

Additionally, bymaximizing the phase shifts of the antenna 995

components, the IRS may work with the drone to create 996

rich dispersion of LoS connections for many ground end 997

users. The IRS properties and the LoS capabilities made 998

possible by the drone will cause the spectral efficiency to 999

outperform the other capacity-increasing methods. Where 1000

available, multiple drones paired with static IRS can be used 1001

to provide scalability. It is important to note that aerial-IRS 1002

can enable LoS connections with strong channel quality (high 1003

SNR) to increase spectral efficiency by implementing spatial 1004

multiplexing and/or multi-user MIMO. 1005

3) MASSIVE MULTIPLE ACCESS 1006

The difficulties of large access may be successfully overcome 1007

by combining IRS technology with the drone’s dynamics and 1008

improving the IRS phase shift vectors to increase system 1009

capacity [95]. Communications systems supported by the IRS 1010

direct indoor wireless channels in favour of users with distinct 1011

needs from typical users. However, the practicality of outdoor 1012

Virtual Reality (VR) applications using IRS-assisted drone 1013

communications systems may increase. 1014

Three main issues are anticipated to affect indoor 1015

and outdoor VR users: multi-link communications, energy 1016

consumption brought on by massive data transfers, and 1017

interference from nearby VR equipment [96]. When drones 1018

are an essential component of IRS communication systems, 1019

these problems may be successfully solved. In [16], the 1020

authors use this technique to optimize the IRS jointly with 1021
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the drone height and trajectory phase shift vectors to improve1022

coverage and capacity and enable widespread connection.1023

4) SPECTRUM SHARING1024

The energy consumption of drone systems is crucial to1025

the system’s long-term performance. Thus, IRS-assisted1026

drone systems can use spectrum sharing to increase system1027

capacity in hot locations. The viability and benefits of IRS1028

providing spectrum sharing for indoor smart environments1029

have been demonstrated [73]. In this case, the capacity1030

is maximized by allowing the multi-user to access the1031

shared spectrum. In contrast, user interference is managed1032

by IRS optimization of phase shifters. The authors of1033

[97] introduced the IRS-aided spectrum-sharing method to1034

boost secondary users’ capacity while ensuring primary1035

users’ QoS by channel diagonalization and phase shift1036

optimization. The natural continuation of these studies is1037

spectrum sharing facilitated by IRS-assisted drones, where1038

the parameters characterizing the drone mechanics will play a1039

significant part in real-time wireless networking performance1040

optimization under dynamic user settings. A cooperative1041

multiple-task reallocation problem with target precedence1042

constraints for heterogeneous UAVs was addressed [98],1043

[99], utilizing a combination of fuzzy C-means clustering1044

and ant colony optimization algorithms. To increase the1045

system capacity with IRS installed on drones, it is crucial to1046

understand how altitude, latitude, and longitude coordinates1047

affect the performance of the IRS phase shifters.1048

5) SECURITY1049

Drones have been suggested to enhance terrestrial cellular1050

networks’ Physical Layer Security (PLS). The dominating1051

LoS connections that may be made between an aerial and1052

ground node make this possible. PLS assistance comes in1053

various forms, from drones. Drones, for example, can serve1054

as an AR between authorized users to maximize transmission1055

power and reduce the data rate for eavesdroppers. Drones1056

can also be used as friendly jammers to broadcast powerful1057

artificial noise that can reach potential attackers and shield1058

the data and privacy of genuine users. In normal wireless1059

contexts, the aforementioned drone functions enhancing PLS1060

have shown tremendous promise [20]. The development1061

of wireless threats and assaults, on the other hand, has1062

led to the creation of complex and challenging situations1063

that can impair the functioning of wireless networks even1064

when the suggested safety measures are used. For example,1065

an eavesdropper can carefully place himself to acquire a high1066

SNR, possibly greater than the destination node. To combat1067

cunning attackers, IRSs placed on drones can be used. Prior1068

studies have demonstrated that when the distance between1069

peers reduces, the secrecy rate among legal users rises.1070

As a result, the free movement paradigm of drones reduces1071

the transmission source’s distance from the target user. The1072

IRS phase shifts can then be adjusted so that the original1073

signal and the reflected signal at the authorized user combine1074

positively to increase the SNR. To reduce the received SNR in 1075

particular areas and reduce the likelihood of eavesdropping, 1076

some of the IRS reflecting units, on the other hand, can use 1077

various phase shifts to generate a destructive reflected signal, 1078

as shown in Figure 4. 1079

E. IRS FOR ENABLING DRONE SWARM 1080

In this section, we discuss the importance of IRS for 1081

enabling drone swarm. There are various uses for drone 1082

swarm in wireless networks, including traffic offloading in 1083

hotspots, surveillance, IoT networks, drone swarm networks 1084

in catastrophes, Vehicle-to-Everything (V2X) communica- 1085

tions helped by drones, and the creation of smart cities. drone 1086

swarm cooperating to complete a task better than one drone. 1087

Drones are frequently used for military purposes, but interest 1088

in their civilian applications has recently grown. By creating 1089

optimum reflector coefficients, the passively reflecting IRS 1090

may amplify signals at receivers and lessen interference. IRS 1091

has minimal power consumption without active transmitters 1092

due to its passive nature. Therefore, despite the ground 1093

IRS deployment, the drone-enabled aerial IRS may be 1094

effectively deployed and offer panoramic reflections for 1095

ground communications [9]. 1096

The swarm of drone-IRS systems provides the following 1097

benefits over drone-IRS: (i) raising the drone count to 1098

enhance aperture gain; (ii) ensuring drone flight stability and 1099

adaptability by allowing each drone to have a moderate- 1100

sized IRS, particularly in adverse weather or air turbulence; 1101

(iii) offering a rich scattering environment with various 1102

drones’ placements, which facilitates spatial multiplexing 1103

for a large number of users; (iv) the production cost of 1104

IRS can be lowered, and the flight time of the drone can 1105

be increased thanks to the smaller IRS size of each drone. 1106

In [7], the authors introduced the trade-offs between energy 1107

consumption, latency, and dependability in drone swarm 1108

networks with random network coding. 1109

The benefits of a swarm of drone-enabled IRSs are 1110

enumerated as follows: 1111

1) A more significant gain in the aperture It has been 1112

demonstrated in earlier publications [78] that IRS 1113

obtains a power gain via reflection-beamforming and 1114

captures a power gain by gathering the incoming signal 1115

energy. 1116

2) Collaborative communication: Future wireless net- 1117

works will allow a drone swarm to operate together in 1118

civic and military applications, including surveillance, 1119

video streaming, and combat monitoring. As a result, 1120

drones with various features (such as drone BS, drone, 1121

and drone user) may work together to offer reliable 1122

wireless communication. 1123

3) Ensuring flight path Stability and adaptability: A drone 1124

has several reflected components, and it is challenging 1125

to provide flying flexibility and stability, especially 1126

in adverse weather or turbulent air. Furthermore, 1127

an additional payload would need more energy from 1128
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the drone, which would shorten its lifespan, given1129

