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ABSTRACT Automatically generating service composition solutions that meet user application require-
ments is one of the hot research topics in the field of service composition in the context of Web service
big data. To address the challenges of accurately obtaining reward function values and significant increase
in time complexity when dealing with large-scale data in the context of reinforcement learning-based
service composition, this paper proposes a novel approach that combines zero-sum game and inverse
reinforcement learning. The proposedmethodmodels the service composition problem as aMarkovDecision
Process (MDP) and dynamically adjusts the service composition solution by solving for the optimal policy.
By leveraging runtime records of service composition operations, we generate an expert experience dataset
and develop a novel inverse reinforcement learning algorithm based on the integration of zero-sum game
principles. Experimental results demonstrate that the proposed method effectively reduces the dependence
of the inverse reinforcement learning algorithm on the quality of expert experience data and reduces the time
cost of service composition.

INDEX TERMS Service composition, inverse reinforcement learning, zero-sum game, quality of service.

I. INTRODUCTION
The rapid proliferation of diverse Web services across vari-
ous domains on the Internet has led to an explosive growth
of Quality of Service (QoS) data due to dynamic changes
in network environments and client contexts [1], [2]. This
abundance of Web services, along with associated data
such as service descriptions, service QoS data, and ser-
vice composition runtime records, forms what is known as
Web service big data. In the context of Web service big
data, traditional methods for service discovery and selection
face significant time costs in generating service composi-
tion solutions. Moreover, these methods lack the capability
to re-plan service composition solutions, resulting in uncer-
tainties regarding the successful and efficient execution of
composite services [3], [4]. Consequently, there is a pressing
need to automatically generate service composition solutions
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based on user application requirements, which represents a
key focus area in the field of service composition [5].
Web services operate in dynamic network environments

where factors such as network bandwidth, access point loca-
tions, and time can cause fluctuations in service performance,
primarily reflected in the dynamic changes in QoS [6], [7].
Even for the same user in the same network environment,
uncertainties in server loads from service providers can lead
to QoS fluctuations in Web services for different invocation
times [8]. Furthermore, abnormal conditions such as gateway
errors, network errors, and server errors can easily result
in service invocation failures. Reinforcement learning-based
service composition methods enable adaptive adjustments
of service composition. However, reinforcement learning
methods can only yield optimal policies when the ‘‘reward
function values’’ for each action taken by the agent can be
accurately obtained. Due to the dynamic nature of network
environments and variations in client contexts, theQoS values
of candidate services can change at any moment, making

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 111897

https://orcid.org/0000-0002-4167-1148
https://orcid.org/0000-0002-6855-0338
https://orcid.org/0009-0007-0959-6583
https://orcid.org/0000-0001-9092-4052


Y. Yuan et al.: Dynamic Service Composition Method Based on Zero-Sum Game Integrated IRL

it difficult to provide a deterministic reward function value
based on QoS data at a specific time or historical QoS
data. Therefore, in such scenarios, the agent cannot obtain
accurate reward functions and optimal policies through rein-
forcement learning. Additionally, as the scale of services
continues to expand to a massive number ofWeb services, the
increase in dimensions of actions and states leads to an expo-
nential growth in the number of learning parameters. This
results in a noticeable performance decline in reinforcement
learning-based service composition methods, which lack fast
convergence speed and struggle to meet user requirements for
both service composition quality and time costs.

The primary objective of this paper is to explore the
issue of Web service composition within the realm of Web
service big data. In light of the aforementioned problem,
we present a novel approach to dynamic service composition
by integrating zero-sum game theory and inverse reinforce-
ment learning. Through extensive simulation experiments,
we demonstrate the efficacy of our proposed method in
mitigating the reliance on expert experience data quality
and enhancing the overall quality of composite services.
Furthermore, our method proves effective in reducing the
time required for service composition replanning, particu-
larly when confronted with a growing number of candidate
services and state nodes. The contributions of this paper are
shown below:

• First, we model the service composition problem as a
Markov Decision Process (MDP) and utilizes observed
service invocation data and expert experience to dynami-
cally adjust and generate new service composition solu-
tions using inverse reinforcement learning algorithms,
thereby achieving dynamic service composition. In the
context of web services big data environment, inverse
reinforcement learning is indeed a promising approach
to address the challenges of computational complexity
and increased parameters in traditional reinforcement
learningmethods. It can providemore effective solutions
to meet user requirements for service composition qual-
ity and time cost.

• Second, in order to tackle the challenge of the accu-
racy of inverse reinforcement learning algorithms being
influenced by the quality of expert experience data,
we integrate the concept of zero-sum game and propose
a zero-sum game integrated inverse reinforcement learn-
ing algorithm. This algorithm involves adjusting weight
coefficients and iteratively learning from expert experi-
ence data to generate an optimal strategy that surpasses
the expert policy. By doing so, we effectively reduce the
reliance of the inverse reinforcement learning algorithm
on the quality of expert experience data, and further-
more, decrease the time required for service composition
re-planning.

