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ABSTRACT Recognizing the multiple categories of an high-resolution (HR) aerial photos is an
indispensable technique in geoscience and remote sensing. In this work, a perceptual low-rank algorithm
combined with a geometry-preserving feature selection (FS) is proposed for categorizing HR aerial photos.
In practice, the theory of human visual perception indicates that for each scenery, the background non-salient
regions are highly correlated, whereas the foreground visually/semantically salient regions are almost
uncorrelated. Motivated by this, we design a novel low-rank algorithm that seeks a sparse set of foreground
visually/semantically salient image patches. These patches are sequentially linked into a so-called GSP
(path reflecting gaze movement) to mimick human vision system. Afterward, a geometry-preserving FS
algorithm is proposed to select highly discriminative features from the aforementioned gaze features, wherein
a classifier can be trained simultaneously. Comprehensive experimental validation on our Internet-scale

image set have shown its superiority.

INDEX TERMS Feature selection, geometry, high-resolution, low-rank.

I. INTRODUCTION

Thanks to the technology of delivering several satellites by a
single rocket launch, many earth observation satellites have
been launched in the past decades. These satellites capture
HR aerial images containing ground objects with sophisti-
cated spatial structures. Understandings the semantics of the
ground objects by exploiting the inherent spatial structures
becomes a useful tool in lots of artificial intelligence
applications.

In image processing, plenty of image/video classifi-
cation/parsing models were designed to encode aerial
photos. Important work includes: 1) multiple instance learn-
ing/convolutional neural network-based object localization
using weak labels; 2) graph model for semantically exploiting
aerial photographs; and 3) well-designed deep models to
semantically annotate aerial photographs. Nevertheless, as far
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FIGURE 1. Left: human gaze shifting paths (GSPs) from five observers
(arrows with different colors); right: a GSP calculated using the proposed
method.

as we know, the existing models are all sub-optimal charac-
terize HR aerial photo because of the following reasons:

o Actually, each HR photo usually has many ground
objects with complicated spatial layouts. Intelligently
exploiting their underlying semantics is difficult. The
inherent challenges include: i) discovering those ground
visually/semantically salient objects according to human
visual perception (as the circles exemplified on the left
of Fig. 1), and ii) how to design a model that converts
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the discovered salient objects into a fixed-length feature
vector, which can be utilized for the subsequent feature
classification;

« Biological studies have shown that humans sequentially
perceive different regions within each scenery. As shown
on the right of Fig. 1, humans will first attend to
the upper central residential area, and then shift the
gazes to the right one, and so on. In practice, the path
reflecting human gaze movement is highly descriptive to
categorize HR aerial photos. But designing a principled
model extracting GSPs from HR aerial photos with
different spatial layouts remains unsolved.
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FIGURE 2. An overview of our proposed HR aerial photo categorization
pipeline.

To handle these challenges, we propose a biologically-
inspired HR aerial photo categorization framework. Our
key contribute is a low-rank algorithm associated with a
geometry-preserving feature selector that jointly: 1) extracts
multiple visually/semantically salient image patches sequen-
tially to constitute a GSP for each HR aerial photo, and
2) obtain a subset of highly discriminative GSP features
for the subsequent visual categorization. More specifically,
as elaborated in Fig. 2, by collecting a considerable quantity
of HR aerial images, we first project their internal regions
onto the feature space constructed by exploiting the visual
and semantic channels collaboratively. Thereafter, to mimick
human visual perception, a low-rank model is designed
to decompose each HR aerial photo into a sequence of
visually/semantically salient foreground image patches cou-
pled with the non-salient background ones. Accordingly, the
saliency value of each salient image patch can be calculated,
which guides the GSP feature generation. Toward a subset of
high quality GSP features, we further propose a geometry-
preserving FS algorithm to obtain highly discriminative GSP
features, coupled with a classifier trained from the selected
GSP features. Noticeably, our designed feature selector can
maximally preserve the sample distribution in the feature

112430

space during FS. This attribute is significant to ensure the
discrimination of the selected features according to the
manifold learning theory [44]. Such classifier is finally
utilized to calculate the category labels of each HR aerial
photo. Experimental comparison with over ten state-of-the-
art shallow/deep categorization models has demonstrated the
superiority of the proposed approach.

In summary, our method has two main contributions: 1) a
novel low-rank algorithm that extracts many GSPs from
each HR aerial photo and engineers GSP’s visual feature
simultaneously, and 2) a geometry-preserving FS algorithm
to obtain highly discriminative GSP features and train the
classifier for HR aerial photo categorization.

