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ABSTRACT For understanding unordered sets of point clouds, the positional information of each point
must be effectively used. To this end, the existing models use the absolute position of the point and its
relative positionwithin a local group. However, accurately capturing the positional information is challenging
because the relative position within a local group typically has a considerably smaller value than that of
the feature information. Moreover, in terms of the data characteristics of point clouds, closer points are
more strongly correlated, but their relative position approaches zero. To address these problems, we process
the relative position within a local group by normalizing it within the overall object range and local range
according to the data characteristics. This transformation helps maintain the meaning and pattern of the
relative position while facilitating its learning. The transformed data are combined with the absolute position
to encode the position vector, which serves as the positional encoding in multi-head attention across multiple
resolutions. Extensive experiments are conducted on benchmark point cloud datasets to demonstrate that the
proposed model exhibits competitive performance in part segmentation and classification tasks.

INDEX TERMS Point cloud, deep learning, multi-head attention, positional encoding, up-sampling, part
segmentation, classification.

I. INTRODUCTION
A point cloud, typically derived from LiDAR or three-
dimensional (3D) camera scans, is a representative data-
driven tool for depicting the environment in three dimensions.
Point clouds consist of a large number of 3D coordinate
points, which contain important spatial information, such as
the shape, location, and size of an object. Consequently, point
clouds are widely used in various fields, such as robotics
[1], computer vision [2], autonomous driving [3], and vir-
tual reality. With recent advancements in deep learning and
3D scanning sensors, the affordability of 3D environment
recognition has improved. Moreover, the development of
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improved hardware for parallel computation processing has
promoted research on point clouds. The objective of point-
cloud deep learning is to maximize the extraction of accurate
and high-dimensional characteristics by applying deep learn-
ing algorithms to 3D data.

A. POINT-CLOUD DEEP LEARNING TASK
1) CLASSIFICATION
As a fundamental deep learning task, classification involves
predicting the category to which a particular object or scene
belongs. The objective is to classify the input point cloud
to a predefined category. To this end, a model is trained to
correctly categorize input point clouds into labels such as
airplanes, cars, or desks.
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2) SEGMENTATION
The segmentation of a point cloud is different from clas-
sification in that every point has a label. Subtasks of
segmentation include semantic segmentation and part seg-
mentation. Semantic segmentation is the task of classifying
which object each point is contained in a point cloud scene
with multiple objects. Part segmentation is aimed at predict-
ing the part to which each point of an object belongs. For
example, the point cloud of an airplane is divided into parts
such as wings, bodies, and wheels. This task enhances the
ability of a model to understand the object structure and
perceive the detailed shape and characteristics.

3) REGISTRATION
Point cloud registration involves aligning different point
clouds into a coherent 3D model. For example, SpinNet [4]
extracts rotationally invariant and informative local features
to enhance registration accuracy and has been noted to out-
perform the existing methods on various datasets.

4) SAMPLING
This task involves selecting representative points from the
point cloud to achieve a satisfactory performance on the
aforementioned tasks, even with a small number of points.
For example, TransNet [5] uniformly samples the point cloud
at various scales using the farthest point sampling strategy.
By obtaining multi-scale attention weights, TransNet [5]
achieves satisfactory classification performance even with a
few points.

The abovementioned tasks allow deep learning models to
effectively extract and understand spatial and semantic infor-
mation from point cloud data. The objective of this study is to
understand the basic properties of point clouds and propose
more effective algorithms for point cloud classification and
segmentation.

B. OVERVIEW OF POINT-CLOUD DEEP LEARNING
Point clouds consist of 3D points, each characterized by
x, y, and z coordinates. Point-cloud deep learning typically
involves tasks such as classification and segmentation, using
both global and local features. Global features contain overall
shape information, whereas local feature contain informa-
tion regarding the local shape of an object. Notably, the
performance of refined classification or detection of sub-
tle shape changes may deteriorate if only global features
are used. In such case, it is necessary to integrate local
features. To extract local features, information regarding
the points surrounding each point must be obtained. This
requires a grouping process, which identifies the indices of
the points around a given point. Grouping is generally based
on the Euclidean distance along with techniques such as
the k-nearest neighbor (kNN) algorithm, which selects the
k nearest points, or the ball query method, which selects all
points within a given radius. To characterize local features,
it is necessary to determine not only the absolute position

of the points but also the relational and relative positions
of grouped points. Each point distributed in 3D space holds
limited information in terms of the absolute position. How-
ever, by considering the arrangement of points, that is, the
relative positional relationship between the points, more com-
plex and detailed shape information can be extracted. For
instance, information such as the distance and orientation of
a point relative to other points or the distribution of distances
to surrounding points can provide valuable clues regarding
the shape, texture, and structure of the object that the point
belongs to. In the Point Transformer framework [6], the rel-
ative position in each 3D axis is directly used in learning by
incorporating the positional information in the feature vector.