the limited battery capacity. To guarantee flexible1130

mobility and a longer lifespan, each drone can carry1131

fewer reflected components when more drones are1132

present. Additionally, drone swarm follows moving1133

automobiles in vehicular networks, supporting reliable1134

communication with their adaptable mobility.1135

4) Reduced IRS costs: A large IRS has more expensive1136

manufacturing since it has vast integrated electric1137

components. A sizable IRS’s internal control is also1138

challenging. In contrast to a single large IRS, several1139

moderate-sized IRSs can lower production and control1140

costs.1141

Drones offer two key benefits: a) variable positioning and1142

b) dependable A2G communication linkages. As a result,1143

drones may be deployed swiftly in disaster zones or hotspots1144

to enable dependable wireless connectivity. In Figure 5,1145

we consider a situation in which the combination of drone1146

swarm and IRS is positioned to serve ground users in a1147

circular area. Users may be present in hotspots or disaster1148

areas, but impediments may prevent communication between1149

the BS and users. Figure 5 shows how drone swarm -IRS1150

can help in the disaster area for presentation and mitigate the1151

impact of the disaster.1152

FIGURE 5. Drone swarm meets IRS for large disaster area.

F. APPLICATION OF DRONE S.WARM1153

This section discusses the applications of drone swarm1154

enabled IRS.1155

1) MULTIPLE REFLECTIONS FOR REMOTE IoT1156

It is challenging for the present cellular network to reach1157

outlying locations like forests, enormous oceans, volcanic1158

lands, and other challenging conditions. IoT devices may be1159

widely used for specialized activities requiring data transfers,1160

such as integrating sensor data with high-definition sound1161

and video information. Future wireless networks can use the1162

combination of drone swarm and IRS to offer ubiquitous1163

wireless connections and reliable data flow for distant IoT.1164

Due to the significantly increased signal attenuation, pure 1165

multiples of the combination ofdrone swarm and IRS reflec- 1166

tions are ineffective, according to the product distance-based 1167

path loss (i.e., twice path loss) model in IRS communication. 1168

Fortunately, drones with various characteristics may work 1169

together as a drone swarm to provide data transfers for distant 1170

IoT. As an illustration, the combination of drone and IRS can 1171

reflect the signal to a drone relay, which then decodes and 1172

transmits the signal to a second combination of drone and 1173

IRS. In this manner, BS and distant IoT devices are connected 1174

over a dependable wireless network as needed. 1175

2) A2A REFLECTION FOR DISASTER AREAS 1176

Ground-based small cell BSs are often installed in densely 1177

populated regions like downtown, stadiums, and public 1178

spaces in cellular networks. Users in disaster areas can 1179

communicate wirelessly, in this case, thanks to the integration 1180

of IRS and drone swarm system. For instance, swarm 1181

drone-IRS reflects wireless signals from drone BS to users 1182

with a significant aperture gain. The signal strength under 1183

such A2A reflection is greatly increased compared to 1184

traditional BSs because of the dependable A2G pathways. 1185

A similar A2A reflection technology can also be used in 1186

disaster zones if the infrastructure on the ground is damaged. 1187

3) SIGNAL ENHANCEMENT IN DRONE SWARM 1188

For information-sharing purposes, such as exchanging flight 1189

control signals, training an autonomous flight model, and 1190

offloading computing duties, the drone swarmmay occasion- 1191

ally need to connect to BS. Therefore, it is vital to guarantee 1192

a reliable wireless connection between the drone swarm and 1193

the BS. The integration of IRS and drone swarm can fly 1194

synchronously next to drone swarm users to deliver a reliable 1195

reflected signal for drone swarm users. The beamforming 1196

design for this application must consider the drones’ velocity 1197

and movement. 1198

IV. FRAMEWORK FOR FL MEETS IRS IN DRONES TO 1199

SUPPORT 6G 1200

The goal of FL meeting IRS in drones’ framework to enable 1201

6G is to provide a novel solution for wireless communication 1202

networks. The framework for integrating FL and IRS in 1203

drones aims to increase the coverage area, enhance the quality 1204

of wireless communication services, provide reliable and 1205

efficient deployment of wireless communication services, 1206

and improve communication in dynamic environments. 1207

Briefly, the aim of the framework for FL meets IRS in 1208

drones for enabling 6G is to provide a highly optimized 1209

solution for wireless communication networks that offers 1210

improved coverage, quality, and reliability [100]. Due to 1211

the investigation of statistical training models directly on 1212

remote devices, FL has emerged as the focal point in the 1213

large-scale area of distributed optimization [101]. Figure 6 1214

illustrates a framework for combining FL and IRS in drones 1215

for supporting 6G. Combining IRS with drones offers a 1216

high potential for improving drone connection in various 1217

VOLUME 11, 2023 130873



A. V. Shvetsov et al.: FL Meets IRS in Drones for Enabling 6G Networks: Challenges and Opportunities

applications. Because drones have more flexibility and1218

mobility, they can help optimize the IRS link by determining1219

the best location for the IRS-drone. Nonetheless, the accuracy1220

of the phase estimate and co-phasing operations is critical1221

to getting the final benefit from the IRS. In practice, both1222

activities are imperfect, so the IRS technology’s eventual1223

benefit may not be assured, which is especially important1224

for IRS-drone setups. In this paper, we combine drone-IRSs1225

and swarm drone-IRS to improve the performance of 6G1226

networks. We highlight the desirable advantages of fusing1227

IRS and drones. Then, we discuss the drone-IRS and swarm1228

drone-IRS applications. In addition, the practical limits of1229

the IRS and drone and the transmission architecture must be1230

considered for efficient IRS-drone deployment.1231

The FL no longer has a problem with personal data being1232

accessible. In allocated networks, the FL approach is learned1233

closer to devices. Because it protects privacy, the FL model1234

may be used to create various IRS networks. IRS functions as1235

a distributed trainer in this network to train the data generated1236

and then create a model that transmits to an aggregating unit.1237

In this fashion, decentralized FL learning for deployment and1238

policy design is possible. Figure 7 illustrates an FL-based IRS1239

networking system. Each thing in a smart environment has a1240

local ML model that receives the learned parameter from the1241

drone after being trained on a local dataset. The real-world1242

applications that leverage the combination of FL and IRS in1243

drone-enhanced communication networks are:1244

Emergency response: In disaster-stricken areas, drones1245

equipped with IRS can provide communication and sensing1246

services, improving the coverage and reliability of the1247

communication network. Edge devices, such as smartphones1248

and laptops, can use FL to collaborate and learn a shared1249

model, providing critical information and support to the1250

rescue teams.1251

Agriculture: IRS can be used to enhance the connectivity1252

and reliability of IoT devices in agriculture, such as sensors1253

and drones, allowing them to communicate effectively and1254

collect data from the fields. FL can be used to learn1255

a shared model for IoT devices, providing insights and1256

recommendations for improving crop yield and reducing1257

waste.1258

Transportation: IRS can improve the connectivity and1259

reliability of vehicles and communication infrastructure in1260

transportation, such as traffic lights, road signs, and commu-1261

nication towers. FL can be used to learn a shared vehicle1262

model, providing information and insights for improving1263

the traffic flow, reducing accidents, and enhancing energy1264

efficiency [102].1265

Industrial automation: IRS can be used to improve1266

the connectivity and reliability of industrial automation1267

systems, such as robots and sensors. FL can be used to1268

learn a shared system model, providing information and1269

insights for improving efficiency, reducing downtime, and1270

enhancing safety. These are just a few examples of the1271

potential applications of the combination of FL and IRS in1272

drone-enhanced communication networks. The combination 1273

can benefit various domains, including communication, 1274

computation, sensing, and more, by providing a flexible and 1275

scalable solution for communication and computation. 1276

To boost the data rate in a single antenna with massive 1277

users, the authors [103] presented an IRS-assisted optimum 1278

beam reflection-FL. The experimental findings imply that the 1279

attainable rate is comparable to other centralized ML models 1280

and that changing the receiver number has no appreciable 1281

impact on the rate. To address resource allocation and 1282

device selection issues for aggregation accuracy and coverage 1283

rate improvements, the authors of [58] introduced an air 1284

FL system. The findings show that the suggested model 1285

can converge faster and with less training loss. A MIMO 1286

system was created using the suggested FL-convolutional 1287

neural network model. The received signals were utilized 1288

as an ML model to contribute to the application of drone 1289

trajectory [104]. 1290

A deep learning design method was developed to create the 1291

IRS configuration matrix, which used the sampled channel 1292

state information for the training of IRS [44]. However, 1293

preserving user privacy throughout the communication pro- 1294

cess has not received enough attention in earlier works to 1295

be considered a critical concern. Therefore, FL has been 1296

suggested as a fresh approach to dealing with distributed 1297

learning’s data privacy concerns in recent years. For instance, 1298

FL created low-latency Vehicle-to-Vehicle connections while 1299

safeguarding the users’ private information [25]. The CSI 1300

between a user and the IRS, an IRS-assisted B5G system, 1301

is a class of private data closely tied to a user’s location 1302

data. To accomplish high-speed communication with the CSI, 1303

optimum beam reflection based on FL is presented in [103]. 1304

FL is needed in IRS-enabled drone systems to enable local 1305

training of ML models without compromising data privacy 1306

and security. In drones, FL improves the performance and 1307

reliability of wireless communication by allowing each drone 1308

to train its model on local data, reducing the need to transmit 1309

sensitive data to a central server, which improves data privacy 1310

and reduces the risk of data breaches. FL features are helpful 1311

in IRS-enabled drones, including the ability to train ML 1312

models on local data, aggregate the model updates from 1313

multiple drones, and protect sensitive data through secure 1314

and privacy-preserving techniques. In addition, FL improves 1315

wireless communication’s performance and reliability by 1316

enabling real-time decision-making and reducing the need for 1317

data transmission. 1318

In IRS-enabled drones using FL, sensitive data such 1319

as surveillance data or personal information needs to be 1320

protected to ensure privacy and prevent data breaches. 1321

Additionally, model parameters must be protected to avoid 1322

unauthorized access and ensure that the models are trained 1323

on accurate and representative data. The model information is 1324

exchanged through a central server on an IRS-enabled drone 1325

using FL. Each drone trains its local model on local data 1326

and sends the updated model parameters to the central server. 1327
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FIGURE 6. Framework for FL meets IRS in drones for enabling 6G network.

FIGURE 7. Covergence of FL and IRS for efficient 6G network with drone help.

The central server aggregates the model updates and sends1328

the updated global model back to the drones. The local data1329

can include information about the wireless communication1330

environment, such as signal strength, interference, and other 1331

factors affecting communication performance. By using IRS 1332

to reflect and manipulate the signal, the proposed FL meets 1333
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IRS in drones, adapts to the changing environment, and1334

