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ABSTRACT In recent years, there has been extensive research on the routing problem of printed circuit
boards (PCBs). Due to the increasing number of pins, high pin density, and unique physical constraints,
manual PCB routing has become a time-consuming task to achieve design convergence. Previous work
decomposed the problem into escape routing and area routing, focusing on these problems separately.
However, there was always a gap between these two problems, requiring significant human effort for iterative
algorithm adjustments. Furthermore, previous area routing work mainly focused on routing between ball
grid array (BGA) packages in escape routing. However, in practice, many components are not in the form of
BGA packages, such as passive devices, decoupling capacitors, and through-hole pin arrays. Therefore, it is
necessary to study a unified routing approach. The current unified routing approach adopts the A* algorithm,
but there is still room for improvement in routing speed. This paper proposes a new algorithm called
Unet-Astar, which accelerates the routing efficiency by employing deep learning algorithms in a simulated
environment. Additionally, a Deeper Unet is proposed for generating recommended regions for the routing
algorithm. The new network structure can provide more contextual information, thereby improving routing
efficiency. Experimental results demonstrate the effectiveness and efficiency of the proposed algorithm.
Specifically, for all given test cases, our router achieves approximately a 70% improvement in runtime
speed compared to the old router. Another major contribution of this work is the development of a routing
problem set generator, which can generate parameterized routing problem sets with different sizes and
constraints. This enables the evaluation of different routing algorithms and the generation of training
datasets for future data-driven routing methods. All the code has been open-sourced and can be found at
https://github.com/Firesuiry/Unet-Astar-For-PCB-Routing.

INDEX TERMS Physical design, printed circuit board, routing, machine learning.

I. INTRODUCTION
With the vigorous development of electronic information
technology, the current integrated circuit process has entered
the nanometer era. The integration level of components
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on printed circuit boards (PCBs) is increasing, the number
of pins is growing, and the interconnections between
components are becoming more complex. Consequently, one
of the challenging tasks in PCB design is the routing task.
However, existing automatic routing algorithms have low
routing success rates and slow speeds. Currently, in industrial
applications, a significant reliance on manual PCB routing
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by engineers leads to a substantial consumption of time
and manpower resources. Therefore, there is an urgent need
for an intelligent automatic routing algorithm that can be
practically applied to modern large-scale electronic circuit
design to enhance the design efficiency of Electronic Design
Automation (EDA).

In recent years, there has been continuous research in this
field. The research in this direction is mainly divided into two
parts: area routing and escape routing. The process of routing
the pins within a component to the component’s edge is called
the escape process, while the process of routing between two
components is called area routing.

However, from our observation of actual PCB designs,
designs typically consist of numerous components such as
passive devices, decoupling capacitors, and through-hole
pin arrays, which are not components in BGA packages.
These non-BGA packaged components are usually irreg-
ularly distributed in the PCB design, resulting in uneven
congestion distribution and making routing tasks more
difficult. Therefore, it is necessary to develop a PCB routing
algorithm to address such issues.

Lin et al. [1] first proposed a unified routing approach
based on the A* algorithm to tackle this problem. Although
this algorithm accomplishes the task, there is still significant
room for improvement in routing speed. Additionally, the
algorithm cannot leverage the increasingly powerful GPU
computational resources available today.

Therefore, in this paper, a routing algorithm that can
utilize GPU computing power to accelerate the process is
designed. This is achieved by employing a neural network
to predict routing regions before the actual routing. The main
contributions of this paper are as follows:

In this paper, Unet-Astar, a deep-learning-based fast
routing algorithm for unified PCB routing, is proposed. The
contributions are as follows.

1) Propose a neural network-based routing guidance
method called Unet-Astar, which improves routing
efficiency by predicting routing regions before the
actual routing process.

2) Introduce a novel neural network architecture called
Deeper-Unet for generating recommended regions.
This network structure provides additional contextual
information, leading to improved routing efficiency.

3) Develop a PCB routing problem generator for model
training and facilitating future research.

4) Conduct experiments that demonstrate an average
reduction of approximately 70% in runtime compared
to previous algorithms.