However, the direct use of the relative position involves
certain challenges. First, the relative position values are small.
As point cloud data become denser, the relative positional val-
ues between two points become extremely small. Ideally, the
positional information value should not be excessively large
or small. Specifically, an extremely small valuemay cause the
positional information to have nomeaning in the learning pro-
cess. Conversely, if the positional information is excessively
large, the influence of other encoded information may be
reduced. Therefore, it is necessary to ensure the appropriate
scale of the positional information. Second, the magnitude
of the relative position decreases as two points draw closer.
Two points with a small distance between them are likely
to have similar characteristics, and thus, they are strongly
correlated. However, the relative position approaches zero as
the distance between the two points decreases. In such cases,
even though the two points are correlated, the positional
information entering the learning layer approaches a value
of zero. If the value of a specific index in the input data
approaches zero, the model tends to pay less attention to
the corresponding point during training. This phenomenon
occurs because most learning algorithms learn weights asso-
ciated with the patterns in the input data, and these weights
are determined through the dot product operation with the
input data. If the value at a specific index is close to zero,
the corresponding weight does not significantly contribute
to the result of the dot product operation with the input.
Therefore, it is desirable to assign higher scores to two points
with smaller distances. This adjustment allows the model to
be more influenced by nearby points than by distant ones
during training. By normalizing the relative position data
to an appropriate scale while maintaining the pattern and
meaning of the data, the positional information of the point
cloud can be more effectively utilized.

Considering these aspects, in this study, we construct a
multi-head attention mechanism with positional encoding for
reflecting the point cloud distribution characteristics of an
object. Moreover, a method for positional encoding that is
suitable for point clouds is established. To this end, we obtain
a relative position score between the points in the sam-
pled point cloud and the points before being sampled. The
relative positional information used in existing models is
transformed according to the characteristics of each object
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while maintaining an appropriate scale, thereby allowing the
learning model to leverage the positional information more
effectively. The position score is designed to increase as the
distance between the points decreases, and it is normalized
within the appropriate scales.

To properly reflect the original patterns and characteristics
of the data during normalization, the adjustment range must
be carefully defined. In our analysis, each object in a dataset
is noted to have different point densities and distributions.
Therefore, object-specific normalization is performed in the
proposed framework. Additionally, after observing that the
density of the point cloud varies by part within a single object,
we also concurrently implemented normalization within the
local range. And considering the 3D characteristics of point
clouds, we maintain a score for each axis and preserve the
sign indicating the direction with respect to the center point.

The main contributions of this study can be summarized as
follows:

• We introduce a positional encoding method that is suit-
able for point cloud data and can be applied to existing
networks.

• A multi-head attention-based model is established,
which can effectively use positional encoding to facil-
itate appropriate utilization of positional information in
multi-head attention mechanisms.

• The proposed positional encoding approach is applied
to up-sampling processes, whose development has been
known to be stagnant.

The remaining paper is organized as follows. Section II
provides a review of existing point-cloud deep learning
methods and related literature. Section III outlines the pro-
posed multi-head attention and positional encoding methods.
Section IV discusses the experimental results. Section V
presents the concluding remarks and highlights future
research directions.

II. RELATED WORK
A. POINT-CLOUD DEEP LEARNING METHODS
Various methods have been developed for learning point
clouds. For example, voxel-based approaches [7], [8],
[9], [10] convert a point cloud into a 3D grid and perform
shape classification for volumetric data using 3D convolu-
tional neural networks (CNNs). VoxNet [7], a representative
voxel-based method, uses 3D-CNNs to perform 3D object
recognition. In general, two-dimensional (2D) CNNs can
effectively encode spatial relationships between image pixels;
3D-CNNs extend this ability to 3D space to encode the spatial
relationships of 3D data. Voxel-based methods played a key
role in early 3D object recognition research. However, these
methods tend to lose part of the detailed information and are
thus inefficient in handling sparse point-cloud data.

Multi-view basedmethods represent another class of point-
cloud-learning strategies [11], [12], [13], [14]. Thesemethods
convert complex spatial information from 3D objects into
2D image features. This involves converting 3D objects into

2D images viewed from various angles, extracting features
from each of these ‘‘views’’, and combining them to classify
3D objects. For example, MV-CNN [11] renders 3D models
into multiple 2D views and passes each 2D view through an
independent CNN. The features obtained from each CNN are
combined to obtain a comprehensive representation of the
3D model. Although multi-view based methods can handle
point clouds, they exhibit several limitations: A scarcity of
views may lead to loss of 3D information. Moreover, because
each view is processed independently, the model may not
effectively capture interrelationships. Increasing the number
of views may be computationally expensive as it requires the
generation of multiple views, feature extraction from each
view, and their fusion.

In graph-based methods [15], [16], [17], [18], point clouds
are presented in a graphical form and processed using graph
convolutional networks. A notable example is DGCNN [15],
which constructs a dynamic graph by finding the nearest
neighbors for each point in the point cloud and then applies
a convolution to the graph. Graph-based methods can effec-
tively model the spatial structure of 3D point cloud data.
However, models that use dynamic graphs must reconstruct
the graph at each layer of the network, resulting in high
computational and memory costs. These costs may increase
prohibitively in the case of large-scale point clouds with a
large number of points and deep networks.

