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ABSTRACT Recognizing the multiple categories of an high-resolution (HR) aerial photos is an
indispensable technique in geoscience and remote sensing. In this work, a perceptual low-rank algorithm
combined with a geometry-preserving feature selection (FS) is proposed for categorizing HR aerial photos.
In practice, the theory of human visual perception indicates that for each scenery, the background non-salient
regions are highly correlated, whereas the foreground visually/semantically salient regions are almost
uncorrelated. Motivated by this, we design a novel low-rank algorithm that seeks a sparse set of foreground
visually/semantically salient image patches. These patches are sequentially linked into a so-called GSP
(path reflecting gaze movement) to mimick human vision system. Afterward, a geometry-preserving FS
algorithm is proposed to select highly discriminative features from the aforementioned gaze features, wherein
a classifier can be trained simultaneously. Comprehensive experimental validation on our Internet-scale
image set have shown its superiority.

INDEX TERMS Feature selection, geometry, high-resolution, low-rank.

I. INTRODUCTION
Thanks to the technology of delivering several satellites by a
single rocket launch, many earth observation satellites have
been launched in the past decades. These satellites capture
HR aerial images containing ground objects with sophisti-
cated spatial structures. Understandings the semantics of the
ground objects by exploiting the inherent spatial structures
becomes a useful tool in lots of artificial intelligence
applications.

In image processing, plenty of image/video classifi-
cation/parsing models were designed to encode aerial
photos. Important work includes: 1) multiple instance learn-
ing/convolutional neural network-based object localization
using weak labels; 2) graphmodel for semantically exploiting
aerial photographs; and 3) well-designed deep models to
semantically annotate aerial photographs. Nevertheless, as far
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FIGURE 1. Left: human gaze shifting paths (GSPs) from five observers
(arrows with different colors); right: a GSP calculated using the proposed
method.

as we know, the existing models are all sub-optimal charac-
terize HR aerial photo because of the following reasons:

• Actually, each HR photo usually has many ground
objects with complicated spatial layouts. Intelligently
exploiting their underlying semantics is difficult. The
inherent challenges include: i) discovering those ground
visually/semantically salient objects according to human
visual perception (as the circles exemplified on the left
of Fig. 1), and ii) how to design a model that converts
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the discovered salient objects into a fixed-length feature
vector, which can be utilized for the subsequent feature
classification;

• Biological studies have shown that humans sequentially
perceive different regions within each scenery. As shown
on the right of Fig. 1, humans will first attend to
the upper central residential area, and then shift the
gazes to the right one, and so on. In practice, the path
reflecting human gaze movement is highly descriptive to
categorize HR aerial photos. But designing a principled
model extracting GSPs from HR aerial photos with
different spatial layouts remains unsolved.

FIGURE 2. An overview of our proposed HR aerial photo categorization
pipeline.

To handle these challenges, we propose a biologically-
inspired HR aerial photo categorization framework. Our
key contribute is a low-rank algorithm associated with a
geometry-preserving feature selector that jointly: 1) extracts
multiple visually/semantically salient image patches sequen-
tially to constitute a GSP for each HR aerial photo, and
2) obtain a subset of highly discriminative GSP features
for the subsequent visual categorization. More specifically,
as elaborated in Fig. 2, by collecting a considerable quantity
of HR aerial images, we first project their internal regions
onto the feature space constructed by exploiting the visual
and semantic channels collaboratively. Thereafter, to mimick
human visual perception, a low-rank model is designed
to decompose each HR aerial photo into a sequence of
visually/semantically salient foreground image patches cou-
pled with the non-salient background ones. Accordingly, the
saliency value of each salient image patch can be calculated,
which guides the GSP feature generation. Toward a subset of
high quality GSP features, we further propose a geometry-
preserving FS algorithm to obtain highly discriminative GSP
features, coupled with a classifier trained from the selected
GSP features. Noticeably, our designed feature selector can
maximally preserve the sample distribution in the feature

space during FS. This attribute is significant to ensure the
discrimination of the selected features according to the
manifold learning theory [44]. Such classifier is finally
utilized to calculate the category labels of each HR aerial
photo. Experimental comparison with over ten state-of-the-
art shallow/deep categorization models has demonstrated the
superiority of the proposed approach.

