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ABSTRACT Advancements in microelectronics have increased the popularity of mobile devices like
cellphones, tablets, e-readers, and PDAs. Android, with its open-source platform, broad device support,
customizability, and integration with the Google ecosystem, has become the leading operating system for
mobile devices. While Android’s openness brings benefits, it has downsides like a lack of official support,
fragmentation, complexity, and security risks if not maintained. Malware exploits these vulnerabilities for
unauthorized actions and data theft. To enhance device security, static and dynamic analysis techniques can
be employed. However, current attackers are becoming increasingly sophisticated, and they are employing
packaging, code obfuscation, and encryption techniques to evade detection models. Researchers prefer
flexible artificial intelligence methods, particularly deep learning models, for detecting and classifying
malware on Android systems. In this survey study, a detailed literature review was conducted to investigate
and analyze how deep learning approaches have been applied to malware detection on Android systems. The
study also provides an overview of the Android architecture, datasets used for deep learning-based detection,
and open issues that will be studied in the future.

INDEX TERMS Android, deep learning, malware detection system, malware analysis, machine learning.

I. INTRODUCTION
As smart mobile devices continue to capture global interest,
manufacturers have responded to this demand by developing
various devices that cater to different status groups. This
has resulted in a remarkable shift from traditional computers
to mobile devices, as evidenced in Fig. 1 [1]. The world-
wide market share of mobile devices has surged tenfold
due to increasing demand and technological advancements.
According to the ‘‘Digital 2023’’ report, the number of smart
mobile devices in use worldwide has reached a staggering
5.3 billion, with 71.63% of these devices running on the
Android operating system [2]. Android’s open-source archi-
tecture, accessibility, and scalability advantages have made
it the most popular operating system for mobile devices,
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as shown in Fig. 2 [3]. Despite its popularity, the Android
operating system has become a prime target for cyber attack-
ers due to the valuable information it contains. Attackers
use malicious applications that can be uploaded to Google
Play, and particularly Android. Applications that can be
downloaded from third-party sources, to gain access to
users’ systems This has led to an increase in the number
of applications on Android devices, making it easier for
malware to penetrate mobile devices, which, in turn, results
in many security vulnerabilities. Cyber attackers can steal
sensitive information from users, damage their devices, and
send text messages to their contacts. In 2022, there were
3.48 million downloadable mobile applications, while the
total number of Android malware was 3.36 million [4].
The number of Android malware is on the rise, and there-
fore, there is a need for malware detection and system
analysis [5].
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FIGURE 1. Worldwide market share of platforms.

FIGURE 2. Market share of operating systems.

Current Android malware analysis approaches are cate-
gorized into static analysis, dynamic analysis, and hybrid
analysis. Static analysis tries to detect Android malware by
examining some files such as permissions, API calls, byte
code extracted from the Android Manifest file of the applica-
tion without running the application on the device. Therefore,
its features are to analyze the semantic information of source
and byte codes of the application package with reverse engi-
neering methods [6]. Due to testing applications without
running them, static analysis is safe and cost-effective. How-
ever, they are more vulnerable to code obfuscation and code
polymorphism [7].

Dynamic analysis is a malware detection method that
works by running malicious code in a real environment. The
primary benefit of this method is that it identifies dynamic
code loading and records the application’s behavior dur-
ing run time [5], [8]. It requires a virtual environment to
monitor sensitive information during execution such as files,
processes, connection requests, data flow, network traffic,
processes. It monitors all suspicious requests and actions
of malware, ensuring detection before it released into the
network. This approach is time and resource costly but is an
effective method for malware detection [9].

Static and dynamic analysis methods have some advan-
tages and disadvantages compared to each other. For exam-
ple, malware writers can pass static analysis with code

obfuscation techniques, on the other hand dynamic analysis
can easily catch it. On the other hand, dynamic analysis
techniques are time costly and have less accuracy in the
used classificationmodel [9], [10]. Therefore, hybrid analysis
which combines both static and dynamic analyses is preferred
in many application domains. However, it also necessitates
additional deficiencies in terms of feature engineering [11].

Artificial intelligence (AI) research has made significant
progress in recent decades, and it has begun to shape our daily
lives in every field of the cyber domain [12], [13]. Various
machine learningmodels, as a subset of artificial intelligence,
can be used for adding intelligence to the implemented model
[14]. Recent studies have shown that the focus is shifting
from machine learning based systems to deep learning-based
systems implementation due to their better efficiencies, espe-
cially with the use of larger datasets. Although in the
literature there are many machines learning-based solutions
for Android malware detection, in recent years deep learning
based approaches have gained a huge importance and applied
in some malware analysis implementations [15], [16], [17].

In this paper, it is aimed at providing an up-to-date and
global survey of the Deep Learning-based Android Malware
Detection implementations that have been published in recent
years. With this work, not only researchers but also practi-
tioners can find most of the background knowledge about
the topic, which includes current Android malware datasets,
malware analysis techniques, and deep learning algorithms.
Although, in the literature, there are some surveys [8], [15],
[16], [17], [18], [19], [20] which examine different learning
methods, it is seen that the studies are based on traditional
machine learning models (RF, DT, SVM etc.) with older
datasets.

In this survey, we examined more comprehensive research,
which is separate from the former ones, with the following
highlighting features:

• In this article, the Android architecture, new malware
targeting Android systems, and malware analysis techniques
are examined to provide an overview of Android systems and
to create a framework for researchers.

• Current studies on deep learning-based malware detec-
tion in Android systems have been detailed.

• A comparative table is presented that includes the anal-
ysis methods, learning models, datasets used, characteristics
of the dataset, and system performance results in the current
literature studies examined.

• Deep learning models are defined by depicting their
discriminative features.

• A comparative table of malware detection approaches is
shown.

• A comparative table of current datasets is depicted.
The remainder of this article is organized as follows: Sec-

tions II and III discuss the Android overview and malware
analysis that are fundamental in an efficient malware detec-
tion system, respectively. In Section IV, datasets used in the
current Android malware detection systems in the literature
are compared; the use of deep learning- based models in
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Section V, current literature studies and their comparison
table are presented in Section VI. Finally, clarifications for
future work are drawn in Section VII and conclusions are
given in Section VIII.

II. ANDROID OVERVIEW
This section provides an overview of the structures that make
up Android systems and provides information on potential
threats to Android systems that are the subject of malware
analysis. It also introduces the deep learning-based malware
analysis process, which will help background readers under-
stand the content of this article.

A. ANDROID APPLICATION PACKAGE
An Android Package Kit (APK) is an archive file in the
Android system with the ‘‘.apk’’ extension that contains all
the data and resource files needed to distribute and install
applications to Android devices. Google Play serves as the
primary store where users can search for and find their desired
apps, movies, and shows, offering two million different apps
and games to a vast number of users worldwide. To provide
the best experience for specific devices, optimized APKs are
created and delivered. Before uploading these apps to Google
Play, the’’.apk’’ archive files are created and then added to
the store in an executable format after undergoing necessary
security checks. Although APK files can also be down-
loaded manually from third-party sources, caution should
be exercised because these files contain all the necessary
components, and downloading from unknown or unofficial
sources can pose a security risk.

FIGURE 3. APK conversion steps.

Although Android is an open-source operating system,
the source codes of system files are not readily accessible.
However, it is possible to access all or part of the source
codes using reverse engineering methods [21]. Once these
codes are obtained, they can be modified and converted back
into APK files. Typically, Android applications are written in
Java, which is then compiled and converted into byte codes.
Since Android cannot directly execute byte codes, they must
first be converted into workable codes in the Dalvik virtual
machine, which is the virtual machine that Android runs
on. Once the APK conversion steps illustrated in Fig. 3 are
completed, Android devices can run these codes.

B. APK FILE STRUCTURE
An APK file is a compressed file format that contains various
components, including native libraries, resources, assets, cer-
tificates, and manifest files and directories. The most critical
component of this compressed APK file is the ‘‘Android-
Manifest.xml’’ file, where permissions for access and control
are declared. Malware detection features are extracted from
the APK file, which contains all the data and source files
of the application, making the manifest file a crucial part of
the process [22].
For an app to access resources, system files, and sen-

sors like cameras, internet, contacts, and location, it must
obtain necessary permissions. These permissions are cate-
gorized as normal and dangerous and are required by all
applications. Additionally, an APK file must be signed by
its creator, using the same certificate for updates to take
effect. Certificates are crucial for ensuring the security of
applications. Unfortunately, some unofficial providers may
certify hundreds of developers’ applications with the same
signature, creating security vulnerabilities in various aspects
such as the certificate signature. The Android file structure
includes components such as ‘‘AndroidManifest.xml’’, Meta-
Inf, assets, resources. arsc, lib, classes.dex, and res. Fig. 4
displays the structure of these components.