Unlike the abovementioned methods, point-based methods
[6], [19], [20], [21] directly use raw point clouds without
any preprocessing steps. The absolute position of points in
terms of x, y, and z coordinates is used as the input data.
Depending on the model, RGB data or normal vectors may
also be used. A fundamental problemwith point clouds is that
they represent unordered datasets. PointNet [19] addressed
this problem by using a max pooling function to ensure
permutation invariance, thereby yielding consistent results
even when the order of the input points varies. Building
upon PointNet [19], PointNet++ [20] mitigates information
imbalance by incorporating local information in addition to
global information through a hierarchical structure and skip
connections. This hierarchical structure of PointNet++ [20]
has been applied to many models that use raw point clouds
[6], [21], [22], [23], [24].

B. MULTI-HEAD ATTENTION
Self-attention can effectively model interactions within input
data and has demonstrated excellent performance in natu-
ral language processing and machine translation tasks [25].
Therefore, self-attention can be applied to point clouds to
model relationships with neighboring points in 3D space.
Because point clouds exist in 3D space and the data are
unordered, identifying the relative position to neighboring
points is crucial for understanding local information through
self-attention.

Multi-head attention can be considered an extension of
self-attention. This strategy divides the number of input
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FIGURE 1. Overall architecture of PMHA-Net.

FIGURE 2. Process of positional multi-head attention. The outputs from each head are concatenated to form the final result.

feature channels by the number of heads, independently pro-
cesses each split sequentially, and then combines them.

Because the divided input features independently perform
self-attention calculations, they can learn patterns from dif-
ferent perspectives and ensure diversity in interpretation.

C. POSITIONAL ENCODING
Self-attention was originally developed for sequential data
such as sentences. Therefore, to apply this mechanism to the
3D structural data of unordered point clouds, the positional
information for each data point must be known. To achieve
this, the positional encoding [6], [25], [26] mechanism must
be introduced to recognize the spatial structure of point
clouds. The location information includes the absolute posi-
tion of each point and relative position of neighboring points.
The Point Transformer [6] method allows a model to effec-
tively learn the spatial structure of the point cloud by directly
incorporating the relative positional information of each point
into the self-attention mechanism. In point cloud data, the
points defining the shape or structure of an object are typi-
cally located close to one another, and the relative positional

relationship between these points is pivotal for identifying the
object shape.

In this study, we establish the positional multi-head
attention (PMHA) mechanism, which reinterprets relative
positional information based on the characteristics of 3D
point clouds. This approach uses both the absolute and
relative positional information of point clouds, thereby effec-
tively considering structural characteristics, and is expected
to exhibit robust performance in point-cloud deep learning
tasks.

III. PMHA-NET
A. POINT CLOUD
Point clouds can be obtained from 3D cameras or LiDAR
scans. Point clouds in 3D space can be denoted as
SN ∈ RN ×3, with each of the N points constituting the point
cloud represented as pi:

SN = {p1, p2, . . . , pN } (1)

Point clouds of the same object may be arranged in diverse
combinations depending on the order of the points. Thus,
a given object may have N ! different representations. This
variability due to the order of the data may serve as an

VOLUME 11, 2023 117923



J. Jeon et al.: PMHA-Net: PMHA Network for Point-Cloud Part Segmentation and Classification

unstable factor affecting the classification results of a neural
network. Considering the unordered nature of point cloud
data, we use the max pooling function to generate features
that are independent of the order. This strategy is crucial to
minimize the influence of changes in the order of point cloud
data and yield consistent classification results.

B. NETWORK ARCHITECTURE
Fig. 1 shows the overall network of PMHA-Net for learning
point clouds at multiple resolutions. The network consists of
kNN grouping and feature extraction modules for extracting
local information, PMHA for obtaining diverse perspectives
on the relationships between points in each layer, and global
multi-head attention (GMHA) for combining information
across layers. The feature extractionmodule involves residual
blocks incorporating batch normalization [27] and recti-
fied linear unit (ReLU) activation functions, following the
PointMLP framework [22]. Fig. 2 presents the architecture
of PMHA, which embodies our proposed positional encoding
concept for point-cloud deep learning. This method, unlike
conventional multi-head attention, adds a redesigned position
vector PV , which is divided by the number of heads for
independent use and combined later. The proposed strategy
facilitates the acquisition of the location information of points
at multiple resolutions and interpretation of the location infor-
mation from multiple perspectives through the attention from
multiple heads.

