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ABSTRACT The joint analysis of large-scale datasets is crucial when studying complex processes involving
diverse sensing sources and multiple variables. This paper proposes a multiview nonlinear manifold learning
framework to fuse or combine data from different types of measurements. Spectral clustering techniques are
employed to obtain a low-dimensional system representation, where the physical data are projected onto a
low-dimensional Euclidean space that preserves the intrinsic geometry of the data. The theoretical properties
of various multiview diffusion maps are examined, and algorithms for the efficient computation of multiview
kernel representations are outlined.Measures of similarity are also derived, and the results are compared with
other state-of-the-art methods for model reduction. Finally, multiple datasets obtained from transient stability
simulations of a large-scale power system model are utilized to evaluate the effectiveness of the developed
algorithms, thereby illustrating their superiority over other state-of-the-art multiview clustering approaches.

INDEX TERMS Alternating diffusion maps, multiview data fusion, spectral clustering.

I. INTRODUCTION
The study of high-dimensional datasets, which may be multi-
modal or heterogeneous, is becoming increasingly significant
in the analysis of large-scale datasets collected by wide-area
monitoring systems (WAMS) [1], [2]. With the continu-
ous growth in the dimension and complexity of observed
data, developing efficient techniques for combining or fus-
ing large-scale sets of measurements from different types or
modalities is essential.

Such approaches can aid in discovering key association
patterns among different data modalities or uncover features
or relations that may need to be evident from analyzing a
single dataset. These approaches offer valuable insights by
identifying spatial patterns and extracting relevant dynamical
features using fewer variables [3].

Various tensor-based approximations have recently been
employed to fuse and analyze multichannel data [3], [4], [5],
[6], [7]. Integrating or combining multimodal information
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from an observed event captured by different sensors aids
in eliminating redundant data and proves beneficial for tasks
such as feature extraction, classification, state reconstruction,
and data visualization.

While there has been relative success in developing and
applying these formulations, the joint analysis of mul-
tiple datasets still needs to be solved due to the high
dimensionality of the data and measurement redundancy.
This challenge arises because multimodal data may exhibit
high correlation, possess different units, or have varying
structures [8], [9].

Tensor factorization-based models have emerged as effec-
tive methods for fusing and clustering large datasets. These
techniques prove particularly beneficial in clustering and
visualizing data across multiple high-dimensional sets, often
encompassing different types or modalities. Noteworthy
among these methods are Tucker decomposition [10], [11],
sequentially truncated higher-order singular value decom-
position (ST-HOSVD) [12], and hybrid approaches that
combine dynamic mode decomposition (DMD) with graph
Laplacian methods [13].
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These techniques have been proposed and employed to
extract meaningful insights from extensive datasets effi-
ciently. Markov chain-based multiview clustering meth-
ods also efficiently merge multiple datasets and generate
low-dimensional representations [14], [15], [16].
However, inherent limitations, such as computational com-

plexity and scalability issues, persist in these approaches
when modeling large-scale multimodal data with more than
two data sets.

This paper introduces a multiview spectral clustering tech-
nique that achieves adaptive dimensionality reduction and
identifies collective variables governing the long-termmotion
of the observed data. This framework extends previous
work on multiview spectral clustering [7] in three primary
directions. First, it generalizes the single-view analysis of
measured data, allowing for the simultaneous examination
of multiple single-type data from various fault scenarios or
multimodal data collected using the same set of sensors.
Second, it introduces a robust analytical framework that lever-
ages cross-diffusion information across data modalities or
sensor channels. Third, the paper presents graphical methods
for visualizing and analyzing multi-view data.

Finally, in practical applications, numerical results
obtained from large-scale simulations of a practical power
grid are used to combine and extract feature patterns. Addi-
tionally, these results help determine and classify diffusion
distances within the low-dimensional embedding space,
a dimension that is often overlooked in power system
literature.

II. BACKGROUND
Modern Synchrophasor Measurement Units (PMUs) produce
data as tensors or multidimensional arrays. To establish a
common analysis framework, consider a WAMS that col-
lects data from M interconnected regional systems indexed
{1,2,. . . ,M}; each assumed to include a phasor data concen-
trator (PDC).