Il. RELATED WORK
In the literature, dozens of computational aerial image models
were developed to analyze aerial photos.! Some models are
conducted at image-level. Zhang et al. [2] constructed a
novel topological feature to model the inter-region connection
inside each aerial photo. And a kernel-induced vector is
calculated as the image representation for categorization.
Xia et al. [3] formulated a novel weak model which
can semantically label HR aerial photos at image-level.
Akar et al. [4] seamlessly combined the so-called rotation
forest and object-level feature extractor to categorize a rich
set of aerial images to different classes. The authors [5]
developed a hierarchical deep architecture to recognize
the multiple labels of HR aerial photos describing many
downtown areas. In [6], researchers utilized a hierarchical
and multi-layer deep model to classify HR aerial photos.
A domain-specific scenic picture set is leveraged to fine
tune the deep architecture. In [7], a cross-modality learning
framework is proposed to collaboratively learn five deep
models for categorizing aerial images, wherein pixel-level
and spatial-level features are exploited complementarily. Cai
and Wei [8] proposed a cross-attention mechanism to learn
the weights of aerial image features both horizontally and ver-
tically. In [9], Bazi et al. formulated a vision transformer for
aerial image classification, wherein the long-term contextual
dependencies among regions can be intrinsically encoded.
Although impressive performance have been achieved by
the above methods, they cannot handle HR aerial photo
categorization effectively because of three reasons: 1) the
region-level visual features are particularly informative for
HR aerial photo modeling, but they cannot be well encoded;
2) these methods cannot explicitly incorporate human gaze
behavior into the categorization model. Thus, the predicted
semantic labels might be inconsistent with human visual
cognition; and 3) these methods are usually insufficiently fast
since a rich number of highly time-consuming features have
to be extracted.

For region-level modeling, the authors [10] designed
an enhanced and multi-layer neural network to discover

1A more comprehensive survey of aerial photo understanding is illustrated
in [1].
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multi-scale attractive objects within an aerial image. In [11],
a focal loss deep architecture is proposed that optimally
discovers vehicles from aerial images. In [12], researchers
developed a novel object localization algorithm toward
remote sensing images. It intelligently extracts intersec-
tions as well as streets. In [13], Yu et al. integrated
feature enhancement and soft label assignment into an
anchor-independent object detector toward aerial images.
In [14], Wang et al. proposed a deep rotation-invariant
detector that effectively estimates the angles of multi-scale
objects inside aerial images. In [15], Chalavadi et al. proposed
a parallel deep model called mSODANet that hierarchically
learns contextual features from multi-scale and multi-FoV
(field-of-views) ground objects. Notably, compared to image-
level modeling, region-level models can exploit the regional
features to facilitate HR aerial photo categorization. But there
still some shortcomings: 1) the aforementioned region-level
models are generally dataset-independent, which cannot be
conveniently applied cross different datasets. Practically,
however, we need a principled region-level image model that
is applicable across multiple image sets; and 2) the human
visual perception fails to be efficiently encoded by these
models. Actually, we want an HR aerial photo processing
system that can rapidly recognize each HR aerial photo.

In machine learning, the low-rank algorithm [16] has
been pervasively used in seeking a succinct set of bases
for representing a large-scale samples, i.e., each sample
can be represented by a linear combination of the bases.
Low-rank algorithm can be used in applications like infor-
mation retrieval, recommendation systems [17], and feature
extraction [17]. In our work, we use low-rank approximation
to represent the entire regions within each aerial image
by a set of visually/semantically salient regions. This can
be deemed as a novel visual feature extractor. Meanwhile,
geometry-preserving feature selection (FS) attempts to obtain
a few highly discriminative features from the original high-
dimensional ones. During the FS process, the geometry
distribution among samples is maximally preserved. This
technique is widely used for face/speech recognition [18] and
image retrieval [19]. Typically, geometry-preserving FS can
significantly enhance Al systems’ efficiency by reducing the
number of extracted features.

Ill. OUR PROPOSED METHOD

A. LOW-RANK ALGORITHM FOR GSP LEARNING

In practice, there are multiple fine-grained objects inside each
HR aerial photo. Biological studies [20], [21], [41] have
shown that observers practically attend to a succinct set of
salient objects. In our scenario, when humans perceive an LR
aerial photo, their eye will first fix onto the ground attractive
regions. Meanwhile, the unattractive background regions
are kept almost unprocessed. Such human visual perceptual
behavior is informative for categorizing HR aerial photos.
Herein, we propose a low-rank algorithm that sequentially
selects salient image patches to construct gaze shifting paths
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(GSPs). And the corresponding visual features can be jointly
engineered.

The theory of human visual perception indicates the
high correlation (self-representativeness) of the non-salient
background image patches inside each scenery. Contrastively,
the foreground salient image patches are almost uncorrelated.
This observation motivates us to decompose the feature
matrix X € R7*N of each HR aerial photo into the salient
and non-salient parts,

X=Y+E, (1)

where N counts the image patches within each HR aerial
photo and T its feature dimensionality. Y € R7*¥ preserves
feature columns corresponding to the non-salient background
image patches (the other columns are all zeros). E € RV
represents feature columns corresponding to the salient image
patches (the other columns are all zeros).