1) POSITIONAL MULTI-HEAD ATTENTION
This section describes the use of the position vector PV ∈

RN ×Ed in the multi-head attention of the PMHA framework
shown in Fig. 2. The input SN of the network passes through
the embedding layer and feature extractionmodule to produce
the feature vector F ∈ RN × C . The feature vector F passes
through two multi-layer perceptrons (MLPs) to generate the
key K ∈ RN × Ed and value V ∈ RN × Ed . The query
Q ∈ RNt ×Ed adopts a learnable query based on the learnable
pooling of PointStack [21]. Through this learnable query,
we can minimize the information loss caused by max pooling
and use a query that is closely related to the learning objective.
Q, K , V , and PV are unified to the embedding dimension
Ed through the MLP. Q remains fixed at RNt regardless of
the scale of the point cloud. As illustrated in Fig. 1, because
down-sampling stages are included, the output of PMHA
YN = {Y1,Y2,Y3,Y4} is yielded by four different resolutions.
The method for calculating the k-th output Yk is described in
the following text. Before they are input to the multi-head
attention, the channel dimensions of Q,K ,V , and PV are
portioned by the number of heads h, as follows:

QN = {q1, q2, . . . , qN } (2)

KN = {k1, k2, . . . , kN } (3)

VN = {v1, v2, . . . , vN } (4)

PVN =
{
pv1, pv2, . . . , pvN

}
(5)

Subsequently, we calculate the partial attention according
to the order of each head, and the output yi of the i-th head of
PMHA is derived:

yi = softmax(qi × kTi + pvi) × (vi + pvi) (6)

Next, the h outputs calculated by splitting are concatenated
to obtain the output Yk ∈ RNt × Ed of multi-head attention,
as follows:

Yk = concat(y1; y2; . . . ; yN ) (7)

Overall, PMHA unifies the channel dimensions of the
query, key, value, and position vector to the embedding
dimension Ed and sets the query as RNt , regardless of the
layer. Therefore, all outputs from the four resolutions Yk ∈

RNt × Ed have the same shape. And we aggregate these four
outputs, denoted as {YN = Y1,Y2,Y3,Y4}.

2) GLOBAL MULTI-HEAD ATTENTION
Subsequently, all elements in YN are concatenated to obtain
Y ∈ RNt × 4 · Ed . And we apply the Global Multi-Head
Attention (GMHA) to get YG ∈ 1 × 4 · Ed which is a
combination of the information from multiple resolutions.
GMHA performs the same operation as PMHA, except that
it does not use the position vector, as follows:

yGi = softmax(qGi × kTGi) × (vGi) (8)

YG = concat(yG1; yG2; . . . ; yGN ) (9)

where qGi, kGi, and vGi are the split query, key and value
for GMHA, respectively; and yGi is the i-th head output of
GMHA.
YG is used for classification or is expanded and con-

catenated with the results of up-sampling for segmentation.
The classification and segmentation tasks involve a task-
specific MLP, which includes batch normalization, ReLU,
and dropout with a 0.5 drop rate. Classification results are
obtained through a linear layer, and segmentation results for
each point are extracted through a one-dimensional convolu-
tion layer.

3) POSITIONAL ENCODING
The application of the position vector PV as a positional
encoding tool with the query, key, and value within a single
head is inspired by the positional encoding method of the
Point Transformer [6], which can be represented as:∑

xj∈X (i)
ρ(γ (ϕ (xi)−ψ(xj) + δ))⊙(α(xj) + δ) (10)

where X = {xi}i is a set of feature vectors; the subset
X (i)⊆ X is a kNN group; and ϕ, ψ , and α are pointwise
feature transformations (e.g., an MLP) for generating the
query, key, and value, respectively. Here, ρ(e.g., softmax)
is the normalization function, and γ is a function that per-
forms mapping (e.g., an MLP). In the Point Transformer
framework [6], the relative position in each axis-direction
is converted to a position encoding δ through an MLP. This
position encoding δ is then added to both the attention score
obtained through the subtraction relation and the value.
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FIGURE 3. Generation of position vector through outlier-considered normalization in both local and global ranges, using the relative positions calculated
within the kNN group.

FIGURE 4. x-axis direction (a) , y-axis direction (b), and z-axis direction (c) values of the relative position within the
kNN group. Compared with the values of the feature vector, which are typically between 0 and 1, the relative position
values are extremely small.

4) POSITION VECTOR
This section describes the process of obtaining the position
vector PV to be used in the PMHA (Fig. 3). The input data
of the network are the absolute position information of the
point cloud, denoted as SN . The point cloud of SN is halved
through farthest point sampling to generate a sampled point
cloud SS = {ps1, ps2, . . . , psN }. Next, based on point psi in
SS , k-neighboring points from SN are retrieved based on the
3D Euclidean distance to obtain a kNN group SK ∈ RN×k×3.
By subtracting psi from SK , the relative position 1SK is
obtained, as follows:

1SK = SK − psi,1SK ∈ RN×k×3 (11)

The process of converting this relative position 1SK into
a positional score suitable for point cloud data involves
the following steps. Using the absolute value of the rel-
ative position 1SK , the local normalization NormL and
global normalization NormG processes are implemented,
as follows:

PSL = NormL(|1SK |) (12)

PSG = NormG(|1SK |) (13)

where PSL is the result of NormL , and PSG is the result of
NormG. Section III-C provides details of the normalization
used in NormL and NormG.

Next, the conditional average of PSL and PSG is deter-
mined and multiplied by the original sign of the relative
position to generate the position score PS. The PS is then
concatenated with the absolute position SN and input to the
MLP to obtain the position vectorPV . Section III-D describes
the complete process from obtaining and merging PSL and
PSG to generating the position vector PV .