Now suppose the data collected by the PDCs correspond
to different faults or analysis scenarios, f , represented by
a two-dimensional array of the form Xl

f ∈ ℜ
N×m

=

[ xl1 xl2 · · · xlm ], with xlj = [ xj(t1) xj(t2) · · · xj(tN ) ]T ∈ ℜ
N ,

j = 1, . . . ,m, l = 1,. . . , F , where Nis the number of samples,
and m is the total number of sensors. F is the number of
fault scenarios or types of data measurement considered in
the study.

As depicted in Fig. 1, two problems are of interest here:
(a) the joint analysis of different data types, such as bus
voltage magnitudes and phases, and active and reactive
power obtained from a single event, and b) the simultaneous
study of multiple datasets of the same type acquired from
various events. The latter case includes historical records
associated with numerous contingency scenarios or extensive
single-type datasets acquired by regional PDCs, while the
former includesmultichannel data recorded by PMUs. In both

FIGURE 1. Illustration of tensor-based representation of multichannel
data. a) Multimodal data, b) Historical data; f denotes the feature data
selected for analysis, e.g., bus voltage magnitudes and phases.

instances, various datasets can be effectively represented as a
data hypercube (see Fig. 1).

The first coordinate represents time, the second corre-
sponds to sensor location, and each slice along the third
coordinate corresponds to a specific data type or fault sce-
nario. The first problem has been examined in [3], while the
second is addressed here.

Traditional multiblock analysis techniques, such as
multi-block principal component analysis and other con-
ventional approaches, require concatenating the individual
datasets (blocks) Xl

f into a single matrix or tensor. This com-
bined data structure is then used to analyze the overall model
using single-view analysis techniques [3], [7]. However, the
simple aggregation of datasets fails to capture three-way
interactions – it does not leverage the complementary nature
of multichannel, multimodal data and may be impractical for
the joint analysis of high-dimensional datasets.

Other, more advanced techniques include multiblock
canonical correlation analysis and Tucker-based tensor
decomposition, to mention just a few approaches [17], [18].

III. TENSOR-BASED MULTIBLOCK REPRESENTATIONS
In many existing data fusion approaches, multiview data can
be effectively encoded in anN×m×F tensorX l (a third-order
array) in the following form,

X l(:, :, l) ∈ ℜ
N×m×F

= Xl
f , l = 1, . . . ,F (1)

Here, the feature matrices Xl
f are regarded as slices of

the data hypercube, as shown in Fig. 1. As previously men-
tioned, N represents the number of collected samples, m
represents the number of sensors or measurement points, and
F might denote multimodal or historical data. Tensor-based
methods offer greater flexibility in storing and analyzing
multi-block data, resulting in concise spatiotemporal rep-
resentations. Building on the concepts introduced in the
ST-HOSVD in [7], the third-order tensor X ∈ ℜ

I1×I2×I3

is decomposed into three-factor matrices and a core tensor,
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as detailed in [7] and [19]:

X̂ = S×1 U (1)
×2 U (2)

×3 U (3) (2)

where ×n indicates the n-mode tensor multiplication
U (i)

=

[
u(i)1 u(i)2 . . . u(i)Ii

]
∈ ℜ

Ii×Ii , i=1,2,3 represents the

orthogonal (factor) matrices that form the Tucker factors
(U (i))TU (i)

= I i, and S is an all-orthogonal core tensor.
This core tensor contains the ith mode singular values

of X̂ indicating the extent of interaction among the U (i)

components. It is straightforward to confirm that (2) allows
for a spatiotemporal representation in the form [7]:

X̂ = (Ŝ×2 Û
(2)

×3 Û
(3)
)︸ ︷︷ ︸

G

×1Û
(1)

= G×1 Û
(1)

(3)

In this equation, Û
(1)

=

[
û(1)1 û(1)2 . . . û(1)r1

]
provides

a common basis for the subspace of measurements linked
with (1). The tensor G = Ŝ ×2 Û

(2)
×3 Û

(3)
∈ ℜ

r1×N×mk

contains the temporal patterns or modes of each subspace of
measurements.