Aiming at a unique solution indicating the salient image
patches, some criteria are proposed to constrain Y and E.
In our work, two observations are made. First, only a small
fraction of image patches within each HR aerial photo are
salient and will the detailedly processed by human vision
system. This mathematically reflects that E is a sparse matrix.
Second, the high correlation of the non-salient background
image patches indicates that Y is a low-rank matrix. Based
on these, we select the salient image patches by seamlessly
integrating a sparsity and low-rankness constraint into (1):

miny, g ||Y||x + al1(E) + LY, f(I', X)) + yQT), (2)

where || ||« is the matrix nuclear norm representing a convex
approximation to matrix rank function, /{(E) quantizes the
sparisty of E, f(T", X)) selects non-salient background image
patches from each HR aerial photo and I' contains the
inherent parameters, and (Y, f (I, X)) penalizes the loss
of non-salient background image patches selection. (")
serves as a regularizer. «, 8, and y are parameters measuring
the importance of these terms. More concretely, to ensure a
highly sparse E, /;(-) is defined as:

L(E) = ||E]1, 3

Noticeably, each entity of Y is nonnegative. Herein, we set
(a, b) = (a — b)?/2 to calculate the image patches selection
error. Thereby, objective function (2) can be upgraded into:

miny o |[Y|l« + e[| + BI[Y — £ (T X)||}
+yQI), Y=0. “)
It is observable that (4) is a non-convex optimization over
the entire variables. In our implementation, we follow the
iterative algorithm in [42] to solve it. Thereafter, denoting

Y* as the optimal solution of (4), the saliency score of the
i-th image patch in an HR aerial photo is calculated by:

s(X) = [[E*C, D2, &)

where E* = X — Y*, and E*(:, i) denotes the i-th column
of E*.
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The GSP learning is given as follows. A larger
s(X;) in Eq.(5) means that the i-thimage patch is
more visually/semantically salient. Given an HR aerial
photo, we sequentially link the top P salient image
patches to constitute its gaze shifting path (GSP).
Accordingly, the visual feature of the GSP is obtained
by sequentially concatenating the visual features of its
constituent P image patches. In the following, the GSP
feature from the i-th training HR aerial photo is denoted

by gi.

B. GEOMETRY-PRESERVING FEATURE SELECTION

1) SAMPLES GEOMETRY PRESERVATION?

Inspired by the recent progresses in manifold learning, the
self-expressive model is leveraged to preserve the sample
distribution during feature selection (FS). The self-expressive
model hypothesizes that the entire samples are distributed
on a combination of subspaces. Mathematically, each sample
can be linearly represented by a constrained combination of
the other samples, i.e. G = GT and diag(T) = 0. Herein,
G =[g1, - , gnv] is a matrix consisting of the GSP features
from N training samples, T denotes the matrix containing
the self-reconstruction parameters. Practically, we notice that
the samples might be contaminated. Thus, the self-expressive
model can be upgraded into: G = GT + J, wherein J is the
error matrix. Based on these, the general form self-expressive
model is given as:

I’}li}l 2| Tl. + ©2|1J|]y, s.t. constraints(T,J),  (6)

where ||-||, and || - ||, denote two pre-specified matrix norms,
71 and 17 are the two corresponding nonnegative weights, and
cons(T, J) represents the constrains on T and J.

2) OBIJECTIVE FUNCTION OF OUR FS

We denote K as a matrix projecting the original GSP features
into the low-dimensional one. In practice, K is constrained
to be a column-wise sparse matrix for FS. Then, we can
assume that if sample g; and g; are from the same category,
then the low-dimensional selected feature Kg; and Kg; should
be close and the weight H;; should be large. Herein, H =
IT| + |T7| denote the weight matrix measuring the entire
samples. Meanwhile, if samples g; and g; are from different
categories, then the distance between Kg; and Kg; should be
far and the weight H;; will be close to zero. Mathematically,
the above observations can be formulated into the following
objective function:

. N N 2 2
min > > Hyal Hg; — Hgl* + (1 = alll; = 411%)

= min [[HO Y|[; = min [T O Y|, (7
K.L.H K.L.T

where © is the Hadamard product, /; denotes the i-th category
labels to the i-th sample, L is a matrix comprising of category

2For ease of expression, the samples denote the training/testing HR aerial
photos in this article.
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labels of the entire training samples. Y;; = o||Hg; — Hgj||> +
(I —=a)|ll; =1 |2, and « is a trade-off parameter between zero
and one.

By combining (6) and (7), the objective function of our FS
and be reorganized into:

min {71[[T[l, + 2[J[lv + 1T O Yl + w3|IKlli2},
KLT,J
s, t. constraints(T, J), ®)

In our method, the /;-norm is employed for both ||T||,
and ||J||y. The lj2-norm ensures the column-wise sparsity
of K. Based on the constrains detailed above (6), objective
function (8) can be updated into:

min {71||T[l1 + ©2[|JIl2 + IT © Y1 + 3lIK||12},
K,L,T,J
s,t. G = GT, diag(T) = 0. )

where t3 denotes another nonnegative weight. In our
implementation, the solution is based on [43].