In summary, our method has two main contributions: 1) a
novel low-rank algorithm that extracts many GSPs from
each HR aerial photo and engineers GSP’s visual feature
simultaneously, and 2) a geometry-preserving FS algorithm
to obtain highly discriminative GSP features and train the
classifier for HR aerial photo categorization.

II. RELATED WORK
In the literature, dozens of computational aerial imagemodels
were developed to analyze aerial photos.1 Some models are
conducted at image-level. Zhang et al. [2] constructed a
novel topological feature tomodel the inter-region connection
inside each aerial photo. And a kernel-induced vector is
calculated as the image representation for categorization.
Xia et al. [3] formulated a novel weak model which
can semantically label HR aerial photos at image-level.
Akar et al. [4] seamlessly combined the so-called rotation
forest and object-level feature extractor to categorize a rich
set of aerial images to different classes. The authors [5]
developed a hierarchical deep architecture to recognize
the multiple labels of HR aerial photos describing many
downtown areas. In [6], researchers utilized a hierarchical
and multi-layer deep model to classify HR aerial photos.
A domain-specific scenic picture set is leveraged to fine
tune the deep architecture. In [7], a cross-modality learning
framework is proposed to collaboratively learn five deep
models for categorizing aerial images, wherein pixel-level
and spatial-level features are exploited complementarily. Cai
and Wei [8] proposed a cross-attention mechanism to learn
the weights of aerial image features both horizontally and ver-
tically. In [9], Bazi et al. formulated a vision transformer for
aerial image classification, wherein the long-term contextual
dependencies among regions can be intrinsically encoded.
Although impressive performance have been achieved by
the above methods, they cannot handle HR aerial photo
categorization effectively because of three reasons: 1) the
region-level visual features are particularly informative for
HR aerial photo modeling, but they cannot be well encoded;
2) these methods cannot explicitly incorporate human gaze
behavior into the categorization model. Thus, the predicted
semantic labels might be inconsistent with human visual
cognition; and 3) these methods are usually insufficiently fast
since a rich number of highly time-consuming features have
to be extracted.

For region-level modeling, the authors [10] designed
an enhanced and multi-layer neural network to discover

1Amore comprehensive survey of aerial photo understanding is illustrated
in [1].
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multi-scale attractive objects within an aerial image. In [11],
a focal loss deep architecture is proposed that optimally
discovers vehicles from aerial images. In [12], researchers
developed a novel object localization algorithm toward
remote sensing images. It intelligently extracts intersec-
tions as well as streets. In [13], Yu et al. integrated
feature enhancement and soft label assignment into an
anchor-independent object detector toward aerial images.
In [14], Wang et al. proposed a deep rotation-invariant
detector that effectively estimates the angles of multi-scale
objects inside aerial images. In [15], Chalavadi et al. proposed
a parallel deep model called mSODANet that hierarchically
learns contextual features from multi-scale and multi-FoV
(field-of-views) ground objects. Notably, compared to image-
level modeling, region-level models can exploit the regional
features to facilitate HR aerial photo categorization. But there
still some shortcomings: 1) the aforementioned region-level
models are generally dataset-independent, which cannot be
conveniently applied cross different datasets. Practically,
however, we need a principled region-level image model that
is applicable across multiple image sets; and 2) the human
visual perception fails to be efficiently encoded by these
models. Actually, we want an HR aerial photo processing
system that can rapidly recognize each HR aerial photo.