The remainder of this paper is organized as follows.
Section II reviews related works. Section III introduces a ser-
vice composition framework based on inverse reinforcement
learning. Section IV presents a service composition model

based on MDP. Section V proposes a zero-sum game inte-
grated inverse reinforcement learning algorithm. Section VI
presents experimental results. Finally, Section VII concludes
this paper.

II. RELATED WORK
Dynamic service composition problem has been studied
extensively. Dynamic service composition methods con-
sider the volatility of QoS attributes of Web services, and
dynamically adjust the service composition scheme to meet
the global QoS constraints of users during the operation
of composite services [9]. Dynamic service composition
methods can be divided into strategy-based approaches,
replacement-based approaches and reinforcement learning-
based approaches.

The strategy-based approach defines maintenance policies
in advance to deal with common abnormal situations that may
occur during the operation of composite services by analyz-
ing the collected historical data of the operation of composite
services [10], [11]. In the actual running process, unknown
exceptions may occur at any time, leading to the adjustment
strategy defined in advance for known exceptions is far from
enough. Therefore, these strategy-based approaches are not
universally applicable.

In order to further improve the universality, some
researchers adopt the replacement-based approach, that is,
to replace one or more similar or better candidate services
with the original poorly performing services, the essence of
which is to establish a redundancy mechanism for service
composition [12], [13], [14]. In [14], the authors pointed
out that most of the current studies are adaptive methods
for service selection module, that is, they only consider
the abnormal situation of service composition runtime, but
do not consider the service discovery module, that is, the
dynamic change of the candidate service set. In [15], the
authors introduced the concept of abstract proxy services in a
variability-supporting service composition language, namely
VxBPEL, and provides a mechanism to support variation
design and dynamic binding for unplanned changes at run
time. In [16], the authors constructed a QoS Dependency
Graph to capture QoS variations, and achieve adaptive com-
position with dynamic QoS satisfactions. In [17], the authors
used a recurrent neural network to predict the QoS, which
can be well adapted to a dynamic network environment. The
above replacement-based approach will inevitably increase
the extra cost of the system when the redundancy increases.
Especially, when the number of Web services with the same
or similar functions is large, the cost for the system is often
unacceptable.

In recent years, some researchers have applied reinforce-
ment learning to dynamic service composition to meet the
application requirements of service composition reprogram-
ming. Reinforcement learning is a machine learning method
that learns the optimal strategy by interacting with the exter-
nal environment, which has been widely used in the field
of service composition. In [18], [19], and [20], the authors
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modeled a trustworthy composite service adaptive control
process using Markov Decision Process (MDP), and pro-
posed an adaptive control algorithm based on Q-learning,
which supports optimal strategy action selection to achieve
adaptive adjustment and dynamic construction of the com-
posite service. Traditional reinforcement learning algorithms
are based on a discrete and finite system state space and
action space, and usually adopt value table query to learn
the value function, which is effective for problems with
small data size. However, in practical applications, when
facing massive Web service data, as the dimensions of
actions and states increase, the number of learning param-
eters increases exponentially, and traditional reinforcement
learning methods do not have fast convergence speed,
which cannot meet the efficiency requirements of service
composition.

To address the above issues, in [21] and [22], the authors
proposed a dynamic service composition method based on
automatic hierarchical reinforcement learning technology,
which divides the hierarchical structure of the service com-
position, effectively improving the efficiency of hierarchical
division and accelerating the learning speed, compared to
manual hierarchical division when encountering new sce-
narios. In [23], [24], [25], and [26], the authors integrated
the multi-agent system mechanism and the virtual action
process in the game theory field into the service composi-
tion model on the basis of reinforcement learning, which
effectively improved the convergence speed of the algorithm
when facing large-scale service scenarios. In [27], the authors
introduced a novel approach that aimed to achieve greater
data efficiency by saving the experience data and using it in
aggregate to make updates to the learned strategy. In [28],
the authors proposed a deep reinforcement learning-based
composition approach based on a parallel flock-based service
discovery algorithm. In [29], a WSCMDP model is proposed
to solve the large-scale service composition within a dynam-
ically changing environment, by combining RL with skyline
computing.

There are still some problems for the above research meth-
ods in the current application context, mainly manifested in
the following aspects:
(1) The reinforcement learning-based service composition

method can only obtain the optimal strategy when the
‘‘reward function value’’ of each step action learned
by the agent can be accurately obtained in the envi-
ronment. In big data environment, the QoS value of
candidate services may change at any time, making it
difficult to give an accurate reward function value based
on the QoS data of a certain moment or historical QoS
data alone, thus making it difficult to obtain the optimal
strategy.

(2) As the number of action and state dimensions increases,
the number of learning parameters increases expo-
nentially. The reinforcement learning-based service
compositionmethod will show significant performance
degradation and does not have a fast convergence

speed, making it difficult to meet the user’s require-
ments for service quality and service composition
time.