Based on the H calculated from T in (9), the category labels
I* of a new sample is derived by:

N+1N+1
i H,l|l — 3 = intr(L*RL*"), (1
argmin > > Hylll; = §113 = arg mintr( ). (10)
i=1 i=1
where R = diag(HIyy+1) — H is the graph Laplacian
matrix, Iy4+1 is an (N + 1) x (N + 1)-sized identity matrix,
and L* = [L, [*].

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We validate the effectiveness and efficiency of our HR
aerial photo categorization using four experiments. We
first introduce our self-compiled data set, which includes
million-scale LR (low resolution)&HR aerial photos collected
from the top 100 metropolises from different continents.
Subsequently, we compare our approach with 17 state-of-
the-art deep categorization models from three perspectives:
accuracy, stability, and time consumption. Then, we evaluate
our categorization accuracy by adjusting the multiple inherent
parameters, based on which the optimal parameters are
suggested. Lastly, we design an ablation study to evaluate
each key module in our HR aerial photo categorization
pipeline.

A. DATA SET DESCRIPTION

To comprehensively evaluate our categorization model,
we have to experiment on a massive-scale LR&HR aerial
photo set from many categories. To our best knowledge,
however, there is no such data set in the literature.
In this work, we spent enormous efforts to compile a
huge data set containing over 3.6 million LR&HR aerial
photos. The sources of these LR&HR aerial photos are
Google/Apple/Bing Maps, based on which we designed
a crawler software that spent 4310 hours to search and
download LR&HR aerial photo. Specifically, we use the
name of 100 most popular metropolitan cities (as detailed
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in Fig. 3) throughout the world as the keywords to search
Google/Apple/Bing Maps. In total, there are 46 cities from
North America, 38 from Europe, ten from Asia, four
from Oceania, and two from South America. Subsequently,
we crop LR&HR aerial photos from the cached maps,
wherein the typical resolutions of HR aerial photos are
between 5K x 5K and 22K x 22K. In our implementation,
we restrict the HR aerial photos’ resolution upper bound
to 22K x 22K. Meanwhile, the resolutions of LR aerial
photos are between 0.35K x 0.35K and 2K x 2K. We adopt
these settings because: 1) we want to make each HR aerial
photo associated with four categories mostly, 2) we enforce
that there are maximally 5% overlapping areas between any
pairwise LR&HR aerial photos, and 3) too few pixels inside
an LR aerial photo will make it technically infeasible to
perceive its semantics.

During our data set compilation, we notice that a few
LR&HR aerial photos are blurred due to bad weathers or
sensitive military regions, as exemplified in Fig. 4. Actually,
our method focuses on discovering object patches with
different scales and subsequently learn visual perceptual
features for visual categorization. Practically, bad weathers
will inevitably decrease the visibility of LR&HR aerial
photos and in turn hurt the fairness of accuracy comparison.
Therefore we abandon LR&HR aerial photos whose 20%
pixels are unclear, wherein the clearness is measured by
the blur estimation algorithm proposed by Tong et al. [22].
To quantitatively show the effectiveness of the above
refining process, we use the IQA (image quality assessment)
algorithm [23] to calculate the quality score of each LR&HR
aerial photo in our data set. More specifically, the single
image quality assessment module in [23] is adopted here to
calculate the quality score (with normalization). Herein, the
quality score used in our implementation is a normalized
image quality score. We manually select K best quality HR
aerial image with sharpness scores {Q}y, cee, Qf }. Then, for
anew HR aerial image with sharpness score Oy, its quality
score is calculated as:

— Qnewk , (11)
ave(Q})
As reported in Fig. 5, over 74% of our refined LR&HR aerial
photos are scored over 0.7.

After collecting the million-scale LR&HR aerial photos,
we have to annotate them to obtain the corresponding
category labels. Herein, 106 volunteers® first manually
annotate 23.8% HR aerial photos in each metropolitan city,
wherein a total of 47 different category labels were utilized.
Afterward, we train a multi-label SVM and employ it to
annotate the category labels of the rest LR&HR aerial images.
Then, the same 106 volunteers manually correct the labels
calculated by SVM. It is noticeable that multiple category
labels are associated with an intolerably small number of

3They are graduate students from our computer science department. They
are aged between 24 and 31 and experienced in image processing and pattern
recognition. Totally, there are 57 males and 49 females.
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LR&HR aerial photos. This makes it infeasible to train a
generalizable categorization model corresponding to these
category labels. In our implementation, if the number of
LR&HR aerial photos corresponding to a category label is
smaller than 200,000, Then we abandon this label. In this
way, we finally obtain 18 different category labels as detailed
in Table 1. Thereafter, we notice that 99.983% LR&HR
aerial photos have fewer than four category labels, while the
rest very few LR&HR aerial photos have larger numbers of
category labels (from five to 15). These LR&HR aerial photos
usually contain a rich set of small regions (< 200 x 200)
that are possibly contaminated. Thus we simply abandon
them. Lastly, we order the entire LR&HR aerial photos by
their file names. The entire HR aerial photos are employed
for training. For each category, the first half HR aerial
photos constitute the training set while the rest are employed
for testing. The entire LR aerial photos are employed
for model validation, since manually detecting objects on
LR aerial photos is much more convenient than the HR
ones.

