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ABSTRACT An event-triggered-based adaptive fuzzy control strategy is proposed for full state constraints
nonlinear systems against time-varying disturbance, non-strict feedback structure, and input delay in this
paper. Fuzzy logic systems (FLSs) are implemented to estimate the unknown nonlinear functions in the
systems. The influence of input delay can be compensated by the method of Pade approximation, and the
barrier Lyapunov function (BLF) is exploited to handle the problem of full state constraints. The input-
to-state stability (ISS) assumption regarding measurement errors can be removed through the co-design of
the event-triggered mechanism and the controller. Based on Lyapunov stability theory, all the signals in
the closed-loop system are proved semi-globally uniformly ultimately bounded (SGUUB), and only a tiny
tracking error between the system output and the reference signals, moreover, the Zeno behavior is avoided.
The effectiveness of the adaptive control scheme can be verified by two simulation examples.

INDEX TERMS Adaptive fuzzy control, event-triggered mechanism, full state constraints, input delay, non-
strict feedback structure.

I. INTRODUCTION
In the past few decades, the study of nonlinear control
systems has attracted a lot of attention because of its great
theoretical and practical significance. As a result, a vari-
ety of design approaches for nonlinear system controllers
have emerged. For instance, the adaptive backstepping
method is considered to be an effective tool for solving
the control problem of nonlinear systems, but it is no
longer applicable for nonlinear systems with completely
unknown nonlinear terms. In addition, neural networks
(NNs) or fuzzy logic systems (FLSs) are widely used to
estimate unknown terms of nonlinear systems due to their
universal approximation properties for unknown nonlin-
ear functions. Combined with the adaptive backstepping
technique, the iconic results of adaptive control strategy
have been widely reported [1], [2], [3], [4], [5], [6], [7],
[8], [9]. For example, to realize the fixed-time tracking
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control of switched nonlinear systems with unmodeled
dynamics and actuator fault, an adaptive fuzzy fault-tolerant
control strategy was designed in [3] and [9]. The structural
characteristics of NNs were exploited to approximate the
unknown functions in the system and an adaptive tracking
control scheme was established for pure feedback stochastic
systems [7].
It is worth noting that in a wide variety of physical

systems, constraint problems are always inevitable. Such
as robot manipulator [10], multi-agent system [11], vehicle
active suspension system [12], etc. Once the system violates
certain constraints, it may lead to deterioration of system
performance and even induce security incidents. It is clear
that the study of constraint problems has deep practical
significance. In order to solve the constraint problem,
Professor S. S. Ge proposed an adaptive control method
based on the barrier Lyapunov function (BLF) for single-
input single-output (SISO) nonlinear systems in 2009 [13].
Due to themathematical properties of the BLF, the constraints
of the system can be guaranteed not to be violated [14], [15].
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Recently, a new time-varying BLF that can be applied to
fractional-order systems was proposed in [16], when the
initial tracking conditions are completely unknown or the
constraints are initially violated, the introduced shifting
function and error transformation scheme can still ensure
that the output of system satisfies the constraints within the
specified time. In the above work, most of the consideration
is the output constraints, that is only the BLF is introduced
in the controller design in the first step, compared with
it, the full-state constraints are difficult as well as more
convincing in practice [17], [18], [19], [20], [21], [22],
[23], [24]. For instance, an adaptive tracking control method
with full-state constraints was proposed for multi-coupled
nonlinear systems and applied to chemical continuous stirred
reactors [20]. Meanwhile, the problem of time delay is a
major hindrance to the control performance of systems,
so eliminating the influence of time delay on nonlinear
systems has been a hot issue over the past few decades.
In [25], [26], and [27], the Lyapunov-Krasovskii functions
were employed to address the time delay problem of the
system. Note that the above approach focuses on state delay,
but it is not effective when dealing with input delay. There-
fore, several other control strategies have been proposed to
compensate for the input delay of nonlinear systems. In [28],
aiming at the active suspension system, the influence of input
delay was compensated by introducing an integral control
input signal. Recently, the Pade approximation method was
introduced into different nonlinear systems to handle input
delay effectively [29], [30], [31].

Obviously, most of the adaptive control schemes proposed
above are for specific system forms such as strict feedback
or pure feedback systems, while nonlinear systems with
non-strict feedback structures are more general in actual
systems. Unlike the above-mentioned systems, the nonlinear
terms in non-strict feedback nonlinear systems contain whole
state vectors of the system. In the process of designing
a controller with the backstepping method, for the ith
subsystem, the virtual controller αi is designed to stabilize
the subsystem, in order to ensure the feasibility of the
virtual controller design, αi is usually the equation of partial
state vector x i = [x1, x2, . . . , xi]T (i = 1, 2, . . . , n − 1).
If the previously proposed methods are applied to non-
strict feedback nonlinear systems, the virtual controller αi
will contain whole state vector x = [x1, x2, . . . , xn]T , and
the algebraic loop problem will be induced. To solve this
problem, the idea of variable separation was first proposed
in [32]. Subsequently, in [33] and [34], the algebraic loop
problem was solved by using the structural characteristics
of the neural network and the variable separation method,
respectively, but these control schemes all have assumptions
about the monotonous increase of the nonlinear function
in the system. Therefore, this Methodological progress
is severely hindered. To eliminate this deficiency, a new
technique, which exploits the mathematical structure of fuzzy
basis functions to eliminate the above assumptions and handle
the algebraic loop problem, was proposed by Tong et al. [35].

Furthermore, adaptive fuzzy control schemes for non-strict
feedback nonlinear systems were studied in [36], [37],
and [38].