III. THE FRAMEWORK OF DYNAMIC SERVICE
COMPOSITION BASED ON INVERSE REINFORCEMENT
LEARNING
The paper models the dynamic service composition prob-
lem as an MDP and employs inverse reinforcement learning
algorithm to dynamically adjust service composition solu-
tions based on monitored service invocation and expert
experience data, thus ensuring the normal operation of com-
posite services. A dynamic service composition framework
based on inverse reinforcement learning algorithm is pro-
posed in this paper, as shown in Figure 1. The historical
QoS information of service composition, user preferences
and global constraints are taken as the runtime records of
service composition. Each execution of service composition
generates a service composition execution record. The suc-
cessful runtime records of service composition are used as
expert experience data. Based on historical QoS data, user
preferences and global constraints, a MDP-SCM is generated
tomodel the dynamic service composition. During the service
composition operation, the service composition execution
engine sends real-time QoS information of monitored service
components to the QoS data analysis module; the QoS data
analysis module analyzes the current service composition
solution based on user preferences, global QoS constraints
and historical QoS information, and determines whether
adjustment is needed. Once adjustments are deemed neces-
sary, real-time QoS information, user preferences, and global
constraints are sent to the optimal strategy solving module.
This module utilizes expert experience data to solve the opti-
mal strategy based on the zero-sum games integrated inverse
reinforcement learning algorithm, dynamically adjusting the
service composition solution, and sending the new service
composition solution to the service composition execution
module to ensure the normal operation of composite services.

FIGURE 1. The framework of inverse reinforcement learning-based
dynamic service composition.
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IV. SERVICE COMPOSITION MODEL BASED ON MDP
This paper models the service composition problem as
a Markov Decision Process (MDP) and proposes an
MDP-based service composition model, MDP-SCM. First
of all, this paper gives a formal description of MDP-SCM,
and gives the calculation method of state values. Then, the
calculation method of state values and the solution method of
the optimal strategy are given.

A. FORMAL DESCRIPTION OF MDP-SCM
The MDP-SCM model is represented by a five-tuple,
MDP-SCM = (t, S,A,P,R), where:

1) t represents the decision stage, t ∈ {1, 2, · · · , n}, where
n denotes the number of service classes.

2) S represents the collection of all possible states that
a service composition may experience during its exe-
cution from the start state to the end state. When we
say s ∈ S, we mean that it is the data about the
environment obtained from sensors or other perception
devices, and it is represented as an element belonging
to S. The states are represented in the form of vectors
so that computers can understand and process them.
s0 represents the start state, and sni represents the end
state.

3) A represents the set of candidate services, namely all
services that may be employed during the service com-
bination process. A (t) represents the set of candidate
actions that can be selected at the stage t , i.e., the set of
candidate services in service class St , where atj denotes
the jth candidate service in service class t .

4) P represents the probability of state transition,Pa
(
s, s′

)
represents the probability of transitioning from state s
to state s′ after executing service a under state s.

5) R represents the reward function, where Ra
(
s, s′

)
denotes the immediate reward that the system receives
when executing service a in state s and transitioning to
state s′, commonly denoted as r .

FIGURE 2. MDP-SCM of a speech communication service composition.

Figure 2 is a schematic diagram of the MDP-SCM for
a speech communication service composition. To facilitate
description, it is assumed that there are two candidate services
for each service class in this service composition. The circles

in the diagram represent service composition states, which
depict the relevant environment parameter vectors perceived
by the system after the execution of a specific service. The
solid black dots represent executable actions (i.e., selectable
services). Each path from the start state to the end state in the
diagram represents a service composition scheme. There are
a total of eight paths in the diagram, indicating that there are
eight possible service composition schemes for this speech
communication service composition. One of these service
composition schemes can be represented in the following
form:

τ1 = (s0, a11, s11, a21, s21, a31, s31)

In the context of speech communication service compo-
sition, τ1 denotes the transition from state s0 to state s31.
When it is in state s0, the next step is to execute action a11,
which refers to invoking the first candidate service of the first
service class. Then the state transitions to s11, which describes
the environment data obtained from sensors or other sensing
devices after the completion of action a11. Next, action a21
is executed, leading to a state transition to s21. After that,
action a31 is performed, resulting in a state transition to s31.
The entire service composition process concludes, reaching
state s31.

B. STATE VALUE CALCULATION OF MDP-SCM
To help understand the calculation process of state val-
ues, let’s take an example of a service composition with
three service classes in the MDP-SCM. The action sets are
denoted as A (1), A (2), and A (3), respectively. A (1) =

{a11, a12, a13, a14}, A (2) = {a21, a22, a23}, and A (3) =

{a31, a32, a33, a34} represent the actions contained in each
action set, i.e., the candidate services provided by each ser-
vice class. The global constraints of the service composition
are: the response time Cr

≤ 2000 ms, and the service price
Cp

≤ 600 yuan. The user preferences are 0.6 and 0.4,
respectively.