In machine learning, the low-rank algorithm [16] has
been pervasively used in seeking a succinct set of bases
for representing a large-scale samples, i.e., each sample
can be represented by a linear combination of the bases.
Low-rank algorithm can be used in applications like infor-
mation retrieval, recommendation systems [17], and feature
extraction [17]. In our work, we use low-rank approximation
to represent the entire regions within each aerial image
by a set of visually/semantically salient regions. This can
be deemed as a novel visual feature extractor. Meanwhile,
geometry-preserving feature selection (FS) attempts to obtain
a few highly discriminative features from the original high-
dimensional ones. During the FS process, the geometry
distribution among samples is maximally preserved. This
technique is widely used for face/speech recognition [18] and
image retrieval [19]. Typically, geometry-preserving FS can
significantly enhance AI systems’ efficiency by reducing the
number of extracted features.

III. OUR PROPOSED METHOD
A. LOW-RANK ALGORITHM FOR GSP LEARNING
In practice, there are multiple fine-grained objects inside each
HR aerial photo. Biological studies [20], [21], [41] have
shown that observers practically attend to a succinct set of
salient objects. In our scenario, when humans perceive an LR
aerial photo, their eye will first fix onto the ground attractive
regions. Meanwhile, the unattractive background regions
are kept almost unprocessed. Such human visual perceptual
behavior is informative for categorizing HR aerial photos.
Herein, we propose a low-rank algorithm that sequentially
selects salient image patches to construct gaze shifting paths

(GSPs). And the corresponding visual features can be jointly
engineered.

The theory of human visual perception indicates the
high correlation (self-representativeness) of the non-salient
background image patches inside each scenery. Contrastively,
the foreground salient image patches are almost uncorrelated.
This observation motivates us to decompose the feature
matrix X ∈ RT×N of each HR aerial photo into the salient
and non-salient parts,

X = Y + E, (1)

where N counts the image patches within each HR aerial
photo and T its feature dimensionality. Y ∈ RT×N preserves
feature columns corresponding to the non-salient background
image patches (the other columns are all zeros). E ∈ RT×N

represents feature columns corresponding to the salient image
patches (the other columns are all zeros).

Aiming at a unique solution indicating the salient image
patches, some criteria are proposed to constrain Y and E.
In our work, two observations are made. First, only a small
fraction of image patches within each HR aerial photo are
salient and will the detailedly processed by human vision
system. This mathematically reflects thatE is a sparse matrix.
Second, the high correlation of the non-salient background
image patches indicates that Y is a low-rank matrix. Based
on these, we select the salient image patches by seamlessly
integrating a sparsity and low-rankness constraint into (1):

minY,� ||Y||∗ + αl1(E) + βl2(Y, f (0,X)) + γ�(0), (2)

where || · ||∗ is the matrix nuclear norm representing a convex
approximation to matrix rank function, l1(E) quantizes the
sparisty of E, f (0,X)) selects non-salient background image
patches from each HR aerial photo and 0 contains the
inherent parameters, and l2(Y, f (0,X)) penalizes the loss
of non-salient background image patches selection. �(0)
serves as a regularizer. α, β, and γ are parameters measuring
the importance of these terms. More concretely, to ensure a
highly sparse E, l1(·) is defined as:

l1(E) = ||E||1, (3)

Noticeably, each entity of Y is nonnegative. Herein, we set
l2(a, b) = (a−b)2/2 to calculate the image patches selection
error. Thereby, objective function (2) can be upgraded into:

minY,� ||Y||∗ + α||E||1 + β||Y − f (0,X)||2F
+ γ�(0), Y ≥ 0. (4)

It is observable that (4) is a non-convex optimization over
the entire variables. In our implementation, we follow the
iterative algorithm in [42] to solve it. Thereafter, denoting
Y∗ as the optimal solution of (4), the saliency score of the
i-th image patch in an HR aerial photo is calculated by:

s(Xi) = ||E∗(:, i)||2, (5)

where E∗
= X − Y∗, and E∗(:, i) denotes the i-th column

of E∗.
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The GSP learning is given as follows. A larger
s(Xi) in Eq.(5) means that the i-th image patch is
more visually/semantically salient. Given an HR aerial
photo, we sequentially link the top P salient image
patches to constitute its gaze shifting path (GSP).
Accordingly, the visual feature of the GSP is obtained
by sequentially concatenating the visual features of its
constituent P image patches. In the following, the GSP
feature from the i-th training HR aerial photo is denoted
by gi.