Physically, U (i) is the principal component of each ten-
sor mode, and U (1) represents the spatial shape or pattern.
This framework facilitates the derivation of measures similar
to those introduced in conventional small-signal or Proper
Orthogonal Decomposition (POD) analysis [20].

IV. MARKOV CHAIN MULTIVIEW SPECTRAL CLUSTERING
Spectral analysis of graph-based multiview kernel matrices
offers a powerful analytical tool for efficiently computing
higher-order models of high-dimensional data sets. The core
concept of such approaches involves the spectral decom-
position of a squared symmetric feature matrix and the
determination of a diffusion operator.

A. ALTERNATING DIFFUSION MAPS
Alternating diffusion (AD)maps have emerged as a technique
for non-linearly reducing large datasets [21], [22].
Consider multiple sets of observational data Xl

f ∈

ℜ
N×m

= [ xl1 xl2 · · · xlm ], l=1,. . . ,F, each represented as a
slice in the data hypercube in Fig. 1. In this context, each col-
umn signifies the time evolution of a point or sensor, denoted
as xi with subscript f associated with the fault scenario or data
type. Generally, it is assumed that the xlf can vary in type or
modality. Multiview DMs aim to derive a low-dimensional
representation from which the dominant variables or states
governing the system’s slow response can be identified. This
section presents a generalization of the DM framework intro-
duced in [17].
Now, assume that each dataset Xl

f is modeled as an (undi-
rected) weighted graph G = (V ,E). The vertex set {Vi}mi=1
comprises measurement points (nodes) or sensor locations
{ x1 x2 · · · xm }, and the set of graph edges, denoted as E,
represents pairwise distances or transitions [3], [23].
These graph nodes can also be perceived as data points in

the low-dimensional space, as suggested in Fig. 2. The edges

FIGURE 2. Diagram illustrating multiview analysis for combining
high-dimensional data. Each data set, represented as Xl

f , produces a
distinct probability matrix, Mad and undergoes spectral decomposition.

of the graph are determined by an affinity or similarity
measure, which signifies how closely two observations are
related. These concepts are now clarified.

For each data setXl
f , a positive-definite kernel that charac-

terizes the proximity between two observations xli and x
l
j , can

be expressed as [24] and [25]

k lij = exp

(
−(d lij)

2

εliε
l
j

)
i, j = 1, . . . ,m (4)

where d lij =

∥∥∥xii − xij
∥∥∥
2
represents the Euclidean norm or

a similarity distance measure of the time trajectories (mea-
surements) in the original physical space, and the εlij = εliε

l
j

correspond to the bandwidth or kernel scale that represent the
affinity between data points (spatial distance).

The sample points xi, and their associated coefficients k lij
constitute a weighted undirected graph characterized by the
weight matrix Kl

= [k lij], with k lij = k lji. Following that,
a set of symmetric and non-negative affinity matrices (m-by-
mpairwise distance matrices) can be defined as follows [7],

Kl
= [k lij] =


k l11 k l12 · · · k l1m
k l21 k l22 · · · k l2m
...

...
. . .

...

k lm1 k lm2 · · · k lmm

 , l = 1, . . . ,F

(5)

In a physical sense, the affinity matrices, Kl , discard high
values (d lij ≫ εlij) through thresholding. This process pre-
serves local information by ensuring that high values of εlij
correspond to rapid diffusion on the manifold.

Each fault scenario’s data is subsequently treated as
a high-dimensional nonlinear process, from which a
low-dimensional representation can be extracted using a
single view.

Figure 2 presents a schematic representation of the
employed model.
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Conceptually, the multiview representation effectively
amalgamates the dynamics of individual trajectories into a
single mathematical operator Mad , which approximates the
exact dynamics of the observed measurements.