C. NORMALIZATION OF RELATIVE POSITION
This section describes the min-max normalization of the
relative position through interquartile range (IQR) outlier
detection performed during the global and local normaliza-
tions (Fig. 3) to obtain the position vector. In processing
point cloud data, the relative position of each point is pivotal
in understanding the spatial relationships for deriving more
accurate classification and segmentation results. However,
several challenges arise when the relative position informa-
tion is directly used.

First, the inter-point distance in each axis-direction, con-
stituting the relative position, is significantly smaller than the
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FIGURE 5. Stabilization of the value to be set as the maximum value
before using min-max normalization, through IQR outlier detection.

feature vector values, which are generally between 0 and 1,
as shown in Fig. 4. Consequently, the output becomes
extremely small during the learning process, which involves
multiplying by weights. Furthermore, the distance between
even widely separated points rarely exceeds 0.03, which
induces uncertainty in differentiating between nearby and
distant points. Therefore, to meaningfully use the information
of the nearby and distant points in the model, it is necessary
to normalize the relative position, which is clustered around
small values.

Second, points in close proximity tend to have similar
meanings and strong correlations. Therefore, among the sur-
rounding k points, those closer to the reference point are
expected to exert a greater influence. However, the relative
position approaches zero as the points become closer. In deep
learning training, such values (approaching zero) mean that
the model focuses less on the corresponding points.

Considering these aspects, we establish a positional encod-
ing method that transforms relative positions into meaningful
values reflecting the characteristics of point cloud data. The
positional information generated through this method is nor-
malized within the range of the object and kNN group based
on the distance between points. The resulting position score
has a total of three values in the x, y, and z-axis directions
between two points.

1) SCALE OF RELATIVE POSITION
The positional information value must not be excessively
large or small. If the value is too small, it may be difficult
to extract meaningful information from the learning process.
In contrast, if the value is too large, the influence of the feature
information containing the meaning of the object diminishes,
preventing proper learning. Therefore, normalization is per-
formed to obtain a value between 0 and 1, inspired by the sine
and cosine functions used in positional encoding in natural
language processing.

FIGURE 6. The point cloud of a chair is more distant between points
compared to the point cloud of a lamp. The two objects exhibit
differences in the degree of closeness and distance from each other.

2) CORRELATION OF POINTS
A smaller distance between points corresponds to a stronger
correlation between them. Therefore, the position score is
designed to approach 1 for nearby points and 0 for distant
points. Because the score is generated at various point cloud
resolutions throughout the network, it does not focus exten-
sively on narrow areas.

The relative positions of the three axes are normalized con-
sidering the abovementioned aspects. During normalization,
selection of the adjustment range of the data, handling of out-
liers, and variable-specific normalization must be carefully
performed considering the data characteristics.

Using the min-max normalization strategy, normalization
is independently performed for each of the three-dimensional
axes. Because we consider the absolute value of the relative
position, the minimum value is zero when min-max normal-
ization is performed. This is because the reference point is
included when calculating the relative position. A key step in
this process is to determine the maximum value. In particular,
when applying min-max normalization, it is important to
prevent outliers that are much larger than the other data points
from becoming the maximum value. Failure in removing the
outliers may cause the original data pattern to be inaccurately
reflected, with most of the scores being underestimated.
To address this problem, we use the IQR outlier detection
method shown in Fig. 5. This method identifies outliers based
on the median of the data, which is more stable than the
average as it is less susceptible to outliers.

The outlier threshold IQRth is set using the IQR, repre-
senting the difference between the third quartile Q3 and first
quartile Q1. Values exceeding this threshold are considered
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FIGURE 7. If normalization is only performed on the entire point cloud of each object (global Normalization), the
points in the leg part of the chair would have low position scores.

outliers, as follows:

IQR = Q3 − Q1 (14)

IQRth = Q3 + 1.5 × IQR (15)

By replacing all outliers with the threshold IQRth, we set
this threshold as the maximum value1SK ,max in the min-max
normalization process. This allows us to perform normaliza-
tion that is robust to outliers, as follows:

Outliers = IQRth (16)

1SK ,max = IQRth (17)

Subsequently, min-max normalization is applied to the rel-
ative position, and the result is denoted as1SK ,norm. Because
the absolute value of the relative position is considered, the
minimum value 1SK ,min is 0, and the IQRth becomes the
1SK ,max . Next, 1SK ,norm is subtracted from 1 to ensure
that small and large relative positions approach 1 and 0,
respectively:

1SK ,norm = 1 −
1SK −1SK ,max
1SK ,max −1SK ,min

(18)

Both global and local normalizations follow this normal-
ization approach, with the only difference being the range
over which normalization is performed, as discussed in the
following text.

D. NORMALIZATION RANGE
1) GLOBAL NORMALIZATION
Our focus is on information regarding the distance, distribu-
tion, and orientation of other points relative to the reference
point within a kNN group. Therefore, global normalization is
first performed on all the relative positions obtained through
grouping within a single object. Specifically, object-based
normalization is performed because the density of the point
cloud varies across objects given that objects of different
sizes and surface areas are sampled with the same number
of points. In Fig. 6, the relative positions of the points consti-
tuting the chair and lamp indicate that the criteria for being
nearby and distant are different. Object-based normalization
allows the network to reduce the bias stemming the den-
sity differences between objects and facilitates generalized
learning. The three axis-direction values generated within the
object range using Equations 14–18 are termed the global
position score and denoted as PSG.