Additionally, compared with the traditional time-triggered
control (TTC) method, which requires continuous periodic
updates of control input, event-triggered control (ETC) is
more intelligent and activates the controller through a trigger
mechanism designed according to certain requirements.
Therefore, ETC is a more feasible technique, especially
when system communication resources are limited. Based
on the framework of ETC, a large number of excellent
research results can be obtained [39], [40], [41], [42].
Specifically, an event-triggered adaptive controller design
scheme integrating static reliability information and dynamic
online information was proposed in [41], and the problem of
unknown actuator faults for nonlinear systems was solved.
However, the above ETC mechanisms all rely on the
assumption that measurement errors in systems are input-to-
state stable (ISS). In practice, this assumption is difficult to
verify in nonlinear uncertain systems. In [43], the authors
proposed an ETC mechanism and adaptive controller co-
design method, the ISS assumption was eliminated, and
the switching threshold mechanism was proposed. On this
basis, some significant achievements can be obtained [44],
[45], [46], [47], [48], [49], [50], [51], [52], [53], [54]. For
example, an observer-based event-triggered adaptive fuzzy
backstepping synchronization control method was proposed
in [52]. Dong et al. used the compensation tracking error
signal to construct an intermediate control function, which
more accurately reflected the actual measurement error and
the impact of ETC on synchronization accuracy was reduced.
Moreover, due to the discontinuity of the output signal and
the strong coupling of state variables, it is more challenging
to apply ETC to the sensor-to-actuator stage [55]. In [56],
a new model-based adaptive ETC strategy for discrete-time
nonlinear systems was studied. However, so far, to our
knowledge, few achievements have investigated the full state
constraints of nonlinear systems with input delay and non-
strict feedback structure based on the ETC strategy.

Inspired by the discussion of the above research work,
in this study, an adaptive ETC for constrained nonlinear sys-
tems against non-strict feedback structure and input delay is
proposed. To approximate the unknown nonlinear functions,
FLSs are employed. The BLF is introduced to deal with
the full state constraints problem. The effect of input delay
is removed by the method of Pade approximation. By co-
designing the controller and the ETC mechanism, the ISS
assumption about measurement errors is not required. ETC
strategy based on relative threshold can effectively reduce
the consumption of computing resources. By comparing with
previous literature, the main contributions and innovations of
this study are as follows:

(1) Unlike the time delay problem or constraint control of
strict feedback and pure feedback system [22], [23], [24],
[25], [26], [27], [28], a new fuzzy adaptive ETC scheme
for non-strict feedback nonlinear system with full-state
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constraints and input delay is proposed. Taking advantage
of the properties of fuzzy basis functions, the algebraic loop
problem is solved, and the monotonically increasing limit of
unknown nonlinear functions is relaxed.

(2) Different from the traditional TTC strategy [20], [21],
[31], the ETC is introduced into the design of the adaptive
controller, and the proposed adaptive ETC strategy can
greatly reduce the consumption of communication resources
and bandwidth occupation and the Zeno behavior is avoided.

(3) We extend the improved relative threshold-based ETC
mechanism to the constrained non-strict feedback nonlinear
systems. From the simulation results, it not only can save
communication resources but also has smaller tracking errors
than [30], moreover, all states do not violate the constraint
interval.

II. PROBLEM FORMULATION
A. PROBLEM STATEMENT
Consider the following non-strict feedback nonlinear state
constrained system with input delay.

ẋi = hi(x) + xi+1 + εi(x, t), i = 1, 2, . . . , n− 1
ẋn = hn(x) + u(t − td ) + εn(x, t),
y = x1,

(1)

where x i = [x1, x2, . . . , xi]T ∈ Ri (x = xn, i =

1, 2, . . . , n) stands for the state vector, u ∈ R and y ∈ R
are input and output of the system. hi(x), i = 1, 2, . . . , n
denotes unknown nonlinear function. εi(x, t), i = 1, 2, . . . , n
represents external disturbance, and εi(x, t) have positive
constant upper bound ε̄i. td is defined as input delay.
The control aim of this article is with the new controller for

system(1), which enables the tracking error and the system
states can be adjusted to the prescribed constraint interval.
Moreover, all variables are bounded and avoid Zeno behavior.
Assumption 1 ([30]): For yr (t) and y(k)r (t), which are

reference signals and their time derivatives, there are some
positive constants ω1 and Y0,Y1, . . . ,Yn such that |yr (t)| ≤

Y0 ≤ ω1, |y
(k)
r (t)| ≤ Yk , k = 1, 2, . . . , n.

Assumption 2 ([37]): There exist known constants
li, i = 1, 2, . . . , n, for ∀x1, x2, the inequality holds:

∥hi(x1) − hi(x2)∥ ≤ li ∥x1 − x2∥ ,

where ∥x∥ is the 2-norm of a vector x.
Remark 1: During the controller design, it can be obtained

from Assumption 1 that all signals are bounded because yr (t)
and y(k)r (t) are bounded. Assumption 1 is often constructed in
the study of adaptive control of nonlinear systems, like in [6],
[14], [30], and [44].

B. FUZZY LOGIC SYSTEMS
Among the components of an FLS, fuzzy rules are the core
embodiment of its approximation ability, which can usually
be described in the following form:
Rl : If x1 is Hl

1 and . . . and xn is Hl
n, then y is Bl , l =

1, 2, . . . ,N , where y is the output of the FLS. Hl
i and Bl

stand for the fuzzy sets, i = 1, 2, . . . , n. From [39], y can
be described as follows:

y(x) =

∑N
l=1 ȳl

∏n
i=1 µHl

i
(xi)∑N

l=1[
∏n

i=1 µHl
i
(xi)]

, (2)

where ȳl = maxy∈R µBl (y).
ψ(x) = [ψ1(x), ψ2(x), . . . , ψN (x)]T denotes the fuzzy

basis function, and ψl(x) is defined as

ψl(x) =

∏n
i=1 µHl

i
(xi)∑N

l=1[
∏n

i=1 µHl
i
(xi)]

,

substituting 2 = [ȳ1, ȳ2, . . . , ȳN ]T = [21,22, . . . ,2N ]T

and ψ(x) = [ψ1(x), ψ2(x), . . . , ψN (x)]T into (2), we can
obtain:

y(x) = 2Tψ(x). (3)

Lemma 1 ([57]): If hi(x) is a continuous function defined
on a compact set �, for any constant ϵ > 0, there exists the
above FLS such that:

sup
x∈�

|h(x) −2Tψ(x)| ≤ ϵ.