FIGURE 4. APK file structure.

AndroidManifest.xmlTheAndroidManifest file contains
the static analysis features of the applications, the package
name of the application, the application per- missions, etc.
XML file containing information. It is written in readable
XML format and converted to binary XML during applica-
tion execution. The AndroidManifest.xml file is the basic
configuration file that configures the permissions and other
parameters, used to guarantee the correct execution of appli-
cations. Permissions are a feature included in the Android
Manifest file and are often used for malware detection. In this
respect, permissions in Android systems act as a security
mechanism that limits the direct access of applications to user
sensitive data, as well as to resources and actions that are
important to the system [23].

meta-inf — Directory containing APK metadata such as
signature and certificate.
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assets — It is the directory containing the files where the
assets are kept.

resources.arsc — It is the file where XML files are com-
piled and put together. File with precompiled resources such
as strings, colors, or styles.

lib—There are libraries (like armeabi, x86) needed by the
application that are not included in the Android SDK.

classes.dex—It is a file containing application code in Dex
file format, where Java codes are compiled into Dalvik Byte
code.

res—The directory containing all uncompiled resources’’
resources. arsc’’ is all resources except files.

C. ANDROID SYSTEM ARCHITECTURE
The layers of the Android system, which has a layered
system architecture, and the components they contain are pre-
sented in Fig. 5. Android has a customized Linux operating
system (Linux Kernel) in its lowest layer that communi-
cates with the phone hardware. The libraries layer on the
Linux kernel includes the Web browser engine WebKit, Libc,
SQLite database, a repository for storing and sharing applica-
tion data, audio and video playback and recording libraries,
SSL, internet security. In this category, there are Java-based
libraries offered for application development [24].

FIGURE 5. Android system architecture.

Examples of some core libraries are:
• android.content which enables messaging between
applications and their components.

• android.opengl provides a Java interface to the graphics
rendering API,

• android.widget contains a collection of UI components
such as buttons, labels, list views,

• android.text renders text-based functions on the screen,

• android.webkit- allows the use of Web browser features
in applications,

• android.os provides access to standard operating system
services,

• android.view is one of the libraries that provide the basis
of the user interface.

Android Runtime offers the Dalvik VM component, which
is the Java Virtual Machine on which Android applications
are run. Java-based libraries and application frameworks
(Application Framework) are in the middle layer.

Some of the services provided by the Application Layer
structure serving applications are:

• Activity Manager: Workload stack checks,
• Content Providers: Distributed application data,
• Resource Manager: Resource access to user interface
edits,

• Notifications Manager: Permission to manage applica-
tion notifications,

• View System: Provides services such as application
interface settings.

In the Application Layer, which is the top layer, there
is software developed using the Android Application Pro-
gramming Interface (API) to interact with the end user.
Permissions such as sending SMS, location notification, read-
ing/writing to external memory requested by applications are
authorized through the application framework and communi-
cate with system resources. For example, to perform check-in
on Android, at least one of the ACCESS COARSE LOCA-
TION or ACCESS FINE LOCATION permissions must be
requested by the applications. If the users approve these per-
missions, the Location Manager Service, which is one of the
middle layer application framework components, provides
location access information.

D. MALWARE TERMS AND TARGETS
Many definitions are used to refer to malware, one of which
is the words ‘‘malicious’’ and’’ software’’, while another
is defined as code that causes damage by causing the sys-
tem to intentionally change its intended task’’ [25]. In other
words, malware is defined as ‘‘a general term covering code
that interferes with the system, such as viruses, Trojans and
spyware’’ [26]. By other definition, malware is capable of
infecting executable code, boot partitions of drives, data, and
system files, generating excessive traffic that leads to DoS
on the network; are programs that become memory resident
when the user executes the file and infect other files that
are then executed. In vulnerable operating systems, they can
take control of the system and infect other systems on the
network. This type of malware program generally affects the
performance of the system negatively and causes slowdowns.

Based on the definitions mentioned above; all code that
poses a risk to device users, data or devices is classified
as malware. Malware aims to corrupt the Android ecosys-
tem and devices with malicious behavior. For this purpose,
malware categories are updated every day and new ones are
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added. Even though malware may differ in behavior, it does
show at least one of the targets listed below.

• Creating a security breach by disrupting the holistic
behavior of the device,

• Making device control independent from the user,
• Activating device features independent of use with mali-

cious remote access tools,
• Transferring personal data to other areas by abusing

consent and intentions,
• To adversely affect other networks and devices with

unnecessary commands,
• To defraud device users.
Applications downloaded from various sources can some-

times become the source of malware behavior, even if they
do not tend to harm. The applications that cause this are
the differences in the ways they work due to the framework
changes. In other words, due to Android operating system
version differences between devices, malicious software for
a device may not pose a risk to the Android device using the
new version. Malware, on the other hand, is any version of
an Android device or app that could put its users in danger.
The malware takes advantage of the device vulnerability and
damage the system through unauthorized access by applica-
tions.

E. MALWARE TYPES
Malware can be installed on devices due to human or system
vulnerabilities, spreading in the system they participate in,
keeping the system busy, scaring, stealing, etc. shows typi-
cal behavioral traits. The similarities or differences between
these behaviors allow classification of malware behaviors
as shown in Fig. 6. In addition, classification allows the
detection of malicious software according to their potential
attack behavior [16], [27]. The types of malwares described
below vary in their intended targets and are named according
to their behavior.

FIGURE 6. Malware types and behavior.

Ransomware is an ever-evolving strain of malware
designed to encrypt files on a device, rendering files and

systems based on them unusable. Malware actors demand a
ransom for decryption, threatening to sell or leak personal
data or authentication information if the ransom is not paid
[27]. These types of software pose an access problem through
social engineering methods, such as sending phishing emails
or hijacking that system to distribute the malware, which
can occur when downloading any file to an unknown recip-
ient. Ransomware has been infecting software installed on
many devices, especially mobile devices, in recent years.
Ransomware harms Android systems by targeting them [28].
Ransomware types that affect Android systems are generally
categorized as lock screen, crypto, and PIN locker. Ran-
somware, which affects the lock screen, prevents device use
with an image that fills the screen completely. Crypto ran-
somware, on the other hand, is a threat that restricts the
user’s file access. The PIN locker targets Android devices
and changes access codes to lock users. In order not to be
affected by the damage caused by this software, it is necessary
to use learning-based malware detection systems by keeping
the operating systems patched and up to date.

Botnet is a type of attack in which the attacker spreads
malware to many devices, breaching their security and tak-
ing control of these devices, remotely controlling all the
infected devices. It is quite easy to attack the operating
systems of Android devices because they are open source.
The Android botnet is one of the most important threats
to devices. Android botnets are a group of compromised
smart devices controlled by remote bot administrators via
Command and Control (C&C) servers [29]. The internet
permission is the one most needed and requested by all appli-
cations, be it good or malicious. In second place is the most
READ PRONE STATE permission, which is requested twice
by malicious or benign applications. Apart from these per-
missions, the most requested SMS group permission, which
includes SEND SMS, RECEIVE SMS, WRITE SMS and
READ SMS, is requested in Botnet specific attacks [30].

Trojan is a malware that acts to provide functions that
benefit the user, but instead allows a malware program to be
installed on devices. Also, a Trojan has a user dialog that
will be constantly activated [31]. Trojans are also known
as software that copies and abuses SMS by following the
notifications of other applications on the device. It is used
to receive messages from the user from other applications
and send emails through applications that require two per-
missions, ‘‘Notification Access’’ and ‘‘Internet’’ [32]. The
required permissions for the applications need to be verified.
The lack of validation makes the detection and blocking of
Trojans problematic. For example, more than half of the
apps that require the ‘‘READ SMS’’ permission is classi-
fied as malicious, while only some of the apps that require
the same permission are benign. Configuration of Android
system notifications is app controlled. Android device devel-
opers allow the disabling of all or some notifications of the
applications to be customized without restriction. However,
when configuring these notifications, restrictions may need
to be put in place to track activities that may be caused by
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malware. For example, turning off SMS alerts for banking
applications will also prevent uninformed money transfers
and suspicious transaction notifications that may be caused
by malware actions.

