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ABSTRACT Most existing studies on autonomous intersection management (AIM) primarily focus on
modeling and resolving conflicts between vehicles within an intersection, assuming predetermined routes of
the autonomous vehicles (AVs) as exogenous inputs. Additionally, these studies presume scenarios in which
AVs traverse the intersection at a constant speed without stopping. However, such scenarios are difficult
to realize under heavy traffic demand. To address this issue, this study first discretized the intersection
into numerous grids and proposed formulations to calculate the time at which the vehicles enter and exit a
given grid at different speeds and accelerations based on the outer-boundary-projection dimension-reduction
method. Thereafter, a bi-level programming model was established to optimize the route choices and traffic
control schemes. The upper-level model aimed to minimize the conflicts within the intersection zones,
considering the lane options for vehicles entering and exiting the intersection as the decision variable to
optimize the AV routes. In addition, the lower-level model strived to minimize the delay for all upcoming
vehicles. The timewhen a vehicle enters an intersection andwhether it stops are utilized as decision variables.
Based on the sliding time-window technique, the proposedmodel was transformed into amixed-integer linear
programming (MILP) problem, which is compiled by a mathematical programming language (AMPL) and
solved byCPLEX. The numerical analysis shows that the proposedmodels significantly reduced the conflicts
between the vehicles, and consequently, improved the space utilization of the intersection, reduced vehicle
delays, and saved a significant amount of energy.

INDEX TERMS Autonomous intersection management (AIM), route planning, all-direction lanes, mixed-
integer linear programming (MILP), intersection.

I. INTRODUCTION
Intersections are widely recognized as bottlenecks of traffic
flow in urban road networks [1]. In recent years, many studies
have focused on traffic control at intersections, with the
majority of these studies aimed at optimizing traffic signals
timing scheme to improve traffic efficiency at intersections
[2]. Although intersection signal control has made significant
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progress in improving the safety and throughput of traffic
flows, it still presents notable disadvantages that cannot be
overlooked, they are listed as follows:

i. The unpredictable and fluctuating traffic arrivals from
multiple directions at intersections can lead to subopti-
mal lane and phase configurations, resulting in reduced
vehicle mobility during green lights [3], [4].

ii. The duration of the time interval between two sequen-
tial green light phases at an intersection is affected
by factors such as clearance distance, clearance speed,
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entering speed, and passing time of vehicles. However,
the transition between phases often results in wasted
space and time resources at the intersection [5].

Consequently, numerous researchers and urban planners
have sought to enhance the traffic control methods at
intersections. Recently, the advancement of autonomous
driving technology has presented new challenges to traffic
control, while also providing opportunities for addressing the
aforementioned problems [6], [7].

As far as the authors know, Dresner and Stone first pro-
posed the concept of autonomous intersection management
(AIM), which involves the use of autonomous vehicles (AVs)
that cooperate to cross intersections without the need for
signal control [8], [9]. Previous studies have demonstrated
that AIM can effectively address the two signal control
issues mentioned earlier, thereby enhancing traffic efficiency
[10], [11]. AIM can be classified into two categories, i.e.,
centralized and distributed. Centralized control relies on
vehicle-to-infrastructure (V2I) communication and utilizes
infrastructure/intersectionmanagers for traffic control. In this
mode, a central controller makes global decisions regarding
the right-of-way for all AVs [12].
Numerous studies have focused on centralized control

strategies to improve traffic efficiency at intersections while
prioritizing traffic safety. These studies aim to optimize the
order and timing of vehicle entry into intersections [13],
[14]. For instance, in [15] proposes a cooperative scheduling
mechanism for autonomous vehicles passing through an
intersection without traffic lights. The mechanism uses
priority setting, window searching and trajectory planning
to ensure safety and efficiency. In [16], proposes a robust
autonomous intersection control (AIC) approach with global
optimization scheduling and demonstrates its superiority in
transportation efficiency and robustness. In [17], devised
a collaborative, sequence-based control system and put
forward two control strategies to determine the safe passing
sequence of vehicles at intersections. The efficiency of the
proposed system was confirmed via the use of microscopic
simulations. In [18], created a dynamic programming model
aimed at maximizing intersection throughput at signal-free
intersections. In order to mitigate traffic conflicts, they
proposed a stochastic look-ahead technique based on the
Monte Carlo tree search algorithm. Reference [19] proposed
a priority-based, signal-free control algorithm and a discrete
forward-rolling optimal control algorithm. To minimize
energy consumption and maximize traffic capacity, [20]
optimized vehicle routes at intersections by establishing a
correlation between minimizing energy consumption and
maximizing throughput. Reference [21] proposed a two-level
optimization model for vehicle scheduling and trajectory
optimization, which proved to bemore effective than the first-
in-first-out (FIFO)method in reducing vehicle delays and fuel
consumption.