The prices of candidate services in each action set are
A (1) = {182, 190, 270, 380}, A (2) = {140, 230, 180},
A (3) = {120, 130, 125, 122}. The response time is dynam-
ically affected by the network environment. To reflect this,
we obtained the call records of each candidate service for
10 times and represented them as a matrix. Each element xij
in the matrix represents the response time of the ith candidate
service for the jth call, with a unit of milliseconds. If the
call fails, the corresponding element is denoted as -1. The
response time matrix of action set A (1) is shown below:

417 − 1 429 416 421 − 1 414 430 − 1 421
320 289 307 322 286 295 313 317 321 296
390 362 371 380 310 373 367 − 1 − 1 − 1
434 405 421 − 1 400 403 413 − 1 − 1 − 1


The matrix has 4 rows and 10 columns, where the 1st

row represents the response time of candidate service a11.
Some elements in the matrix may be −1, indicating the fail-
ure of the corresponding candidate service in specific calls.
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For example, in the response time matrix of action set A (1),
x11 = 417 represents the response time of a11 for the 1st call
is 417 milliseconds. x37 = −1 represents the 7th call of a13
fails.

The response time matrix of action set A (2) is shown
below: 417 239 − 1 641 521 − 1 − 1 − 1 − 1 − 1

201 277 307 121 186 395 395 417 121 396
450 242 431 − 1 240 433 433 − 1 − 1 − 1


The response time matrix of action set A (3) is shown

below:
173 133 121 146 − 1 − 1 119 128 − 1 − 1
90 109 97 112 86 95 113 107 111 106
112 132 101 130 − 1 122 109 113 − 1 − 1
174 153 124 − 1 140 133 113 − 1 − 1 − 1


To begin with, we calculate the median of response times

for successful service calls as the response time of each
candidate service. For action set A (1), its response time
vector is given by vr1 = {421, 307, 371, 408}. For action
set A (2), its response time vector is vr2 = {417, 277, 431},
while for action set A (3), its response time vector is vr3 =

{128, 106, 113, 133}. Therefore, the average response time of
action set A (1) is µr

1 = 376.75, that of action set A (2) is
µr
2 = 375, and that of action set A (3) is µr

3 = 120. Next,
we decomposed the global constraint on response time Cr
into sub-constraints Cr

i , where n denotes the number of
action sets. The formula for computing these constraints is
as follows:

Cr
i = Cr

×
µr
i∑n

i=1 µr
i

(1)

Based on formula (1), we obtain Cr
1 = 864.35, Cr

2 =

860.43, Cr
3 = 275.31, which are the sub-constraints on

response time for each action set. The actual response time
of action aij is denoted as vrij. The calculation formula for
the response time status sri of the service composition after
executing action aij is given by:

sri =


1, if vrij ≤ 0.85Cr

i

2, if 0.85Cr
i < vrij ≤ Cr

i

3, if Cr
i < vrij ≤ Cr

4. if others

(2)

In the case of service call failure, we set sri = 4. The coeffi-
cient 0.85 and the state value of service composition response
time status are both artificially set based on experience, and
can be adjusted according to different actual situations. The
calculation method for the service composition price status
spi is the same as described above. Finally, we can obtain the
calculation formula for service status si as follows, where
wr and wp represent user preferences for response time and
service price, respectively.

si = sri ×Wr + spi × wp (3)

Suppose that the final selected service for action A (1) in
the first decision stage is candidate service a13, with an actual
response time of 750ms, thus sr1 = 2. If Cp

1 = 271.98 and
the price of a13 is 182, then sp1 = 1. Finally, we can obtain
s1 = 1.6. Depending on the application scenario, the number
of states that can be partitioned in equation (2) may vary.
Furthermore, since user preferences may vary for different
service composition plans in equation (3), different state
spaces can be obtained for different application scenarios.

C. OPTIMAL STRATEGY OF MDP-SCM
The core problem of MDP-SCM is to find a global optimal
strategy π∗ that maximizes the cumulative reward. The func-
tion π (s) describes the action that the system will choose in
state s. For MDP-SCM, the selection of the optimal service
component depends on global constraints and the historical
QoS records of each candidate service. The process of strat-
egy generation for MDP-SCM is illustrated in Figure 3.
As shown in Figure 3, at the start state s0, the agent selects

and executes the optimal service component ws1 based on the
historical QoS information H1 of each candidate service in
the first service class. The state transitions to s1, the runtime
QoS of ws1 is stored as historical information in H1, and
the immediate reward r1 is calculated. Next, based on the
historical QoS information H2 of each candidate service in
the second service class, the agent selects and executes the
optimal service composition component ws2, and the state
transitions to s2. This process is repeated until the optimal
service components for all service classes in the workflow
are selected.

FIGURE 3. The strategy generation process of MDP-SCM.