optimizes wireless link quality, improving performance and1335

reliability. The framework’s effectiveness depends on several1336

factors, including the system’s complexity, the learning1337

speed of FL, and the dynamic environment in which1338

the drone system is used. The framework’s effectiveness1339

improves through careful design and implementation and the1340

development of appropriate security and privacy techniques.1341

Additionally, the learning speed of FL improves through1342

advanced optimization algorithms and hardware acceleration1343

techniques.1344

FL for IRS deployment in UAV computing To address1345

the increased capacity needs, future 6G will rely on1346

high-frequency millimeter wave [105]. However, a funda-1347

mental design challenge for implementing mmWave bands1348

into wide-scale commercial usage is permitting reliable1349

mmWave connectivity under the obstruction. To solve the1350

issue of blocking connections and boosting the power of the1351

electromagnetic wave, passive reflectors have been proposed1352

[106]. Specifically, using numerous reflectors increases the1353

likelihood of LoS, lowering mmWave channel attenuation1354

substantially. Several research [106], [107] have advocated1355

using IRSs in mmWave. Still, these studies depend on the1356

passive reflectors in a fixed and random position, which1357

is unsatisfactory, provided the unpredictable changes of1358

mmWave channels.1359

Mobile reflectors, such as drone-carried IRS, are ideal1360

for enhancing mmWave than stationary IRS because of1361

the random nature of mmWave channels. The authors of1362

[18] developed an IRS-enabled drone for establishing a1363

LoS channel between BS and mobile users. In particular,1364

a novel architecture for deploying a drone-enabled IRS to1365

aid the transmission of mmWave downlink in a mobile and1366

dynamic environment. Meanwhile, the scientists presented1367

a framework for self-powering the IRS via radio-frequency1368

energy harvesting. Simulation results indicated a consider-1369

able improvement in average data rate and attainable down-1370

link LoS probability when employing an IR-aided framework1371

in a drone compared to a static IRS environment. In [18]1372

introduced drone-IRS deployment for mmWave channels1373

with radio-frequency energy harvesting using reinforcement1374

learning. However, downlink transmission only examines a1375

single user and ignores the more complex topic of multi-1376

user connections. In [108] simulated a multi-user IRS-carried1377

drone, a distributional reinforcement learning approach was1378

presented to optimize the reflection parameters, drone place-1379

ment, and precoding matrix at BS. In a multi-user setting,1380

deep reinforcement learning techniques are used to discover1381

the best deployment of a drone-IRS for effective downlink1382

transmissions across mmWave frequencies. Compared to1383

non-learning drone-IRS, IRS, and direct transmission, the1384

findings demonstrated that deep reinforcement learning1385

could learn the appropriate placement of the drone-IRS1386

and achieve greater downlink capacity and an achievable1387

rate.1388

Unlike [18], Liu et al. [51] ignored energy harvesting and 1389

presented the challenge of reducing drone energy consump- 1390

tion as a decaying deep Q-network method. The NOMA 1391

for an IRS-empowered drone framework was implemented 1392

to improve user QoS. The challenge of minimizing energy 1393

consumption is defined as a combination of drone trajectory, 1394

power allocation strategy from drone to users and IRS phase 1395

shift. The energy dissipation of the dronemay be significantly 1396

lowered by deploying drone-IRSs by adding NOMA and 1397

using 11.7% less energy than in the IRS-OMA scenario, 1398

according to numerical data. 1399

The authors of [82] investigated IoT traffic uplink trans- 1400

mission in a drone-IRS system. To decrease the information 1401

average age, deep reinforcement learning based on protocol 1402

optimization was used to learn the unpredictability of IoT 1403

device activation patterns and manage the phase-shift, height 1404

of the drone, and communication scheduling of IRS. The 1405

authors established the drone’s schedule and altitude in [82]. 1406

However, this study used only one drone, and trajectory 1407

optimization was not considered. The NOMA approach 1408

examined that it did not require a LoS channel between users 1409

and BS. Hariz et al., [109] investigated multiple drones’ sub- 1410

carrier distribution and trajectory to increase user coverage. 1411

NOMA examined the LoS link between the receiver and 1412

users, while NLoS was between the drone and users. The 1413

adopted double deep Q network approach is used to tackle 1414

the presented problem. The drone-IRS systemmay be used in 1415

IoT networks by adjusting power, sub-carrier, trajectory, and 1416

phase shift. Furthermore, the suggested technique reduces 1417

users’ average information age while maintaining maximum 1418

transmit power and drone mobility limits. According to 1419

numerical data, the suggested technique outperforms the 1420

random-trajectory and matching algorithms by 15% and 1421

10%, respectively. Regarding IRS deployment in cutting- 1422

edge networks, writers in [110] introduced high-speed trains 1423

and recommended a drone-IRS to offer high-speed trains 1424

robust and dependable communication services. The authors 1425

looked at the combined design of a phase shift and a drone 1426

trajectory and devised an actor-critic method to optimize 1427

high-speed trains’ least feasible data rates. Compared to the 1428

IRS’s random and fixed phase shift, the proposed method 1429

learns the best drone trajectory and IRS phase shift and 1430

achieves high data rates. 1431

FL meets IRS in drone swarm: FL and IRS in drone 1432

swarm enable 6G networks, a promising approach for 1433

improving wireless communication service coverage and 1434

quality. Multiple IRS-equipped drones are deployed in the 1435

communication environment to reflect incoming signals and 1436

form a wireless communication network. FL is used to 1437

continuously learn from the communication environment and 1438

optimize the reflection coefficients of each IRS. This allows 1439

the network to adapt to changing communication environ- 1440

ments and improve the coverage and quality of wireless 1441

communication services. Furthermore, by integrating FL and 1442

IRS in drone swarm deployment, the framework enables 1443
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the development of 6G networks, which provide higher1444

data rates, lower latency, and more reliable communication1445

services. As a result, this framework has the potential1446

to transform wireless communication and provide new1447

opportunities for communication-intensive applications and1448

services, such as drone-based remote sensing, delivery, and1449

inspection services.1450

LetW be the weight vector representing an IRS’s reflection1451

coefficients, and let L(W) be the loss function that measures1452

the error between the desired signal and the received signal1453

after reflection from the IRS. Federated learning aims to1454

optimize the weight vector W across multiple devices (i.e.,1455

drones) without sharing the raw data. This is achieved through1456

local model updates and global model aggregation. In each1457

local model update, a device (i.e., a drone) computes the1458

gradient of the loss function concerning its local data and1459

sends it to the server. The server then aggregates the gradients1460

from all devices and computes the global gradient. The1461

weights of the IRS are updated using the computed global1462

gradient as follows:1463

W ′
= W − η · ∇L(W ) (6)1464

where is the learning rate that controls the step size of the1465

updates and∇L(W ) is the global gradient of the loss function1466

concerning the weight vector W . To ensure privacy, each1467

device only sends the gradient of the loss function and not the1468

raw data. The server updates the weights of the IRS without1469

accessing the raw data. The algorithm flowchart process is1470

given in the algorithm.2.1471

Algorithm 2 Processing Flowchart
1 : Initialize the weight vectorW of the IRS.
2 : Repeat until convergence:
a. Randomly sample a subset of devices.
b. For each device i, compute the gradient Li(W ) of the loss
function concerning its local data.
c. Send Li(W ) to the server.
d. At the server, aggregate the gradients from all devices to
compute the global gradient L(W ).
e. Update the weight vector W using the computed global
gradient:W ′

= W − ∗L(W )
3 : Return the optimized weight vector W.