Adware is a type of malware application that targets user
privacy and security. This malware harms the user by taking
screenshots of them, stealing their data, sending them to a
remote server, or forcibly displaying advertisements in the
notification bar. The adware can hack the speaker and camera
of the smartphone. The main purposes of adware are to
collect the data of the websites visited by the user, display
customized advertisements on the computer, redirect them
to the websites, and collect marketing data. The aggressive
adware of adware attacks can create alternative paths on the
user’s screen, change the default internet browser, internet
settings, search engine, and send meaningless notifications.
This adware can exploit vulnerabilities through applications
downloaded from unofficial sources [33].

Backdoor is a software that provides the basis for the
installation structure of other malicious software on the
devices that are exposed to the attack. The methods that allow
remote access to that computer by a person who bypasses
the normal identity verification processes or is aware of this
established structure, which cannot be found with ordinary
examinations on the computer, is called a backdoor. It is a
type of malware that provides a backdoor on victim devices,
paving the way for other malware. The backdoor virus hides
and runs in the background, making it extremely difficult to
detect. This works by taking advantage of the DoS attack.
Installing several malware apps containing hidden codes on
mobile devices leads to backdoor attacks [34].

Aworm is a type of software program that produces copies
and spreads them over a network. Sharing features such as
music, videos, and photos via smart mobile devices or pro-
viding users with games, etc. By sending benign-appearing
files through applications and directing such files to down-
load, attackers exploit such vulnerabilities to autonomously
propagate worms. When users click on the sent link, the
worm infects the device and spreads by sending the same
message to the people on the infected device and tries to infect
other devices. Worm attacks can cause minor or considerable
damage to a single user, depending on what the worm is
doing. This multiplies proportionally to the number of users
who clicked on the link embedded in the message [35].

Scareware is software that encourages the user to buy by
scaring them with unrealistic scenarios. It is done to intimi-
date users by trapping them on phishingweb- sites. Scareware
is malware that allows the presence of security-threatening
elements, such as ‘‘against malware programs’’ or ‘‘has mal-
ware on the device’’, to be down- loaded onto the device
by presenting legitimate-looking applications. In addition,
they harm the system by deceptively presenting many meth-
ods, such as deceptive pop-up notifications, fake progress
bars, and fake filtering. Also, scareware can cause harm by
displaying forged documents that are not on the device or

having regulations that are inconsistent with the operating
framework [36].
Cryptominers is called attackers infecting computers with

viruses using hardware that does not belong to them or
deceiving their victims through mining sites. Most of this
malware, which have gained popularity recently, are classi-
fied as potentially unwanted applications [37].

III. ANDROID MALWARE ANALYSIS TECHNIQUES
Android malware analysis is the process of understanding its
code, determining its behavior and functionality, and deter-
mining whether it is malicious or not. There are various
methods used for this purpose. Thesemethods are categorized
as static analysis, dynamic analysis, and hybrid analysis,
which is a combination of these two approaches [38], [39].
It is necessary to perform classification processes accord-

ing to the data obtained by performing malicious software
analysis of applications. For this reason, feature extraction
processes are performed first for software analysis of Android
applications, which naturally contain many features. The pro-
cess of obtaining the properties requires reverse engineering.
For learning-based models, the results obtained by reverse
engineering are important. Because the amount of data to be
obtained from APKs for analysis purposes is directly propor-
tional to the features to be used in learning models. While
Android APKs are input for reverse engineering, the output
is usually raw codes, APIs, permissions, purposes extracted
from various files. The files obtained from the APK file
by reverse engineering are classified in terms of containing
static or dynamic features. Extracted features; permissions
and intents are expressed as static properties, while network
flow, system calls etc. referred to as dynamic properties. The
features extracted from the file according to the analysis type
shown in Fig. 7 are used to detect malware in learning-based
systems and to give effective results in classification [10].

FIGURE 7. Feature extraction methods for static and dynamic analysis
types.

Intrusion detection comes automatically because of train-
ing static, dynamic, and hybrid analysis features by using
learning algorithms. Thus, it facilitates the detection of
attacks that cannot be detected manually. Due to the diversity
of the extracted information, the features that need to be used
to use the categorized data in learning-based attack detection
usually need to be transformed into a vectorized represen-
tation. In studies in the literature, APKs are processed and
analyzed first, and then processing is carried out on the
information extracted from the applications [15], [20], [38].
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A. STATIC ANAYSIS
Static analysis is a safe method for detecting malware that
doesn’t require running an application, ensuring that the
mobile device remains unaffected by malicious code. This is
just one of the benefits of static analysis. At its simplest, static
analysis can gather metadata such as the filename, type, and
size of themalware, which can provide insights into its nature,
without requiring the code to be viewed. Additionally, MD5
check sums or hashes can be used to comparemalware against
a database of knownmalicious software. This approach offers
a quick and cost-effective means of identifying harmful fea-
tures and code in an application before it runs [20], [40].
Below, we describe some of the methods used in the static
analysis approach to detect malware, including code analysis,
API calls, and permissions.

1) METHODS BASED ON MANIFEST ANALYSIS
The AndroidManifest.xml file is an essential component of
the Android app development process. It is a configura-
tion file that contains information on the structure of the
application, its components, the rights that are utilized, and
the libraries that are necessary. It contains properties that
can be used for static analysis. With reverse engineering
methods, the permission properties are used by bringing the
permission properties into binary property vector form by
means of a parser from the Android- Manifest.xml file, which
contains the list of all permissions requested by the applica-
tion [41]. It can be achieved by detecting risky permissions
and keywords and examining target applications. It can be
determined by a method based on the comparison of the
MD5 cryptography hash values of the applications and the
suspicion levels assigned to the keywords [42]. These levels
of suspicion are the permissions requested by applications as
codes containing permissions such as the internet, sending
SMS, location access, and writing to a file. These permissions
are classified as normal, dangerous, signature, and special
permission levels. Normal permissions are low-level user
secrets or permissions that affect other applications; danger-
ous permissions require access to user data and affect the
operation of other applications; signature permissions are
permissions signed by the same certificate as the permission
contained in the application; and special permissions are
sensitive permissions that require authorization and require
intents that specify permission to the manifest file, requesting
user authorization [43].

2) METHODS BASED ON CODE ANALYSIS
Android, a Dalvik registry-based virtual machine, and these
applications are developed in Java, compiled into Java byte-
code, and then translated into Dalvik bytecode. With the help
of byte-code analysis, application behavior analysis, control
and data flow analysis, and harmful functions performed by
malicious applications are detected. The analysis of these
functions can be done by running and debugging line by line,
and by searching for specific instruction sets, code analysis

can be done. However, the most important factor in code
analysis is reverse engineering because of the DLLs, libraries
etc. used by the software [54]. Source code conversion is an
important part of code analysis. The better the source code
conversion is done, the better the code analysis is at figuring
out malicious software that has been analyzed and packaged
or code obfuscated.

B. DYNAMIC ANALYSIS
Dynamic analysis requires executing the application in an
isolated environment to observe application behavior. Unlike
static analysis, dynamic analysis allows the natural behavior
of malware to be revealed because of the code execution
processes. This natural behavior is observed by establishing
a virtual environment so that it is not included in other sys-
tems; therefore, it requires cost. In this virtual environment,
monitoring network activities, monitoring file changes, and
determining system calls are performed. Therefore, the func-
tionalities of the actions performed by the analyzed malware
require it to be a behavior-based system [20], [45]. The
methods used for malware detection in the dynamic analysis
approach, including system calls and monitoring of user and
kernel level system behavior, are explained below.

1) SYSTEM CALLS ANALYSIS
Android apps interact with the operating system through
system calls. It is an analysis technique with data obtained
by recording the frequency of clicks, voice interactions, and
taps that trigger system calls. When malware makes a system
call while it is executing, it intercepts with the hook method
to save the function’s name and input parameters. While this
method is called Function Hooking, the method that pro-
vides information about the operation of themalware, in other
words, that keeps the sequence of system calls and monitors
the results is called Function Call Traces [46]. Also, Android
systems is a mobile operating system whose system calls are
an interface provided by the Linux kernel. Because Linux
kernel system calls are version independent, they are more
resistant to avoidance strategies than API calls.