C. BARRIER LYAPUNOV FUNCTION
Different from the general form of Lyapunov function, BLF
has the ability to constrain related states due to its special
mathematical properties, and BLF has three different types
that can be flexibly selected according to requirements. The
log-type BLF proposed in [13] will be adopted:

V̄i =
1
2
log

ω2
ei

ω2
ei − e2i

. (4)

where log(•) denotes the natural logarithm of •, ei satisfies
|ei| < ωei, and the BLF will soar to infinity if |ei| → ωei.
In addition, V̄i is a positive definition function, and it is
continuous in set |ei| < ωei.
Lemma 2 ([37]): Given that |ei| < ωei, for any positive

constant ωei, the inequality holds:

log
ω2
ei

ω2
ei − e2i

≤
e2i

ω2
ei − e2i

.

Remark 2: In practical physical systems, the state con-
straint is necessary, and Once the constraint interval is
violated by the system state, it will cause the system
performance degradation and even equipment damage. In this
paper, according to the mathematical properties of BLF,
the tracking error is limited as well as the whole state
is constrained by introducing BLF at each step of the
backstepping method.

III. ADAPTIVE CONTROLLER DESIGN
The input delay term u(t − td ) is treated by the method of
Pade approximation in [31], which eliminates the effect of
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the input delay by the Laplace transform, it can be presented
as follows:

L{u(t − td )} = e(−td s)L{u(t)} =
e(

−td s
2 )

e(
td s
2 )
L{u(t)}.

Since the time delay is small, one obtains

e(
−td s
2 )

e(
td s
2 )
L{u(t)} ≈

1 −
td s
2

1 +
td s
2

L{u(t)},

Then, an intermediate variable xn+1 is introduced. We can
obtain:

1 −
td s
2

1 +
td s
2

L{u(t)} = L{xn+1(t)} − L{u(t)}.

ẋn+1 =
4
td
u−

2
td
xn+1,

let ρ =
2
td
, we have

ẋn+1 = 2ρu− ρxn+1.

The system (1) can be rewritten by the above transforma-
tion,

ẋi = hi(x) + xi+1 + εi(x, t), i = 1, 2, . . . , n− 1
ẋn = xn+1 − u+ hn(x) + εn(x, t),
ẋn+1 = 2ρu− ρxn+1,

y = x1.

(5)

With the aid of the backstepping technique, The coordinate
transformation and virtual controller can be constructed.

First, the change of coordinates is defined as follows:
e1 = x1 − yr ,
ei = xi − αi−1, i = 1, 2, . . . , n− 1
en = xn − αn−1 + xn+1/ρ.

(6)

Remark 3: A special variable xn+1, which unlike the real
state variable x i = [x1, x2, . . . , xi]T ∈ Ri, is introduced in
the nth subsystem, and xn+1 is only a defined intermediate
variable. The unknown time delay td leads to the uncertainty
of parameter ρ and variable xn+1, consider (6), the term
xn+1/ρ is employed to eliminate the intermediate variable
xn+1 to ensure that the designed controller u can be used
to compensate the influence of intermediate variable and
input delay. Moreover, the Pade approximation method can
also handle time-varying input delay. This will be proved in
simulation results.

Then, the virtual controller α1 and adaptive laws ϑ̇1 can be
design as

α1 = −
κ1e1ϑ1

2δ21(ω
2
e1 − e21)ψ

T
1 (x1, yr )ψ1(x1, yr )

−
κ1e1

2η21(ω
2
e1 − e21)

− σ1e1, (7)

ϑ̇1 =
ζ1κ1e21

2δ21(ω
2
e1 − e21)

2ψT
1 (x1, yr )ψ1(x1, yr )

− γ1ϑ1, (8)

where κ1, δ1, η1, σ1, ζ1 and γ1 are positive design parameters.
ϑ̃i = ϑ∗

i − ϑi, i = 1, 2, . . . , n − 1 represents the estimation
error, ϑi is the estimation of ϑ∗

i .
Step i (i = 1, 2, . . . , n − 1): The virtual controller αi is

stated as

αi = −
κieiϑi

2δ2i (ω
2
ei − e2i )ψ

T
i (x i, yr )ψi(x i, yr )

−
κiei

2η2i (ω
2
ei − e2i )

− σiei, (9)

ϑ̇i is designed as follows

ϑ̇i =
ζiκie2i

2δ2i (ω
2
ei − e2i )

2ψT
i (x i, yr )ψi(x i, yr )

− γiϑi, (10)

where κi, δi, ηi, σi, ζi iand γi are positive parameters to be
designed.

A. ADAPTIVE FUZZY CONTROL DESIGN
Step 1: ė1 can be calculated as

ė1 = ẋ1 − ẏr = x2 + h1(x) + ε1(x, t) − ẏr . (11)

Consider the BLF as the following form:

V1 =
1
2
log

ω2
e1

ω2
e1 − e21

+
ϑ̃2
1

2ζ1
, (12)

The derivative of (12) can be clearly induced as

V̇1 =
e1ė1

ω2
e1 − e21

−
ϑ̃1ϑ̇1

ζ1

=
e1

ω2
e1 − e21

(e2 + α1 + h1(x) + ε1(x, t) − ẏr ) −
ϑ̃1ϑ̇1

ζ1
.