FL in IRS in swarm drones has two major goals: reduce1472

signal distortion and increase FL convergence rate. In addi-1473

tion, IRS has been acknowledged as a revolutionary method1474

to deftly change the complicated radio signal propagation1475

environment by putting passively reflecting components in1476

drone swarm on programmable surfaces [111]. In particular,1477

even when IRSs in drone swarm are taken into account,1478

IRSs can proactively adjust the wireless channels between1479

the drone and smart devices by carefully managing each1480

reflecting element’s amplitude and phase shift in real-1481

time [112]. FL jointly improves model synchronization and1482

the device employing IRSs in drone swarm to decrease1483

propagation error while accelerating the convergence rate. 1484

IRSs are crucial in converting wireless channels into a usable 1485

computer to achieve FL’s desired weighted sum feature. 1486

Furthermore, to effectively improve parameter aggregation 1487

from smart devices, drone swarm equipped with IRSs are 1488

used. Many unresolved concerns, such as the joint design of 1489

transmit reflect and receive in IRSs in drone swarm -assisted 1490

smart device networks, must still be resolved since FL in IRSs 1491

in drone swarm technology is still in its infancy. As illustrated 1492

in Figure 8, the FL satisfies IRS requirements for drones to 1493

gather data from smart devices and process that data locally 1494

in drones. The selection of devices to take part in the model 1495

uploading process, rather than averaging all local parameters 1496

FL and IRS in a drone swarm is a novel framework for 1497

enhancing the coverage and quality of wireless communi- 1498

cation networks. In this framework, multiple IRS-equipped 1499

drones are deployed as a swarm in the communication 1500

environment to form a distributed wireless network. FL algo- 1501

rithms coordinate the learning process among the drones 1502

and optimize the reflection coefficients of each IRS. This 1503

allows the swarm to adapt to changing communication 1504

environments and improve the coverage and quality of 1505

wireless communication services. Integrating FL and IRS 1506

technology in a drone swarm offers several advantages over 1507

traditional wireless communication networks. For example, 1508

the swarm rapidly deploys in disasters or emergencies, 1509

providing communication services to affected areas. The 1510

swarm offer communication services to remote or under- 1511

served areas where traditional communication infrastructure 1512

is unavailable or unreliable. The framework of FL and 1513

IRS in a drone swarm has the potential to revolutionize 1514

wireless communication and enable new opportunities for 1515

communication-intensive applications and services. 1516

FL has emerged as a promising approach to enable 1517

ML on edge devices without sharing raw data. Combined 1518

with IRS, it can significantly enhance the performance and 1519

efficiency of 6G communication networks, especially in the 1520

context of drones. In this integration, FL can enable drones 1521

to learn collaboratively from their local data and improve 1522

their performance and efficiency in real-time. This can 1523

improve drones’ communication performance and security, 1524

allowing for more efficient and secure data exchange. 1525

Additionally, IRS can reflect incoming signals to enhance 1526

the signal quality and reduce interference, further improving 1527

the communication performance of drones. The integration 1528

of FL and IRS in drones can bring several benefits for 6G 1529

communication networks, including: 1530

Improved communication performance: By enabling 1531

collaborative learning and intelligent signal reflection, inte- 1532

grating FL and IRS in drones can significantly improve the 1533

communication performance and reliability of 6G networks. 1534

Increased security: FL can help protect users’ privacy 1535

by keeping the raw data on edge devices and only 1536

sharing the models. IRS can also enhance communication 1537

security by reducing the possibility of eavesdropping and 1538

interference. 1539
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FIGURE 8. FL in Multi-IRS in drones enabling 6G.

Reduced latency: By enabling real-time learning and1540

adaptation, FL and IRS integration in drones can significantly1541

reduce the latency of 6G communication networks, making1542

them more suitable for latency-sensitive applications such as1543

autonomous drones.1544

Increased energy efficiency: By reducing the communi-1545

cation overhead and improving the signal quality, integrating1546

FL and IRS in drones can significantly increase the energy1547

efficiency of 6G communication networks, making them1548

more sustainable and environmentally friendly.1549

The integration of FL and IRS in drones has the potential1550

to significantly enhance the performance and efficiency of1551

6G communication networks. Furthermore, this integration1552

can bring new opportunities and capabilities for various1553

applications, such as autonomous drones, aerial photography1554

and delivery services, environmental monitoring, disaster1555

response, and infrastructure inspection. The algorithm flow1556

charts for FL optimize the reflection coefficients is shown in1557

algorithm 3.1558

Mathematical expression for the loss function: The loss1559

function can be defined as the sum of the mean squared error1560

(MSE) between the received signal at each device and the1561

desired signal, weighted by a regularization term:1562

L =

N∑
i=1

wi · MSE(yi, ŷi) + λ · |w|
2
21563

where N is the number of devices, yi is the desired signal at1564

device i, ŷi is the received signal at device i after reflection1565

from the IRS,w is the vector of IRS reflection coefficients,wi1566

is the weight assigned to device i, and λ is the regularization1567

parameter. The loss function can be defined as the sum1568

of the mean squared error (MSE) between the received1569

Algorithm 3 Algorithm Flow Chart for Optimizing the
Reflection coefficients
1 : Initialize the IRS reflection coefficients randomly.
2 : Partition the devices into groups and send the IRS
reflection coefficients to each group.
3 : Each device uses its local data to compute the gradient of
a loss function concerning the IRS reflection coefficients.
4 : Each device sends the computed gradients to a central
server.
5 : The central server aggregates the gradients and computes
the average gradient.
6 : The central server updates the IRS reflection coefficients
using the average gradient.
7 : Repeat steps 2-6 until convergence.

signal at each device and the desired signal, weighted by a 1570

regularization term. 1571

Mathematical expression for the gradient of the loss 1572

function: The gradient of the loss function concerning the 1573

IRS reflection coefficients can be computed as follows: 1574

∇L =

N∑
i=1

wi · MSE(yi, ŷi) · ai + 2λ · w 1575

where ai is the vector of the complex amplitudes of the signals 1576

the IRS reflects at device i. Including these details in the 1577

paper would provide a more detailed explanation of how FL 1578

optimizes the reflection coefficients of IRS in swarm drones. 1579

The proposed framework of FL meets IRS in drones for 1580

enabling 6G communication networks has several potential 1581

advantages and limitations. These can be summarized as 1582

follows: 1583
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A. ADVANTAGES OF PROPOSED FRAMEWORK1584