2) USER INTERACTION ANALYSIS
Various activities related to malware, including behavioral
analysis of the malware, registry, file system, and network,
are constantly monitored. When malware runs as a process,
it can perform various operations such as loading images
and creating files in the Registry. File system behaviors of
malware can be identified by analyzing activities such as
reading, creating, and rewriting system files. Additionally,
malware behavior can be monitored by working as a fake
DNS, HTTP, or FTP server to analyze network traffic [47].
Information related to API-level calls is also monitored at
the User-Space Level. If malware software is detected in user
mode, the infection can be easily removed by undoing the
changes or completely reformatting the system. The kernel,
on the other hand, is responsible for managing and allocating
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system resources as part of the operating system. To monitor
malware behavior in the kernel space, the kernel execution
traces are analyzed [47], [48]. The kernel space component
registers itself with the operating system to track the existence
of functions such as processes, registries, and files.

3) NETWORK TRAFFIC ANALYSIS
Malware requests to connect to and/or request commands
from the server are often periodically. For example, the most
known Plankton software sends a packet every four seconds
[49]. Therefore, the average number of packets sent and
received per stream, average packet size, and average bytes
size application run time are generally low and stable for mal-
ware. However, since malware makes requests periodically,
it increases network traffic because it is not so periodic in nor-
mal internet surfing. Although network traffic analysis, which
is frequently used in dynamic analysis technique, is costly
in terms of time, it provides high performance in detecting
malware.

C. HYBRID ANALYSIS
Hybrid analysis is an analysis approach that is a combi-
nation of static and dynamic analysis methods. Static and
dynamic analysis techniques have advantages and dis- advan-
tages compared to each other. For example, while malicious
software can often avoid static analysis techniques with code
obfuscation methods, it can be detected more easily at execu-
tion time with dynamic analysis techniques [11]. The hybrid
analysis technique, on the other hand, increases the detection
accuracy since it is designed to benefit from both static and
dynamic analysis, but takes longer than the run-time dynamic
analysis technique because it is computationally intensive.
In other words, it is an analysis method that works col-
laboratively with the static analysis technique to detect the
presence of malware behavior with the data obtained during
the execution of the application [50].

D. STATIC AND DYNAMIC ANALYSIS FOR DETECTION
APPROACHES
Static, dynamic and hybrid analysis are used to detect mal-
ware attacks and prevent system infiltration. Attackers use
multiple techniques (e.g., bundling, code obfuscation, and
encryption) to evade static analysis (signature-based) and
dynamic analysis (behavior-based) detection. Static analysis
is a passive approach that extracts features from the APK
file without running the application. This methodology is
cost-effective in terms of resources and time as detection
takes place before the application is executed.

Dynamic analysis is an active approach; it describes attacks
in the real environment. Permissions, API calls,.dex files, and
metadata for transaction codes are examples of static analysis
features, whereas dynamic analysis includes network traffic,
battery usage, CPU usage, and IP address opcodes. Hybrid
analysis includes the features of both static and dynamic
analysis methods. Generally, there are two categories of static

analysis: Op-code analysis and manifest API call analysis.
In Op-Code analysis, malware and benign applications are
classified using machine learning algorithms by removing
N-Gram Opcodes from the dataset. In manifest and API call
analysis, features such as permissions and purposes of the
applications are obtained from themanifest file and used [51].
The dynamic detection category consists of two categories:
in-the-box analysis and out of the box analysis [19]. In the
box analysis, data collection and analysis are treated at the
same level as malware. This approach allows capturing data
at the operating system level, accessing memory architecture,
libraries, APIs, and other methods. But it also makes critical
data vulnerable to attacks. In the out-of-the-box analysis
approach, it is done by considering the security of the system.
A sandbox is created, and analysis behavior pattern is found
to fend off the attack.

When the static and dynamic analysis mechanisms are
compared, the dynamic analysis mechanism performs better
than the static analysis mechanism in detecting attacks using
the code hiding technique since the application is analyzed at
run time. The static analysis mechanism, on the other hand,
is more efficient for detecting previously known attacks. The
comparison of the analysis methods, which is about the supe-
riority of the analysis methods over each other, is presented
in Fig. 8.

FIGURE 8. Comparison of analysis approaches.

E. ANALYSIS DETECTION SYSTEMS
In this survey study, static, dynamic, and hybrid detection
approaches used for the detection and prevention of malware
in the literature are mentioned. Hybrid analysis tools, which
are a combination of static analysis-based, dynamic-based
analysis that can detect malware activities at run-time, and
a combination of these analysis methods, are offered. These
tools, called systems, detect malware at a low alert level
by using features extracted from applications according to
the analysis method. Some examples of intrusion detection
systems in the literature are shown below to give researchers
a framework to work with.
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TaintDroid is a detection system that monitors how
third-party applications downloaded to the Android system
access and manipulate users’ personal data [52].

AppTrace is to establish the relationship between the
behavior of the user and the codes executed by listing the
activities and services declared in the Android-Manifest [65].

ARTist is a compiler-based application analysis detection
system that does not depend on Android operating system
changes and works only at the application layer [54].

TABLE 1. Detection systems.

FlowDroid, it is a detection system that offers analysis
with context, flow, space, and object sensitivity by handling
Android-initiated back calls [6].

DroidSafe is an application analytic detection system
that uses API calls to analyze sensitive information flow in
Android applications [55].

Amandroid, it is a detection system that performs data
flow, data dependency and inter-component communication
activities analysis for all objects in the Android application
component [56].

CuckooDroid is a hybrid detection and classification sys-
tem, which is a combination of signature detection module
as static analysis and abnormal behavior detection module as
dynamic analysis [57].

FlowIntent, it is a detection system designed to detect
non-functional transmissions at both the software and net-
work level by automatically identifying suspicious transmis-
sions from application visual interfaces. It is included in the
hybrid analysis technique in terms of application inspector
and traffic analyzer methods [58].
Themethods used by the detection systems, whose descrip-

tions are given above, to detect malicious software by running
applications, comparing their signatures, or using both meth-
ods, and testing resources as datasets are summarized in
Table 1.

IV. DATASETS
Androidmalware detection is one of the areas that researchers
have focused on in recent years. datasets of applications col-
lected from various sources were created to evaluate technical
approaches to malware analysis. datasets created with static

or dynamic features obtained from Android applications dif-
fer according to the way the good or malicious software
they contain is collected or brought together from various
sources, and the features they contain. The current datasets
from the literature that enable researchers to develop and
test detection systems according to their characteristics are
explained below.

The CICMalMem2022 dataset is a balanced dataset cre-
ated for the detection of Spyware, Ransomware and Trojan
malware hidden in memory. There are a total of 58,596
records in the dataset, where each malware’s families are
included. The generated dataset uses the debug mode of
memory dumps [59].

CICMalDroid2020 is a new dataset created by collecting
more than 17,341 Android samples collected from Conta-
gio security blog, VirusTotal, MalDozer, AMD and other
datasets. The analysis results of 13,077 were obtained suc-
cessfully according to the analysis results of the samples
obtained by collecting 17,341 APKs. It consists of static and
dynamic data belonging to five different Android application
categories. The dataset, which includes samples collected
from December 2017 to December 2018, consists of five
different categories: Banking Malware, Adware, Mobile
Riskware, SMS Malware, and benign. All APK files are
collected and executed using CopperDroid [60]. Runtime
behaviors are recorded in log files and divided into groups
according to static, dynamic, and net- work traffic behav-
iors monitored during analysis according to output analysis
results. Statically extracted information, intentions; services
and permits; frequency numbers for different file types;
sensitive API calls and obfuscation events; system calls, bind-
ing calls, and composite behaviors; permanently observed
behaviors; and PCAP of all network traffic captured during
analysis. The CICMalDroid2020 dataset contains a total of
17,341 APK files belonging to the five different categories
mentioned above. In addition, three CSVfiles are presented in
this dataset. These are for 11,598 APK files belonging to five
categories; firstly, it is the csv file that contains the frequen-
cies of binders, system calls and composite behaviors and
offers 470 features, and secondly, it is the csv file of system
calls that offers 139 features. The dataset offers 50,621 csv
files that contain all the properties vectors of these APK files,
such as intents, permissions, sensitive APIs, services [60].