The rest of this paper is organized as follows. The
definitions of the problem is presented in Section II.

Related work on PCB routing is introduced in Section III.
The implementation of the proposed Unet-Astar and

Deeper Unet is described in Section IV.
Experimental studies are presented in Section V.
Conclusions summarizing the contributions of this paper

are presented in Section VI.

II. BACKGROUND INFORMATION
A. PROBLEM DEFINITION
This section presents some terminology and the relevant
problem formulation. A two-layer PCB layout consists of
components with defined solder mask defined (SMD) pads
and/or through-hole pads. Their definitions are as follows.
Definition 1 (Component): Any fundamental discrete

device or physical entity within an electronic system that
influences electronics or its related fields.
Definition 2 (SMD Pad/Through-Hole Pad): Pads that tra-

verse all routing layers. It should be noted that, for the
PCB routing problem, the allocation and placement of all
component layers are given after the layout. To perform
routing, a netlist is used to define the connections between
different component pads. For ease of research, in this paper,
all pads are defined as through-hole pads.
Definition 3 (Netlist): Describes the connections between

through-hole pads and/or SMD pads. The routing results need
to satisfy design rules for good manufacturability. Typical
rules include non-crossing and spacing greater than the
clearance requirements.

Based on these definitions, the PCB routing problem is
defined as follows.
Problem 1 (PCB Routing): Given a netlist, design rules,

and a post-placement layout containing a set of pads, connect
all nets without violating the design rules.

III. RELATED WORK
The objective of the extensively studied PCB routing problem
is to route all connections between the Ball Grid Array (BGA)
packages of chip packaging while satisfying various physical
constraints. Additionally, the use of through-holes is often
restricted, making the routing planar.

This planar routing approach distinguishes PCB routing
as a separate problem from IC routing. Previous research
has categorized the PCB routing problem into two types:
(1) Escape routing problem and (2) Area routing problem.

The escape routing problem involves routing from the
pads of the BGA to their array boundary. The region routing
problem is to connect the previously escaped BGAs, often
subject to upper/lower bounds on the routing length for each
connection.

A. ESCAPE ROUTING AND REGION ROUTING
The escape routing problem involves routing from the pads
of the Ball Grid Array (BGA) to their array boundary. As the
number of pins on a chip increases, this problem becomes
increasingly complex.

Escape routing can be classified into three types:
Unordered Escape Routing (UER), Ordered Escape Routing
(OER), and Simultaneous Escape Routing (SER). UER and
OER focus on determining escape paths from the pads
of each component to the component boundary without
assigning an escape order. Wang et al. [2] proposed a
model based on triangular patterns and sequences to facilitate
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network flow-based methods for deriving solutions to UER.
Fang et al. [3], [4], [5] also employed network flow-based
algorithms to perform unordered escape routing. Yan et al.
[6] presented a network model that accurately reflects routing
resource capacity, resulting in improved results for unordered
escape routing. Yan and Wong [7] introduced a network
flow model for UER and modeled OER using Boolean
satisfiability (SAT) formulas [8], [9]. The UER model is
not suitable for practical applications involving designs with
two or more components since the escape order between
two components is often inconsistent, resulting in lower
reliability of region routing. Therefore, the application of
OER is limited as the escape order needs to be manually
or automatically assigned. However, SER can address the
challenges posed by OER and UER. Luo et al. [10],
[11] proposed boundary routing as an efficient strategy for
internally routing a single component by iteratively tracing
feasible orders between two components. Fang et al. [12]
introduced an integer linear programming-based method with
reduction techniques to achieve ordered escape routingwithin
a reasonable runtime. Kubo et al. [13] developed an iterative
over-assignment method to effectively minimize congestion
and total wirelength. However, these works determine the
escape order only for single-layer sequences, and if not all
nets can be routed within a layer, they assign given layers for
each net.

The area routing problem primarily focuses on addressing
the issue of achieving length matching for routes. Due to the
efforts of the escape router, the input to the length matching
router is typically considered to be planar.