The fundamental idea of reinforcement learning is to
improve the model by perceiving and incorporating feedback
information resulting from action execution during interac-
tion with the environment, while considering the current
system state to select the next action.When applying the basic
concept of reinforcement learning to Web service composi-
tion problems, a service is executed at a certain system state,
the system transitions to the successor state, and feedback
information is obtained. Generally, the better the service
quality, the higher the user satisfaction. Therefore, some cal-
culation method based on QoS attribute values can be used
to simulate the feedback information after service execution.
The formula for calculating the reward function value ra of
the service a after execution can be obtained as follows:

ra =

∑r

k=1
qk × wk (4)
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Here, qk represents the normalized value of the kth QoS
attribute of service a, while wk represents the user preference
for the attribute k . A higher reward function value ra after
service execution indicates higher service quality. Therefore,
the sequence of service selections that maximizes cumula-
tive reward function value and satisfies user non-functional
constraints can be considered as the optimal strategy ofMDP-
SCM, which generates an optimal Web service composition
solution. The specific formula is given as follows:

π∗
= argmax

π

∑
s∈S

Vπ (s)

= argmax
π

∑
s∈S

Pa(s, s′)(Ra(s, s′)+γV π (s′))

∀k ∈ {1, 2, · · · , r} Cqk ≥ Ck (5)

Ck represents the user’s requirements for QoS attributes
of composite services and Cqk represents the QoS attributes
of the composite service. Based on the real-time QoS infor-
mation obtained during system operation, the current values
of different QoS attributes of the composite service can be
calculated.

MDP-SCM provides a reliable approach for selecting ser-
vice components that satisfy user QoS constraints based on
real-time QoS information. The selection process proceeds
sequentially until all tasks are completed. Historical QoS
information is used to estimate the expected return func-
tion value after executing each candidate service. At the ith
service class of the workflow, the return function values of
the preceding i services are updated based on the real-time
QoS information of each service component, and the optimal
strategy is determined based on the global constraints and the
empirical return function values of the candidate services in
the unexecuted service classes using equations (5).

V. THE OPTIMAL STRATEGY BASED ON ZSG-IRL
When using the inverse reinforcement learning (IRL)
algorithm to find the optimal strategy for MDP-SCM, the
saved records of successfully executed service combinations
are processed. The state values are calculated based on the
runtime QoS values, global constraints, user preferences,
and other information in the service composition execution
records using the method described in Section IV. An expert
experience dataset is generated, which consists of decision
trajectory data {τ1, τ2, · · · , τm}. m represents the number of
samples, and each trajectory τi includes a sequence of states
and actions and is represented as follows:

τi = ⟨s0, a1, s1, a2, . . . , sni⟩

Here, ni represents the number of transitions in the ith
trajectory, i.e., the number of service calls. The trajectory τi
represents the execution of service a1 in state s0, followed
by a sequence of subsequent actions until the state transitions
to sni . The calculation of the return function value is based on
the service composition records and is calculated using the
method described in Section IV.
With the increasing Web services, IRL algorithm has

shown higher levels of fitting accuracy and optimization

precision compared to RL algorithms. However, IRL can
only obtain a reward function by blindly learning from expert
policies, without improving it. This limitation can impact the
degree of approximation between the optimal and expert poli-
cies. Therefore, when applying IRL to solve MDP-SCM, the
quality of expert experience data directly affects algorithmic
performance. The expert experience data extracted from ser-
vice composition records may contain service compositions
that do not meet the constraints or are of low quality, which
could reduce the overall quality of the expert data and subse-
quently affect the effectiveness of the IRL algorithm. To solve
this problem, this paper proposes a novel IRL algorithm that
applies zero-sum game theory to learn better strategies that
minimize the influence of expert experience data’s quality on
the results.

A. BASIC PRINCIPLE OF ZSG-IRL
Mathematician John von Neumann introduced the concept
of zero-sum games in his book ‘‘Theory of Games and
Economic Behavior’’, providing a specific definition: if the
total winnings of the participants in a game are always dis-
tributed in such a way that one participant’s earnings are
equal to the other participant’s losses, the game is called a
zero-sum game [30]. To establish a model for a zero-sum
game, it is necessary to determine the strategy sets and cor-
responding payoffs of both players based on the description
of the practical problem, and to construct a payoff matrix M
to view the two participants as the row player and column
player, respectively. In a zero-sum game, the two participants
A and B have strategy sets 5A = {a1, a2, · · · , am} and
5B = {b1, b2, · · · , bn}, respectively. cij represents the payoff
for player A when player A adopts strategy ai and player B
adopts strategy bj (at this time, player B ’s payoff is −cij),
and the payoff matrixM for player A is shown in Table 1.

TABLE 1. The payoff matrix M of player A.