2) LOCAL NORMALIZATION
As shown in Fig. 7, from the example of the chair, it can be
observed that the density of point cloud components may vary
even within a single object. In such cases, object-based global
normalizationmay yield extremely low global position scores
for low-density areas of the point cloud. Although the legs of
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the chair exhibit a low density when viewed in the context of
the object, the density is consistent within the leg. Thus, these
points should not be considered distant points. To address this
issue, we perform local normalization within the kNN group
to balance the position scores. The three axis-direction values
generated through the same process as PSG within the kNN
range are termed the local position score and denoted as PSL .

3) MERGE
This section describes the process for deriving the final score,
i.e., the position score PS, from the global and local position
scores obtained previously. Because the scale of positional
information should not be excessively large or small, we com-
pute the averages of the global and local position scores to
obtain a score between 0 and 1. Nevertheless, it is necessary
to address exceptions, given that objects may have varying
point cloud densities across different parts.

Fig. 7 compares the results of outlier detection in both
the global and local normalization ranges for an airplane
point cloud with consistent density and a chair point cloud
with different densities across parts. The points connected
in red in the figure are outliers among the nearby k points.
An examination of parts A and B in the figure shows that the
airplane has a uniform density overall, and thus, the results
of outlier detection are the same for both the global and local
normalizations. Point 4 has a score of 0 because it is identified
as an outlier in both normalization process, implying that this
point is significantly unrelated to the reference point.

In contrast, for the chair point cloud, the densities of the
seat and leg parts are considerably different, and thus, the
outlier detection results vary with the normalization range.

Considering parts C and D in Fig. 7, point 4 appears as an
outlier in local normalization but not in global normalization
due to the influence of the sparse leg part. Consequently,
according to Equation 20, point 4 achieves a score between
0 and 0.5 because the local position score is 0. In other words,
although point 4 is not completely unrelated to the reference
point within a dense local part owing to the presence of
many nearby points, it is relatively distant compared with the
remaining nearby points.

Observing parts E and F, point 4 is considered an outlier
in both the global and local normalizations. Thus, its score
is 0, implying that it has extremely low relevance with the
reference point. In part E, global normalization is influenced
by the dense seat part, and thus, points 1, 2, and 3 are con-
sidered outliers. However, in part F, points 1, 2, and 3 are not
considered outliers in local normalization. In particular, given
the point cloud of the chair, it is reasonable not to consider
points 1, 2, and 3 as being distant from the reference point in F
owing to the low density in the leg part. Therefore, according
to Equation 19, if points considered outliers in global normal-
ization are not identified as outliers in local normalization
(e.g., points 1, 2, and 3 in F), only local normalization is
applied to maintain the merged score between 0 and 1.

In summary, to achieve reasonable scoring for points such
as 1, 2, and 3 in E and F, we design the system to perform

normalization by merging the global position score PSG and
local position score PSL as follows:

PS = PSL(if PSG = 0 and PSL ̸= 0) (19)

PS =
PSG + PSL

2
(otherwise) (20)

where PS is the final score obtained by merging the position
score in the global and local ranges.

Subsequently, to express directionality in accordance with
the 3D characteristics of the point cloud, element-wise multi-
plication⊙ is performed with the position score PS, retaining
the original sign of the relative position sign, as follows:

PS = PS ⊙ sign (21)

In this case, points located at the same distance but in
opposite directions exhibit the same absolute value of the
score, with only the sign differing.

Lastly, to ensure that PV contains both absolute and rela-
tive positional information, we concatenate PS with SN. The
MLPs ς , ϱ, and max pooling are applied to the position
score to generate a position vector PV for use in multi-head
attention, as follows:

PV = ϱ (maxpool (ς (concat (PS;SN)))) (22)

E. UP-SAMPLING
The hierarchical network structure of PointNet++ [20], com-
posed of down-sampling and up-sampling, has been used as
the foundation for numerous point cloud segmentation net-
works. The up-sampling process identifies the closest three
points in the next layer for each point in the previous layer
and interpolates the feature vector based on the Euclidean dis-
tance. Despite ongoing research on down-sampling [6], [21],
[22], [23], many recent studies have used the up-sampling
process of PointNet++ as is [20].
To further research on up-sampling, we use the proposed

position information. After interpolating the feature vector
for the three neighboring points in the conventional method,
we concatenate the position score and absolute position, and
then pass them through the MLP to incorporate normalized
positional information in the features to be delivered to the
next layer. This addition of positional information results
in a slight improvement in the segmentation performance,
as observed in the ablation studies.