B. GEOMETRY-PRESERVING FEATURE SELECTION
1) SAMPLES GEOMETRY PRESERVATION2

Inspired by the recent progresses in manifold learning, the
self-expressive model is leveraged to preserve the sample
distribution during feature selection (FS). The self-expressive
model hypothesizes that the entire samples are distributed
on a combination of subspaces. Mathematically, each sample
can be linearly represented by a constrained combination of
the other samples, i.e. G = GT and diag(T) = 0. Herein,
G = [g1, · · · , gN ] is a matrix consisting of the GSP features
from N training samples, T denotes the matrix containing
the self-reconstruction parameters. Practically, we notice that
the samples might be contaminated. Thus, the self-expressive
model can be upgraded into: G = GT + J, wherein J is the
error matrix. Based on these, the general form self-expressive
model is given as:

min
T,J

τ1||T||u + τ2||J||v, s.t. constraints(T, J), (6)

where || ·||u and || ·||v denote two pre-specified matrix norms,
τ1 and τ2 are the two corresponding nonnegative weights, and
cons(T, J) represents the constrains on T and J.

2) OBJECTIVE FUNCTION OF OUR FS
We denoteK as a matrix projecting the original GSP features
into the low-dimensional one. In practice, K is constrained
to be a column-wise sparse matrix for FS. Then, we can
assume that if sample gi and gj are from the same category,
then the low-dimensional selected featureKgi andKgj should
be close and the weight Hij should be large. Herein, H =

|T| + |TT | denote the weight matrix measuring the entire
samples. Meanwhile, if samples gi and gj are from different
categories, then the distance between Kgi and Kgj should be
far and the weight Hij will be close to zero. Mathematically,
the above observations can be formulated into the following
objective function:

min
K,L,H

∑N

i=1

∑N

j=1
Hij(α||Hgi − Hgj||2 + (1 − α)||li − lj||2)

= min
K,L,H

||H ⊙ ϒ ||1 = min
K,L,T

||T ⊙ ϒ ||1, (7)

where⊙ is the Hadamard product, li denotes the i-th category
labels to the i-th sample, L is a matrix comprising of category

2For ease of expression, the samples denote the training/testing HR aerial
photos in this article.

labels of the entire training samples.ϒij = α||Hgi−Hgj||2+

(1−α)||li− lj||2, and α is a trade-off parameter between zero
and one.

By combining (6) and (7), the objective function of our FS
and be reorganized into:

min
K,L,T,J

{τ1||T||u + τ2||J||v + ||T ⊙ ϒ ||1 + τ3||K||12},

s, t. constraints(T, J), (8)

In our method, the l1-norm is employed for both ||T||u
and ||J||v. The l12-norm ensures the column-wise sparsity
of K. Based on the constrains detailed above (6), objective
function (8) can be updated into:

min
K,L,T,J

{τ1||T||1 + τ2||J||2 + ||T ⊙ ϒ ||1 + τ3||K||12},

s, t. G = GT, diag(T) = 0. (9)

where τ3 denotes another nonnegative weight. In our
implementation, the solution is based on [43].
Based on theH calculated fromT in (9), the category labels

l∗ of a new sample is derived by:

argmin
l∗

N+1∑
i=1

N+1∑
i=1

Hij||li − lj||22 = argmin
l∗

tr(L∗RL∗T ), (10)

where R = diag(HIN+1) − H is the graph Laplacian
matrix, IN+1 is an (N + 1) × (N + 1)-sized identity matrix,
and L∗

= [L, l∗].