A choice of a row or column is typically considered a
pure strategy, while many combinations of rows or columns
constitute a mixed strategy. P represents the mixed strategy of
the row player,Q represents the mixed strategy of the column
player, and M (P,Q) = PTMQ represents the payoff of the
row player under two mixed strategies.M (P, j) andM (i,Q)

represent the expected payoff value when one player adopts a
pure strategy and the other player adopts a mixed strategy.
After multiple rounds of gameplay, the payoff of the row
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player and the loss of the column player will reach a fixed
and unchanged state.

In solving zero-sum game problems for two players, the
minimax method is often used, based on the core idea
that both players assume a pessimistic attitude towards
their opportunities for achieving greater gains. Specifically,
player A assumes that player B will choose a strategy that
maximizes player A’s loss, while player B assumes that
playerAwill choose a strategy that maximizes playerB’s loss.
Given a payoff matrix M for the row player, player A hopes
to select the position in the matrix with the highest possible
payoff, while player B hopes to select the position with the
lowest possible payoff. Specifically, for each row strategy that
player A can choose, player B chooses the column with the
lowest payoff in that row. Therefore, player A will choose the
row strategy corresponding to the maximum payoff among
the minimum payoffs of each row chosen by player B, which
means choosing ‘‘maximum’’ among ‘‘minimum’’ and is rep-
resented as maxmin. For each column strategy that player B
can choose, player A chooses the column with the highest
payoff in that column. Therefore, playerBwill choose the col-
umn strategy corresponding to the minimum payoff among
the maximum payoffs of each column chosen by player A,
which means choosing ‘‘minimum’’ among ‘‘maximum’’ and
is represented as minmax.

In zero-sum two-player games, if the given payoff matrix
M has mixed strategies P = (p1, p2, · · · , pm) and Q =

(q1, q2, · · · , qn) , as well as a constant v that satisfies∑m
i=1 cijpi ≥ v for any j, and

∑n
j=1 cijqj ≤ v for any i, then

the strategy combination (P,Q) is the Nash equilibrium of
the zero-sum two-player game [31]. Here, v is the expected
payment received by player A in the equilibrium, which is
also known as the value of the game. When v > 0, the linear
programming method is commonly used to solve the Nash
equilibrium of the game.

In IRL, the performance of a learned strategy π can be
evaluated by the difference between the cumulative reward
function value V π and the cumulative reward function
value V πE of an expert strategy πE , that is, V π

− V πE . The
fundamental idea of integrating zero-sum games into IRL is
to find an optimal strategy π∗ from the strategy set 5, such
that the optimal strategy learned by the agent is as superior as
possible to the expert strategy. Thus, the objective function
can be expressed as follows:

U (π ) = V π
− V πE (6)

Equation (6) can be transformed into the following form:

U (π ) = wTµπ
− wTµπE (7)

wT represents the weight coefficient vector; µπ and µπE

respectively denote the expected state vector under the strat-
egy π and the expert strategy πE . The corresponding strategy
when maximizing Equation (7) is the optimal strategy π∗,
which can be expressed as follows:

π∗
= argmax

π
(wTµπ

− wTµπE ) (8)

As the weight w is adjustable and affects the result of
the objective function, even if the optimal strategy has been
obtained, changes in the weight w may cause the objective
function to decrease, resulting in the learned strategy being
inferior to the expert strategy. Therefore, it is necessary to
consider the value of the weight w. The basic principle of
ZSG- IRL algorithm is to minimize the objective function
by changing the weight w, and then maximize the objective
function by selecting the strategy π . This process is similar
to the basic idea of two-player zero-sum games in game
theory. Therefore, the strategy π determined by the learner
and the weight coefficient w determined by the environment
are regarded as two players. The game objective of strategy
π is to maximize its own benefits, that is, to maximize the
value of the objective function, while the game objective of
weight coefficients w is to minimize their own losses, that
is, to minimize the value of the objective function. Thus,
the expression of the optimal strategy for ZSG- IRL can be
obtained as follows:

π∗
= arg max

π
min
w∈W

(wTµπ
− wTµπE ) (9)

In the expression, W represents the domain of the weight
coefficients w, where W = {w : w ∈ R, ∥w∥1 = 1,w > 0},
and ∥w∥1 denotes the L1 norm of the weight vector w.

B. ZSG-IRL ALGORITHM
As shown in Algorithm 1, ZSG_IRL consists of the following
steps: (1) calculating the expert strategy’s feature expectation
vector based on expert experience data, (2) using iterative
IRL algorithm to obtain the optimal strategy under different
weight coefficients and the corresponding feature expectation
vector, and (3) updating the weight coefficients and returning
to step (2) until reaching the maximum iteration number.