IV. EXPERIMENT
The effectiveness of the proposed network for part segmen-
tation is evaluated using the public dataset, ShapeNet-Part
[28], and its classification performance is evaluated using
ScanObjectNN [29] and ModelNet40 [30]. Ablation studies
are conducted to evaluate the part segmentation performance
when specific components are removed. Furthermore, we aim
to further the research on up-sampling in networks based on
PointNet++ [20].
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FIGURE 8. Visualization result of part segmentation in the ShapeNet-Part [28] dataset.

A. DATASET
Three datasets are used to evaluate the performance of the
proposed approach in 3D shape classification and pointwise
part segmentation tasks.

ShapeNet-Part [28] is a large-scale part segmentation
dataset that includes 16,881 3D objects and over 50 part
categories. This dataset provides pointwise 3D segmentation
information for 16 shape classes, including objects such as
cars, airplanes, and chairs, with each object divided into two
or more parts. Consequently, this dataset is highly suitable for
conducting part-wise segmentation and classification tasks
on complex 3D shapes. The clear distinction of boundaries
of each part [28] helps clarify the structural features of 3D
objects.

The ScanObjectNN [29] classification dataset, based on
real-world 3D scan data, categorizes 2,902 unique objects
into 15 categories and includes 15,000 data entries. Each
object includes attributes such as global and local coor-
dinates, normals, colors, and semantic labels. Therefore,

the ScanObjectNN [29] dataset is especially valuable for
evaluating the model performance in real-world conditions
and facilitates training in the presence of various prob-
lems that can occur in the real world, such as noise or
occlusions. In this study, we select PB_T50_RS, consid-
ered the most challenging condition within the ScanOb-
jectNN [29] dataset, as it involves location, rotation,
and scale manipulations of objects. Such transformations
enhance the understanding of the complex 3D shapes of
objects and can help assess the robustness of a model
against various transformation conditions encountered in the
real world.

The ModelNet40 [30] classification dataset is based on
computer-generated 3D CAD models. This dataset catego-
rizes 12,311 data entries into 40 categories. The models are
clean and accurately labeled, and each model corresponds to
a standardized size and orientation. Thus, ModelNet40 [30] is
primarily used to evaluate the performance of models focused
on classification tasks.
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TABLE 1. Part segmentation result on shapenet-part [28] dataset.

TABLE 2. Classification result on scanobjectnn [29] and modelnet40 [30] dataset.

B. EVALUATION METRICS
Following previous studies [6], [31], [32], the performance of
the model is evaluated using the following metrics:

For the ShapeNet-Part [28] dataset evaluations, we use
the instance-wise mean intersection over union (ins. mIoU)

metric, which measures the segmentation accuracy for each
part. Ins. mIoU reflects the distribution of each instance
within the dataset, treating each instance as an independent
entity for evaluation. This helps minimize the impact of class
imbalance on performance evaluation, counters classes with a
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TABLE 3. Ablation study on the components constituting pmha and the
performance improvement from applying positional information in
up-sampling.

small number of instances from disproportionately affecting
the overall model performance of the model, and prevents
models from overly relying on classes with a large number
of instances.

For the ScanObjectNN [29] and ModelNet40 [30] dataset
evaluations, we use the mean accuracy mAcc and over-
all accuracy OA metrics. In particular, mAcc quantifies the
average classification accuracy for each class, whereas OA
indicates the ratio of accurate predictions among all predic-
tions.

Four main components are considered for comparing pre-
dictions and labels: true positive TP, true negative TN , false
positive FP, and false negative FN . The evaluation metrics
are computed as follows:

OA =
TP+ TN

TP+ TN + FP+ FN
(23)

mAcc =
1
C

C∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(24)

mIoU =
1
C

C∑
i=1

TPi
TPi + FPi + FNi

, i ∈ C (25)

where C is the number of classes in the dataset.

C. IMPLEMENTATION DETAILS
The network is implemented using Python 3.7 and PyTorch
1.9.1. Model training is performed using an NVIDIA RTX
3090ti (24 GB memory) system with CUDA 11.1.

The stochastic gradient descent optimizer is used for train-
ing, with a cosine annealing scheduler without warm restarts.
The cross-entropy loss function with label smoothing is
employed. The initial learning rate is set as 0.01. During train-
ing, if the learning rate drops below 0.0001, it is maintained
at 0.0001.

For the ShapeNet-Part [28] dataset, training is performed
for 400 epochs, using 2048 points per object, with a batch
size of 8. For the ScanObjectNN [29] dataset, training is
performed for 200 epochs, using 1024 points per object, with
a batch size of 16. For the ModelNet40 [30] dataset, training

is performed for 300 epochs, using 1024 points per object,
with a batch size of 24.

D. EXPERIMENTAL RESULTS
1) PART SEGMENTATION
The proposed PMHA-Net is evaluated through a compar-
ison with several other models over the ShapeNet-Part
[28] dataset. As shown in Table 1, PMHA-Net achieves
higher ins. mIoU scores than other state-of-the-art methods,
demonstrating superior performance across various classes.
The proposed approach, which effectively utilizes positional
information, is particularly effective for classes with diverse
and complex parts, such as airplanes and cars. Moreover,
although our method yields lower scores for classes with
less data, it generally outperforms other models in classes
with sufficient data. This finding highlights the scope for
improvement in classes with less data, either through the use
of larger datasets or data augmentation techniques.