IV. EXPERIMENTAL RESULTS AND ANALYSIS
We validate the effectiveness and efficiency of our HR
aerial photo categorization using four experiments. We
first introduce our self-compiled data set, which includes
million-scale LR(low resolution)&HR aerial photos collected
from the top 100 metropolises from different continents.
Subsequently, we compare our approach with 17 state-of-
the-art deep categorization models from three perspectives:
accuracy, stability, and time consumption. Then, we evaluate
our categorization accuracy by adjusting themultiple inherent
parameters, based on which the optimal parameters are
suggested. Lastly, we design an ablation study to evaluate
each key module in our HR aerial photo categorization
pipeline.

A. DATA SET DESCRIPTION
To comprehensively evaluate our categorization model,
we have to experiment on a massive-scale LR&HR aerial
photo set from many categories. To our best knowledge,
however, there is no such data set in the literature.
In this work, we spent enormous efforts to compile a
huge data set containing over 3.6 million LR&HR aerial
photos. The sources of these LR&HR aerial photos are
Google/Apple/Bing Maps, based on which we designed
a crawler software that spent 4310 hours to search and
download LR&HR aerial photo. Specifically, we use the
name of 100 most popular metropolitan cities (as detailed
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in Fig. 3) throughout the world as the keywords to search
Google/Apple/Bing Maps. In total, there are 46 cities from
North America, 38 from Europe, ten from Asia, four
from Oceania, and two from South America. Subsequently,
we crop LR&HR aerial photos from the cached maps,
wherein the typical resolutions of HR aerial photos are
between 5K × 5K and 22K × 22K . In our implementation,
we restrict the HR aerial photos’ resolution upper bound
to 22K × 22K . Meanwhile, the resolutions of LR aerial
photos are between 0.35K × 0.35K and 2K × 2K . We adopt
these settings because: 1) we want to make each HR aerial
photo associated with four categories mostly, 2) we enforce
that there are maximally 5% overlapping areas between any
pairwise LR&HR aerial photos, and 3) too few pixels inside
an LR aerial photo will make it technically infeasible to
perceive its semantics.

During our data set compilation, we notice that a few
LR&HR aerial photos are blurred due to bad weathers or
sensitive military regions, as exemplified in Fig. 4. Actually,
our method focuses on discovering object patches with
different scales and subsequently learn visual perceptual
features for visual categorization. Practically, bad weathers
will inevitably decrease the visibility of LR&HR aerial
photos and in turn hurt the fairness of accuracy comparison.
Therefore we abandon LR&HR aerial photos whose 20%
pixels are unclear, wherein the clearness is measured by
the blur estimation algorithm proposed by Tong et al. [22].
To quantitatively show the effectiveness of the above
refining process, we use the IQA (image quality assessment)
algorithm [23] to calculate the quality score of each LR&HR
aerial photo in our data set. More specifically, the single
image quality assessment module in [23] is adopted here to
calculate the quality score (with normalization). Herein, the
quality score used in our implementation is a normalized
image quality score. We manually select K best quality HR
aerial image with sharpness scores {Q1

b, · · · ,QKb }. Then, for
a new HR aerial image with sharpness score Qnew, its quality
score is calculated as:

Q =
Qnew

ave(Qkb)
, (11)

As reported in Fig. 5, over 74% of our refined LR&HR aerial
photos are scored over 0.7.

After collecting the million-scale LR&HR aerial photos,
we have to annotate them to obtain the corresponding
category labels. Herein, 106 volunteers3 first manually
annotate 23.8% HR aerial photos in each metropolitan city,
wherein a total of 47 different category labels were utilized.
Afterward, we train a multi-label SVM and employ it to
annotate the category labels of the rest LR&HR aerial images.
Then, the same 106 volunteers manually correct the labels
calculated by SVM. It is noticeable that multiple category
labels are associated with an intolerably small number of

3They are graduate students from our computer science department. They
are aged between 24 and 31 and experienced in image processing and pattern
recognition. Totally, there are 57 males and 49 females.