When the dimension of the game matrix M is large, the
computational cost of solving it by linear programming is
wasteful due to the large number of iterations generated by
the iterative process, which equals the number of policies
generated. In multiple repeated games, the multiplicative
weight method is used to solve the problem of a large or
unknown game matrix. The idea behind the multiplicative
weight method is to take one player as the update criterion,
select an initial mixed strategy for the row player in the first
round of the game, and then calculate the corresponding new
mixed strategy for the row player based on certain multipli-
cation rules in each subsequent round. Through this process,
the row player is updated and the weight is updated by multi-
plication rules. Each column of the gamematrixM is taken as
the column player’s strategy choice, and the optimal strategy
represents the feature expectation vector µπj −µπE under the
current strategy condition. The new strategy is obtained based
on the strategy iteration method. A game process mainly
studies its game matrix, where the game matrix in this paper
is established based on the gains and losses of the learner. The
expression of the element in the ith row and jth column of the
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Algorithm 1 The Zero-Sum Game Integrated Inverse Rein-
forcement Learning Algorithm
Input: State space S;

Action space A;
Expert space πE ;
Maximum iteration number T ;
Parameter ε.

Output: Optimal strategy π∗.
1. According to πE , compute the expected state vector µπE

2. Set β =

(
1 +

√
2 ln
T

)−1
, d denotes the number of states

3. Initialize w1, set w1
i = 1, where i = 1, 2, · · · , d

4. Initialize π∗

5. for (t = 1; t ≤ T ; t + +) do
6. Normalize weight w, set wti =

wti∑d
i=1 w

t
i

7. π1
= randomly generated strategy

8. µ1
= feature expectation of π1

9. for (j = 1, t (j) > ε, j+ +) do
10. solve t (j) = maxw:∥w∥2≤1mink∈{1,2,··· ,j}wT

(
µk − µπE

)
s.t. ∥w∥2 ≤ 1, get wj

11. π j+1
= the optimal strategy in ⟨S,A,R(s) = wjT s⟩

12. compute µj+1

13. end for
14. if (t (j) ≥ t)

15. π∗
= π j+1

16. end if
17. compute the new weight wt+1:

wt+1
i = wti

βM(i,j)

d∑
i=1

wtiβ
M(i,j)

18. end for

game matrixM is given by:

M (i, j) = µπj (i) − µπE (i) , i = 1, 2, · · · , d

In this equation, µπj (i) represents the ith component of
the feature expectation vector under strategy πj, and µπE (i)
represents the ith component of the feature expectation vec-
tor under expert strategy πE . The dimension of the weight
coefficient is denoted by d . Therefore, the expression for the
optimal strategy is as follows:

π∗
= max

π∈5
min
w∈W

wTM (10)

The basic multiplicative weight algorithm is used to update
the weight vector w of the row player. The main idea of this
algorithm is as follows: The row player selects the weight
vector w that minimizes the target function, i.e., wmin =

argminw∈WwTM . Then, based on this weight vector, the col-
umn player selects a strategy π that maximizes the target
function, i.e., πmax

= argmaxπ∈5wTM . According to the
multiplication rules in this algorithm, the weight vector w is
updated using a simple equation, which is given as follows:

wt+1
i = wti

βM (i,j)∑d
i=1 w

t
iβ

M (i,j)
(11)

In this equation, t represents the current iteration num-
ber, i represents the ith component of the weight vector,

β is a parameter of the multiplicative weight algorithm,
and β ∈ [0, 1).

VI. EXPERIMENTAL EVALUATION
The main content of this section of the experiment includes
two parts:

1) The dataset is divided into good and bad expert expe-
rience datasets, and the number of states where the
optimal strategy obtained by IRL algorithm and each
expert strategy take different actions, as well as the dif-
ference in cumulative rewards under different iteration
numbers are analyzed to verify the learning ability of
the algorithm.

2) The cumulative reward values and convergence speed
of several dynamic service composition methods are
compared under different numbers of candidate ser-
vices and state nodes to verify the effectiveness and
scalability of the service composition method proposed
in the paper.

A. DATA SET AND EXPERIMENT SETUP
1) EXPERIMENTAL DATA SET AND INPUT PARAMETERS
We generated the raw dataset, named API_Data, by scraping
21,867 API service description documents and 6,245Mashup
description documents from the ProgrammableWeb web-
site. QoS data was collected by randomly calling API
services from the API_Data dataset at different time intervals,
generating the QoS_Data dataset for simulation experi-
ments. To simulate large-scale services and dynamic network
environments, we randomly generated an MDP state tran-
sition graph with a varying number of state nodes, ranging
from 100 to 400, and a different number of services available
to each node, ranging from 1,000 to 4,000. The resulting
workflow search space ranges from 1000100 to 4000400, rep-
resenting a vast solution space. We assumed that candidate
services within each state node were functionally equivalent,
but differ in their QoS values. Using the QoS_Data dataset,
we randomly assigned QoS data from the dataset to each
of the candidate services. We utilized the service selection
method proposed in paper [32] to generate the top 105 optimal
service composition solutions and consider this set of solu-
tions as the expert experience dataset.