Distributed control relies on vehicle-to-vehicle (V2V)
communication, enabling vehicles to independently develop

their optimal intersection passage plans by gathering local
traffic information [22]. Specifically, it can be categorized
into heuristic-based and optimization-based control [23],
[24]. For heuristic control, [25] introduced the concept of
safety driving patterns, which utilizes a spanning tree to
describe the solution space of allowable movement schedules
with safety constraints. Accordingly, they proposed four
trajectory planning algorithms and used the spanning tree
to determine the driving plans with least execution times.
Based on this outcome, [26] proposed a cooperative control
strategy that combines Monte Carlo tree search with heuristic
rules to efficiently discover a nearly globally optimal passing
order for vehicles at intersections. For optimization-based
control, [27] modeled the intersection control problem as a
distributed computing problem of classical mutual exclusion
and designed a solution algorithm accordingly. Reference
[28] proposed a decentralized coordination method that com-
bines optimal control with model-based heuristic algorithm.
Reference [29] proposed a distributed conflict resolution
mechanism to achieve real-time feasible solutions for large-
scale combinatorial optimization problems. Furthermore,
[30] proposed a fully distributed control method built upon
a fully distributed model predictive control approach.

The aforementioned studies have enabled safe and efficient
passage of vehicles through intersections without signal
control, with reduced traffic delays and improved traffic
efficiency of the intersections. In particular, numerous
research results have been reported for optimizing vehicle
passing order (i.e., the sequences for vehicles entering the
intersection) and the entering time. However, most existing
studies assume predetermined routes of the AVs and use them
as exogenous inputs, and assume that the vehicle travels at a
pre-determined speed as prescribed by the model, resulting in
the following shortcomings:

i. Most studies have only considered a few conflict points
at the intersections [31], [32] and focused on optimiz-
ing the order of vehicles entering the intersections to
avoid collisions, without considering the optimization
of the vehicle routes inside the intersections. However,
route optimization can significantly reduce conflicts
between vehicles at intersections. For example, [33]
constructed a mixed-integer programming model to
optimize the vehicle routes within intersections,
demonstrating that optimizing the route is an efficient
approach to increase traffic efficiency at intersections
compared to optimizing entering time. Nonetheless,
their research did not consider the optimal utilization of
the intersection space, which may diminish the traffic
efficiency.

ii. Most AIM studies assume that vehicles pass through
intersections at a predetermined speed without stop-
ping, which is difficult to realize in case of heavy
traffic flow at intersections. To address this issue,
[19] designated speed adjustment zones on the entry
lane and set the stop line on the road section,
where vehicles can adjust their speed before entering
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the intersection. Although this method can resolve
the issue of vehicle acceleration inside intersections,
it changes the organization of traffic flow in the
intersection area, reduces the queuing space of the
intersection, and is difficult to replicate in the field.

Thus, this study proposes an approach to resolve the afore-
mentioned limitations and achieve efficient traffic flow at
intersections. The contributions of the study are summarized
as follows.

1) To minimize the conflict zones, the vehicle routes
inside the intersections were optimized before entering the
intersections based on ‘‘all-direction’’ lanes, where the entry
lanes were not dedicated to certain traffic flows, i.e., an entry
lane can accommodate all left turns, through passes, and
right turns [34], [35], [36]. Through route planning, the
utilization of space resources at intersections was enhanced,
and conflicts between vehicles at the intersections were
reduced.

2) Contrary to the existing literature, which assumed that
vehicles would pass the intersections at a predetermined
speed without stopping [19], [26], [31], [34], [37], [38], the
present study takes into account the possibility of AVs halt
and restart at the intersections during heavy traffic flows.
By considering vehicle stoppage as an optimization decision
variable, conflicts between AVs at intersections are separated,
enabling the optimization of the ideal entry time for each
vehicle.

The remainder of this paper is organized as follows.
The problem description is presented in Section II, which
intuitively expounds the key research points. The model
parameters are listed in Section III. The modelling procedure
of the proposed model is detailed in Section IV, which
includes the model for determining the instant at which
the vehicles enter and exit the grids, route optimization
model, and conflict separation model. Thereafter, the results
of the model solution are discussed in Section V. The
model validation and the benefits of the proposed model are
summarized in Section VI. Section VII concludes this paper.

II. PROBLEM DESCRIPTION
In this study, we determined the internal routes of vehicles
at intersections by considering their entry and exit lanes,
as illustrated in Fig. 1. We discretized the intersection into
a series of grids and identified the specific grids traversed
by each vehicle as it followed its chosen route. By analyzing
the intersection in this manner, we were able to accurately
determine the routes of vehicles As depicted in Fig. 1a,
if the routes taken by vehicles are not optimized, it may
lead to overlapping of routes and concentration of conflict
zones. To mitigate these concerns, we have developed an
optimization approach that optimizes the routes depicted
in Fig. 1b. Notably, these optimized routes demonstrate a
reduction in overlap. The second challenge addressed in this
paper concerns the optimization of vehicle entry times and
speed at the intersection, with the aim ofminimizing potential

conflicts and reducing total delays under diverse operating
conditions.

III. PARAMETER DESCRIPTION
The parameters in the model are described in Table 1.

IV. MODEL FORMULATION
The proposed model is primarily composed of three compo-
nents:

i. Calculation model of the time when vehicles enter and
leave grids

ii. Route optimization model of vehicles inside the
intersection

iii. Traffic control model
The calculation model computes the time required for
vehicles to enter and exit the grid at various speeds, and it is
employed to determine the grid set of all routes. In addition,
the route optimization model of the vehicles optimizes the
vehicle routes inside the intersections according to the entry,
turning, and exit lanes, in order to determine the potential
conflict grids between the vehicles and minimize the number
of vehicles clearing the grid. Finally, the traffic control model
separates the potential conflicts by optimizing the time at
which the vehicles enter the intersection, considering the
route optimization results as inputs and the minimum total
delay of the vehicle as the goal.