The CCCS-CICAndMal2020 dataset is a new dataset
containing 200,000 benign and 200,000 malware samples
with 14 malware categories and 191 malware families, with a
total of 400,000 Android applications. These 14 categories
are: Including adware, backdoor, file infector, no cate-
gories, Potentially Unwanted Apps (PUA), ransomware,
riskware, scareware, trojan, trojan banker, trojan reducer,
trojan SMS, trojan spy, and zero-day. Benign applications
were collected from the Androzoo dataset, while malware
applications were obtained in cooperation with the Cana-
dian Center for Cyber Security (CCCS) [61]. VirusTotal was
used to label the malware dataset. The classification of mal-
ware families is divided into eight categories: media, data
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collection, hardware, internet connection, actions-events,
antivirus, C&C, storage, and settings. This dataset contains
static and dynamic analysis data [51]. The features extracted
from the AndroidManifest.xml file as static analysis features
are Activities, Broad- cast Receivers and Provider, Metadata,
Permissions, System Features (such as camera and internet).
For dynamic analysis, six categories of features are extracted:
Memory, API, Network, Battery, Logcat, Process [62].

The CICInvesAndMal2019 dataset, which includes static
and dynamic features, includes 426 malware and 5,065
benign labeled samples divided into four categories: Ran-
somware, Adware, SMS Malware, Scareware. There are
family types belonging to each category [74]. For example,
it includes family kinds in other categories such as Downgin
family, Ewind family belonging to the Adware category. It is
presented as the second part of the CICAndMal2017 [63]
dataset, which includes more than 10,854 samples created
by combining benign samples collected from Google play
and malicious samples collected from various sources, pub-
lished in 2015, 2016, 2017. The InvesAndMal2019 dataset
was created by expanding 80 network flows contained in
the CICAndMal2017 dataset, by combining API calls with
sequential relations of API calls. This dataset has discrete
and continuous features. In the CICAndMal2017 dataset,
continuous features are logs, network traffic and API calls,
and discrete features are permissions, battery usage, memory
dumps and network.

The AMD dataset, which contains 24,553 malwares
belonging to 71 malware families, consists of adware, back-
door software, ransomware, hacking tools and different types
of trojans developed between 2010 and 2016. There is no
benign example of AMD [70]. The Web page of the dataset
contains detailed information about the characteristics of the
malware families in the dataset [64].

AndroZoo is one of the largest datasets of Android apps.
It contains 17,188,349 different APKs from applications ana-
lyzed as malicious by antivirus programs. In addition, each
application is scanned by more than ten antivirus programs
and the results are reported [65].

TheDroidCollector is dataset collected by collecting traf-
fic network data containing data from the Drebin project.
DroidCollector consists of the traffic data obtained from the
control unit, data storage unit, and traffic generation and
collection units of network traffic packets on a per-minute
basis [66].

The Drebin dataset contains 5,560 malware applications
collected between August 2010 and October 2012. Drebin
dataset also includes samples from the Genome dataset. 5,560
malware applications are divided into 179 families by the
publishers of the Drebin dataset [67].
The GENOM dataset is an outdated dataset due to the

limited resources created by the Android Malware Genome
Project and discontinued due to the graduation of the students
participating in the project. It is available as a systematically
characterized dataset created by collecting 1,260 malware
samples, covering most of the existing Android malware

families, from its initial release in August 2010 until late
October 2011 [33].

Android datasets in the literature are presented in Table 2
from 2020 to the past. The table includes the publication years
of these datasets, the size of the datasets, the family/category
information in the dataset, the number of features, the types
of feature analysis, and literature examples of the analyzed
datasets.

V. DEEP LEARNING MODELS
Since mobile devices have become an indispensable element
of daily life, the value of detecting malicious software has
become much more important in terms of personal data.
Given the prevalence of Android systems onmobile platforms
and the threats to this issue, effective malware detection is
needed to support the development of reliable detection and
classification tools.

The rapid growth of Android malware applications and
technologies to evade detection systems is rendering tra-
ditional defenses ineffective. Deep learning has become a
prominent research area in recent years, taking place in
almost every field with its strong feature abstraction ability.
The limited capabilities of machine learning are limiting
emerging malware detection systems. First, the amount of
data increasing day by day requires the system features to be
processed and used in the most functional way. Deep Learn-
ing algorithms are algorithms that can give the best results
with large amounts of data. On the other hand, machine
learning algorithms, which can now be described as tradi-
tional, yield results with fewer data points [68]. However, this
situation is not at a level to meet today’s needs because the
amount of data is increasing day by day. While deep learning
algorithms try to extract features from the data automatically,
in machine learning, distinctive features are determined and
given to the system.

Malware applications in Android systems have become a
serious threat to users, researchers have developed effective
approaches in this area. Although there are studies involv-
ing Android malware detection systems in the literature,
researchers need an up-to-date and comprehensive survey
based on deep learning-based Android malware analysis.
In this survey, a literature review focusing on deep learning
approaches was conducted, and interests, datasets, and trends
related to deep learning-based Android malware analysis
were analyzed.

Artificial Intelligence (AI) applications, which have made
great progress in the last decade, continue to develop rapidly.
Deep learning, on the other hand, is a subset of techniques in
artificial intelligence that use neural network to extract pat-
terns from data [69]. In recent years, deep learning has often
been applied to malware analysis. Different types of deep
learning algorithms such as convolutional neural networks
(CNN), recurrent neural networks (RNN), and feed-forward
neural networks are implemented in malware analysis for var-
ious use cases such as API calls, permissions, intents, HTTP
traffic, and network behavior. Deep learning algorithms are
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TABLE 2. Comparison of datasets.

divided into three categories: supervised, semi-supervised,
and unsupervised according to the form of the learning pro-
cess [69].

A. SUPERVISED DEEP LEARNING
It is trained using labeled datasets with inputs and expected
outputs. Supervised deep learning algorithms are structures
that teach to apply it to unforeseen situations by analyzing
training data, producing an inference function for mapping
unknown new state data. It includes Multi-Layer Perceptron
(MLP), Deep Neural Network (DNN), Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), Long
Short-Term Memory Algorithm (LSTM).

Multi-Layer Perceptron’s (MLP) are feed-forward mod-
els that have at least three or more layers and multiple
perceptron. They are structures that fully connect the neural
network by connecting each neuron in the next layer, usually
using non-linear activation functions in the hidden layers, the
output of each layer being the input of the next layer, and
the output layer at the end. The output layer processes the
data from the hidden layers and determines the output of the
network. MLP is especially preferred in classification and
generalization situations [71].

Deep Neural Networks (DNN) provide advantages in
learning complex structures thanks to abstract level fea-
ture extraction. DNNs compute the input parameters in the
forward pass, which they iteratively improve by backpropa-
gation [78].

Recurrent Neural Networks (RNN) outperform many
related statistical models, such as recurrent neural network
latent Markov models, as the Input data is time-ordered data.
Other deep learning methods accept a fixed size vector as
input and produce a fixed size vector as output. The feed
forward RNN architecture is called ‘‘recurrent’’ [72]. This is
because for each element of an array it performs the same task
again based on previous outputs.

Long short-term memory (LSTM) is an RNN-based
deep learning method. It has a learning architecture that can
remember long-term dependencies at random intervals. It is
a very successful method, especially in analyzing data that
comes in order according to time or events with a certain rela-
tionship [73]. LSTM is a modified RNN network proposed
to learn long-range dependencies in time-varying models.
In general, LSTM is a subject that includes gradient-based
learning methods of artificial neural networks and back
propagation training. Exploding gradients are (exploding gra-
dients - Exploding gradient problem in machine learning) a
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quadratic recurrent neural network that solves the problem
[74] when large error gradients accumulate and cause huge
updates in neural network model weights during training.

Bidirectional Long Short-Term Memory (BiLSTM)
model is a bidirectional structure created using LSTM. These
networks run inputs from the past to the future and from the
future to the past [75]. With this approach, BiLSTM goes
backwards and preserves information from future-related sit-
uations.

Convolutional Neural Network (CNN) is the most pre-
ferred type of super- vised Deep learning in computer image
recognition. CNN has multiple layers that process and extract
important features from the image. CNN consists of four
basic steps. The Pooling Layer uses the pooling process
to sample the output of the previous convolutional layer to
reduce the effect of small position shift [76].

B. UNSUPERVISED DEEP LEARNING
Unsupervised Deep Learning is trained using datasets that do
not have a specific structure. It includes Restricted Boltzmann
Machines (RBM), Deep Auto Encoders (DAE) and Deep
Belief Networks (DBN).