(13)

Adopting Young’s inequality, one obtains

e1
ω2
e1 − e21

ε1(x, t) ≤
e21

2(ω2
e1 − e21)

2
+
ε̄21

2
. (14)

Then, (13) is rewritten as

V̇1 ≤
e1

ω2
e1 − e21

(α1 + h1(x) +
e1

2(ω2
e1 − e21)

− ẏr )

+
e1e2

ω2
e1 − e21

+
ε̄21

2
−
ϑ̃1ϑ̇1

ζ1
. (15)

According to Lemma 1, we can have

h1(x) +
e1

2(ω2
e1 − e21)

− ẏr = 2T
1ψ1(x, yr ) + ϵ1(x, yr ),

(16)

where ϵ1(x, yr ) ≤ ϵ1, ϵ1 > 0 is a constant.
Since 0 < ψT

i (·)ψi(·) < 1, the following inequalities hold:

e1
ω2
e1 − e21

2T
1ψ1(x, yr ) ≤

e21[2
T
1ψ1(x, yr )]2

2δ21(ω
2
e1 − e21)

2
+
δ21

2

≤
κ1e21ϑ

∗

1ψ
T
1 (x, yr )ψ1(x, yr )

2δ21(ω
2
e1 − e21)

2
+
δ21

2
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≤
κ1e21ϑ

∗

1ψ
T
1 (x, yr )ψ1(x, yr )

2δ21(ω
2
e1 − e21)

2[ψ1(x1, yr )]2
+
δ21

2

≤
κ1e21ϑ

∗

1

2δ21(ω
2
e1 − e21)

2[ψ1(x1, yr )]2
+
δ21

2
,

(17)

e1
ω2
e1 − e21

ϵ1(x, yr ) ≤
κ1e21

2η21(ω
2
e1 − e21)

2
+
η21ϵ

2
1

2κ1
, (18)

where ϑ∗

1 =
||21||

2

κ1
.

Substituting (16), (17) and (18) into (15) leads to

V̇1 ≤
e1

ω2
e1 − e21

(α1 +
κ1e1

2η21(ω
2
e1 − e21)

+
κ1e1ϑ∗

1

2δ21(ω
2
e1 − e21)ψ

T
1 (x1, yr )ψ1(x1, yr )

)

+
e1e2

ω2
e1 − e21

+
ε̄21

2
+
δ21

2
+
η21ϵ

2
1

2κ1
−
ϑ̃1ϑ̇1

ζ1
. (19)

According to α1 and adaptive laws ϑ̇1, we have

V̇1 ≤
−σ1e21
ω2
e1 − e21

+
e1e2

ω2
e1 − e21

+
ε̄21

2
+
δ21

2
+
η21ϵ

2
1

2κ1
+
γ1ϑ̃1ϑ1

ζ1
,

(20)

where

γ1ϑ̃1ϑ1

ζ1
=
γ1ϑ̃1(ϑ∗

1 − ϑ̃1)

ζ1
≤
γ1ϑ

∗2
1

2ζ1
−
γ1ϑ̃

2
1

2ζ1
. (21)

Then (20) can be rewritten as

V̇1 ≤
−σ1e21
ω2
e1 − e21

+
e1e2

ω2
e1 − e21

+ ς1 −
γ1ϑ̃

2
1

2ζ1
, (22)

where ς1 =
ε̄21
2 +

δ21
2 +

η21ϵ
2
1

2κ1
+

γ1ϑ
∗2
1

2ζ1
.

Step i (i = 1, 2, . . . , n− 1): Calculating ėi as follows:

ėi = ẋi − α̇i−1 = xi+1 + hi(x) + εi(x, t) − α̇i−1. (23)

Furthermore, we get

α̇i−1 =

i−1∑
j=0

∂αi−1

∂y(j)r
y(j+1)
r +

i−1∑
j=1

∂αi−1

∂xj
(xj+1

+ hj(x) + εj(x, t)) +

i−1∑
j=1

∂αi−1

∂ϑj
ϑ̇j. (24)

The BLF is selected as

Vi = Vi−1 +
1
2
log

ω2
ei

ω2
ei − e2i

+
ϑ̃2
i

2ζi
, (25)

Then calculating V̇i as

V̇i = V̇i−1 +
eiėi

ω2
ei − e2i

−
ϑ̃iϑ̇i

ζi

= V̇i−1 +
ei

ω2
ei − e2i

(ei+1 + αi + hi(x) + εi(x, t)

− α̇i−1) −
ϑ̃iϑ̇i

ζi
. (26)

Applying Young’s inequality, we have

ei
ω2
ei − e2i

εi(x, t) ≤
e2i

2(ω2
ei − e2i )

2
+
ε̄2i

2
. (27)

−ei
ω2
ei − e2i

∂αi−1

∂xj
εj(x, t) ≤

e2i
2(ω2

ei − e2i )
2
(
∂αi−1

∂xj
)2 +

ε̄2j

2
.

(28)

And the V̇i−1 is

V̇i−1 ≤

i−1∑
j=1

−σje2j
ω2
ej − e2j

+
ei−1ei

ω2
ei−1 − e2i−1

+

i−1∑
j=1

ςj

−

i−1∑
j=1

γjϑ̃
2
j

2ζj
, (29)

where ςj =

j∑
k=1

ε̄2k
2 +

δ2j
2 +

η2j ϵ
2
j

2κj
+

γjϑ
∗2
j

2ζj
.

Substituting (27), (28) and (29) into (26), we have

V̇i ≤

i−1∑
j=1

−σje2j
ω2
ej − e2j

+
ei−1ei

ω2
ei−1 − e2i−1

−

i−1∑
j=1

γjϑ̃
2
j

2ζj

+
ei

ω2
ei − e2i

(ei+1 + αi + hi(x) +
ei

2(ω2
ei − e2i )

−

i−1∑
j=0

∂αi−1

∂y(j)r
y(j+1)
r −

i−1∑
j=1

∂αi−1

∂xj
(xj+1 + hj(x))

−

i−1∑
j=1

∂αi−1

∂ϑj
ϑ̇j +

ei
2(ω2

ei − e2i )

i−1∑
j=1

(
∂αi−1

∂xj
)2)

+

i∑
k=1

ε̄2k

2
+

i−1∑
j=1

ςj −
ϑ̃iϑ̇i

ζi
. (30)

Based on Lemma 1, one has

hi(x) +
ei

2(ω2
ei − e2i )