A. CALCULATION MODEL OF TIME WHEN VEHICLES
ENTER AND LEAVE GRIDS
In the optimization of vehicle trajectory at intersections,
most previous studies assume that the vehicle passes through
the intersection at a constant speed without considering
the possibility of stopping and restarting before the vehicle
reaches the stop line. Herein, we consider whether the vehicle
will stop or not as a variable to establish a calculation model
for determining the time at which the vehicles enter and exit
the grid, as explained in the following steps:

(1) Discretizing the conflict zones inside the autonomous
intersection: First, the internal zone is segmented into small
numbered grids and a rectangular coordinate system is
established inside the intersection, according to which the
boundary equation of each grid is determined.

(2) Determining the grids where all vehicle routes cross
the intersection: At the autonomous intersection of the all-
direction lanes, the entry and exit lanes of the intersection
were numbered. All vehicle routes inside the intersection
were determined according to multiple combinations of the
entry and exit lanes in each direction. The boundary of each
route was determined by considering the physical size of the
vehicles, wherein the turning route was modeled based on an
elliptic curve and the through route was modeled according
to a linear equation. The grid boundary and route boundary
equations determined whether the grid is traversed by the
route. Here, ϕg,oi,di,r denotes a binary variable, indicating
whether grid g is on route r determined by oi and di.
In case ϕg,oi,di,r = 1, grid g is on route r ; otherwise,
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FIGURE 1. Problem description.

TABLE 1. Notations and parameters.

ϕg,oi,di,r = 0, o ∈ O and d ∈ D, wherein O and D indicate
the approaching and exiting direction sets, respectively;
oi indicates the approaching direction of vehicle i, where
i ∈ I , o ∈ O, and di is the exit direction of vehicle i; g is
a grid, where g ∈ G, and G denotes the set of all grids.

(3) Calculating the time required by vehicles to occupy the
grid when passing through the intersection: First, the location

points of the vehicles entering and exiting the grid should be
calculated, and thereafter, the duration for which the grid is
occupied by the vehicles is calculated. The location points of
the vehicles entering and exiting the grid may correspond to
the intersection points of the grid and route boundaries or the
grid vertex. Taking point A of the vehicle entering the grid
and point B of the vehicle leaving the grid as an example (As
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shown in Fig. 2), the time and speed of the vehicle running
from point A to point B are calculated. Upon entering the
intersection, it is strictly forbidden for vehicles to come to
a halt within the confines of the internal intersection area.
It is noted that there are four scenarios of vehicle speeds
when traveling from point A to B (As shown in Fig. 3). The
algorithm to determine travel speed is presented in Table 2.

In the algorithm presented in Table 2, the first step involves
determining the intersections between vehicle trajectory
boundaries and grid lines. To explain this process, consider
Fig. 2 as an illustrative example. Fig. 2 illustrates the
path of a left-turning vehicle within the intersection. The
points of intersection between the inner trajectory boundary
and grid lines are depicted in green, while those between
the outer boundary and grid lines are designated in blue.
Furthermore, the vertices of the grids within the trajectory’s
spatial domain are denoted by orange points. The black points
are the projected points of the blue points and orange points
on the outer boundary trajectory, as indicated by steps 1 to
10 in the algorithm.

Subsequently, step 11 in the algorithm determines the
entry and exit points for each grid. For instance, taking
the red grid in Fig. 2 as an example, the points where
the trajectory enters and exits the grid are denoted as
points A and B, respectively. Step 12 calculates the distance
between the entry and exit points, denoted as |AB|, which
depends on whether the vehicle follows a turning path,
where |AB| =

∫ xB,g
xA,g

√
1 + y′(x)2dx, or a straight path, where

|AB| =

√
[(xB,g

−xA,g)
2
+ (yB,g

−yA,g)
2]. By calculating the

time and velocity at which the vehicle passes point B, we can
determine the time and velocity at which the vehicle exits the
red grid.

It is noteworthy that vehicles may need to accelerate
within the intersection, so it is required to ascertain if there
is acceleration within segment AB. This determination is
guided by the velocity-time graph, as illustrated in Fig. 3,
which exhibits four possible cases: acceleration followed by
constant velocity (as illustrated in cases 3 and 4 in Fig. 3),
constant speed motion (as shown in case 1 in Fig. 3), and
uniformly accelerated motion (as depicted in case 2 in Fig. 3).
The evaluation of acceleration in segment AB begins

by examining whether the vehicle’s velocity at point A,
denoted as vi,g,A, equals to the maximum allowable speed,
VM . If vi,g,A = VM , it indicates that the vehicle travels at
a constant speed throughout AB, as displayed in case 1 in
Fig. 3. If vi,g,A < VM , traveling at a constant acceleration
with an initial velocity of vi,g,A and an acceleration of a

until reaching VMcovers a distance of
V 2
M−v2i,g,A
2·a . This distance

is compared with |AB| and |AB| + dc. When
V 2
M−v2i,g,A
2·a ≥

|AB| + dc, it signifies that the vehicle has not reached
the maximum speed by the time it passes point B, and
it continues to accelerate throughout AB, as depicted in

case 2 in Fig. 3. When
V 2
M−v2i,g,A
2·a < |AB|, it indicates

that the vehicle has already reached its maximum speed

FIGURE 2. The points that a vehicle entering and exiting a grid.