B. PERFORMANCE COMPARISON

Herein, our method is compared with seven deep cate-
gorization models [24], [25], [26], [27], [28], [29], [30]
that intrinsically encode some prior knowledge of different
aerial photo categories. We notice that the source codes
of [24], [25], [28], and [29] are publicly available. Thereby,
we conduct a comparative study wherein the parameter
settings are set as default. For [26], [27], and [30], the
source codes are unavailable to our knowledge. Due to
this reason, these baseline methods are re-implemented by
software programmer. We tried our best so as to make
the re-implemented models perform similarly to the results
reported in their publications. Nowadays, many deep generic
recognition models perform impressively on categorizing
aerial photos. Herein, our method is first made a comparison
with multiple deep generic object recognition models: the
pyramid pool-CNN (S-CNN) [31], CNet [32], discrimination
filtering bank algorithm (DFBA) [33], C-RNN [34], multi-
label graph convolutional network (MLT) [35], semantic-
specific graph model (SGM) [36] and multi-label transformer
model (MTM) [37]. Furthermore, since HR aerial photo
categorization can be deemed is a sub-topic of scenery clas-
sification, we additionally compare with three well-known
scenery classification models [38], [39], [40].

For the above baseline object/scene recognition algo-
rithms, each model is repeatedly tested multiple times and
the results are displayed in Table 2. As shown, our method
achieve the best per-category accuracies on the entire 18 cat-
egories. To quantify the stability of these categorization mod-
els, we report their standard derivations simultaneously. We
observe that the per-category standard derivations produced
by our method are significantly and consistently lower than its
competitors. This demonstrated that our method is the most
stable.
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London 25432/10843 Miami 24321/12245 Brisbane 24336/11212 Phoenix 23221/13334
Pairs 28432/12435 San Diego 25446/11446 Atlanta 23443/12110 New Orleans 24335/12114
New York 20321/13436 Seoul 24543/12116 Copenhagen  25332/11213 Baltimore 22324/14432
Tokyo 22921/13243 Prague 26335/11213  St.petersburg  24354/11243 Valencia 24432/12207
Barcelona 25435/11209 Munich 25432/12332 Perth 23224/12121 Manchester  23224/11214
Moscow 26437/10214 Houston 24330/12223  Minneapolis  24335/10232 Nashville 25443/10832
Chicago 27621/9832 Milan 25446/13208 Lisbon 25434/11211  Salt Lake City  24431/12112
Singapore 25432/10320 Dublin 24354/12221 Venice 24334/11324 DUSSELDORF  24324/12114
Dubai 22093/13209 Seattle 25436/11243 Portland 23224/12112 SAO PAULO 25432/11213
San Francisco  26574/12093 Dallas 26580/11214 Hamburg 24335/11211 Rio De Janeiro 24335/12114
Madrid 28543/11932 Istanbul 24322/12325 Tel Aviv 24334/11214 Raleigh 23143/11212
Amsterdam 26547/12109 Vancouver 24336/11240 Lyon 25443/12113 Warsaw 24325/12112
Los Angeles  25489/13225 Melbourne  25446/12308 Florence 24449/10232 Marseille 23243/13221
Rome 21324/12115 Vienna 24336/12114 Stuttgart 23243/11280  San Antonio  24332/12008
Boston 22430/13225 Abu Dhabi 23441/14530 Luxembourg  24354/12212  Birmingham  24335/11212
San Jose 24502/12570 Calgary 23224/13224 Edmonton 24638/11213 Columbus 25443/10334
Toronto 23435/11254 Brussels 23008/12402 Osaka 25446/12114 Shanghai 24334/11211
Washington 26436/12113 Denver 24554/13214 Auckland 24335/11213 St.Louis 26532/9866
Zurich 25408/12113 Doha 23546/12443 Ottawa 23224/12113 Detroit 25446/11085
Hong Kong 23244/13227 Oslo 24332/11215 Budapest 24336/11213  Sacramento  24435/12113
Beijing 25409/9102 Orlando 23224/10321 Helsinki 25002/12107 Milwaukee 24332/11213
Berlin 27545/9755 Austin 21223/12114 Athens 24331/11024 Kansas City 25446/10843
Sydney 26478/9766 Stockholm 24335/13227 Cologne 24322/12113 Tampa 24335/12112
Las Vegas 22324/14322 Montreal 24443/12119 Bangkok 25447/11210 Nuremberg 24335/11219
Frankfurt 24337/14360  Philadelphia  25308/11213 Charlotte 24336/10877 Bristol 23445/12221
FIGURE 3. The statistics of LR&HR aerial images collected from the 100 metropolitan cities.
TABLE 1. The selected 18 categories and the corresponding LR&HR aerial photo numbers.