Ozdal et al. [14] adopted a routing scheme based on
Lagrangian relaxation to obtain a routing solution that
achieves length matching. Additionally, Ozdal et al. [15]
proposed an efficient algorithm based on river routing to solve
the length matching routing problem within the channels and
used theoretical constant factors for optimality. Yan et al.
[16] presented an algorithm that retrieves routing solutions
without any routing topology restrictions using a bounded
slicing line grid. Yan et al. [17] established an obstacle-aware
routing framework based on routing region partitioning and
maximum flow algorithm.

In addition to the traditional escape routing and region rout-
ing problems, several works [18], [19], [20], [21], [22], [23],
[24] have addressed routing problems while considering the
constraints of differential pairs. Fang et al. [19], [21] proposed
a chip package board code design algorithm that takes into
account the constraints of differential pairs. However, their
assumption of monotonic routing restricts the practical use
of the algorithm. Yan et al. [20] proposed a negotiation-based
routing algorithm considering routing congestion to achieve
routing for differential pairs. Li et al. [22] employed
a two-stage scheme and a minimum-cost maximum-flow
algorithm to simultaneously route all differential pairs. Wang
and Jiao et al. [23], [24] developed unordered and ordered
escape routing algorithms for staggered pin arrays, taking into
consideration the constraints of differential pairs.

B. MODEL-BASED EDA APPROACHES
Recently, machine learning (ML) methods have been
developed and achieved significant success in the field of
computer-aided design (CAD) [25], [26]. ML transforms
traditional analysis, modeling, and optimization problems
into data-to-data mapping problems, providing efficient and
accurate performance evaluation at various design stages
[27], [28], [29], [30]. Convolutional neural networks (CNN)
as ML models have the ability to extract and abstract features
from image-based data, outperforming traditional shallow
ML models in handling challenging tasks [31], [32]. In the
CAD domain, CNNs have been utilized to detect layout
manufacturability and reliability violations [29], [33], [34],
[35], [36], [37]. CNNs have been developed to predict
congestion heatmaps, and by utilizing themodel, unnecessary
searches can be avoided, thereby speeding up the overall
routing process [38]. CNNs have also been proposed to
provide routing guidance by emulating complex manual
layout techniques [39]. Intuitively, PCB layout can naturally
be represented as image-based data. Liao et al. [40] proposed
a deep reinforcement learning approach to address global
routing problems in a simulated environment. Chen et al.
[41] introduced a model to predict thermal distribution issues
in PCB routing, thereby reducing temperature during PCB
runtime.

C. PARTIAL SUMMARY AND MOTIVATION
Firstly, the majority of current algorithms primarily rely on
CPU computation, which prevents them from harnessing the
increasing computational power of GPUs. This limitation
hampers the efficiency of the algorithms. The proposed
algorithm in this paper addresses this issue by utilizing
GPU inference to compute the recommended routing areas,
significantly reducing the routing time.

Secondly, among the approaches that incorporate ML
models, only two papers [39], [40] directly apply them
for routing guidance. Furthermore, these two papers mainly
focus on the global routing problem in VLSI routing, and
there is a lack of research on the unified routing problem
specifically for PCBs. To fill this research gap, this paper
proposes a model-based acceleration scheme for unified PCB
routing.

IV. PROPOSED ALGORITHM
A. OVERALL FRAMEWORK OF THE ALGORITHM
To expedite the processing of Problem 1, Unet-Astar, a PCB
routing framework guided by ML models, is proposed.
Our algorithm primarily accelerates the routing process by
pre-learning from a large dataset of routing examples and
guiding the Astar algorithm.

The process of generating the training dataset for the
algorithm is illustrated in Figure 1:

As shown in the figure, to train the model, a PCB problem
generation tool is utilized to generate a substantial number of
PCB problems. Then, using the Astar algorithm, the routing
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FIGURE 1. Unet-Astar train process.

FIGURE 2. Unet-Astar run process.

is performed. After the routing is completed, one random
routing path is removed from the generated routes as the path
to be learned. The remaining routes and SMDpads are used as
inputs, and the recommendation area generator based on the
Lee algorithm is employed to generate the recommendation
areas. The recommendation areas serve as the outputs, and
this process is iterated repeatedly to generate a large amount
of training data.