1) ENHANCED WIRELESS COMMUNICATION1585

The integration of FL and IRS in drones can significantly1586

enhance wireless communication in 6G networks. FL allows1587

drones to collaboratively train ML models while keeping1588

their data locally, preserving privacy and data ownership. IRS1589

units strategically placed in the environment can manipulate1590

the propagation of wireless signals, improving coverage,1591

reliability, energy consumption, or costs. This combined1592

approach can optimize wireless communication services1593

and improve the overall performance of the communication1594

network.1595

2) DISTRIBUTED AND SCALABLE1596

The proposed framework is distributed, with drones acting1597

as data collectors, model trainers, and aggregators. This1598

distributed approach allows for scalability, as more drones1599

can be deployed in the network to increase coverage1600

and capacity. FL enables drone collaboration without a1601

centralized server, reducing communication overhead and1602

enabling efficient communication in a large-scale network.1603

This makes the framework suitable for dynamic and evolving1604

environments like 6G communication networks.1605

3) COST-EFFECTIVE1606

The use of drones and IRS units in the framework has the1607

potential to be cost-effective. Drones can be deployed flexibly1608

and dynamically in the communication network, eliminating1609

the need for fixed infrastructure. IRS units are passive and1610

do not require active power consumption, making them1611

energy-efficient and cost-effective compared to traditional1612

communication infrastructure. This can result in cost savings1613

in the communication network’s deployment, operation, and1614

maintenance.1615

4) IMPROVED PRIVACY AND SECURITY1616

FL allows drones to train ML models locally without sharing1617

raw data, preserving privacy and data ownership. This can1618

address privacy concerns associated with data sharing in1619

wireless communication networks. Additionally, IRS units1620

do not require data transmission or storage, reducing the1621

risk of data breaches or cyber-attacks. This can result in1622

improved privacy and security of communication within the1623

framework.1624

Summary: Integrating FL and IRS technology in drones1625

offers a robust solution for enhancing wireless communi-1626

cation in 6G networks. The integration optimizes coverage,1627

reliability, and energy efficiency by allowing drones to col-1628

laboratively train machine learningmodels while maintaining1629

data privacy and leveraging IRS units to manipulate wireless1630

signals strategically. The decentralized and scalable nature1631

of the framework accommodates dynamic environments with1632

the cost-effective deployment of drones and passive IRS1633

units. Additionally, the combined approach enhances privacy1634

and security by preserving data ownership, reducing data1635

transmission risks, and presenting a compelling solution for 1636

advancing wireless communication systems. 1637

B. LIMITATIONS OF THE PROPOSED FRAMEWORK 1638

1) COMPUTATIONAL AND ENERGY CONSTRAINTS OF 1639

DRONES 1640

Drones may have limited computational and energy 1641

resources, affecting the performance of FL and IRS 1642

operations. Training ML models locally on drones can be 1643

computationally intensive and may require significant energy 1644

consumption, leading to reduced battery life and operational 1645

time. This can impact the scalability and performance of the 1646

framework. 1647

2) REGULATORY AND LEGAL CHALLENGES 1648

Integrating drones with IRS in 6G communication networks 1649

may face regulatory and legal challenges, such as spec- 1650

trum allocation, licensing, and compliance with aviation 1651

regulations. Regulatory frameworks for the operation of 1652

drones and IRS units may vary across different regions or 1653

countries, which can affect the deployment and operation of 1654

the proposed framework. 1655

3) PROPAGATION ENVIRONMENT LIMITATIONS 1656

The performance of IRS units in manipulating the propa- 1657

gation of wireless signals depends on environmental con- 1658

ditions, such as the placement of IRS units, obstacles, 1659

and interference. If the propagation environment is not 1660

conducive to IRS operations, the performance improvement 1661

in coverage, reliability, energy consumption, or costs may 1662

be limited. Coordination and Communication Overhead: The 1663

proposed framework may require coordination among drones 1664

and communication with the centralized server for model 1665

aggregation, which can introduce communication overhead 1666

and latency. Efficient coordination and communication 1667

among drones may be challenging in dynamic and changing 1668

environments, and communication delays or failures may 1669

impact the framework’s performance. 1670

Summary: Implementing FL and IRS technology in 1671

drones encounters various challenges. Drones’ limited 1672

computational and energy resources can hinder FL and 1673

IRS operations, potentially decreasing battery life and 1674

scalability due to intensive local model training. Regu- 1675

latory and legal hurdles, including spectrum allocation, 1676

licensing, and compliance with aviation regulations, pose 1677

obstacles to integrating drones and IRS units in 6G net- 1678

works, especially given regional variations. Coordinating 1679

drones and communication for model aggregation introduces 1680

overhead and latency, with communication challenges in 1681

dynamic environments potentially impacting the framework’s 1682

efficiency. 1683

V. CHALLENGES AND FUTURE TRENDS 1684

This section outlines challenges and future trends of leverag- 1685

ing IRS-drone for a 6G wireless network. 1686
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A. FUTURE DIRECTIONS1687