−

i−1∑
j=0

∂αi−1

∂y(j)r
y(j+1)
r

−

i−1∑
j=1

∂αi−1

∂xj
(xj+1 + hj(x)) −

i−1∑
j=1

∂αi−1

∂ϑj
ϑ̇j

+
ei

2(ω2
ei − e2i )

i−1∑
j=1

(
∂αi−1

∂xj
)2 +

ω2
ei − e2i

ω2
ei−1 − e2i−1

ei−1

= 2T
i ψi(x, yr ) + ϵi(x, yr ). (31)

where ϵi(x, yr ) ≤ ϵi, ϵi > 0 is a constant.
Similarly to (17), we can get

ei
ω2
ei − e2i

2T
i ψi(x, yr ) ≤

e2i [2
T
i ψi(x, yr )]

2

2δ2i (ω
2
ei − e2i )

2
+
δ2i

2

≤
κie2i ϑ

∗
i ψ

T
i (x, yr )ψi(x, yr )

2δ2i (ω
2
ei − e2i )

2[ψi(x i, yr )]2
+
δ2i

2

≤
κie2i ϑ

∗
i

2δ2i (ω
2
ei − e2i )

2[ψi(x i, yr )]2
+
δ2i

2
,

(32)
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ei
ω2
ei − e2i

ϵi(x, yr ) ≤
κie2i

2η2i (ω
2
ei − e2i )

2
+
η2i ϵ

2
i

2κi
, (33)

where ϑ∗
i =

||2i||
2

κi
.

Substituting (31) – (33) into (30) leads to

V̇i ≤

i−1∑
j=1

−σje2j
ω2
ej − e2j

+
ei−1ei

ω2
ei−1 − e2i−1

−

i−1∑
j=1

γjϑ̃
2
j

2ζj

+
ei

ω2
ei − e2i

(ei+1 + αi −
ω2
ei − e2i

ω2
ei−1 − e2i−1

ei−1

+
κieiϑ∗

i

2δ2i (ω
2
ei − e2i )[ψi(x i, yr )]

2
+

κiei
2η2i (ω

2
ei − e2i )

)

+

i∑
k=1

ε̄2k

2
+

i−1∑
j=1

ςj +
δ2i

2
+
η2i ϵ

2
i

2κi
−
ϑ̃iϑ̇i

ζi
. (34)

According to (9) and (10), we have

V̇i ≤

i∑
j=1

−σje2j
ω2
ej − e2j

+

i−1∑
j=1

ςj −

i−1∑
j=1

γjϑ̃
2
j

2ζj

+
eiei+1

ω2
ei − e2i

+

i∑
k=1

ε̄2k

2
+
δ2i

2
+
η2i ϵ

2
i

2κi
+
γiϑ̃iϑi

ζi
, (35)

where

γiϑ̃iϑi

ζi
=
γiϑ̃i(ϑ∗

i − ϑ̃i)

ζi
≤
γiϑ

∗2
i

2ζi
−
γiϑ̃

2
i

2ζi
.

Then one obtains

V̇i ≤

i∑
j=1

−σje2j
ω2
ej − e2j

+
eiei+1

ω2
ei − e2i

+

i∑
j=1

ςj −

i∑
j=1

γjϑ̃
2
j

2ζj
, (36)

where ςi =

i∑
k=1

ε̄2k
2 +

δ2i
2 +

η2i ϵ
2
i

2κi
+

γiϑ
∗2
i

2ζi
.

B. EVENT-TRIGGERED CONTROLLER DESIGN
The ETC signal is defined as

u(t) = ν(th),∀t ∈ [th, th+1). (37)

Then, the ETC strategy is expressed as

th+1 = inf{t > th| |e(t)| − λ|u(t)| − µ ≥ 0} (38)

e(t) = ν(t)−u(t) denotes the measured error, ν(t) is a control
law which will be defined later, 0 < λ < 1 and µ > 0 are
known positive parameters. th, h ∈ Z+ defines updating time.
If the triggering condition (38) is achieved, the control input
will be updated. On the contrary, ν(th) is always unchanging.

For the proposed ETC strategy (38), we consider that the
system normally operates, and it can be obtained:

ν(t) = (1 + k1(t)λ)u(t) + k2(t)µ, (39)

where |k1(t)| ≤ 1 and |k2(t)| ≤ 1 are time-varying
parameters.

Then one obtains

u(t) =
ν(t)

1 + k1(t)λ
−

k2(t)µ
1 + k1(t)λ

. (40)

Define

ν(t) = −(1 + λ)
(
αn tanh

(enαn
ϖ

)
+ µ̄ tanh

(
enµ̄
ϖ

))
,

(41)

αn =
κnenϑn

2δ2n(ω2
en − e2n)ψT

n (x, yr )ψn(x, yr )

+
κnen

2η2n(ω2
en − e2n)

+ σnen, (42)

ϑ̇n =
ζnκne2n

2δ2n(ω2
en − e2n)2ψT

n (x, yr )ψn(x, yr )
− γnϑn, (43)

where κn, δn, ηn, σn, ζn, γn,ϖ and µ̄ > µ/(1 − λ) are
positive design parameters.
Remark 4: Event-triggered technology is considered to be

an effective way to reduce the controller calculation cost
and communication burden, observing (38) and (41), when
the control input approaches zero, the threshold becomes
smaller, and λ is a parameter that can promote better system
performance through proper selection. In addition, the larger
the value of µ̄, the larger the update interval of the control
signal, which will reduce the number of triggers, but the
system performance may deteriorate. Therefore, we must
comprehensively consider the selection of parameters.

IV. STABILITY ANALYSIS
By the proof of the following theorem, we can give the
stability analysis of the system (1).
Theorem 1: For the constraints system (1) with input delay

and non-strict feedback structure, under Assumptions 1 and 2,
the ETC signal ν, the virtual control functions (7) and (9), the
adaptive laws (8), (10) and (43) can be designed to ensure that
the tracking errors and the system states can be adjusted to the
prescribed constraint interval, all variables of the system are
SGUUB, Besides, the Zeno behavior can be averted.