The algorithm execution process is illustrated in Figure 1.
When encountering a new routing problem, the current

routes and other SMD pads are initially input into the model

as obstacles. The model infers the recommendation areas,
which are then combined with the current obstacles as inputs
for the Astar algorithm. TheAstar algorithm performs routing
and generates new paths. This process is repeated until all
routes have been completed.

B. MODEL ARCHITECTURE
The neural network used in this study requires a
multi-channel image as input and produces a single-channel
image as output. Each grid point in the output image is
represented by a floating-point number between 0 and 1,
indicating the probability. A value of 0 indicates not
recommended, while a value of 1 indicates recommended.
This characteristic is similar to that of segmentation
networks, hence the adoption of the Unet network as the
backbone in this study. However, the traditional U-net [42]
is limited to short-range spatial information due to the use of
local receptive fields in traditional convolutions. To enable
long-range inference, a larger receptive field is required.
Therefore, this study improves upon the original U-net by
increasing the number of convolutional layers and adding
three fully connected layers at the final layer to enhance
long-range inference capability. This modified network is
referred to as the Deeper Unet. The loss function used for
training is defined in Equation 1.

loss = 0.5 ∗ mseloss+ 0.5 ∗ diceloss (1)

The network architecture is shown in Figure 3.
In the figure, ‘‘C’’ represents a double convolutional layer,

‘‘P’’ represents a 2 × 2 max pooling layer, ‘‘D’’ represents a
2 × 2 transposed convolutional layer and ‘‘FC’’ represents a
fully connected layer.

The structure of the double convolutional layer is
illustrated in Figure 4.
In the figure, ‘‘R’’ represents the ReLU function.
Compared to the original U-net, the new Deeper Unet has

significantly increased its depth from 5 layers to 9 layers.
It also includes additional fully connected layers, enhancing
its long-range inference capability.

C. FEATURE EXTRACTION FROM LAYOUT
To extract feature patterns from the layout and perform
grid-based routing, the entire layout is rasterized.

A layout with L layers is encoded as a tensor with
L + 1 channels. (In this paper, the assumption is made that
all pads are through-hole, thus representing the starting and
ending points using only one layer.)

The first layer represents the starting and ending points
of the routing problem, as shown in Figure 5:

The red circles represent the starting and ending points,
respectively. The surrounding halo is generated using a
normal distribution, which helps themodel learn the positions
of the starting and ending points more effectively. In the
image, heightened luminosity corresponds to proximity to the
starting and ending points.
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FIGURE 3. Structure of Deeper-Unet.

FIGURE 4. Structure of the double convolutional layer.

The remaining layers represent obstacles, as shown in
Figures 6 and 7.

Each layer of the PCB corresponds to one channel,
where black areas represent 0, indicating the routable

FIGURE 5. Feature map generated for starting and ending points. The red
circles denote the starting and ending points. Heightened luminosity
corresponds to proximity to the starting and ending points.

region, and white areas represent 1, indicating the pads or
interconnections of other nets.

D. MODEL TRAINING - TRAINING SET CONSTRUCTION
To facilitate training, a PCB routing problem dataset genera-
tor was developed. This generator can automatically generate
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FIGURE 6. Feature map generated for obstacles in Layer 1.

FIGURE 7. Feature map generated for obstacles in Layer 2.

a large-scale problem database, including user-specified
problem IDs, grid sizes, net counts, pin counts, and obstacle
counts. The code for this generator is available at the
open-source repository mentioned in the introduction. The
generated problem examples were shown in the previous
section.

To train the network, the generated problems need to
be annotated to provide the recommended regions for the
network to learn. A solver similar to the Lee algorithm is
used for annotation to generate the recommended regions.
The input to the solver is a layout, a starting point, and an
ending point, and the output is a recommended region.

The algorithm starts by initializing two search lists: the
starting point exploration list and the ending point exploration
list. The starting point and ending point are added to their
respective lists as initial points, with their distances marked
as 0.

Then, iteratively, the points with the minimum distance
from both lists are taken out, and their neighbors are
computed. All neighbors are traversed, and the distances
from the initial points to these neighbors are calculated. The
neighbors are added to the lists.