After computing the kernel, the diagonalmatrix of pairwise
distances can be calculated from

Dl
= [d lii] = diag

[
k ljj
]

(6)

Subsequently, a normalized Markov transition matrix
denoted asMl can be defined as follows:

Ml
= [mlij] = (Dl)−1Kl (7)

with mlij = [k lij
/
k lii] = [k lij

/
qli(xi, xj)], i, j =

1, . . . ,m, l = 1, . . . ,F where the term qli(xi, xj) =∑m
j=1 exp(−

∥∥(xi − xj)
∥∥2/εlij) is proportional to the degree

of xi in the graph and thus serves as a measure of the density
of points of the vertices, and

Ml
= [mlij] =


ml11 ml12 · · · ml1m
ml21 ml22 · · · ml2m
...

...
. . .

...

mlm1 m
l
m2 · · · mlmm

 , l = 1, . . . ,F

Note that, for each Markov matrix, Ml ,
∑m

j=1,j̸=im
l
ij = 1,

0 ≤ mlij ≤ 1. Formally, the elements mlij represent the
conditional probability of transitioning from state i to state j,
describing a discrete random walk on the data graph.

Several interpretations of this model are of interest. Like
[17] and [26], let X lci represent a cloud of points around x li
that encompasses the m/d nearest neighbors as depicted in
Fig. 2. To capture the local geometry around each data point,

a weight function, k lεij =
∑

xli∈X
l
c
exp(−

∥∥xli − xl2
∥∥2 /εlij)

is introduced – Refer to (4). Using this representation, the
variance of the distance, i.e., a measure of spatial distance,
between each data or measurement point, x li and all other
points x li ∈ X lc can be calculated from

εli =

∑
xlj∈X

l
ci

∥∥∥∥∥∥xli − xlj
∥∥∥− X̂ lci

∥∥∥2∥∥∥X̂ lci∥∥∥ (8)

where X̂ lci =
∑

xlj∈X
l
ci

{∥∥∥xli − xlj
∥∥∥/X̂ lci}. This approach

makes it possible to compute the kernel scale εli auto-
matically. Furthermore, the denominator of (7), qli(xi, xj),
is associated with the graph’s efficiency and the relevant AD
transition matrix necessary for (7) is defined as follows:

Mad = M1M2
· · ·Mm

∈ ℜ
m×m (9)

Here, the individual Markov matrices Ml follow the form
given in (7). However, in contrast to typical tensor-based
applications, this approach is not restricted to third-order
tensors.

Two distinct advantages of the model (9) are that the
dimension of the matrix Mad is equal to the number of

sensors m, and it offers the possibility to define diffusion
distances based on a (single) diffusion operator.

It is important to note that the Markov matrixMad is inher-
ently real, nonsymmetric, and row stochastic. As a result,
it lacks diagonalizability, and its eigenvectors do not form an
orthonormal basis within the space of system measurements.

Symmetry is introduced here by noting that Mad is
the adjoint of a symmetric matrix Msad , which satisfies
Msad = D1/2MadD−1/2 with corresponding eigenvectors 9
and ϕ, respectively. This property enables the extraction of a
normal basis from the reduced representation: the eigenvalues
for the AD maps operators are given by{

Msadψj = λjψj

Madϕj = λjϕj
j = 1, . . . ,m (10)

Since Msad is a Markov matrix, the eigenvalues are
bounded in the range [0, 1], and therefore 1 = |λo| ≥

|λ1| ≥ · · · ≥ |λm−1|. This defines the embedding 9 t : xi →

{ λt191(xi) λt192(xi) · · · λt19d (xi) }. The eigenvectors serve
as the diffusion coordinates, and the AD general matrixMsad
is assumed to exhibit only a few d dominant coordinates or
non-trivial eigenvalues (d ≪ m). It is easy to demonstrate that
the right eigenvectors ofMad are related to those of’Msad as
9 j = D−1/2ϕj. The natural basis can also be obtained from
the singular value decomposition of the data, as Msadψj =

σj9 j. This approach is adopted here to enable comparison
with other analysis techniques in Section II.