LR&HR aerial photos. This makes it infeasible to train a
generalizable categorization model corresponding to these
category labels. In our implementation, if the number of
LR&HR aerial photos corresponding to a category label is
smaller than 200,000, Then we abandon this label. In this
way, we finally obtain 18 different category labels as detailed
in Table 1. Thereafter, we notice that 99.983% LR&HR
aerial photos have fewer than four category labels, while the
rest very few LR&HR aerial photos have larger numbers of
category labels (fromfive to 15). These LR&HR aerial photos
usually contain a rich set of small regions (< 200 × 200)
that are possibly contaminated. Thus we simply abandon
them. Lastly, we order the entire LR&HR aerial photos by
their file names. The entire HR aerial photos are employed
for training. For each category, the first half HR aerial
photos constitute the training set while the rest are employed
for testing. The entire LR aerial photos are employed
for model validation, since manually detecting objects on
LR aerial photos is much more convenient than the HR
ones.

B. PERFORMANCE COMPARISON
Herein, our method is compared with seven deep cate-
gorization models [24], [25], [26], [27], [28], [29], [30]
that intrinsically encode some prior knowledge of different
aerial photo categories. We notice that the source codes
of [24], [25], [28], and [29] are publicly available. Thereby,
we conduct a comparative study wherein the parameter
settings are set as default. For [26], [27], and [30], the
source codes are unavailable to our knowledge. Due to
this reason, these baseline methods are re-implemented by
software programmer. We tried our best so as to make
the re-implemented models perform similarly to the results
reported in their publications. Nowadays, many deep generic
recognition models perform impressively on categorizing
aerial photos. Herein, our method is first made a comparison
with multiple deep generic object recognition models: the
pyramid pool-CNN (S-CNN) [31], CNet [32], discrimination
filtering bank algorithm (DFBA) [33], C-RNN [34], multi-
label graph convolutional network (MLT) [35], semantic-
specific graph model (SGM) [36] and multi-label transformer
model (MTM) [37]. Furthermore, since HR aerial photo
categorization can be deemed is a sub-topic of scenery clas-
sification, we additionally compare with three well-known
scenery classification models [38], [39], [40].
For the above baseline object/scene recognition algo-

rithms, each model is repeatedly tested multiple times and
the results are displayed in Table 2. As shown, our method
achieve the best per-category accuracies on the entire 18 cat-
egories. To quantify the stability of these categorization mod-
els, we report their standard derivations simultaneously. We
observe that the per-category standard derivations produced
by ourmethod are significantly and consistently lower than its
competitors. This demonstrated that our method is the most
stable.
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FIGURE 3. The statistics of LR&HR aerial images collected from the 100 metropolitan cities.

TABLE 1. The selected 18 categories and the corresponding LR&HR aerial photo numbers.

FIGURE 4. Examples of foggy (left) and blurred sensitive military (right)
regions.

1) TRAINING/TESTING TIME COMPARISON
It is generally acknowledged that time consumption is a
key criterion reflecting the performance of a categorization
model. Herein, we report the training and testing time of
the aforementioned 18 aerial photo categorization models.
As shown in Table 3, during training, only two baseline

models are faster than our pipeline. This is because the
architectures of [31] and [35] are much simpler than ours.
Meanwhile, we observe that the per-category accuracies
of [31] and [35] are noticeably lower than ours. For the
testing time comparison, our method can be conducted
at a significantly faster speed than the baseline methods.
Notably, distinguished from model training that can be
conducted offline, outstanding testing time is comparably
more valuable to many time-sensitive AI systems, such as
weather forecasting and automatic navigation.

Our HR aerial photo categorization pipeline involves
three key modules: 1) GSP learning using the low-rank
algorithm, 2) geometry-preserving FS. During training, the
time consumed for each module is: 9h12m (module 1) and
1h51m (module 2). During testing, the time cost of each
module is: 71ms (module 1) and 11ms (module 2). We
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TABLE 2. Performances with deviations of the aforementioned image recognizers (The highest accuracies are shown in bold numbers).