1) ROBUSTNESS AND ADAPTABILITY1688

Future research could explore techniques to make the1689

proposed IRS-enabled drone system more robust and adapt-1690

able to changing communication environments, weather1691

conditions, and mission requirements. This could involve1692

developing algorithms or mechanisms that dynamically1693

adjust the reflection coefficients of the IRS based on1694

real-time feedback from the environment or incorporating1695

ML techniques for improved adaptation and performance.1696

2) SCALABILITY AND COMPLEXITY1697

The scalability and complexity of the proposed framework1698

could be further investigated. This could include exploring1699

approaches to manage many drones and IRS units efficiently,1700

optimizing the communication and coordination between1701

drones and IRS units, and addressing challenges related to1702

system complexity, computational overhead, and communi-1703

cation overhead.1704

3) INTEROPERABILITY WITH OTHER GENERATIONS OF1705

NETWORKS1706

The proposed IRS-enabled drone system could be integrated1707

with networks of other generations, such as 5G or future1708

6G networks. Future research could investigate techniques1709

to enable seamless interoperability between the IRS-enabled1710

drone system and other communication networks, such1711

as cross-network resource management, network slicing,1712

or inter-network coordination.1713

4) ENERGY EFFICIENCY AND SUSTAINABILITY1714

Energy efficiency and sustainability are essential for drone1715

systems. Future research could explore techniques to opti-1716

mize the energy consumption of the IRS-enabled drone1717

system, such as energy-aware routing, power control, and1718

energy harvesting. Additionally, investigating the system’s1719

environmental impact, such as carbon footprint and sustain-1720

ability, could be relevant in future research.1721

5) SECURITY AND PRIVACY1722

Security and privacy are critical aspects of any communi-1723

cation system. Future research could focus on developing1724

robust security mechanisms to protect the IRS-enabled1725

drone system against potential cyberattacks, unauthorized1726

access, and privacy breaches. This could include encryption,1727

authentication, and access control mechanisms tailored to the1728

unique characteristics of the IRS-enabled drone system.1729

6) REAL-WORLD IMPLEMENTATIONS AND FIELD TRIALS1730

While the proposed framework may be based on theoretical1731

or simulated evaluations, future research could focus on1732

real-world implementations and field trials to validate the1733

performance, feasibility, and practicality of the IRS-enabled1734

drone system. It involves experimental setups, measurements,1735

and evaluations in real-world scenarios to gain insights into 1736

the system’s performance and potential limitations. 1737

7) CHANNEL STATE INFORMATION 1738

In particular, drone-IRS networks have variable channel cir- 1739

cumstances and highmobility; channel estimation accuracy is 1740

essential for improving phase shifts and beamforming gain in 1741

IRS-aided communication networks. Additionally, increasing 1742

the number of IRSs deployed to increase the number of 1743

IRS for user links, phase shifts, drone-IRS channels, and 1744

predicted channel parameters. Due to the frequent pilot 1745

transmissions required for precise channel state information 1746

estimates, the challenges above might considerably lower 1747

system performance. Therefore, precise channel prediction 1748

becomes a crucial problem for practical communication due 1749

to the IRS’s intrinsic passive character and lack of RF 1750

chains. To overcome the problems of applying advanced ML 1751

techniques like FL, deep neural network, and transfer learning 1752

to produce accurate channel state information with a lower 1753

overhead. 1754

8) THZ COMMUNICATIONS 1755

To handle significant data rates, THz communications 1756

are expected to use the bandwidth in higher frequencies 1757

effectively. However, the number of RF chains will greatly 1758

expand in THz communication, leading to greater hardware 1759

and energy costs. Additionally, obstruction and propagation 1760

loss are higher on higher frequency channels like the THz 1761

channels. To address these complex problems effectively, IRS 1762

may be installed at advantageous sites, including BSs, drones, 1763

and mobile users, to establish a strong LoS. To accurately 1764

predict the channel state information, optimize beamforming 1765

signs and phase shift at IRS, and establish LoS to enhance 1766

SNR, AI techniques must be developed with the help of the 1767

digital twin concept. 1768

9) DRONE COMMUNICATION 1769

In drone-assisted wireless systems, the IRS deployment 1770

strategy increases the design freedom of drone trajectories; 1771

however, as the actual channel gains between the drone 1772

and users rely on drone trajectory and precoding method. 1773

The precoding design of the multi-antenna configuration 1774

is closely related to the trajectory design of the drone. 1775

In actuality, developing an IRS’ combined trajectory and pre- 1776

coding design in a drone context presents several difficulties. 1777

First, the combined gains of channels from the drone to the 1778

users become spatially and frequency-selective due to the 1779

numerous reflected propagations provided by IRSs, which 1780

complicates the design of drone trajectory. Therefore, more 1781

study is still needed into deploying IRSs in complex and 1782

dynamic networkswhilemaintaining appropriate fairness and 1783

accomplishing the sum-rate target of drones. Further research 1784

is required because precise channel tracking detection in THz 1785

communication makes compensating for the Doppler spread 1786

and delay more difficult. 1787
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10) ENERGY CONSUMPTION1788