FIGURE 3. V-T of vehicle entering and exiting the grid.

before arriving at point B, as demonstrated in case 3 in
Fig. 3. Due to the consideration of the vehicle’s length,
denoted as dc, the velocity of the vehicle’s front reaching
point B and the velocity of its rear leaving point B are

different. When |AB| ≤
V 2
M−v2i,g,A
2·a < |AB| + dc, it indicates

that the vehicle’s front end reaches point B without attaining
maximum speed, while the rear end achieves the maximum
speed upon departing from point B. As illustrated in case 4 in
Fig. 3. For the four cases described above, we utilize distinct
velocity-displacement formulas to compute the vehicle’s time
t(i,g,B) and velocity v(i,g,B).
According to the calculation model for the time of vehicles

entering and exiting the grid, the timewhen the vehicle’s front
enters the intersection and the time at which its tail exits the
grid can be calculated at a given speed of the vehicle entering
the intersection.

B. ROUTE OPTIMIZATION MODEL AT INTERSECTIONS
The route optimization model for intersections comprises
the upper-level model of a bi-level model. The vehicle
routes at the intersections were determined using both the
entry and exit lanes. As each entry may turn left, right,
or travel straight, the vehicles can choose from several
route choices available at the intersections. Considering the
intersection of an eight-lane bi-directional road as an example
(as shown in Fig. 4), there are 16 potential routes for vehicles
turning left in the east approaching direction, with the curve
representing the centerline of the vehicle’s turning route.
The grid for each route can be calculated using the method
described in Section IV-A. Importantly, the location and size
of the conflict zone generated at the intersection will vary
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TABLE 2. Algorithm for determining the time at which a vehicle enters and exits grids.

depending on the routes selected by vehicles to cross the
intersection.

To minimize conflicts and improve utilization of the
internal intersection zone, we optimized vehicle routes by

optimizing the entry and exit lanes. By discretizing the
internal intersection zone, we reformulated the issue of
conflicts between vehicles at the intersection into the problem
of vehicles occupying specific grids. Our objective was to
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FIGURE 4. Optional routes for left-turning vehicles at east approaching
direction.

optimize the lanes for vehicles entering and exiting the
intersection in order to minimize the number of vehicles
occupying the grids. The modeling procedure is detailed as
follows:

Vehicles can select only one route to pass the intersection,
as expressed in Equation (1):∑

r∈R
8i,r = 1 ∀i ∈ In, (1)

where In is the set of vehicles in the nth time window., r is a
route, r ∈ R,R is the set of all routes, and 8i,r is a binary
variable indicating whether vehicle i passes the intersection
along route r . If 8i,r = 1, vehicle i passes the intersection
from route r ; otherwise,8i,r = 0.
The entry lane selected by the vehicle is represented as

l ′i , whereas the selected exit lane is denoted as L ′
i . Thus, the

selected entry and exit lanes can be determined according
to the numbering of the selected route and that of the
corresponding entry and exit lanes of each route, as expressed
in Equations (2)–(3):

l ′i =

∑
r∈R

(8i,r · Ar ) ∀i ∈ In (2)

L ′
i =

∑
r∈R

(8i,r · Br ) ∀i ∈ In, (3)

where Ar and Br is the numbering of the entry and exit lanes
corresponding to route r, respectively.

The grids comprising each route were determined using the
method described in Section IV-A, where ϕg,oi,di,r denotes a
binary variable. If ϕg,oi,di,r = 1, grid g is on route r and can
be determined by oi and di, and the relationship between the
grids on the vehicle route and the route selected by the vehicle
is expressed in Equation (4):

σi,g =

∑
r∈R

(8i,r · ϕg,oi,di,r ) ∀i ∈ In, g ∈ G, (4)

where σi,g denotes a binary variable indicating whether
vehicle i passes through grid g. In case σi,g = 1, vehicle i
passes through grid g; otherwise, σi,g = 0.

Each grid may be used by multiple vehicles. The total
number �g of vehicles clear grid g at any given time is

calculated using Equation (5):

�g =

∑
i∈In

σi,g ∀g ∈ G (5)

The number of vehicles in the most frequently used grid is
calculated using Equation (6):

� = max
g∈G

�g (6)

where � is the number of vehicles in the most occupied grid.
In [22], a centralized and coordinated method for inter-

section control is proposed, aiming to minimize the overall
length of overlapping vehicle trajectories; however, it does
not optimize the routes of vehicles within the intersection.
Upon discretizing the internal zone of the intersection into
multiple grids, the traversal routes of vehicles inside the
intersection can be expressed as a series of grids. In this
study, we present a novel approach of route overlap planning,
whereby the problem is reframed as a determination of the
number of vehicles clearing each grid. By minimizing the
number of vehicles clear each grid, we aim to reduce the over-
lap of routes at intersections, which in turn ensures minimal
conflict between vehicles. The optimization objective of the
route planning model is expressed as Equation (7):

min(max
g∈G

�g) (7)

C. TRAFFIC CONTROL MODEL
Although the route optimization model effectively mini-
mizes conflicts between vehicles at intersections, however,
achieving complete separation of all potential conflicts
requires further optimization of the sequencing and timing of
vehicle entry as determined by the lower-level traffic control
model. The traffic control model takes the results of route
optimization from section IV-B as input and optimizes the
times of vehicle entry into the intersection with the aim of
minimizing total vehicle delay. This model is subject to three
primary constraints: the intersection arrival time constraint,
the grid entering and exiting time constraint, and the conflict
separation constraint.