If a neighbor is present in the other list, it indicates that
the neighbor can be reached from both the starting point and
ending point. The sum of the distances from the starting point
and ending point to this neighbor is computed. If this distance
is smaller than the shortest path distance, the neighbor is
added to the recommended region.

After this step, the exploration in the two lists no longer
increases, and only the points that are already present in the
other list are explored, until both lists have no more points
to explore. (This step is to reduce unnecessary computations,
and exploring the entire graph is also feasible.)

At this point, the sum of the distances from all points to the
starting point and ending point is calculated. If this distance
is smaller than the shortest path distance plus 0.1 times the
Euclidean distance between the starting point and ending
point, the point is added to the recommended region.

With this, the calculation of the recommended region is
completed.

The pseudocode for the training example generation
algorithm is shown in Algorithm 1.

To improve the performance of the algorithm in predicting
longer paths, some training samples were removed during
the generation of the training set. Assuming a problem
has 10 connections ranked from 1 to 10 based on their
lengths(The shorter the distance, the higher the ranking), the
samples in the top 30% of rankings will be deleted. In this
example, routes with rankings 1, 2, and 3 will be removed.

An example of a generated sample is shown in
Figures 8 and 9.
In the figures, yellow represent pads, blue lines represent

connections from other nets, white areas represent the
generated recommendation area, light blue represents the
removed connections, and red represents the search range of
the A* algorithm when no recommendation area is available.

The crimson region emanates from the red point, and
in the absence of obstacles, it extends toward the green point,
thereby exhibiting maximal search efficiency. However, the
presence of obstacles necessitates the red region to diverge
exploration in various directions, markedly diminishing the
search efficiency. To enhance the efficiency of exploration,
the adoption of a neural network approach is chosen to
curtail fruitless searches. As a breadth-first algorithm, the
Lee algorithm facilitates the determination of the shortest
path through systematic traversal, serving as a robust avenue
for exploration. Yet, if the neural network were tasked
with direct acquisition of this path, the endeavor would
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Algorithm 1 Training Set Generation Algorithm
1: Initialize the starting point exploration list and add the starting point to the list. The distance list for the starting point is [0,

∞].
2: Initialize the ending point exploration list and add the ending point to the list. The distance list for the ending point is [∞,

0].
3: Initialize the shortest path distance as ∞.
4: Initialize the exploration flag as True.
5: List Collection = [starting point exploration list, ending point exploration list].
6: while There is node in List Collection do
7: for i = [0, 1] do // Iterate over the two lists
8: List = List Collection[i]
9: Current node = Extract the point with the minimum distance from the list.

10: Neighbors = All points reachable from the current node.
11: Exploration flag = explorer(i, exploration flag, neighbors, List Collection, Current node) // Algorithm 2
12: end for
13: end while
14: for node in List Collection do
15: if The total distance of the node is less than the shortest path distance + 0.1 times the Euclidean distance between the

starting point and ending point then
16: Add the node to the recommended region.
17: end if
18: end for
19: Return the recommended region.

FIGURE 8. Generated recommendation area for layer 1.

prove exceptionally challenging, given the intricate nature of
useful insights’ acquisition. Hence, in addition to learning
the shortest path identified by the Lee algorithm, pathways
slightly deviating from the optimal trajectory are also
considered for learning. This augmentation provides the
neural networkwith the opportunity to acquire a broader array
of knowledge. The white regions in the diagram delineate the

FIGURE 9. Generated recommendation area for layer 2.

areas generated by the Lee algorithm. The illustration reveals
the white regions enveloping the green point (origin), the red
point (destination), and the pale blue lines (original path).
Furthermore, the white regions exhibit notable reduction in
extent compared to the crimson regions, underscoring the
potential of significantly reducing the search space through
effective learning by the neural network.
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Algorithm 2 Explorer Algorithm
1: Input: i, exploration flag, neighbors, List Collection, Current node
2: for neighbor in neighbors do:
3: if exploration flag is False and neighbor is not in List Collection[1-i] then
4: continue
5: end if
6: Tentative distance = current node distance[i] + distance from current node to neighbor
7: if Tentative distance is less than neighbor’s distance[i] then
8: Neighbor’s distance[i] = Tentative distance
9: Neighbor’s parent node = current node