Restricted Boltzmann Machine (RBM) is a network
structure consisting of two layers: input (visible) and hidden.
Although neurons in the input layer relate to neurons in the
hidden layer, neurons in the same layer are not connected
to each other. This structure is hence called the constrained
Boltzmann machine. It randomly decides whether to transmit
the inputs calculated in each neuron to the next neuron. This
algorithm is a network that performs classification, feature
detection and prediction calculations by predicting the prob-
ability distribution on the inputs [77].
Auto Encoder (AE) feed-forward networks are inefficient

for complex multidimensional input definitions. The deep
auto encoder (DAE) structure, which is another type of artifi-
cial neural network, was created by developing the functional
structures of feed-forward networks. DAE provides effective
feature extraction for learning by reducing unclassified and
unlabeled multidimensional input data. DAE networks con-
sist of encoder, decoder, and hidden layer structures [78].
Deep Belief Networks (DBN) are a special type of deep

networks, and they are formed by training the superimposed
RBM layers in two stages. The DBN, which is formed by
connecting more than one RBM in a row, is learned by
training the RBMs that make up its structure, respectively.
In this way, a common probability distribution is modeled
between the data applied to the input and the hidden layer
in between [69].

C. SEMI-SUPERVISED DEEP LEARNING
Semi-supervised learning is a combination of the features of
supervised and unsupervised learning algorithms; It includes
algorithms in which the number of labeled data is lower
in the training data, but there is more unlabeled data, and
the algorithms are executed without providing the complete

set of rules. In other words, semi-supervised learning is
a learning model that represents a middle class between
unsupervised learning (without labeled training data) and
supervised learning (with labeled training data). Learning
accuracy can typically be increased in this model. Algorithms
working in this structure are Generative Adversarial Net-
works (GAN) and Variational AutoEncoder (VAE).

Unlike other machine learning algorithms, theGenerative
Adversarial Networks (GAN) algorithm has the ability to
produce as well as learn. The purpose of the algorithm is to
train two models simultaneously. These two models consist
of the generating model and the discriminant model, which
provide data distribution. The discriminant model oversees
making sure that the data from the generative model is as
accurate as possible [69].

Variational Autoencoders (VAE) are algorithms that gen-
erate highly realistic pieces of content of various types, such
as deep generative models, images, texts, and sounds, based
on well-designed network architectures and intelligent train-
ing techniques with large amounts of data. It is an architecture
that has both an encoder and a decoder and is trained to make
the difference between the encoded data and the original data
as small as possible [79].

VI. RESEARCH METHODOLOGY
This study consolidates modern learning methods and analy-
sis techniques to detect malware targeting Android systems
inspired by the field’s focus and progress. Expanding to
encompass Android structure, analysis techniques and mod-
ern learning algorithms, this investigation scrutinizes rele-
vant literature from 2017 to 2022, sourced from multiple
databases.

This review included predominantly used terms across the
selected papers, employing the wildcard character ‘‘∗’’ to
cover possible term alternatives in the Institute of Electri-
cal and Electronics Engineers (IEEE), Science Direct, and
Association for Computing Machinery (ACM) databases.
Following are the search queries.

IEEE query:
(‘‘Document Title’’:‘‘android’’ OR ‘‘Document Title’’:

‘‘malware detection’’) AND (‘‘Document Title’’: ‘‘ detec-
tion’’ OR ‘‘Document Title’’:‘‘protection’’ OR ‘‘Document
Title’’:‘‘machine learning’’ OR ‘‘Document Title’’:‘‘deep
learning’’ OR ‘‘Document Title’’:‘‘malware’’ OR ‘‘Doc-
ument Title’’:‘‘analysis’’ OR ‘‘Document Title’’:‘‘android
malware analysis’’)

Science Direct Query:
(‘‘android’’) OR (‘‘malware detection’’) AND (‘‘detec-

tion’’ OR ‘‘protection’’ OR ‘‘machine learning’’ OR ‘‘deep
learning’’ OR ‘‘malware’’ OR ‘‘analysis’’ OR ‘‘android mal-
ware analysis’’)

ACM Query:
([Title:‘‘android’’ OR [Title:‘‘malware detection’’] AND

[Title:‘‘detection’’] OR [Title:‘‘protection’’] OR [Title:
‘‘machine learning’’] OR [Title:‘‘deep learning’’] OR
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[Title:‘‘malware’’] OR [Title:‘‘analysis’’] OR [Title: ‘‘android
malware analysis’’])

As a result of the search queries, we filtered the studies
related to the subject and focused on the relevant studies. As a
subsection, we examined the datasets used in these studies
and the modern learning algorithms used and presented them
to the researchers. Our study’s primary aims include a com-
prehensive review of android malware analysis techniques
and assisting the research community by pinpointing relevant
modern learning algorithms.

VII. LITERATURE REVIEW
Recently, there has been significant research on Android mal-
ware detection using deep learning techniques. This section
aims to summarize the relevant studies and provide a detailed
comparison table of their features. Table 3 provides detailed
information about each study, including publication year,
dataset and algorithms used, accuracy rates, environment,
method, and platform.

Kim et al. [80] proposed a malware detection system called
MAPAS, which efficiently uses system resources. MAPAS
analyzes the behavior of malicious applications using API
call graphs and the CNN model to explore the common
features of API call graphs of malware. The study compared
MAPAS and the Android malware detection approach called
MaMaDroid in terms of memory usage, classification speed,
and accuracy.

Utku [81] proposed LSTM based detection systems by
analyzing network traffic on mobile applications and com-
paring them with NB, RF, SVM, MLP, CNN, RNN, and
GRU algorithms. The developed LSTM-based deep learning
model has been more successful than the other proposed
methods with a 95% accuracy rate. In the study, 10 features
of 7845 applications obtained from pcap files of 4704 benign
and 3141malicious applications obtained from the DroidCol-
lector project were used.

Fallah and Bidgoly [82] proposed a method based on the
LSTM algorithm for malware detection, classification, and
new and invisiblemalware families. In the proposed study, the
analysis of network traffic data containing dynamic features
was carried out on the CICAndMal2017 dataset. In the study,
it was detected with an accuracy rate of 99.96\% immediately
after capturing 50 network traffic flows, and an accuracy rate
of 80% was obtained in the detection of new malware.

Xing et al., [83] proposed the autoencoder method to ana-
lyze a gray-scale image representation of the malware using
dimensionality reduction features. In the study, the dataset
obtained from categories such as office, video, gaming,
finance, photography, and reading, collected from Google
Store and VirusShare, with benign and malicious software,
was used. When the proposed AE model is compared with
machine learning algorithms, the highest accuracy rate of
96% is achieved.

Amer & El-Sappagh [84] proposed a behavioral Android
malware odor predictive model in their study. The model is
based on reconstructed API calls, permissions, and system

call sequences as static and dynamic properties. The proposed
model uses the LSTMmodel to classify snapshots of API and
system call sequences. The model is tested against common
ransomware attacks on heterogeneous datasets. In the study,
in which machine learning algorithms were used for compar-
ison, the highest accuracy rate was obtained at 99.3% with
permission classification.

In the proposed study [85], malware detection based
on a hybrid classification method was carried out on the
CICMalDroid 2020 dataset. In the study, 97.5% accuracy
rate was obtained from the use of MLP and RF algorithms
applied with hybrid detection techniques of Android mal-
ware. In the study, a classification study is presented on
the CICAndMal2017 dataset, which uses network traffic
features for Android malware detection. By extracting the
features from the network traffic with the one- dimensional
CNN algorithm, the relationship between the features was
determined using the LSTM algorithm. With the model
presented in the study, it was stated that the result of
binary classification was 99.79% accuracy with CNN-LSTM,
98.9% accuracy with CNN-LSTM in categorical classifica-
tion, and a 97.29% accuracy rate with CNN-LSTM in family
classification [86].
A hybrid DL capable Android malware detection frame-

work is proposed that uses permissions, API calls, and intents
to detect malware from Android apps. With the designed
approach, CNN and BiLSTM were utilized by using 10-
fold cross-validation in classifying malware. The study was
carried out on Androzoo and AMD datasets. In the proposed
study, hybrid DL models and comparative DL-based algo-
rithms were critically evaluated [87]. The authors proposed
a malware classification model to detect Android malware
samples, as well as an algorithmic model and an artificial
intelligence- based learning solution based on static analysis
and feature extraction from source code. The accuracy of the
data was found to be approximately 94.4% after 200 rounds
of training, and the e-validation set was used to validate the
model [88].