2) SHAPE CLASSIFICATION
The shape-classification performance of the proposed and
existing approaches is evaluated over the ScanObjectNN [29]
and ModelNet40 [30] datasets. As illustrated in Table 2,
PMHA-Net outperforms the state-of-the-art methods on the
ScanObjectNN [29] dataset. Although PMHA-Net achieves
competitive performance on ModelNet40 [30], it does not
outperform the existing models.

According to PointStack [21], this phenomenon may be
attributable to the limited number of training samples avail-
able in ModelNet40 [30]. PointStack [21] constructed the
ScanObjectNN [29] dataset to match the average number
of training samples per class in ModelNet40 [30] and per-
formed a validation exercise. In this experiment, while the
model surpasses existing model with a sufficient dataset,
it showed lower results compared to existing model when
trained on an equally limited number of samples. In the case
of ModelNet40 [30], 12,311 point clouds are provided as
training data across 40 different classes. In contrast, the main-
PB_T50_RS variant of ScanObjectNN [29] offers 15,000
point clouds for 15 classes, meaning it provides, on average,
more training samples per class thanModelNet40 [30]. Given
that the proposed model records lower scores for classes
with fewer samples in the ShapeNet-Part [28] dataset (bottom
rows of Table 2), it can be inferred that the limited num-
ber of training samples likely leads to the abovementioned
observations.

E. ABLATION STUDIES
We have normalized the relative position in two ways and
applied the position vector obtained through this to the multi-
head attention. Additionally, we have designed a module that
provides additional position information to the traditional
up-sampling method. We performed an ablation study to
verify the availability of each module and represented this in
Table 3.
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FIGURE 9. Positional up-sampling method using the result of the
traditional interpolation method with three points (Interpolated feature).

1) NORMALIZATION
Through normalization of the relative position, we redesigned
it as more suitable and meaningful information for the point
cloud. In Table 3, MHA is an experimental result of multi-
head attention that does not use positional information.
PMHA with V0 applies the position vector made with the
relative position before normalization to the multi-head atten-
tion. Through comparison with MHA, it can be seen that the
relative position, which is close to zero and gets smaller as
the two points are closer, has little effect on performance
and could even have a negative effect. PMHA with V1 is the
result of applying global normalization, while PMHA with
V2 is the result of adding local normalization to the global
normalization. PMHAwithV2 increased the OA performance
in classification by 0.34% and the mAcc performance by
0.93%, compared to MHA which does not utilize position
information in multi-head attention, and the part segmenta-
tion performance increased by 0.32%.

2) UP-SAMPLING
Additional research is performed to further the exploration of
the currently stagnant up-sampling method in the hierarchical
structure based on PointNet++ [20]. Specifically, we obtain
FAL∈RN

× k × C by concatenating the absolute position
SkNN∈RN

× k × 3 of each point within the kNN group to
the interpolated feature FI∈RN

× k × C obtained by the
existing up-sampling method and the position score PS ∈

RN × k × 3 obtained from the relative position. The results
are subjected to the MLP ϑ , as follows:

FAL = ϑ(concat (SkNN ;PS;FI )) (26)

In the up-sampling process, only global normalization is
applied to generate the position score. This selection is made
because only three points are grouped in up-sampling, and
thus, it is not necessary to apply local normalization within
the kNN group. Next, we obtain FU∈RN

×C by skip connect-
ing FI to FAL based on the dimension indicating the index of
the surrounding k points and passing it through the MLP ζ ,
as follows:

FU = ζ (FAL + FI ) (27)

Through this process, the positional information in the
up-sampling network can be reinforced. And we confirmed
an improvement in the part segmentation performance on
ShapeNet-Part [28], with the results at the PMHA with
V2 + Up-sampling in Table 3.

V. CONCLUSION AND FUTURE WORK
The proposed network includes PMHA, kNN grouping, and
up-sampling. PMHA-Net is implemented at various point
cloud resolutions. At each resolution, multiple heads are used
to interpret feature and positional information from multiple
perspectives. The kNN grouping method considers the 3D
characteristics of the point cloud and distribution of each
object to derive the position vector to be used in PMHA.
In the up-sampling technique, positional encoding is realized
by incorporating the position score within the interpolation
process involving the surrounding three points. The proposed
network exhibits outstanding performance on the ShapeNet-
Part [28] dataset in the part segmentation task and competitive
performance on the ScanObjectNN [29] and ModelNet40
[30] datasets in the classification task.

Future work can be aimed at leveraging the position vector
in various multi-head attention methodologies. Addition-
ally, we are attempting to develop a more robust position
vector by efficiently using the grouping characteristics of
the point cloud, along with absolute and relative positions.
We are also exploring methodologies that utilize the relation-
ships between previous and subsequent layers in the simple
up-sampling process. The proposed network demonstrates
potential for enhancing the performance in classes with a
limited number of samples. To address dataset imbalances,
additional training can be realized through data augmentation
or the use of supplementary datasets.
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