Due to the lack of a power amplifier, an IRS needs1789

an energy supply [4]. On the other hand, energy saving1790

is also crucial because of the drone’s inadequate battery1791

endurance. Energy is frequently a significant barrier to drone1792

flying length, performance, and battery life. The use of1793

wireless charging for drones while in flight is one remedy.1794

In addition, employing WPT methods can transmit the1795

necessary energy for mission continuity using another drone.1796

Researchers should thus create energy-efficient procedures1797

and appropriate optimization frameworks to lower power1798

consumption without compromising the effectiveness of1799

IRS-assisted drone communication.1800

11) OPTIMIZATION OF IRS-DRONE OPERATION WITH1801

DIFFERENT WEATHER CONDITIONS1802

It is crucial to optimise IRS-assisted drone communication1803

when using drones in challenging situations like strong winds1804

or rain. However, non-linear models make it challenging1805

to optimize drone trajectory, IRS phase shift, and resource1806

allocation in particular. Finding innovative design solutions1807

with little complexity and effective performance is therefore1808

advised. In this sense, tools for AI and ML are potential1809

methods for effectively designing and optimizing these1810

networks. These strategies are built on trustworthy, safe,1811

powerful technologies to optimize difficult settings. Fur-1812

thermore, complex networks may be analyzed for improved1813

secrecy performance using hybrid online and offline methods1814

and data-driven models. However, other variables must be1815

investigated, such as excessive energy usage, latency, and1816

throughput.1817

12) CSI1818

For drone-IRS, drones have flexibility, high mobility features1819

and unpredictable channel circumstances; accurate channel1820

prediction is essential for maximizing the phase shifts and1821

beamforming gain in IRS-aided communication networks.1822

The number of IRSs deployed will increase the number1823

of IRSs for user connections, phase shifts, drone-IRS1824

channels, and predicted channel parameters. Due to the1825

channel transmissions required for precise CSI estimates,1826

the challenges above might considerably lower network1827

performance. Therefore, due to the IRS’s intrinsic passive1828

character and lack of RF chains, a precise channel estimate1829

becomes a crucial problem for practical communication.1830

To overcome challenges, it is necessary to use cutting-edge1831

ML techniques such as FL, transfer learning, and DNNs to1832

acquire accuracy.1833

13) DATA GATHERING AND TRAINING MODEL1834

Data gathering is an essential step in training ML, and the1835

model quality depends on the quality of data [113]. However,1836

data gathering is a barrier to applying ML-based approaches1837

to IRS-based communication since partial data might lead to1838

poor models. The key estimating elements are signal detec-1839

tion, channel estimation, and the receiver’s beamforming 1840

architecture. Therefore, data-gathering methods may be a 1841

future study area for the practical application of ML-based 1842

strategies. 1843

14) SECURING DATA COLLECTION 1844

The IRS system should be mobile enough to be mounted on 1845

a drone, as was recently investigated [52], to be placed at 1846

the ideal location. One significant disadvantage of drone-IRS 1847

is that hostile users can create an LoS link using the 1848

non-specific nature of the reflected radio signal, compro- 1849

mising the communication’s confidentiality. The influence of 1850

a drone-IRS system on secure data transmission rates from 1851

smart environments was the main emphasis in [114], which 1852

sought to maximize the feasible secrecy rates under total 1853

transmit power constraints. 1854

15) PERFORMANCE OPTIMIZATION 1855

Further research can be conducted to optimize the per- 1856

formance of IRS-enabled drone systems regarding signal 1857

quality, coverage, capacity, and energy efficiency. This can 1858

involve exploring novel algorithms, techniques, and architec- 1859

tures for jointly optimizing the operation of drones and IRS 1860

in dynamic and changing communication environments. 1861

16) INTEROPERABILITY WITH OTHER NETWORKS 1862

Investigation can be done on how IRS-enabled drone systems 1863

can interoperate with other networks of different generations, 1864

such as 5G and beyond, to enable seamless communication 1865

and networking across heterogeneous networks. This can 1866

involve exploring interoperability protocols, handover mech- 1867

anisms, and networkmanagement strategies to ensure smooth 1868

integration and operation with other networks. 1869

17) ROBUSTNESS AND RESILIENCE 1870

Research can be conducted to enhance the robustness and 1871

resilience of IRS-enabled drone systems against various 1872

challenges, such as interference, jamming, mobility, and envi- 1873

ronmental conditions. This can involve investigating adaptive 1874

algorithms, distributed coordination, and fault-tolerant mech- 1875

anisms to ensure the reliable and resilient operation of the 1876

system in dynamic and hostile environments. 1877

18) SECURITY AND PRIVACY 1878

Further investigation can be done on the security and 1879

privacy aspects of IRS-enabled drone systems, including 1880

protecting against unauthorized access, data breaches, and 1881

privacy violations. This can involve exploring encryption, 1882

authentication, and access control mechanisms tailored for 1883

IRS-enabled drone systems to ensure secure and privacy- 1884

preserving communication. 1885

19) REGULATION AND STANDARDIZATION 1886

Research can be conducted on the regulatory and standard- 1887

ization aspects of IRS-enabled drone systems, including 1888

VOLUME 11, 2023 130881



A. V. Shvetsov et al.: FL Meets IRS in Drones for Enabling 6G Networks: Challenges and Opportunities

addressing legal, ethical, and policy issues related to their1889

deployment, operation, and management. This can involve1890

studying regulatory frameworks, policy guidelines, and stan-1891

dardization efforts to ensure compliance and harmonization1892

with relevant regulations and standards. These are just generic1893

suggestions, and the specific areas of improvement and future1894

research would depend on the findings, limitations, and1895

contributions of the specific paper you mentioned, as well1896