1) INTERSECTION ARRIVAL TIME CONSTRAINTS
Considering the operation of vehicles, T

′′

i , the instant at
which vehicles actually enter the intersection, is not less than
T ′
i , the instant at which the vehicles actually arrive at the

intersection, and T ′
i is not less than Ti, the instant at which

the vehicle planed arrives at the intersection. The constraint
is expressed in Equation (8):

T
′′

i ≥ T ′
i ≥ Ti ∀ i ∈ I . (8)

There are two scenarios for vehicles: those that come to a stop
before entering the intersection and those that do not. If the
vehicle stops before entering the intersection, the actual time
the vehicle entering the intersection is greater than the planed
time of its arrival at the intersection, i.e., T

′′

i > Ti; otherwise,
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T
′′

i = Ti. The relationship between T
′′

i and Ti is expressed in
Equation (9):

If ρ0,i = 1 then T
′′

i > Ti else T
′′

i = Ti. (9)

By linearizing Equation (9), the instants of the vehicle
actually entering the intersection and planned arriving at the
intersection should satisfy the following equations:(10) –(11)

T
′′

i > Ti −M · (1 − ρ0,i) ∀i ∈ I (10)

T
′′

i ≤ Ti +M · ρ0,i ∀i ∈ I . (11)

2) GRID ENTERING AND EXITING TIME CONSTRAINT
The timespan between the entry and exit of the vehicle
from the grid can be determined based on the time T

′′

i
when the vehicle enters the intersection, and the time required
by the vehicle to cross the intersection, where T

′′

i is the
decision variable of the traffic control model. The time at
which the vehicle passes any grid on the route has been
calculated in Section IV-A. The time Ti,g at which the vehicle
enters the grid should follow the conditions expressed in
Equations (12)–(13):

Ti,g ≥ T
′′

i + tg,ri,v · ·ρ0,i −M1 · (1 − σi,g), (12)

Ti,g ≤ T
′′

i + tg,ri,v · ρv,i +M1 · (1 − σi,g). (13)

The time T ′
i,g at which the vehicle exits the grid should suffice

the conditions presented in Equation (14)-(15):

T ′
i,g ≥ T

′′

i + t ′g,ri,v · ρv,i −M1 · (1 − σi,g), (14)

T ′
i,g ≤ T

′′

i + t ′g,ri,v · ρv,i +M1 · (1 − σi,g), (15)

where tg,ri,v and t
′
g,ri,v is the time at which the front of the

vehicle i enters grid g and the time at which the tail of
vehicle i exits grid g after the vehicle enters the intersection,
respectively.

To address the complexity associated with calculating the
time of a vehicle entering and leaving an intersection due
to the continuous nature of vehicle speeds, it is necessary
to discretize the speed variable. This discretization restricts
the vehicle’s options for entering the intersection to a finite
set. The vehicle can only select a certain speed to enter the
intersection. The constraint is expressed in Equation (16).∑

v∈V
ρv,i = 1 (16)

where, V represent the set of discretized speeds, i.e., V =

{0, . . . ,Vm}.

3) CONFLICT SEPARATION CONSTRAINT
To ensure the safe passage of vehicles at intersections,
prior studies have assumed that each grid can be occupied
by only one vehicle at any given time. When multiple
vehicles pass through a grid two or more times, temporal
separation is required to prevent collisions. To address
this issue, we formed conflict sets {(g, i, j) , . . .}, and then
formulated constraints (17)–(18) to ensure that the entry and
exit times of each vehicle pair did not overlap. Notably,

unlike [33], which investigated all vehicles under a discrete
grid set, we only conducted conflict separation on grids
traversed by two or more vehicles, thereby eliminating
redundant solutions and effectively reducing the size of the
solution space. The conflict separation constraint is expressed
in Equations (17) –(18).

T ′
i,g − Tj,g ≤ M · yi,j ∀g, i, j ∈ {(g, i, j) , . . .} (17)

T ′
j,g − Ti,g ≤ M ·

(
1 − yi,j

)
∀g, i, j ∈ {(g, i, j) , . . .}, (18)

where yi,j is a binary variable. In case yi,j = 1, vehicle j
enters the same grid before vehicle i, whereas yi,j = 0 is that
vehicle i enters the same grid before vehicle j. The conflict set
{(g, i, j) , . . .} was calculated following the method described
in Section IV-B.
The delay of all vehicles was calculated using

Equation (19):

DI =

∑
i∈I

(T
′′

i − Ti). (19)

The lower-level traffic control model aims to minimize
the delay of vehicles at the intersection, and the objective
function is expressed in Equation (20):

minDI . (20)

V. MODEL SOLUTION
Although vehicles arriving at the intersection at different
times may have potential conflicts, actual conflicts may
not occur when the time difference of their arrival at the
intersection is significant. Therefore, the rolling time window
method is used [31]. Specifically, we segmented various
time windows based on the arrival times of vehicles at the
intersection to optimize their routes and entry times. If the
entry time of any vehicle in the subsequent time window is
later than or equal to the latest exit time for all vehicles in
the previous time window, we must satisfy the conditions
outlined in Equation (21):