10: if Neighbor is not in the current list then
11: Add neighbor to the current list
12: end if
13: end if
14: if Neighbor is in the other list then
15: Neighbor’s total distance = Neighbor’s distance[0] + Neighbor’s distance[1] // Minimum distance from the starting

point to the ending point passing through the neighbor
16: if Total distance is less than the shortest path distance then
17: Shortest path distance = Neighbor’s total distance
18: else
19: Exploration flag = False
20: end if
21: end if
22: end for
23: Return exploration flag

E. ALGORITHM EXECUTION
The design of this algorithm (Unet-Astar) is based on the A*
algorithm used in the paper [1].

Unlike the original algorithm, the proposed algorithm uses
a new cost function.

The new cost function is defined as follows:

f (n) = g(s, c) + h(c, t) − liner-power ∗ r(c)

Here, g(s, c) represents the cost from source s to the
current position c, h(c, t) represents the estimated cost from
the current position c to the target t . The cost includes
wirelength, turn penalty, and violation penalty. ‘‘liner-power’’
is a hyperparameter that controls the trade-off between the
recommendation area and routing cost. r(c) represents the
value of the recommendation area, which is a floating-point
number between 0 and 1, predicted by the model before
routing.

Additionally, since many shorter wires in PCB routing
are relatively simple and do not benefit much from the
recommendation area, a hyperparameter ‘‘skip-percent’’ is
introduced. Similar to the exclusion of training samples, if a
wire is ranked as the nth wire based on its length among a
total of 10 wires, it will be directly routed using the traditional
algorithm if n/10 < skip-percent.
The distance flow for routing the entire PCB board is as

follows:
1. Decompose all multi-terminal nets into multiple

two-terminal nets using the Steiner Tree algorithm.

TABLE 1. Pairwise comparison between the proposed algorithm and
others.

2. Sort all two-terminal nets based on the straight-line
length of the wire, with shorter wires having higher rankings.

3. Perform routing in ascending order of rankings, from the
lowest ranked wire to the highest.

V. EXPERIMENTS
A. EXPERIMENTAL DETAILS AND HARDWARE
ENVIRONMENT
The algorithm is implemented using the Python programming
language. All algorithms were executed on a personal
computer with an Intel Core i7-7700K CPU, an NVIDIA
GeForce RTX 2080 Ti GPU, 64GB of RAM, and running the
Windows 10 operating system.

B. COMPARATIVE EXPERIMENT ON RECOMMEND AREA
GENERATED
This experiment presents a comparative study of the divergent
performances exhibited by the DeeperUnet model proposed
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FIGURE 10. The maps generated by different neural networks under conditions of relatively shorter net lengths.

FIGURE 11. The maps generated by different neural networks under conditions of relatively longer net lengths.

within this paper, in contrast to the conventional Unet
architecture as well as the Unet++ framework, all assessed
upon an identical testing dataset.

To quantitatively evaluate the performance of the proposed
method, we calculated three evaluation indicators, dice
coefficient (Dice), hausdorff distance (Hd), and intersection
over union (IoU), which are calculated as follows.

Dice =
2

∣∣Iseg ∩ Igt
∣∣

Iseg + Igt
Hd = Max

({
Iseg − Igt

})
Iou =

Iseg ∩ Igt
Iseg ∪ Igt

where Iseg represents the predicted segmentation result and
Igt represents the ground truth.

The quantitative average scores on the test dataset are
shown in Table 1. It can be observed that the proposed
DeeperUnet has achieved a dramatic improvement in seg-
mentation performance. As for the overlap rate index, the
average scores of Dice and Iou are 0.931 and 0.890,
respectively. Hd is mainly used to evaluate the segmentation
accuracy of the boundary. It can be concluded from Table 1

that the Hd scores of U-Net and U-Net++ are lower than our
method.

In addition, we randomly select two different length of net
from the prediction results, and the predicted results and the
real results are marked in the original image. As shown in
Figure 10 and 11.