Zhu et al. proposed a framework called SEMDroid for
the detection of Android malware. To reduce the variety
of features, the system using PCA uses the MLP learning
algorithm. In the next step, the SVM algorithm was used as
a fusion class, and studies were carried out on two different
datasets. Accuracy rates were obtained using static proper-
ties; an 89.07% accuracy rate was obtained when multi-level
static features were used, and a 94.92% accuracy rate was
obtained when sensitive data streams were used as static
features [89].

In the study, the MobiTive detection system, which is
stated to be more efficient and effective compared to existing
security engines, is recommended for deep learning-based
malware detection on Android mobile devices. In the study,
comparative evaluations are presented in five different cat-
egories: feature extraction performance, feature selection
types of performance, performance accuracy of deep learn-
ing algorithms, real-time detection performance accuracy
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on different devices, and device feature evaluations from
MobiTive are presented in [90].

In the study [91], a structure containing a two-layer method
is presented to detect malware found in Android applications.
While the first layer of the system creates a fully connected
neural network model in which static properties are analyzed,
the outputs obtained from the first layer are given as input to
the second layer, and the analysis of dynamic properties is
classified by the proposed CACNN method based on CNN
and AutoEncoder algorithms. While the accuracy rate of the
first layer of the binary classification system is 95.22%, the
classification accuracy performance of the second layer of the
system is reported as 99.3%. In addition, in the experimental
study in which the proposed system classified malware as
categories and families, it was presented that it classified
it with an accuracy rate of 98.2% on a category basis and
71.48% on a class basis.

A multi-modal malware detection model called MDNM-
Droid to explore the potential relationship between permis-
sions by combining two different networks in [92]. Compared
to a single network, a multi-mode network has stronger
learning ability and can filter more meaningful features to
distinguish malware and benign samples. Evaluation results
based on the permission dataset collected show that MDN-
MDroid achieves 93.18% accuracy. In the study, the effect of
using convolutional neural networks, especially startup-based
and multi-channel architectures, on network performance for
the detection of mobile malware, is mentioned. It has been
reported that an accuracy of 92% was obtained by using a
multi-channel model on the Koodous dataset [93].
Wenbo et al. have proposed a multi-mode deep learning-

based Android malware detection system. In the system
where API calls, permissions, hardware components, and
intent features of applications are used, deep learning algo-
rithms are modeled in three different ways. In the system in
which DNN, CNN, and CNN-GRU deep learning algorithms
are used, it is shown that a 98.74% accuracy rate is obtained
by using 5,560 malware samples and 16,666 benign samples
[94].

In [95] static and dynamic analysis techniques were used to
compile API calls, system commands, manifest permissions,
and intent attributes of benign and malicious applications
fromAPKfiles. To obtain the highest performance value with
different configuration values of deep learning hyperparame-
ters, the highest accuracy rate of 99% was obtained because
of experimental studies. Mu et al. proposed a solution to the
malware detection problem in Android systems by extracting
the API sequence of the malware with the text processing
method in the Cuckoo sandbox. A total of 11000 samples
containing 8000 Android malware and 3000 benign applica-
tions were used in the study. Among them, Android malware
is mostly collected from Virus Share, Google Play Market.
Benign apps are usually downloaded from the Android app
store. They used the Dalvik analysis method-based Bi-LSTM
method, one of the malware static analysis methods, to eval-

uate the performance of the system. In the study, an accuracy
rate of 96.74% was obtained [96].

In [97] the authors carried out malware detection system
for Android devices. The classification study is carried out
using static analysis features of benign andmalicious applica-
tions collected from Google Play and Virus Share. The DBN
classification framework is presented in the study, in which
331 features, including API calls and permissions, are used.
The obtained accuracy success rate has been reported as
94.64%.

In [98] a new preprocessing method is described to solve
the long sequence problem that the LSTM model will face
to achieve fast training and high accuracy. In the study
using the Drebin dataset, an accuracy rate of 95.58% was
obtained with the proposed model. In the proposed study,
which uses the Deep Learning-based LSTM algorithm for
ransomware detection on Android systems, Feature selection
was made using eight different machine learning algorithms:
Chi Square, CV Attribute Eval, Gain Ratio Attribute, One
Attribute Eval, Information Gain Attribute, Significance
Attribute Eval, Relief Attribute Eval, and Symmetrical Uncert
Attribute Eval. The nineteen features were selected by a
simple majority voting process by comparing the results of
all feature filtering techniques. In the study, ransomware
detection was performed on the CICAndMal2017 dataset.
The feature filtration experiment was conducted on WEKA,
on a total of 40,000 samples, of which 20,000 were benign
and 20,000 were ransomware labeled. It was stated that the
accuracy rate obtained in the study was 97% [99].

The Deep Droid framework was proposed in [100] and
consists of three phases: the data collection phase, the fea-
ture selection phase, and the machine learning phase.120,000
Android apps were evaluated in the study. API calls and
permissions were used as inputs in the study. Research was
conducted on 100,000 APK files and 20,000 infected APKs
collected from Google Play. An accuracy rate of 94% was
obtained in the proposed model.

In [101] a factoring machine-based malware detection
method is proposed. The model was applied to the DREBIN
and AMD dataset and 100% accuracy was obtained using the
DREBIN dataset and 99.22% accuracy was obtained using
the AMD dataset. It uses an AE-based approach to classify
malware. In the study using static analysis methods, API calls
and permissions features are used.With the proposedmethod,
it is said that 96.81% of malware can be reached.

The Droid-NNet model is presented as a deep learning-
based malware classifier [102]. Experimental studies were
conducted using 215 features of malicious and benign appli-
cations, using Malgenome-215 datasets containing 3,799
application examples and Drebin-215 datasets containing
15,036 application examples. The proposed framework is
evaluated by comparing it with DT, LR, and SVM. To verify
the consistency of the model, 10-fold cross-validation was
applied to each of the models. The accuracy rate of the
proposed framework, Droid-Net, is 98.81%.
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A CNN based model for malware detection in the study,
API calls and Opcode sequences are used as features [103].
API function calls are used to represent the behavior of
the Android application. Bluetooth in the study, user loca-
tion information, SMS text messages, phone numbers, etc.
As such, eleven class packages were selected. These pack-
ages also contain many API calls. The attribute size has
been reduced by selecting 1500 API calls among the API
calls that represent the best in their class according to their
entropy. In the study using the Drebin dataset, the accuracy
rate of the proposed fusionmodel was 97.5%. TheMobiDroid
framework [104] is a deep learning-based real-time and fast
detection system recommended for Android malware detec-
tion, is presented. The first part of MobiDroid, which consists
of two parts, contains the feature extraction and the related
learning model, while the second part transmits the feature
vector of the applications downloaded from official and unof-
ficial sources to the detection system. Features that are found
in the manifest files of the applications are used as input
to the CNN learning model. The accuracy rate of the pro-
posed systemwas 97.35. Presents a multimodal deep learning
framework in which Android malware is detected, and it
consists of four parts: raw data extraction, feature extrac-
tion, feature creation, and detection processes. The properties
extracted in the study are string, opcode, API property, shared
library function code, permissions, component, and environ-
mental property. As a result of the model’s performance, the
accuracy rate was reached as 98% [71].
The MalResLSTM [105] framework model was proposed

to detect malware, and it is presented by a deep residual
long-term memory-based system with the Drebin dataset.
The accuracy of the MalResLSTM model was 99.32%. The
proposed deep learning based DeepClassifyDroid detection
system consists of three steps. These steps are feature extrac-
tion, feature placement, and detection. In the first stages,
five different feature sets are created using the static analysis
method, and in the next stage, CNN-based malware detection
is performed. According to the performance result of the
proposed study, an accuracy rate of 97.4% was obtained
[106]. An LSTM-based system [107] is proposed for Android
malware detection based on static and dynamic features.
Static analysis used 279 applications in AMD dataset and
279 malicious applications in MalGenome dataset. Android-
Manifest.xml file is used for 558 APK using APKTool 2.0.3.
Each APK contains detailed permissions as feature vectors
with 330 benign and malware class tags. AMD dataset was
used for dynamic analysis. Shell scripts with the ‘‘adb-
monkey’’ emulator tool were used to analyze APK files
and generate random user events in communication with the
application interface. The study collected battery, connector,
memory, and permissions feature vectors by sending user-
login mock events to 1330 malicious apps and 408 benign
apps in a 5- second time frame. In the study, an accu-
racy rate of 99.7% in the dynamic analysis method and
97.5% in the static analysis method was obtained with the
LSTM model.