Category HR No. LR No. Category HR No. LR No.

Tall building | 1,121,110 | 454,130 | Residential | 1,232,108 | 544,114

Forest 1,221,132 | 654,118 Sea 1,324,337 | 434,142

Aircraft 1,367,215 | 355,619 Railway 1,254,005 | 476,094

Road 1,556,540 | 453,884 River 1,324,337 | 435,093

Palace 1,375,547 | 546,881 Factory 1,443,672 | 509,448

Vehicle 1,325,443 | 621,214 Yacht 1,324,216 | 432,116

Intersection 1,414,214 | 315,446 | Soccer field | 1,116,436 | 454,338

Bridge 1,211,548 | 324,801 Park 1,325,658 | 342,556

Farmland 1,436,658 | 543,447 | Swim.pool | 1,213,008 | 376,643

FIGURE 4. Examples of foggy (left) and blurred sensitive military (right)
regions.

1) TRAINING/TESTING TIME COMPARISON

It is generally acknowledged that time consumption is a
key criterion reflecting the performance of a categorization
model. Herein, we report the training and testing time of
the aforementioned 18 aerial photo categorization models.
As shown in Table 3, during training, only two baseline
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models are faster than our pipeline. This is because the
architectures of [31] and [35] are much simpler than ours.
Meanwhile, we observe that the per-category accuracies
of [31] and [35] are noticeably lower than ours. For the
testing time comparison, our method can be conducted
at a significantly faster speed than the baseline methods.
Notably, distinguished from model training that can be
conducted offline, outstanding testing time is comparably
more valuable to many time-sensitive Al systems, such as
weather forecasting and automatic navigation.

Our HR aerial photo categorization pipeline involves
three key modules: 1) GSP learning using the low-rank
algorithm, 2) geometry-preserving FS. During training, the
time consumed for each module is: 9h12m (module 1) and
1h51m (module 2). During testing, the time cost of each
module is: 71ms (module 1) and 11ms (module 2). We
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TABLE 2. Performances with deviations of the aforementioned image recognizers (The highest accuracies are shown in bold numbers).