FIGURE 5. Statistics of LR&HR aerial photos with different quality scores
in our complied LR&HR aerial photo set.

observe that most of the training time is spent for module 1
and practically this can be accelerated by Nvidia GPUs.

C. PARAMETER ANALYSIS
We first evaluate three weights in our low-rank algorithm.
Parameter α, β, γ and L’s default values are fixed to 0.3, 0.1,
and 0.15 respectively. In our implementation, the default val-
ues are determined by 10-fold cross validation. The validation

set contains 54000 samples, which is constituted by selecting
3000 HR aerial photos from each of the 18 categories. More
concretely, we tune each of α, β, and γ from zero to one. And
all the possible parameter combinations are enumeratively
employed to test the HR aerial photo categorization. The
parameter combination receiving the highest categorization
accuracy is reported as the default values. Based on this,
we adjust one of the three parameters while keep the others
unchanged. Each parameter is increased from zero to one.
We then report the accuracy accordingly. As the three curves
displayed on the left of Fig. 6, the best performances are
achieved when α = 0.1, β = 0.15, and γ = 0.3.

To evaluate the influences of τ1, τ2, and τ3 in our geometry-
preserving FS, we set τ1 = τ2 and then tune τ1 and τ3.
Then we follow the experimental settings described above.
τ1 and τ3’s initial values are both set to 0.45. As the two
curves shown in Fig. 6, the highest performance is observed
if τ1 = 0.4 and τ3 = 0.6.

D. ABLATION STUDY
As aforementioned, our method is comprised of two
key modules: 1) GSP learning using the low-rank
algorithm, 2) geometry-preserving FS. Herein, we test
the importances of these modules in our HR aerial
photo categorization pipeline. Specifically, each module
is replaced by a different one. Then the performance
decrement/increment is presented. Also, insights are provided
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TABLE 3. Training/testing time of the 18 categorization models.

FIGURE 6. Categorization performance variation when tuning α, β, γ and τ1, τ2, τ3 respectively.

to elaborate the underlying reasons for the observed
results.

In the first place, to evaluate the effectiveness of the
low-rank algorithm, two experimental settings are deployed.
We first abandon the sparse constraint term ||E||1 in (4)
(marked by ‘‘S11’’). Afterward, we abandon the regularizer
||Z||

2
F +

∑L
i=1(||Zi||

2
F + ||ξ ||

2
2) in (4) (marked by ‘‘S12’’).

We report the variation of categorization accuracy in Table 4.
Herein, the intersection of column ‘‘Si’’ and row ‘‘Oj’’
denotes the setup ‘‘Sij’’. Noticeably, a shallow feature
engineering module will cause a performance decrement.
Also, removing the regularizer will greatly decrease the
accuracy. This observation shows the necessity to mitigate
the overfitting of our designed low-rank algorithm. Next,
to evaluate the performance of the geometry-preserving FS,
we remove τ1||T||1, τ1||J||2, and τ1||K||12 respectively. As
shown in 4, abandoning the geometry-preserving term causes
the largest categorization accuracy drop. This demonstrates
the importance of maintain sample distribution in FS.

TABLE 4. HR aerial photo categorization accuracy variation.

V. CONCLUSION
Recognizing aerial images is an indispensable task in
geoscience and remote sensing [45], [46], [47], [48], [49].
We proposed a novel HR aerial photo categorization model,
wherein the key is a low-rank algorithm as well as a

geometry-preserving FS. The comparative study on our
complied million-level HR aerial photo set has shown the
competitiveness of our method.

One limitation of our work is the low-rank algorithm has
a shallow architecture. Currently deep models have been
pervasively used in visual categorization since they can
produce more descriptive features. In the future, we plan
to upgrade our low-rank algorithm into a deep architecture
toward a more descriptor feature extractor.
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