Android malware detection framework called MalDozer
was proposed in [108] the classification-based study with
API calls. MalDozer automatically detects and learns mal-
ware and benign with the application’s API calls. Automatic
feature extraction is offered using raw API call sequences
extracted from the DEX assembly. Malgenome and Drebin
datasets were used as a mixed dataset containing malware
and benign applications. Benign applications are from the
PlayDrone dataset [109]. The F1 score rate obtained in the
study was 96.33%.

In the study [110], a deep learning-based framework
model, the Deep Flow model, is proposed. The perfor-
mance evaluation of the DBN-based DeepFlow system is
presented in the study, which uses a dataset of 8,000 malware
applications and 3,000 benign applications collected from
VirusShare (which is publicly computer virus repositories
on the net) and Genome. In the study, traditional machine
learning algorithms and deep learning performances were
compared. The F1-Score of the DeepFlow model is reported
as 95.05%.

When the literature studies are examined, there is a
decrease in the traditional methods in the techniques used
for malware detection and shifting to more effective and
effective methods. The increasing aggression and complexity
of malware reveal that more dynamic systemsmust be predic-
tive, especially due to zero-day attacks rather than detection.
Due to the ever-increasing capabilities of Android devices,
it becomes imperative to take comprehensive security mea-
sures instead of basic security methods.

A. LITERATURE SURVEY
This section offers a review of survey works that have focused
on the detection of Android malware in recent years. Within
this study, Table 4 presents a comparison of the strengths and
weaknesses of contemporary machine learning models for
Android malware detection. This aims to establish a frame-
work for the studies discussed in the literature summary.

As indicated in Table 5, none of the previously mentioned
studies offer a comprehensive classification of each approach,
considering factors such as performance results, analysis
techniques, classificationmodels, feature extractionmethods,
and available datasets. Our research endeavors to address
this void by furnishing an exhaustive decision-making frame-
work. This framework can potentially serve as guidance for
future machine learning-based methodologies, aiding them
in determining the most suitable analysis method, modern
learning models, and analysis techniques based on the dataset
at hand.

VIII. CHALLENGES AND FUTURE DIRECTIONS
The growing number of attacks on Android systems and
their focus on stealing valuable information have made
Android security a top priority for the cybersecurity com-
munity. Malicious software is often used by attackers to gain
access to Android devices and target various aspects of these
devices. Android users are particularly vulnerable due to the
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TABLE 3. Comparison of the related works.

platform’s open-source architecture and ease of application
development. Based on the insights obtained in the previous
sections, we can draw several key lessons and outline some
challenges for future research.

Reducing detection times: In order to reduce the impact of
malware threats, it is necessary to develop methods that will
increase the speed of threat detection and evaluation, and to
produce security solutions. Although the use of machine/deep
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TABLE 4. A comparison of deep learning models in Android malware
detection.

learning models leads to efficient solutions, it should be
supported by hybrid approaches and parallel detection mech-
anisms to increase the efficiency of the system. Systems are
susceptible to novel forms of attack. Consequently, zero-
day attacks must be identified utilizing an anomaly-based
detectionmethod and an appropriate model for rapid malware
detection. Since zero-day attacks are attacks whose signature
is not yet known, they are difficult to detect using traditional
methods. In order to be fast, deep learning models developed
on a parallel system can detect anomalies by learning normal
behaviors. The system that detects such attacks usually learns
normal behavior by analyzing features such as packet sizes,
protocol types, and timestamps. When a new attack occurs
on the system, abnormal behavior that differs from normal
behavior patterns is detected. However, it is important that
the system is trained and configured correctly.

Supporting other detection systems: Existing antivirus pro-
grams that protect Android devices against threats should
be supported with machine learning models in the analysis
of applications using dynamic, static and hybrid analysis-
based methods. When the model is fed with enough data,
it achieves higher accuracy compared to traditional methods.
Systems supported by machine learning models can use raw
data without the need to apply an extra feature extraction step.
Thus, these programs are reinforcement as tools to ensure that
the actions of applications are analyzed only for compliance
with the expected security policy, regardless of blacklisting
or signature. The development of such software tools is a
popular area supported by industrial and academic research.

Development of hybrid analysis detection systems: More
work should be done in the future on hybrid analysis tech-
niques, which are a combination of static and dynamic
analysis methods. However, dynamic analysis techniques are
less preferred than others due to their accessibility and cost.

Static analysis can reveal information that cannot be revealed
through the dynamic run time process, while dynamic analy-
sis can reveal run time information. This is because it’s hard
to hide code by taking advantage of both static and dynamic
analysis techniques. This makes it important to offer more
solutions in this field.

Need for up-to-date datasets: Existing Android-based
and publicly available datasets should be expanded for
researchers working in the field of malware detection.
Datasets created by researchers in my Android malware
detection approaches have several limitations. For example,
collected malware may be removed by Google play at inter-
vals between two snapshots, or metadata and APKs may
change during that time. Therefore, malicious applications
collected may not fully explain the situation when they are
removed. This is a limitation of the datasets created by
researchers. Using new and/or deeper models: Android mal-
ware detection remains a popular research topic. The new
approach, which involves the idea of malware codes through
adversarial generator networks and then using these codes to
detect is developing. It is concluded that deep learning-based
detection methods in Android systems will still be a trend
topic in the near future, and these systems will be faster,
stable, robust and agile with the constantly developing new
detection technologies.

Using new feature selection strategies for increasing the
accuracy rate: Android malware detection utilizes a vast
amount of network data, which includes redundant and irrel-
evant features. This results in extensive training and testing
procedures, which cost more resources and produce a low
detection rate. Feature selection refers to the process of pick-
ing a subset of the most relevant and usable information
from an entire dataset, while discarding irrelevant and redun-
dant characteristics, to construct an effective learning system.
In order to choose the optimal feature selectionmethods, such
as intelligent agents, evolutionary algorithms, fuzzy tech-
niques, neural networks, rough sets, and swarm optimization
techniques, it is crucial to be able to precisely quantify the
importance of features to malware detection and the redun-
dancy of features. This decision reduces the system’s storage
requirements and its processing expenses. The appropriate
one is determined by the learning models of the systems and
the dataset’s structure. Consequently, the selection of these
indicators is a complex matter.

Reducing the training time: Almost all learning-based
Malware detection systems require a longer training period,
which reduces the security system’s effectiveness. This prob-
lem becomes more important when deep learning models are
employed due to the increasing number of layers involved.
Either the adoption of new technology or incremental learn-
ing models could be the solution. Transfer learning, a model
of machine learning, can be used in conjunction with rein-
forcement learning as an incremental learning strategy. With
this strategy, the adaptation of an existing model to a new
issue area, particularly with respect to big data platforms,
is performed by utilizing prior employment experience to
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TABLE 5. Comparison of the surveys in the literature.

improve the generalization over another. In addition, the
majority of developers’ favor GPU technology as a hardware-
based solution.

We hope this survey study inspires further research in the
context of malware detection. In the future, there will be a
lot of research to do about interesting features of different
malware, how to search for and find out about attacks, how
to predict how malware works, how to extract features, and
how to make detection more effective.

IX. CONCLUSION
The secure use of Android devices has become increasingly
important due to their significant market share in the digital
world. When users cannot interact with their devices effec-
tively, the reliability and usability of smart mobile devices can
be inconvenient. Therefore, providing a secure service against
malware is a fundamental requirement for the effective use of
these devices. Deep learning algorithms, which have emerged
with the development of artificial intelligence, can expedite
the learning process, and improve the operation of products,
technologies, or services. In this survey study, a detailed
literature review was conducted to investigate and analyze
the application of deep learning approaches in the context of
malware detection on Android systems. The study includes
comparison tables about datasets, used models and analysis
of detection methods, which present many current datasets
and articles. Additionally, the study provides an overview
of the Android architecture, explains the systems devel-
oped for deep learning-based Android malware detection,
and high- lights future research trends. Therefore, Android
system security and deep learning algorithms are presented
as a solution for malware detection in this active research
area with many aspects. Furthermore, we also discuss open

research issues for android malware detection systems and
different approaches.
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