[24] [25] [26] [27] [28] [29] [30] S-CNN [31] CNet [32]
Classl 0.633+ 0.011 0.576£0.012 | 0.643+0.009 | 0.593+0.013 | 0.62540.011 0.588 £0.007 | 0.62240.009 | 0.657£0.008 | 0.661=+0.008
Class2 0.591£0.009 0.572+0.011 0.605+0.011 0.567£0.009 | 0.618+0.014 0.612+0.011 0.545+0.011 0.609+0.013 | 0.588+0.009
Class3 0.711£0.005 0.7074+0.009 | 0.679£0.011 | 0.663+0.009 | 0.711£0.008 0.652+0.011 0.70540.007 | 0.661£0.007 | 0.672£0.010
Class4 0.666+0.011 0.663+£0.009 | 0.661+£0.008 | 0.643+0.011 | 0.6761+0.011 0.631+£0.009 0.681+0.014 | 0.695£0.007 | 0.683£0.011
Class5 0.663+0.011 0.643+£0.009 | 0.651£0.009 | 0.630+0.007 | 0.6361+0.011 0.615+0.012 0.658+0.009 | 0.631+0.013 | 0.673+0.012
Class6 0.548+0.009 0.548+0.008 | 0.561+0.010 | 0.5514-0.008 | 0.57940.007 0.546+£0.011 0.575+0.013 | 0.536+0.009 | 0.56140.011
Class7 0.731£0.014 | 0.682+0.011 | 0.718+0.011 | 0.671+0.009 | 0.70840.009 0.707+£0.011 0.671£0.008 | 0.707+0.009 | 0.678+0.011
Class8 0.632£0.009 0.605+£0.014 | 0.615£0.009 | 0.631+0.011 | 0.608+0.011 0.575+0.011 0.572+£0.011 | 0.591£0.008 | 0.58140.007
Class9 0.555+0.011 0.547£0.012 | 0.567+£0.007 | 0.553+0.012 | 0.54440.013 0.572+0.013 0.550£0.009 | 0.543+0.010 | 0.57540.009
Class10 | 0.61740.009 0.618+0.009 | 0.618+0.011 0.602+0.009 | 0.628+0.011 0.610£0.011 0.584+0.011 0.611£0.009 | 0.61140.009
Class11 0.71240.012 | 0.68140.011 | 0.7064+0.009 | 0.69340.009 | 0.72240.011 0.695+£0.008 0.670£0.011 0.682+0.008 | 0.706=£0.010
Class12 0.658+0.014 | 0.641£0.012 | 0.651+0.011 | 0.657+0.011 | 0.67040.011 0.682+0.010 | 0.652+0.008 | 0.671+0.008 | 0.662+0.007
Class13 0.668+0.011 0.623+£0.012 | 0.645+0.009 | 0.611+0.008 | 0.6231+0.012 0.643+0.012 0.632+0.008 | 0.621+0.008 | 0.603+-0.009
Class14 0.631£0.011 0.616£0.009 | 0.581£0.009 | 0.6074+0.009 | 0.62310.011 0.615+0.010 | 0.582+0.009 | 0.581£0.009 | 0.6113-0.009
Class15 0.611£0.009 0.575£0.011 | 0.591£0.008 | 0.582+0.012 | 0.58140.012 0.612+0.011 0.578+0.010 | 0.586+0.011 | 0.607+0.014
Class16 0.668+£0.008 0.641£0.009 | 0.646+£0.011 0.682+£0.010 | 0.641£0.010 0.663+£0.011 0.652+0.011 0.652+0.013 | 0.65110.011
Class17 0.686£0.011 0.702£0.010 | 0.692+0.008 | 0.7124+0.008 | 0.70740.008 0.702+0.011 0.708+0.011 0.682+0.008 | 0.688+0.009
Class18 0.654£0.009 0.6154+0.010 | 0.6314+0.013 | 0.65440.011 0.619+0.015 0.658+£0.009 0.65240.010 | 0.609+0.011 0.618+0.009
DFBA [33] C-RNN [34] MTM [35] SGM [36] MLT [35] [38] [39] [40] Proposed
Class| 0.612+0.012 0.645+0.015 | 0.643£0.009 | 0.681+0.012 | 0.671+0.012 0.614£0.009 0.626£0.014 | 0.643+0.017 | 0.721+0.011
Class2 0.584+0.011 0.614+0.014 | 0.617+0.014 | 0.641+0.013 | 0.6164+0.012 0.565+£0.009 0.59740.015 | 0.588+0.016 | 0.676=:0.009
Class3 0.701+0.013 0.673£0.011 | 0.708+0.011 | 0.7324+0.009 | 0.7384+0.012 0.679+0.012 0.658+0.011 | 0.671+0.009 | 0.778+0.004
Class4 0.645+0.011 0.712£0.014 | 0.721£0.010 | 0.72540.009 | 0.7084+0.012 0.656+0.015 0.664+£0.013 | 0.657+0.014 | 0.7524-0.012
Class5 0.657+£0.010 | 0.632£0.011 | 0.639+0.011 | 0.672+0.009 | 0.65410.011 0.661+0.011 0.653+£0.009 | 0.665+0.009 | 0.698+0.009
Class6 0.578+0.009 0.548+0.014 | 0.578+0.016 | 0.576+0.013 | 0.58740.018 0.566£0.015 0.547+0.013 | 0.533+0.012 | 0.626+0.013
Class7 0.663+£0.013 0.674£0.012 | 0.671£0.012 | 0.723+0.009 | 0.71640.012 0.621£0.009 0.665+£0.014 | 0.681£0.015 | 0.7761+0.009
Class8 0.622+0.015 0.621£0.015 | 0.631£0.013 | 0.621+0.014 | 0.61740.015 0.616£0.015 0.615+0.013 | 0.608+0.013 | 0.689+0.011
Class9 0.558+0.014 | 0.54440.012 | 0.5784+0.013 | 0.58540.013 | 0.531+0.014 0.532+0.011 0.54440.012 | 0.513£0.013 | 0.589-+0.003
Class10 | 0.61340.011 0.621£0.009 | 0.596+0.015 | 0.654+0.014 | 0.6314+0.010 0.612+0.011 0.612+0.013 | 0.614+0.010 | 0.695+0.012
Class11 0.722+0.009 0.709+£0.009 | 0.709+0.009 | 0.7174+0.012 | 0.7031+0.011 0.664-+0.009 0.658+0.016 | 0.660+0.017 | 0.749+0.005
Class12 0.649+0.011 0.644+£0.019 | 0.665+0.013 | 0.693+0.012 | 0.68410.012 0.683+0.014 0.658+0.013 | 0.672+0.011 | 0.71840.010
Class13 0.611£0.012 0.629+0.013 | 0.617+0.016 | 0.623+0.014 | 0.62740.013 0.587+0.014 0.594+0.013 | 0.572+0.015 | 0.6831-0.004
Class14 0.588+0.016 0.608+£0.015 | 0.613+0.014 | 0.616+0.013 | 0.6154+0.015 0.616£0.018 0.612+£0.019 | 0.622+0.015 | 0.6741+0.006
Class15 0.593+0.013 0.592+0.014 | 0.571£0.009 | 0.609+0.015 | 0.6114+0.013 0.594+0.015 0.571£0.016 | 0.614£0.017 | 0.6341+0.004
Class16 0.648+0.015 0.681£0.015 | 0.669+0.015 | 0.647+0.013 | 0.6774+0.015 0.641£0.015 0.642+0.014 | 0.646£0.014 | 0.687+0.006
Class17 0.7154+0.014 | 0.7134+0.013 | 0.7124+0.016 | 0.71440.016 | 0.72240.011 0.682+0.011 0.62740.012 | 0.717£0.015 | 0.791£0.005
Class18 0.611+£0.014 | 0.638+0.014 | 0.636+£0.017 | 0.658+0.014 | 0.6261+0.013 0.609+0.014 0.619+0.014 | 0.622+0.011 | 0.702+0.003
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FIGURE 5. Statistics of LR&HR aerial photos with different quality scores
in our complied LR&HR aerial photo set.

observe that most of the training time is spent for module 1
and practically this can be accelerated by Nvidia GPUs.