In Figure 10 and 11, the black regions represent void
spaces, the red regions correspond to the areas explored
through A* search, while the green regions depict the maps
generated by the neural network. The white areas denote the
ground truth generated by the Lee algorithm, and the yellow
lines indicate the originally eliminated pathways.

Figure 10 illustrates an instance involving a shorter net,
while Figure 11 presents an example with a longer net.

In Figure 10, it can be observed that the DeeperUnet
model exhibits the closest adherence to the ground truth. The
generative regions of the Unet model correspond relatively
well to the ground truth; however, the generated map tends to
be slightly larger than the ground truth. Similarly, Unet++

demonstrates similarities to the Unet model, yet the generated
map appears slightly smaller than the ground truth.

Turning to Figure 11, it is evident that the outcomes
generated by the DeeperUnet model closely align with the
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TABLE 2. Pairwise comparison between the proposed algorithm and Algorithm 2.

FIGURE 12. Bar chart showing runtime and ‘‘liner-power’’.

ground truth. In contrast, the maps generated by the Unet and
Unet++ models exhibit notable disparities when compared
to the ground truth. Particularly in regions distant from
the origin and termination points, inaccuracies in prediction
become evident.

This observation suggests that certain optimization tech-
niques tailored for medical image segmentation may not
necessarily yield beneficial outcomes in this context.
Unet++ exhibits the poorest performance in this task.
Due to its limited receptive field, Unet delivers reasonable
results for shorter nets but struggles to predict the ground
truth accurately for longer nets. The proposed DeeperUnet
architecture, introduced in this paper, augments the network
depth, resulting in a larger receptive field. This affords robust
performance across various net configurations and predictive
regions.

These findings underscore the advantageous characteris-
tics of the proposed network architecture outlined in this
study.

C. HYPER-PARAMETER ANALYSIS
This experiment investigates the sensitivity of the Unet-Astar
algorithm to different parameters. For this experiment, 20 test
problemswere generated using the PCB problem generator as

FIGURE 13. Bar chart showing runtime and ‘‘skip-percent’’.

benchmark problems to study the parameter sensitivity of the
Unet-Astar algorithm.

The sensitivity of two important parameters, namely
‘‘liner-power’’ and ‘‘skip-percent’’, in the Unet-Astar
algorithm were studied. For the ‘‘liner-power’’ parameter,
five different values (100, 200, 400, 800, 1600) were
considered in this analysis. For the ‘‘skip-percent’’ parameter,
nine different values (0.1, 0.2, . . . , 0.8, 0.9) were considered
in this analysis.

Figure 12 shows the time required for the algorithm to run
under different values of ‘‘liner-power’’. Due to the additional
processing related to the neural network during the runtime,
the algorithm is approximately 1.7% slower than the original
Astar algorithmwhen ‘‘liner-power’’ is set to 0. This indicates
that the added recommendation area has almost no impact
on the speed of the algorithm. It can be observed that the
algorithm achieves the fastest runtime when ‘‘liner-power’’
is set to 800. When ‘‘liner-power’’ is set to 1600, the runtime
slightly increases compared to 800. The reason behind this
phenomenon is that a too-small ‘‘liner-power’’ value cannot
effectively guide the routing process, while a too-large value
will impose excessive restrictions on the path search.

Figure 13 shows the time required for the algorithm to
run under different values of ‘‘skip-percent’’. It can be
observed that the algorithm achieves the fastest runtime
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TABLE 3. Pairwise comparison between the proposed algorithm and
origin algorithm.

when ‘‘skip-percent’’ is set to 0.3. In the range of 0.1-0.3,
there is a slight decrease in runtime, indicating that the
Unet-Astar algorithm performs worse than the original Astar
algorithm within this range. This phenomenon is consistent
with expectations because the training was only conducted
on samples with ‘‘skip-percent’’ greater than or equal to 0.3.