The practical application of the AD framework involves
solving two interconnected problems. Firstly, a band-
width kernel εlij must be computed for each set of
measurements, Xl

f . Additionally, given that multiple sets of
observations are gathered from the same number of sensors
for different fault scenarios, the data exhibit a high correla-
tion. Criteria for extending this approach to more intricate
data representations are discussed below.

B. APPROXIMATE SOLUTIONS IN PHYSICAL SPACE
Drawing an analogy with the PODmethod in [20], an approx-
imation to the data set Xf is derived as follows:

⌢

Xf =
[
a1(t) a2(t) · · · ad (t)

] [
91 92 · · · 9d

]
(11)

where the aj(t) = Xj9 j = [ aj(t1) aj(t2) · · · aj(tN )] are
the temporal modes. Here, ao denotes the temporal mean
or average system behavior and the ad , d ≥ 1 capture the
significant oscillatory behavior.

The super index l has been dropped for notational conve-
nience.

C. DIFFUSION DISTANCES
Consider two vertexes or measuring points, i,and j, in G. The
alternating diffusion distance, denoted as dad (i, j) between
these two points i,j, is defined analogously to the single-view
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case [27] as

D2
ad ∈ ℜ(m×m)

= [d2adij ] =

d∑
k>1

λ−2t
k

∣∣ψk (xi) − ψk (xj)
∣∣2
(12)

where ψk (xi) denotes the ith element of the eigenvector ψk
with associated eigenvalues λk for matrix Msad in (10), and
t indicates time. The diffusion distance reveals the intrinsic
geometric relationship among data points and is robust to
noise.

D. OTHER APPROACHES TO MULTIVIEW DIFFUSION MAPS
An alternate and useful formulation, utilizing a multiview
approach, can be derived through cross-diffusion and the
associated random walk process, which is based on the indi-
vidual datasets. The multiview kernel or diffusion operator,
denoted asMmv can be expressed in the form [14]:

Mmv =


Om×m M1M2

· · · M1Mm

M2M1 Om×m · · · M2Mm

...
...

. . .
...

MmM1 MmM2
· · · Om×m

 ∈ ℜ
(F×m)×(F×m)

(13)

where Om×m represents a matrix of zeros with dimension
m×m, and the terms Mi and Mj refer to cross-diffusion
(multiview) matrices.

In interpreting this model, one should note the following:

• The multiview diffusion matrix Mmv, has dimensions
(F×m)×(F×m).3-D representations can be obtained
from this matrix, illustrating how clusters evolve from
one contingency scenario to another.

• Based on this notion, a (multiview) diffusion distance
matrix, Dmv is defined in this study. It shares a similar
structure with the multiview matrix M̂mv in (13) and is
defined as

Dmv =


D11
mv D12

mv · · · D1F
mv

D21
mv D22

mv · · · D2F
mv

...
...
. . .

...

DF1
mv DF2

mv · · · DFF
mv

 ∈ ℜ
(F×m)×(F×m) (14)

In this equation, the diagonal block matrices Dii
mv,

i = 1,2,. . . , F , represent the intra-event distances, while off-
diagonal blocks, Dij

mv, denote distances or correlations across
events or fault scenarios.

The approximations (13) and (14) have two advantages.
First, they preserve the individual characteristics of each data
setXl . Additionally, individual inverse transformations of the
form (11) can be used to determine the appropriate system
behavior in physical space. A disadvantage is the large size
of the resulting model of dimension Fm×Fm.
Compared with the AD maps technique in (9), the multi-

view spectral decomposition offers a global view of system

behavior, as discussed in the numerical simulations. How-
ever, it results in a large modal representation of dimension
(F × m) × F×m).
Similar to (12), the multiview diffusion distance

matrix can be defined as (Dii
mv)

2
= [d iimv

2] =∑m
k≥1 λ

−2t
k

∣∣9k (xi) −9k (xj)
∣∣2. Additionally, cross-diffusion

distances, d ijmv or cross-correlation measuresCij
mv can be com-

puted using the off-diagonal blocks of the diffusion distance
matrix in (14).