C. PARAMETER ANALYSIS

We first evaluate three weights in our low-rank algorithm.
Parameter «, 8, y and L’s default values are fixed to 0.3, 0.1,
and 0.15 respectively. In our implementation, the default val-
ues are determined by 10-fold cross validation. The validation
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set contains 54000 samples, which is constituted by selecting
3000 HR aerial photos from each of the 18 categories. More
concretely, we tune each of «, 8, and y from zero to one. And
all the possible parameter combinations are enumeratively
employed to test the HR aerial photo categorization. The
parameter combination receiving the highest categorization
accuracy is reported as the default values. Based on this,
we adjust one of the three parameters while keep the others
unchanged. Each parameter is increased from zero to one.
We then report the accuracy accordingly. As the three curves
displayed on the left of Fig. 6, the best performances are
achieved when o« = 0.1, 8 = 0.15, and y = 0.3.

To evaluate the influences of 71, 72, and 73 in our geometry-
preserving FS, we set 17 = 1 and then tune 7| and 73.
Then we follow the experimental settings described above.
71 and t3’s initial values are both set to 0.45. As the two
curves shown in Fig. 6, the highest performance is observed
if 71 = 0.4 and 3 = 0.6.

D. ABLATION STUDY

As aforementioned, our method is comprised of two
key modules: 1) GSP learning using the low-rank
algorithm, 2) geometry-preserving FS. Herein, we test
the importances of these modules in our HR aerial
photo categorization pipeline. Specifically, each module
is replaced by a different one. Then the performance
decrement/increment is presented. Also, insights are provided
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TABLE 3. Training/testing time of the 18 categorization models.

[24] [25] [26] [27] [28] [29] [30] S-CNN [31] | CNet[32]
Train 31h7m 43h14m 52h21m 39h23m 36h43m 46h13m 41h32m 6h33m 38h22m
Test 1.143s 1.774s 1.846s 1.564s 2.437s 1.463s 1.675s 0.893s 1.660s
DFBA [33] | C-RNN [34] | MTM [35] | SGM[36] | MLT [35] [38] [39] [40] Proposed
Train 40h23m 25h25m 32h15m 44h16m 10h6m 32h14m | 35h44m 32h12m 11h3m
Test 1.213s 1.002s 1.875s 0.983s 1.436s 1.774s 1.983s 1.546s 0.782s
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FIGURE 6. Categorization performance variation when tuning o, 8, y and 1, 1, 73 respectively.

to elaborate the underlying reasons for the observed
results.

In the first place, to evaluate the effectiveness of the
low-rank algorithm, two experimental settings are deployed.
We first abandon the sparse constraint term |[|E||; in (4)
(marked by “S11”"). Afterward, we abandon the regularizer
IZI1E + 202, (1Zill3 + 11E]13) in (4) (marked by “S12”).
We report the variation of categorization accuracy in Table 4.
Herein, the intersection of column “Si” and row “0Oj”
denotes the setup ““Sij”’. Noticeably, a shallow feature
engineering module will cause a performance decrement.
Also, removing the regularizer will greatly decrease the
accuracy. This observation shows the necessity to mitigate
the overfitting of our designed low-rank algorithm. Next,
to evaluate the performance of the geometry-preserving FS,
we remove 71||T||1, 71]|J]]2, and 71||K]|12 respectively. As
shown in 4, abandoning the geometry-preserving term causes
the largest categorization accuracy drop. This demonstrates
the importance of maintain sample distribution in FS.

TABLE 4. HR aerial photo categorization accuracy variation.

[ ST | s2
Ol | 2.115% | 2.325%
02 | 4554% | 2.032%
03 | NA | 6.665%

V. CONCLUSION

Recognizing aerial images is an indispensable task in
geoscience and remote sensing [45], [46], [47], [48], [49].
We proposed a novel HR aerial photo categorization model,
wherein the key is a low-rank algorithm as well as a
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geometry-preserving FS. The comparative study on our
complied million-level HR aerial photo set has shown the
competitiveness of our method.

One limitation of our work is the low-rank algorithm has
a shallow architecture. Currently deep models have been
pervasively used in visual categorization since they can
produce more descriptive features. In the future, we plan
to upgrade our low-rank algorithm into a deep architecture
toward a more descriptor feature extractor.
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