as the research objectives and context of the proposed1897

framework for IRS-enabled drone systems. It is important1898

for the paper’s authors to carefully consider their specific1899

research findings and contributions and provide relevant and1900

meaningful suggestions for future research based on their1901

work.1902

B. CHALLANGES1903

The potential challenges and open issues related to integrating1904

IRS with drones in 6G communication are summaries fellow.1905

1) TECHNICAL CHALLENGES1906

Integrating IRS with drones in 6G communication may pose1907

various technical challenges. Advanced signal processing1908

algorithms may be required to optimize the reflections1909

from the IRS units to achieve the desired communication1910

performance. Efficient communication protocols need to1911

be designed to enable effective coordination and informa-1912

tion exchange between drones and IRS units. Accurate1913

localization and tracking techniques are crucial for the1914

precise positioning and movement of drones and IRS units,1915

especially in dynamic and changing environments. The1916

authors could discuss the technical challenges associated1917

with these aspects, including developing novel algorithms,1918

protocols, and techniques to address them and the potential1919

impact on the overall system performance.1920

2) REGULATORY CHALLENGES1921

Integrating IRS with drones in 6G communication may1922

also face regulatory challenges. Spectrum allocation for1923

communication between drones and IRS units may need1924

to be carefully considered, considering the availability,1925

compatibility, and interference issues related to the spectrum1926

bands used. Licensing requirements for operating drones1927

and IRS units, compliance with aviation regulations, and1928

other regulatory considerations may impact the deployment1929

and operation of the system. The authors could discuss1930

the regulatory challenges and requirements associated with1931

integrating the IRS with drones and potential solutions or1932

recommendations to address them.1933

3) PRIVACY CONCERNS AND SECURITY ISSUES1934

Privacy and security issues may arise in integrating IRS1935

with drones in 6G communication. The reflections from1936

the IRS units could reveal sensitive information about the1937

environment, infrastructure, or users. Secure communication,1938

authentication, and data privacymechanismsmay be required1939

to protect the communications’ integrity, confidentiality,1940

and privacy between drones and IRS units. The authors 1941

could discuss the potential privacy concerns and security 1942

issues associated with the system and propose appropriate 1943

measures or techniques to mitigate them, such as encryption, 1944

authentication, and access control mechanisms. 1945

4) INTEROPERABILITY CHALLENGES 1946

Interoperability challenges may arise in integrating IRS with 1947

existing networks or coexisting with other wireless tech- 1948

nologies. Integration with existing communication networks, 1949

such as 5G or legacy networks, may require interoperability 1950

mechanisms and protocols to enable seamless communica- 1951

tion between drones, IRS units, and other network entities. 1952

Coexistence with other wireless technologies or devices, 1953

such as Wi-Fi, cellular networks, or other drones, may pose 1954

interference or coordination challenges. The authors could 1955

discuss the interoperability challenges and potential solutions 1956

to ensure smooth integration and coexistence with other 1957

communication technologies or networks. 1958

5) PRIVACY AND SECURITY IN FL FOR UAV-ENABLED 1959

NETWORKS 1960

Ensuring privacy and security in FL for UAV-enabled net- 1961

works presents multifaceted challenges. FL’s decentralized 1962

approach, where UAVs train models locally without sharing 1963

raw data, requires addressing data privacy, model confi- 1964

dentiality, and secure communication issues. Safeguarding 1965

against potential data breaches during model aggregation, 1966

protecting against adversarial attacks, and preventing model 1967

poisoning while maintaining the integrity of the learning 1968

process are crucial concerns. Additionally, achieving differ- 1969

ential privacy across diverse data distributions and complying 1970

with regulatory frameworks further complicate the security 1971

landscape. Balancing the benefits of FL’s decentralizedmodel 1972

with robust privacy and security measures is essential for 1973

harnessing its potential in UAV-enabled networks while 1974

mitigating risks associated with data leakage, adversarial 1975

manipulation, and regulatory non-compliance. Leveraging 1976

FL to facilitate privacy-preserving collaboration among 1977

UAVs is for efficient learning, scheduling, and resource 1978

management in dynamic and privacy-sensitive environments 1979

[115], [116], [117] 1980

VI. CONCLUSION 1981

The paper has addressed establishing a non-terrestrial 1982

network for 6G communications by presenting cutting-edge 1983

advancements in IRS and drone communication technolo- 1984

gies. A key innovation lies in integrating IRS and FL 1985

within drones, offering a compelling avenue for enhancing 1986

6G communication network performance. The proposed 1987

framework showcases how the fusion can ameliorate wire- 1988

less communication services, elevating coverage, reliability, 1989

and energy efficiency. The framework fosters collaborative 1990

learning among multiple drones, culminating in superior 1991

and more streamlined decision-making processes within 1992

the network. Amid the evident benefits, challenges like 1993
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regulatory and security aspects need to be resolved to harness1994

this technology’s full potential. Despite the challenges, the1995

convergence of FL and IRS within drones holds substantial1996

promise in catalyzing innovation for the evolution of 6G com-1997

munication networks and fulfilling the evolving requirements1998

of future wireless communication services. A comprehensive1999

exploration of various FL optimization techniques and2000

algorithms proposed for UAV-enabled networks could offer2001

valuable insights into the technical strategies driving the2002

synergy of FL and IRS, enriching the overall framework’s2003

robustness and performance optimization.2004
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