E. NUMERICAL IMPLEMENTATION
As mentioned earlier, the computation of multiview diffusion
kernels requires solving two interconnected problems: the
calculation of the individual local bandwidth kernels, εli , ε

l
j

and the computation of diffusion operators, M̂mv.
The following is a summary of the proposed procedure:
Given datasets Xl , l = 1,. . . , F, corresponding to multiple

fault events:

Step 1. Calculate the bandwidth kernels εli , ε
l
j for each data

set Xl using the methodology in Section IV-A.
Step 2. Construct a graph-based Markov chain for each

dataset and compute the decomposition, M̂sadψ j =

λjψ j or M̂mvψ j = λjψ j using (9) or (14)
Step 3. Generate the embedding9 t that captures the spatial

and temporal structure of critical modes and identify
features important for wide-area inter-area oscilla-
tion monitoring.

Step 4. Compute diffusion distances using (12). In practice,
only two or three dominant coordinates are typ-
ically sufficient to accurately characterize system
dynamics, even though the definition allows for an
arbitrary number of relevant coordinates, d .

The AD methods were implemented within the MATLAB
programming environment.

V. APPLICATION
The developed procedures have been tested on a realistic
5449-bus 635-generator equivalent model of a large power
system [3], [20]. Furthermore, detailed dynamic models are
incorporated for system generators and static var systems.

Figure 3 illustrates a section of the study region displaying
the locations of significant transmission buses and generators
chosen for analysis. The study region comprises 896 buses,
26 wind farms, and three major static VAR compensators.

A. SIMULATION DETAILS
In the study, the diffusion framework was utilized to jointly
analyze independent voltage datasets obtained from transient
stability simulations. Table 1 summarizes the fault scenar-
ios considered in this study to evaluate the applicability of
multiview diffusion techniques in analyzing spatiotemporal
datasets. For all cases, 27 major transmission buses were
selected for analysis.
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FIGURE 3. Simplified diagram of the study region showing major 400/230
kV transmission and generating resources.

TABLE 1. Bus voltage data sets selected for study.

Figure 4 displays the system responses obtained from
the transient stability simulation of the entire system model
(5449 buses) for the contingency scenarios outlined in
Table 1. Each time history spans 30 seconds and consists of
3600 data points (N = 3600). To aid interpretation, signals
are detrended. Prior research has indicated that these con-
tingencies stimulate the slowest interarea electromechanical
mode of the system at about 0.396 Hz [3], [7].

FIGURE 4. Bus voltage magnitudes for the contingencies listed in Table 1.
The signals have been detrended for enhanced clarity.

The frequency (and corresponding damping ratios)
extracted using multichannel Prony analysis of the signals
in Fig. 4 are as follows: 0.397 Hz (ξ = 0.540 %) for CTYS1,
0.396 Hz (ξ = − 0.550 %) for CTSY2, and 0.396 Hz
(ξ = − 0.565 %) for CTYS 3. In the subsequent studies
outlined below, three different clustering methods are applied
to the data sets listed in Table 1: a) Alternating diffusion anal-
ysis, Multiview (MV) diffusion analysis, and ST-HOSVD.

In all three cases, the voltage data tensor is expressed as

X l(:, :, l) ∈ ℜ
N×m×F

= Xl
v , l = 1, . . . , 3 (15)

where the matrices Xi
v are defined in Table 1.

B. ALTERNATING DIFFUSION ANALYSIS
In order to identify voltage clusters and calculate diffusion
distances, alternating diffusion analysis is employed. In the
initial step, the kernel views are constructed utilizing the
methods described in Section III.A.

The bandwidth kernels determined using the algorithm
in [17] are as follows: ε1 = 0.0420, ε2 = 0.0651, and ε3 =

0.0360 for the three contingency scenarios listed in Table 1.
Figure 5a illustrates the spatial distribution of the dominant

eigenvector obtained from the spectral model M̂sad9vj =

λ19vj of voltage datasets, which represents the eigenvalues,
and 91 = [91

v 9
2
v 9

3
v ]

T . On the other hand, Fig. 5b pro-
vides a spatial interpretation of this model.