D. COMPARATIVE EXPERIMENT ON PCB ROUTING TASKS
To evaluate the effectiveness of Unet-Astar, its performance
was compared with the algorithm implemented in Paper
[1](referred to as origin algorithm). The test cases consist
of 200 routing problems generated using the problem
set generator introduced earlier. The parameters for the
Unet-Astar algorithm are set as follows: liner-power=800,
skip-percent=0.3. Except for the additional processing
related to the neural network, the runtime logic of Unet-Astar
is identical to origin algorithm.

Table 2 shows the experimental results and reports the
average values of total wire length, via count, routability, and
runtime for the 200 test problems. As shown in the table,
both algorithms achieve 100% routability for all benchmarks
without violating any design rules. However, our proposed
algorithm significantly reduces the runtime by approximately
4 times (from 302 to 78) compared to the algorithm proposed
in Paper [1]. It also reduces the total wire length by
approximately 0.2% (from 8822 to 8797) and the via count by
around 22% (from 331.11 to 257.295). These results indicate
that our algorithm outperforms origin algorithm in terms of
runtime, total wire length, and via count.

To provide a more comprehensive statistical analysis, non-
parametric statistical tests were performed. Table 3 presents
the pairwise comparison between the proposed algorithm
and origin algorithm, focusing on wire length, via count,
and runtime. The ‘‘WIN’’ row represents the number of
test cases where our proposed algorithm outperforms origin
algorithm, and the ‘‘LOSS’’ row represents the number of
test cases where our proposed algorithm performs worse.
The ‘‘p-value’’ row provides the statistical significance from
the Wilcoxon test [44], [45] of the performance difference
between the two algorithms. As indicated by the extremely
small p-values (all less than 10−25), our proposed algorithm
significantly outperforms origin algorithm in terms of wire
length, via count, and runtime across all test cases.

In general, based on the results of the Wilcoxon test, the
proposed Unet-Astar algorithm significantly outperformed
the original algorithm in terms of wire length, via count, and
runtime testing, with a significance level of α = 0.05.

FIGURE 14. Example images of routing using Unet-Astar.

The results of the routing tests are illustrated in
Figure 14, 15, demonstrating the superior performance of
the proposed Unet-Astar algorithm compared to the original
algorithm.

In the figures, the blue color represents the obstacle
regions, the red color represents the search scope of the
Astar algorithm, the red dots represent the starting points, the
green dots represent the ending points, and the yellow lines
represent the founded path.

From the figures, it can be observed that the new algorithm,
compared to the traditional algorithm, has a much smaller
search area. This characteristic is the main reason for the
improved runtime of the new algorithm and demonstrates the
effectiveness of the proposed algorithm.
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FIGURE 15. Example images of routing using Astar.

However, it is discernible from the graphical representation
that although the paths generated by the novel algorithm
closely resemble those produced by the original algorithm,
there are instances of redundant curvature when compared
to the latter. This issue stems from the instability inherent
in the generated recommendation regions. As depicted in
Figure 14b, in the vicinity of the red points, the network fails
to predict the recommendation region accurately, resulting
in a certain degree of curvature in the generated routes
to conform to the recommendation region. The underlying
cause of this predicament may lie in the inadequacy of
the network architecture based on traditional segmentation

networks to fully cater to the requirements of this novel
problem. Consequently, the necessity arises to devise a
fresh network structure tailored to address the demands of
the issue at hand. Given the idiosyncrasies associated with
human wiring practices, network architectures founded upon
attention mechanisms exhibit considerable promise in this
context. Accordingly, we intend to pursue further research in
this direction in the foreseeable future.

Overall, compared to the previous algorithm, Unet-Astar
exhibits outstanding performance. By utilizing GPU compu-
tation for generating the recommendation region, the routing
algorithm is greatly accelerated.

VI. CONCLUSION
In this paper, Unet-Astar, a PCB routing framework using
ML models, is proposed. The model aims to capture remote
contextual information from PCB layouts and predict feasible
regions to accelerate the routing process. Three experiments
were conducted on generated benchmarks, demonstrating
that our Unet-Astar achieves significant speedup compared
to state-of-the-art PCB uniform routing algorithms.

In the future, further optimization of prediction accuracy
for the recommendation region generation model is planned,
along with the incorporation of additional constraint condi-
tions to enhance the performance of PCB routing algorithms.
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