Tk,g ≥ max
i∈In

{
T ′
i,g

}
· σi,g ∀g ∈ G, k ∈ In+1, (21)

where In is the set of vehicles in the nth time window.
The upper- and lower-level models were both mixed-

integer linear programming models that can be solved using
the branch and bound method. The model is described as
follows:

The upper-level models:
Decision variables: l ′i , L

′
i , σi,g

Objective function: min(max
g∈G

�g)

Constraint conditions: Equations (1)–(6).
The lower-level models:
Decision variables: T

′′

i , 8i,r , ρv,i, yi,j
Objective function:minDI
Constraint conditions: Equations (8)–(19).
In order to calculate the timing of vehicle entry and exit

for each grid, we utilized Python programming to solve our
calculation model in Section IV-A. The route optimization
and traffic control models were formulated and encoded using
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FIGURE 5. The layout of the intersection.

AMPL, a well-established optimization modeling software,
and solved using CPLEX, a widely adopted solver for
linear and integer programming. Notably, the CPLEX solver,
developed by IBM, is renowned for its exceptional efficiency
in solving complex optimization problems [39].

VI. MODEL VERIFICATION AND BENEFIT ANALYSIS
In this Section, we selected the intersection of Fu Rong Road
and Ying Pan Road in Changsha, China, which encompasses
eight lanes in each direction and allows bi-directional traffic
flow. Fig. 5 illustrates that the entry and exit lanes in all
directions of the intersection were clearly numbered, each
with a width of dl = 3.5m. Grid granularity significantly
impacts intersection efficiency [40]. The grid’s side length
should not be set to very large, e.g., if the whole intersection
is taken as a single grid, this means only one vehicle can
be inside the intersection at a time, which would certainly
cause massive efficiency losses. Therefore, in order to take
better advantage of the space inside the intersection, the side
length of a grid is better shorter than the vehicle length and
larger than zero. However, smaller side length correspond to
more numbers of girds, and because all the conflicts on each
gird should be avoided, more numbers of girds lead to more
computational time. By following Wu et al. (2022), the grid
dimension is set to 3.5 m ∗ 3.5 m in this study. The vehicles
involved in this study had a length of dc = 4.5m and a
maximum speed of VM = 16.7 m/s (60km/h) when passing
through the intersection. To ensure passenger comfort, the
maximum acceleration of theAVwas limited to a = 2.5m/s2.
The arrival of vehicles at the intersection followed the Poisson
distribution. The average time headway per entrance lane
between two successive vehicles is 3.75 seconds, which is
equivalent to 960 vehicles per hour per entrance lane. Given
that there are 16 entrance lanes, the average arrival rate at the
intersection is approximately 4.27 vehicles per second.

Based on the planned arrival time, we categorized the
vehicles into time windows of 10 seconds [33]. The proposed
model utilized a desktop computer equipped with a Windows
10 (64-bit) system, featuring an Intel (R) CoreTM i5-9400F
processor clocked at 2.90 GHz and 8 GB of memory.
To ensure the efficiency of solving, we set the maximum
solving time at 10 seconds, i.e., if the optimal solution cannot
be obtained within 10 seconds, the solver will return the best
feasible solution derived within 10 seconds.

In this study, the global optimization (GO) model opti-
mized the vehicle routes, the order and the time of entering
the intersection. To assess the effectiveness of the proposed
model, we have developed several comparison models to use
in our analysis.

To demonstrate the effectiveness of route optimization,
we utilized the global optimummethod without route choices
(GO-WR) as the comparison model. Unlike the proposed
model, GO-WR did not optimize the vehicle routes at the
intersection. Instead, it focused on optimizing the timing
of the vehicles entering the intersection. The route was
determined based on the initial entry and exit lanes provided
as inputs.

In addition, we employed the first-come-first-served with
optimal route choices (FCFS-R) method to compare the
effects of optimizing the time of vehicles entering the
intersection. The FCFS-R model used the same optimization
method for vehicle routes inside the intersection as the
proposed model. However, the order of vehicles entering the
intersection followed the first-come-first-serve rule, meaning
that the vehicles entered the intersection according to the
sequence of their arrival, and the time of vehicles entering
the intersection was not optimized.

The application of the GO model effectively reduced the
number of conflicts between vehicles in each time window
when compared to the GO-WR model. As illustrated in
Fig. 6, during the first, second, and third time windows, the
GO-WR model recorded 2,237, 1,940, and 2,363 conflicts,
respectively. In contrast, with GO model, the conflicts
reduced to 865, 908, and 906, respectively, which represents
a significant decrease of 61.33%, 53.2%, and 61.66%,
respectively. The results demonstrate the effectiveness of the
proposed model in reducing the conflicts between vehicles at
intersections.

In addition, the time at which the vehicles entered the
intersection was recorded to determine the delay experienced
by the vehicles passing through the intersection in each time
window. The delay comparison is illustrated in Fig. 7.

Three conclusions can be drawn from the results presented
in Fig. 7. First, It can be observed that the blue box
corresponding to the GO model results occupied the lowest
position and spanned the shortest length compared to those of
the GO-WR and FCFS-R models. This indicates that the GO
model has shorter delay. Second, the average vehicle delay in
the GO model for the three time windows was 1.79 s, 4.32 s,
and 6.71 s, respectively, while that in the GO-WR model
was 6.99 s, 14.18 s, and 21.80 s, respectively. Compared
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FIGURE 6. The comparison of the number of conflicts.