In this context, the red bars represent positive entries while
the blue bars represent negative entries in ψj. Understanding
the interpretation of the diffusion coordinates requires clarifi-
cation. Components with similar amplitude (and sign) signify
highly coherent states or points, whereas the sign change from
one eigenvector to another defines coherency. Based on these
results, buses 142, 143, bus 140, connected with the wind
farm’s location and the point of interconnection, and to a
lesser extent, bus 144, exhibit high coherency.

Another approach to gain insight into system dynamics is
by visualizing the dominant diffusion coordinates in a three-
dimensional plot, as shown in Fig. 6. However, this method is
primarily visual. Alternatively, coherency can be determined
by employing clustering and pattern recognition techniques
on the low-dimensional diffusion map embedding.

As a subsequent step, the centroid of the data is calculated
and a dominant bus (point) is chosen by determining the
smallest distance diC between the centroids and the buses
belonging to a specific cluster, as described in the following
subsection.

Buses near the geometrical centroid are selected as crit-
ical buses for monitoring. This intuition aligns with the
anticipated physical behavior using other well-established
techniques [28].

Furthermore, the diffusion distances for bus # 142
(measurement # 8) computed using (12) with d = 2 are
shown in Fig. 7. For completeness, results are compared with
the pairwise distances obtained using the Euclidean norm
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A. Román-Messina et al.: Multiview Spectral Clustering of High-Dimensional Observational Data

FIGURE 5. Illustration depicting the shape of voltage-based dominant
eigenvector 91 and its physical distribution. The dotted ellipses represent
the voltage control areas determined using the approach outlined in [28].

FIGURE 6. Scatter plot of eigenvector 91 versus 92.

d3ij =

∥∥∥x38 − x3j
∥∥∥, j = 1,. . . ,27, in the original physical space

for contingency scenario CTYS3 in Table 1 and Fig. 4.
Consistency in the results is evident, indicating that phys-

ical distance is preserved in the diffusion maps space.
Analyzing this plot reveals that the shortest distance from bus
# 142 is observed with nearby buses 1148, 143, 140, 178,
1101, and 118. Taken together, this approach improves both
the visualization and characterization of the system dynam-
ics, building upon the results depicted in Fig. 5a.

FIGURE 7. Comparison of (normalized) AD distances for bus # 142 with
the Euclidean norm in the physical space for contingency
scenario CTYS3.

C. TRANSITION PROBABILITY HEATMAPS
An alternative interpretation of the transition probability
matrix is obtained by examining the transition probability for
the matrix Msad , as demonstrated in Fig. 8. In this represen-
tation, the color intensity of each cell represents the strength
of the probability of transition from the state represented by
the row to state represented by the column.

FIGURE 8. Heat map of the transition matrix.

The heatmap color map illustrates the measurements of
buses with the highest or lowest transition probability, offer-
ing a general overview of the significant spatial patterns of
the dominant coordinates.

While diffusion distances can be utilized to define
microstates or states nearby, transition probability heatmaps
provide a comprehensive visualization of system dynamics.

The plot reveals a significant probability of staying
within one group mainly of states for measurements 25
(bus 1149), 20,21 (buses 188,194), 8,9 (buses 142,143),
4 (122), 14 (bus 120) as well as a low probability of leaving
that group of measurements 23 (bus 1108), 19 (bus 1137), and
27 (bus 1125).
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D. MULTIVIEW SPECTRAL CLUSTERING
To highlight the improved system characterization achieved
through the adoption of a multiview approach, the datasets
presented in Table 1 are analyzed using the method in
Section IV.

In this instance, the diffusion operator Msad has dimen-
sions Fm×Fm with F = 3 and m = 27 corresponding to
three fault scenarios outlined in Figure 2 and Table 1.
Multiview representations offer a more intricate

interpretation compared to their single-view counterparts.
In accordance with the principles of diffusion map theory,
the diffusion coordinates are computed from the following
M̂mv9 j = λj9 j , j = 1, . . . , d .