Proof: step n: Differentiating en, it follows

ėn = ẋn − α̇n−1 + ẋn+1/ρ

= xn+1 − u+ hn(x) + εn(x, t) − α̇n−1 + ẋn+1/ρ. (44)

the derivative of αn−1 can be obtained

α̇n−1 =

n−1∑
j=0

∂αn−1

∂y(j)r
y(j+1)
r +

n−1∑
j=1

∂αn−1

∂xj
(xj+1

+ hj(x) + εj(x, t)) +

n−1∑
j=1

∂αn−1

∂ϑj
ϑ̇j. (45)

Similar to (25), the BLF is selected as

Vn = Vn−1 +
1
2
log

ω2
en

ω2
en − e2n

+
ϑ̃2
n

2ζn
, (46)
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Calculating V̇n, we have

V̇n = V̇n−1 +
enėn

ω2
en − e2n

−
ϑ̃nϑ̇n

ζn

= V̇n−1 +
en

ω2
en − e2n

(xn+1 − u+ hn(x) + εn(x, t)

− α̇n−1 + ẋn+1/ρ) −
ϑ̃nϑ̇n

ζn
. (47)

Employing Young’s inequality follows

en
ω2
en − e2n

εn(x, t) ≤
e2n

2(ω2
en − e2n)2

+
ε̄2n

2
. (48)

−en
ω2
en − e2n

∂αn−1

∂xj
εj(x, t) ≤

e2n
2(ω2

en − e2n)2
(
∂αn−1

∂xj
)2 +

ε̄2j

2
.

(49)

Similarly, differentiating Vn−1 yields

V̇n−1 ≤

n−1∑
j=1

−σje2j
ω2
ej − e2j

+
en−1en

ω2
en−1 − e2n−1

+

n−1∑
j=1

ςj

−

n−1∑
j=1

γjϑ̃
2
j

2ζj
, (50)

where ςj =

j∑
k=1

ε̄2k
2 +

δ2j
2 +

η2j ϵ
2
j

2κj
+

γjϑ
∗2
j

2ζj
.

Substituting (48) – (50) into (47) leads to

V̇n ≤

n−1∑
j=1

−σje2j
ω2
ej − e2j

+
en−1en

ω2
en−1 − e2n−1

−

n−1∑
j=1

γjϑ̃
2
j

2ζj

+
en

ω2
en − e2n

(xn+1 − u+ hn(x) +
en

2(ω2
en − e2n)

−

n−1∑
j=0

∂αn−1

∂y(j)r
y(j+1)
r −

n−1∑
j=1

∂αn−1

∂xj
(xj+1 + hj(x))

−

n−1∑
j=1

∂αn−1

∂ϑj
ϑ̇j +

en
2(ω2

en − e2n)

n−1∑
j=1

(
∂αn−1

∂xj
)2

+ (−ρxn+1 + 2ρu)/ρ) +

n∑
k=1

ε̄2k

2
+

n−1∑
j=1

ςj −
ϑ̃nϑ̇n

ζn
.

(51)

Considering that tanh(·) has the following
properties [58]:

0 ≤ |ϱ| − ϱ tanh
(ϱ
d

)
≤ 0.2785d, (52)

where d > 0 and ϱ ∈ R. In light of |k1(t)| ≤ 1, |k2(t)| ≤

1 and (40), we have |(enk1(t)µ)/(1+k1(t)λ)| < (enµ)/(1−λ),
then, one obtains:

enu
ω2
en − e2n

≤
1

ω2
en − e2n

(
enν(t)

1 + k1(t)λ
−

enk2(t)µ
1 + k1(t)λ

)
≤

1
ω2
en − e2n

(
enν(t)
1 + λ

+ |enµ̄|

)

≤
1

ω2
en − e2n

(
− enαn tanh

(enαn
ϖ

)
−enµ̄ tanh

(
enµ̄
ϖ

)
+ |enµ̄|

)
≤

1
ω2
en − e2n

(
− enαn tanh

(enαn
ϖ

)
+ enαn − enαn

)
+ 0.2785d

≤ −
enαn

ω2
en − e2n

+ 0.557d . (53)

Based on Lemma 1, we have

hn(x) +
en

2(ω2
en − e2n)

−

n−1∑
j=0

∂αn−1

∂y(j)r
y(j+1)
r

−

n−1∑
j=1

∂αn−1

∂xj
(xj+1 + hj(x)) −

n−1∑
j=1

∂αn−1

∂ϑj
ϑ̇j

+
en

2(ω2
en − e2n)

n−1∑
j=1

(
∂αn−1

∂xj
)2 +

ω2
en − e2n

ω2
en−1 − e2n−1

en−1

= 2T
nψn(x, yr ) + ϵn(x, yr ). (54)

where ϵn(x, yr ) ≤ ϵn, ϵn > 0 is a constant.
Adopting Young’s inequality, one obtains

en
ω2
en − e2n

2T
nψn(x, yr ) ≤

e2n[2
T
nψn(x, yr )]

2

2δ2n(ω2
en − e2n)2

+
δ2n

2

≤
κne2nϑ

∗
nψ

T
n (x, yr )ψn(x, yr )

2δ2n(ω2
en − e2n)2[ψn(x, yr )]2

+
δ2n

2

≤
κne2nϑ

∗
n

2δ2n(ω2
en − e2n)2[ψn(x, yr )]2

+
δ2n

2
, (55)

en
ω2
en − e2n

ϵn(x, yr ) ≤
κne2n

2η2n(ω2
en − e2n)2

+
η2nϵ

2
n

2κn
, (56)

where ϑ∗
n =

||2n||
2

κn
.