FIGURE 7. The comparison of vehicle delays.

with the GO-WR model, the average vehicle delay in the
GO model was reduced by 74.43%, 69.51%, and 69.22%,
respectively. This suggests that minimizing the number of
vehicles clearing grid can optimize the vehicle trajectory,
reduce conflicts between vehicles, thus effectively reducing
vehicle delay. Finally, the average vehicle delay of the FCFS-
R model for the three time windows was 10.06 s, 19.79 s,
and 32.91s s, which further reduced the average vehicle
delay of the GO model by 82.22%, 78.16%, and 79.61%,
respectively. This finding indicates that optimizing the time of
the vehicles entering the intersection can significantly reduce
vehicle delay. The number of stops before the vehicle entering
the intersection is shown in Fig. 8.

According to Fig. 8, there is a significant decrease in the
total number of vehicle stops in the proposed model across
different time windows. Specifically, in comparison to the
GO-WR model, the GO model demonstrated a reduction of
4.35%, 40.54%, and 44.44% in the total number of stops,
respectively. Additionally, when compared with FCFS-R, the
GO model exhibited a decrease of 51.22%, 12.20%, and
12.20%, respectively. The time spent by vehicles crossing
intersection is shown in Fig. 9.

Fig. 9 revealed that the time spent by vehicles crossing
intersection in the GO model was significantly shorter than
those in the GO-WR and FCFS-R models. During the

FIGURE 8. The number of stops.

FIGURE 9. Time spent by vehicles crossing intersection.

three time windows, the GO model resulted in average
occupation times of 2.83 s, 2.75 s, and 3.41 s, respectively,
while the corresponding values for the GO-WR model
were 3.32 s, 3.87 s, and 4.20 s, respectively. This results
in a reduction of 14.74%, 29.01%, and 18.72% in aver-
age occupation time when comparing GO and GO-WR.
Moreover, the average occupation time in FCFS-R was
3.39 s, 3.58 s, and 3.60 s, respectively, which is longer
than that of the GO model by 16.53%, 23.22%, and 5.28%,
respectively.

The results indicate that optimizing vehicle routes
and the time of entering the intersection can significantly
reduce the time spent by vehicles crossing intersection. This
is due to optimized routes and reduced travel time, resulting
in fewer vehicle conflicts and less frequent stops by vehicles
at the intersection. The average speed of vehicles traveling
through the intersection increases, and time spent inside the
intersection is decreased.

Fig. 10 presents the vehicle count clear each grid at
the intersection, which shows a more evenly distributed
conflict distribution among the vehicles following the vehicle
route optimization approach. Notably, the proposed approach
resulted in a significant reduction in the number of vehicles
clear each grid. For instance, during time window 1, the
maximum number of vehicles clear a single grid in the model
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FIGURE 10. Number of vehicles passed by each grid.

was seven, while in the comparison model without route
optimization, 15 vehicles passed through a same grid. This
result suggests that the vehicle route optimization approach
promotes a more equitable distribution of spatial resource
utilization at the intersection.

Fig. 11 shows vehicles’ trajectories within the intersection
across different time windows. While this study incorporates

vehicle size and represents their trajectories using enclosed
regions defined by inner and outer boundaries, the figure
portrays the centerline of the trajectories for clarity purposes.
From Fig. 11, it is evident that the FCFS-R model, which
does not optimize vehicles’ routes within the intersection,
results in chaotic vehicle trajectories with numerous instances
of trajectory crossings. However, by employing the proposed
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FIGURE 11. Vehicles’ trajectories.
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FIGURE 12. Fuel consumption and pollutant emission of vehicles.

model, a more structured distribution of trajectories is
achieved.

As shown in Fig. 11, in different time windows, the
predominant behavior observed in vehicle trajectories can be
summarized as follows: the majority of left-turning vehicles
tend to opt for inner lanes, exemplified by Lane 1 or Lane
2 in Fig. 5, while right-turning vehicles typically prefer outer
lanes, such as Lane 3 or Lane 4 in Fig. 5. Specifically, within
the time windows, left-turning vehicles displayed distribution
of 16.7%, 25%, and 25% for selecting Entrance Lanes
3 or Lanes 4, respectively. Meanwhile, right-turning vehicles
exhibited proportions of 8.33%, 16.67%, and 15.38% for
choosing Entrance Lanes 1 or Lanes 2 in the respective time
windows. On the other hand, the selection of entrance lanes
by through-traffic vehicles did not demonstrate a discernible
pattern. The analysis of the vehicle’s choice of exit lane shows
that within the different time windows, the proportion of
vehicles following a circular turning trajectory is 75.00%,
95.83%, and 88.00%, respectively. Furthermore, all straight
trajectories parallel to the x-axis or y-axis.