FIGURE 9. Spectral gap of the multiview representation. The blue
asterisks indicate the presence of two dominant eigenvalues at
approximately λ2 = −0.5032 and λ3 = −0.4968 (almost identical) and a
trivial, leading eigenvalue at λ1 = 1.0. All other values are negligible.

As depicted in Fig. 9, the embedding process pinpoints a
gap in the eigenvalue spectrum following the third eigenvalue
(d = 3). More precisely, the spectrum reveals the pres-
ence of two significant (non-trivial) eigenvalues, λ2 and λ3,
indicating that only two eigenvectors are required for charac-
terizing the nonlinear embedding, 9 t . Using this model, the
multiview diffusion distances were computed utilizing (12)
for each diagonal block Dii

mv in (14). It is worth noting that
the utilization of off-diagonal blocks to correlate and classify
fault events remains a topic for further exploration.

For the purpose of illustration, Figs 10(a) through 10(c)
display the multiview diffusion distances between measure-
ment # 8 (Bus 142) and the other buses in the system. These
distances were obtained from the diagonal distance blocks
specified in (14).

E. SEQUENTIALLY TRUNCATED SINGULAR VALUE
DECOMPOSITION
The results were compared with tensor factorization-based
techniques to further verify and quantify the accuracy
of the proposed framework in capturing slow system
motion.

In this study, two modeling techniques were considered.

FIGURE 10. Multiview diffusion distances for bus 142 (WF #1) and three
contingency scenarios. a) Contingency scenario CTYS1, b) Contingency
scenario CTYS2, and c) Contingency scenario CTYS3.

FIGURE 11. Time evolution of the extracted temporal modes using AD
maps and ST-HOSVD.

1) The ST-HOSVD method as presented in [7] and [12]
2) The AD map, as described in Section IV-A

In the first case, the three-way data presented in Table 1 is
organized into a tensor X̂ = ∈ ℜ

nt
×N×p with nt =27,

N = 3600, and p = 3. The application of ST-HOSVD
allows the three-way observational data to be expressed in
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terms of a core matrix G and a reduced matrix U(1) in (3) as
X̂ = G×1U (1). As emphasized before, the tensorG contains
the temporal patterns of the three-way representation. When
considering only two data sets, namely CTYS1 and CTYS2,
ST-HOSVD analysis results in two sets of dominant tempo-
ral modes denoted as a11,1(t), a12,1(t) and a11,2(t), a12,2(t),
each corresponding to one of the data matrices X1

v and X1
v ,

respectively. For the given example, G ∈ ℜ
61×1604×2, U(1)

∈

ℜ
66×61, U(2)

∈ ℜ
1604×121, and U(3)

∈ ℜ
2
×2. In the second

case, the temporal amplitudes aj(t) are computed from (11)
as aj(t) = Xj9 j , j = 0, 1.

A comparison of simulation results in Fig. 11 shows that
both techniques successfully capture the dominant partici-
pation of the slowest inter-area mode at about 0.396 Hz in
the observed oscillations, validating the model. The results
show overall agreement, although some discrepancies can
be observed, particularly in the initial phase of the transient
response (0-5 seconds).

Furthermore, Table 2 provides a summary of performance
comparisons. As seen, AD maps demonstrate favorable
results when compared with other data compression tech-
niques in the literature regarding computational efficiency.

TABLE 2. Cpu effort comparison.

VI. CONCLUSION
In this paper, nonlinear manifold learning technique for
compressing, clustering, and classifying high-dimensional
observational data has been presented. The resulting
low-dimensional embedding accurately captures spatiotem-
poral structures, allowing for the identification of dominant
variables that govern long-term system behavior.

Multiview data fusion leverages cross-information to
enhance dynamic characterization, reduce redundancy, and
extract informative features from measurements. It can
also be applicable to event classification and predic-
tion and improve the understanding of global dynamic
phenomena.

Future research will aim to evaluate cross-information
between PMU channels, investigate the interactions and rela-
tionships between different data modalities, and develop
clustering techniques based on distancemetrics. Additionally,
there is a need for methods to determine the optimal combina-
tion of data modalities for better characterizing the dynamics
of the global system.
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