Substituting (54), (55), and(56) into (51) produces

V̇n ≤

n−1∑
j=1

−σje2j
ω2
ej − e2j

+
en−1en

ω2
en−1 − e2n−1

−

n−1∑
j=1

γjϑ̃
2
j

2ζj

+
en

ω2
en − e2n

(u−
ω2
en − e2n

ω2
en−1 − e2n−1

en−1

+
κnenϑ∗

n

2δ2n(ω2
en − e2n)[ψn(x, yr )]2

+
κnen

2η2n(ω2
en − e2n)

)

+

n∑
k=1

ε̄2k

2
+

n−1∑
j=1

ςj +
δ2n

2
+
η2nϵ

2
n

2κn
−
ϑ̃nϑ̇n

ζn
. (57)
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Along with (42), (43) and (53), (57) can be rewritten as

V̇n ≤

n∑
j=1

−σje2j
ω2
ej − e2j

+

n−1∑
j=1

ςj −

n−1∑
j=1

γjϑ̃
2
j

2ζj

+

n∑
k=1

ε̄2k

2
+
δ2n

2
+
η2nϵ

2
n

2κn
+
γnϑ̃nϑn

ζn
+ 0.557d, (58)

where

γnϑ̃nϑn

ζn
=
γnϑ̃n(ϑ∗

n − ϑ̃n)
ζn

≤
γnϑ

∗2
n

2ζn
−
γnϑ̃

2
n

2ζn
.

Then one can have

V̇n ≤

n∑
j=1

−σje2j
ω2
ej − e2j

+

n∑
j=1

ςj −

n∑
j=1

γjϑ̃
2
j

2ζj
, (59)

where ςn =

n∑
k=1

ε̄2k
2 +

δ2n
2 +

η2nϵ
2
n

2κn
+

γnϑ
∗2
n

2ζn
+ 0.557d .

Based on lemma 2, it can be obtained that

−σie2i
ω2
ei − e2i

≤ −σi log
ω2
ei

ω2
ei − e2i

, i = 1, 2, . . . , n. (60)

Hence, one obtains

V̇n ≤ −ξVn + ς. (61)

where ξ = min{2σi, γi, i = 1, 2, . . . , n}, ς =

n∑
i=1
ςi.

For t > 0, (61) is integrated as

V (t) ≤ (V (0) −
ς

ξ
)e−ξ t +

ς

ξ
≤ V (0)e−ξ t +

ς

ξ
. (62)

With the definition of V (t) and (62), the variables xi, ϑ1, ei
and u are bounded.
From (62), it follows that:

|e1| ≤ ωe1

√
1 − e−2V (0)e−ξ t−2 ς

ξ . (63)

According to Assumption 1, (6) and (62), we can obtain
|x1| ≤ |e1| + |yr | < ωe1 + Y0 ≤ ω1. From (7), because
α1 is a function which consisting of yr , ẏr , ϑ1 and x1, the
boundedness of α1 is ensured. Moreover, the supremum ᾱ1 of
α1 exists. From x2 = e2+α1, we obtain |x2| < ωe2+ᾱ1 ≤ ω2.
Similarly, by xi = ei + αi−1, i = 1, 2, . . . , n − 1, xn = en +

αn−1 − xn+1/ρ, we get |xi| < ωi, i = 1, 2, . . . , n.
Next, the proposed adaptive fuzzy ETC will be illustrated

can exclude the Zeno behavior, we suppose that t∗ > 0
can be obtained, which is a time constant and satisfying
∀h ∈ Z+, {th+1 − th ≥ t∗}.
Noting the e(t) = ν(t) − u(t), then

d
dt

|e| =
d
dt
(e× e)

1
2 = sign(e)ė ≤ |ν̇|. (64)

Observing (41), ν is differentiable, and ν̇ represents a
function of the bounded variables. Furthermore, it must exist
a constant ℓ > 0 satisfying |ν̇| ≤ ℓ. For e(th) = 0 and
limt→th+1 e(t) = µ, the lower bound of interexecution

intervals t∗ ≥ (µ/ℓ) can be obtained, namely, the Zeno
behavior is exempted.
Remark 5: By using the Pade approximation method,

the input delay can be compensated, and the BLF is
introduced at each step of the derivation process to meet
the full state constraint requirements. According to the
proposed adaptive fuzzy control approach, the restriction
of monotonous increase of the nonlinear function in [32],
[33], and [34] is removed, which promotes the control
strategy more widely used. In addition, under the premise of
ensuring excellent tracking performance, the ETC strategy is
considered to achieve the purpose of saving communication
resources.
Remark 6: The selection of design parameters can refer

to the following points: (1) Better tracking effect can be
obtained by reducing ωei , but the peak value of the system
control input will become larger. (2) Increasing µ will
reduce the update times of the control signal and save more
resources, but if its value is too large, the system performance
may deteriorate. (3) Reducing λ will make the control effect
of the system more precise, but the control signal of the
system may fluctuate significantly.
Remark 7: The relative threshold ETC strategy will obtain

a larger threshold when the amplitude of the control signal
is large, therefore, the update time of the input signal of the
system becomes longer, but if the amplitude of the control
signal of the system is extremely large, it will inevitably large
measurement errors of the control signal are generated.When
the control input is updated, the system may be impacted by
a large pulse signal, which will have a serious impact on the
performance of the system. Additionally, in order to ensure
that the approximation error of the Pade approximation
method tends to zero, the input time delay td of the system
must be small. Therefore, the proposed control scheme is
still insufficient in dealing with system control problems with
ultra-large value control signals and long delays.

V. SIMULATION
To illustrate the effectiveness of the proposed adaptive ETC
scheme, two simulation examples will be conducted in this
section, and The conventional TTC adaptive fuzzy control
strategy proposed in [30] will be used as a comparison
method.

A. NUMERICAL EXAMPLE
Consider the non-strict feedback nonlinear system as follows.

ẋ1 = sin(x1x3) + x3 + 2x2 + ε1(x, t),
ẋ2 = x21 exp(x2)x3 + x3 + ε2(x, t),
ẋ3 = x1x2 exp(x3) + x3 sin(x1x2)

+u(t − td ) + ε3(x, t),
y = x1,

(65)

where x1, x2, x3 stand for the state vectors. u and y are
the system’s input and output, respectively. ε1(x, t) =

0.1 sin(x1x2), ε2(x, t) = 0.1x23 , and ε3(x, t) = 0.2 cos(t+0.3)
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FIGURE 1. Trajectories of y , yr and constraints interval.