As demonstrated by the analysis presented above, our
proposed model has exhibited a significant reduction in
both vehicle conflicts and delays. Given the transportation
industry’s increasing concern with energy consumption

and pollutant emissions, considerable efforts have been
made towards traffic control systems that prioritize energy
conservation and emission reduction [41]. In line with this,
we have evaluated the energy consumption and pollutant
emissions of vehicles passing through intersections, utilizing
the fuel consumption model to determine the impact of
our proposed model on these factors. Specifically, we have
employed the VT-Micro model, which efficiently calcu-
lates fuel consumption and emissions of carbon oxide
(CO), nitrogen oxide (NOX), and carbon hydride (HC)
based on vehicle speed and acceleration, as outlined in
Equations (22) –(23). The regression coefficient values for
these equations are detailed in Appendix, and Fig. 12 presents
the calculated fuel consumption and emissions of CO, HC,
and NOX for all vehicles across the three time windows.

MOE fuel =

∑T

t=0
exp

(∑3

i=0

∑3

j=0
kei,j · v (t)i

·a (t)j
)

/3.6, e = fuel (22)

MOEe =

∑T

t=0
exp

(∑3

i=0

∑3

j=0
kei,j · v (t)i

·a (t)j
)

, ∀e ∈ {CO,HC,NOx} (23)
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TABLE 3. Mean values of fuel consumption and pollutant emission from vehicles at different time windows.

Compared to GO-WR and FCFS-R, the GO model
exhibited a significant reduction in both fuel consumption
and pollutant emission for vehicles passing through the
intersection. Table 3 displays the average fuel consumption
and pollutant emissions for all vehicles during the three time
windows. The average reduction in fuel consumption and
pollutant emissions ranged from 35 to 68%.

VII. CONCLUSION
Traffic signal control at intersections presents significant
challenges, which include the suboptimal utilization of
traffic efficiency. Such suboptimal utilization results from
issues such as wastage of green light time and loss of
phase switching time. These problems impede the efficient
functioning of intersections and require innovative solutions.
In autonomous environments, vehicles have the potential to
traverse intersections without the need for traditional signal
control by utilizing AIM. This innovative approach promotes
the smooth flow of traffic, thereby enhancing the utilization
of space-time resources at intersections. Based onAIM, every
entry lane at the intersection has the capability to serve as left-
turn, through, and right-turn routes, resulting in an increased
number of route options for vehicles traverse the intersection.
This feature allows for a more versatile and efficient use
of the available space, enhancing the overall performance
of the intersection. As the location and dimensions of the
conflict zones differ for each route, optimizing vehicle routes
at the intersection can be instrumental in reducing traffic
conflicts and enhancing traffic efficiency. By customizing
routes planning for each vehicle, it is possible to minimize the
likelihood of conflicts and promote a more streamlined flow
of traffic at the intersection. Most existing AIMmodels adopt
predetermined routes for AVs and treat them as exogenous
inputs, directing attention towards conflicts that arise at
intersections. Additionally, these models assume a constant
speed for AVs and neglect the possibility of stops during
intersection traversal. However, this is not practically possible
in case of heavy traffic flow.

The present study establishes a time calculation model for
vehicles entering and exiting an intersection grid, enabling
accurate estimation of traversal time for vehicles crossing
the grids of the intersection. Second, a bi-level programming
model is proposed in this study, which involves an upper-level

model for optimizing vehicle routes at intersections and a
lower-level model for optimizing entry time of vehicles,
thereby mitigating potential conflicts between them. The
model was solved using Python and AMPL. The outcomes of
our study demonstrate that, by route optimization, the number
of conflicts between vehicles was reduced significantly. This
impressive decrease of over 50% stands in stark contrast to the
GO-WRmodel which without route optimization. The results
suggest that the proposed model is effective in optimizing
travel routes for vehicles at intersections. Furthermore,
the optimization ensures a more uniform distribution of
conflict points within the intersection, ultimately leading to
an improved utilization of space resources at intersections.
In comparison to the GO-WR model, the proposed route
optimization model results in a significant reduction of
vehicle delay, ranging between 69-74%. The model reduces
the number of stopping vehicles by 4-44%, and reduces
the time spent by vehicles crossing intersection by 14-
29%. Notably, the proposed model enables evaluation of
fuel consumption and pollutant emissions during vehicle
operation based on trajectory data, resulting in a mean
reduction of 35-68%. These findings confirm the feasibility
and effectiveness of the model. More importantly, the model
is capable of reducing the fuel consumption and pollutant
emissions of vehicles while reducing vehicle delay and
improving the traffic efficiency at intersections.

Moreover, the present study offers potential avenues for
further research, including but not limited to the following
zones: First, future research may consider the formation of
vehicle platoon for modeling and optimization, as demon-
strated in previous studies [42]. Furthermore, it may be
worthwhile to investigate scenarios that involve both pedes-
trians and AVs simultaneously [43]. Additionally, developing
a simulation platform to validate the control effect of the
proposed model can also be further expanded in the following
studies [44]. Furthermore, future research can explore the
implementation of a distributed traffic control approach,
allowing autonomous vehicles to autonomously plan and
adapt their trajectories in real-time [45]. Lastly, with the
ongoing rapid development of new energy vehicles and their
increasing prevalence, it is imperative for forthcoming studies
to address the changing energy consumption dynamics in
these vehicles. This necessitates the establishment of energy
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TABLE 4. Regression coefficients in the fuel consumption model.

consumption models explicitly designed for new energy
vehicles, as the VT-Micro model used in this study for
conventional fuel vehicles is not applicable in this context.

APPENDIX
PARAMETERS OF REGRESSION COEFFICIENT
See table 4.
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