FIGURE 2. Trajectories of state x2 and constraints interval.

FIGURE 3. Trajectories of state x3 and constraints interval.

are external disturbance. Input delay td = 0.02 s, reference
signal yr =

1
2 (sin(t) + sin( t2 )).

The fuzzy membership functions are selected as follows:

µHj
i
(xi) = exp

[
−(xi + 12 − 3j)

2

]
, i = 1, 2, 3,

j = 1, 2, . . . , 7.

The design parameters are chosen as λ = 0.1, µ = 0.1,
ϖ = 0.3, δ1 = 10, δ2 = 9, δ3 = 15, σ1 = 2.9, σ2 = 2.7,
σ3 = 3, η1 = 2, η2 = 1, η3 = 0.12, ζ1 = 0.1, ζ2 = 0.2,
ζ3 = 0.2, γ1 = 0.3, γ2 = 0.5, γ3 = 0.2, ωe1 = 0.12, ω1 = 1,
ω2 = 0.55, ω3 = 0.6, the initial conditions are x1(0) = 0.01,
x2(0) = 0, x3(0) = 0.
From Figs. 1–6, it is clear to know that the tracking

performance satisfies tracking error |e1| ≤ ωe1 = 0.12,
in addition, |y(t)| ≤ ω1 = 1, x2 and x3 are constrained within
intervals |x2| ≤ ω2 = 0.55 and |x3| ≤ ω3 = 0.6. The
trajectories of adaptation laws and the actual control input

FIGURE 4. Adaptive laws ϑ1, ϑ2 and ϑ3.

FIGURE 5. Trajectories of the system input.

FIGURE 6. Trajectories of tracking error e1 and constraints interval.

FIGURE 7. Time interval of triggering event.

are shown in Figs. 4 and 5, respectively. As can be seen from
Fig. 6, the ETC strategy proposed in this paper produces a
smaller tracking error. In Fig. 7, the event-triggered numbers
are 2736 in 60 seconds. Therefore, the consumption of
communication resources is reduced, and all variables of the
system are bounded.
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FIGURE 8. Trajectories of y , yr and constraints interval.

FIGURE 9. Trajectories of state x2 and constraints interval.

B. APPLICATION EXAMPLE
Take the electromechanical system in [34] into account,
which is a permanent magnet brush dc motor, the dynamic
is given as

ẋ1 = x2,

ẋ2 = −
N sin(x1)

H
−
Bx2
H

+
B cos(x2) sin(x3)

H
+
x3
H
,

ẋ3 = −
Kx2
L

−
Rx3
L

+
u
L
,

y = x1,
(66)

where H =
J
KT

+
mL20
3KT

+
M0L20
KT

+
2M0R20
5KT

, N =
mL0G
2KT

+
M0L0G
KT

,
B =

B0
KT

, m = 0.506, M0 = 0.434, L = 0.025, L0 = 0.305,
R = 0.5, R0 = 0.023, B0 = 0.01625, K = 0.9, KT = 0.9,
J = 0.001625, G = 9.8, reference signal yr = sin(t), and
td = 0.06 + 0.03 sin(t). It is a time-varying input delay.

The fuzzy membership functions are given as

µHj
i
(xi) = exp

[
−(xi + 3 − j)

2

]
, i = 1, 2, 3,

j = 1, 2, . . . , 5.

Design parameters as λ = 0.2, µ = 0.25, ϖ = 0.6, δ1 =

45, δ2 = 50, δ3 = 35, σ1 = 6.5, σ2 = 7.3, σ3 = 7, η1 = 3,
η2 = 3, η3 = 5, ζ1 = 0.5, ζ2 = 0.7, ζ3 = 0.7, γ1 = 0.7,
γ2 = 0.5, γ3 = 0.1, ωe1 = 0.15, ω1 = 1.15, ω2 = 1.45,
ω3 = 2.6, and the initial conditions are similar to example 1.
From Figs. 8–13, it is clearly to know that tracking error

|e1| ≤ ωe1 = 0.15 in ETC, and satisfies |y(t)| ≤ ω1 =

1.15. System states x2 and x3 are constrained within intervals

FIGURE 10. Trajectories of state x3 and constraints interval.

FIGURE 11. Adaptive laws ϑ1, ϑ2 and ϑ3.

FIGURE 12. Trajectories of the system input.

FIGURE 13. Trajectories of tracking error e1 and constraints interval.

|x2| ≤ ω2 = 1.45 and |x3| ≤ ω3 = 2.6 respectively.
In Fig. 14, the event-triggered numbers are 10699 in 40 sec-
onds, but u needs 87017 control updates to apply the classical
time-triggered controller. Thus, the control scheme proposed
in this paper can considerably reduce the communication
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FIGURE 14. Time interval of triggering event.

burden, and the feasibility of the controller design in practice
can be demonstrated by the above simulation results.

VI. CONCLUSION
In this paper, combining the backstepping control with the
relative threshold mechanism, a new adaptive event-triggered
control approach is proposed for the constrained nonlinear
system with input delay and non-strict feedback structure.
With the aid of the Pade approximate method, the influence
of the input delay is compensated. By adopting barrier
Lyapunov function at every step of controller design, the
whole state of the system is constrained to preset intervals,
and the impact of completely unknown nonlinear items on
the design is mitigated by fuzzy logic systems. Moreover,
all variables of the system are semi-globally uniformly
ultimately bounded, and the Zeno behavior does not exist
in the developed approach. Finally, a constrained non-
strict feedback system and an electromechanical system are
provided to verify that the proposed approach has a smaller
update frequency under the premise of ensuring excellent
tracking accuracy. In future work, we will further consider
the time-varying asymmetric state-constrained, and apply the
proposed control strategy to the multi-agent systems.
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