2) COMPARISON METHOD
The dynamic service composition proposed in the paper is
compared with the methods used in paper [20] and [26]:

Q-DSC: The dynamic service composition method pro-
posed in paper [20] models the service composition problem
as an MDP-SCM and uses the Q-learning algorithm to find
the optimal strategy. The relevant parameters used in the
Q-learning algorithm used in the experiment are: discount
factor γ = 0.9, learning rate α = 0.2.
Multi-Q-DSC: The dynamic service composition method

proposed in paper [26] models the service composi-
tion problem as an MDP-SCM and uses the multi-agent
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Q-learning algorithm to find the optimal strategy. The agent
is set to be 4.

ZSG-IRL-DSC: The service composition re-planning
method proposed in the paper models the service composition
problem as an MDP-SCM and uses the inverse reinforcement
learning algorithm combining zero-sum game theory to find
the optimal strategy.

B. ANALYSIS OF LEARNING EFFECT OF ZSG-IRL
The dataset used in this section is divided into two groups:
a good expert experience dataset and a poor expert experi-
ence dataset, and two experiments are conducted to verify
the learning ability of the ZSG-IRL algorithm. The good
expert experience dataset is the same as the one used in the
paper, while the poor expert experience dataset randomly
replaces 10% of the service composition running records with
failed service compositions and low-quality service composi-
tion running records from the expert experience dataset used
in the paper. The number of state nodes is set to 100, the
number of candidate services available on each service class
is set to 100, and each experiment runs 50 times, with the
average taken as the experimental result. Due to the limited
space, Table 2 only includes a portion of the expert experience
data. Specifically, it provides three examples of good expert
experience data and three examples of bad expert experience
data. Each trajectory consists of 100 state nodes, and the table
only lists the four state values from s0 to s3. In this table,
si represents the state value when the service composition
is in state i, and ai represents the selected candidate service
number from service class i.
In each experiment, the number of states in which the

expert strategy and the learned strategy by ZSG-IRL take
different actions is recorded at different iteration numbers
to verify the similarity between the learned strategy and the
expert strategy, i.e., the learner’s learning ability, and the
difference between the reward function values of the expert
strategy and the learned strategy is recorded to verify the
similarity between the learned strategy and the expert strat-
egy. The experimental results are shown in Figures 4 and 5,
where the horizontal axis represents the iteration number in
units of 103.

TABLE 2. The examples of both good and bad expert experience data.

Figure 4 illustrates the number of states where the learned
optimal strategy differs from the expert strategy in the good

expert experience dataset and the poor expert experience
dataset. In the good expert experience dataset, the curve
shows a decreasing trend as the number of iterations increases
and reaches a stable state after approximately 5 × 103 itera-
tions. In the poor expert experience dataset, the curve also
shows a decreasing trend as the number of iterations increases
but exhibits a sharp decline within approximately 3500 iter-
ations and then shows fluctuating trends before reaching
stability after 15 × 103 iterations. In both datasets, the final
results do not converge to 0, indicating that the ZSG-IRL
algorithm cannot learn a strategy that is identical to the
expert strategy. Additionally, more learning time is required
to achieve good performance in the poor expert experience
dataset.

FIGURE 4. The number of states with different actions.

Figure 5 depicts the difference between the cumulative
reward values of the expert strategy and the learned strat-
egy in the good expert experience dataset and the poor
expert experience dataset. In both datasets, the curve shows a
rapid decreasing trend and reaches stability at approximately
−2.8 and −3.1, respectively. This indicates that the cumu-
lative reward value of the learned strategy converged to a
value greater than the cumulative reward value of the expert
strategy, providing evidence of the accuracy of the integrated
zero-sum game inverse reinforcement learning algorithm.
The algorithm can learn an optimal strategy that outperforms
the expert strategy. The trend of the performance curve in
both datasets is similar, suggesting that the performance of
the integrated zero-sum game inverse reinforcement learning
algorithm is less affected by the quality of the expert expe-
rience data. This validates the effectiveness of the proposed
integrated zero-sum game inverse reinforcement learning
algorithm.

FIGURE 5. The difference of cumulative reward values.

C. COMPARATIVE ANALYSIS OF DYNAMIC SERVICE
COMPOSITION METHODS
This section of the experiment is divided into two groups.
The first group compares the cumulative reward values and
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convergence time of Q-DSC, Multi-Q-DSC, and ZSG-IRL-
DSC with different candidate service numbers, while the
second group compares the convergence time of Q-DSC,
Multi-Q-DSC, and ZSG-IRL-DSC with different state node
numbers. The purpose is to verify the effectiveness and scal-
ability of the proposed ZSG-IRL-SCR algorithm.

1) CONVERGENCE REWARD VALUE AND CONVERGENCE
TIME WITH DIFFERENT CANDIDATE SERVICE NUMBERS
In this experiment, the state node number was set to 100,
and the number of candidate services that can be selected for
each service category was set to 1000, 2000, 3000, and 4000,
respectively. The experimental results of different candidate
service numbers are shown in Figure 6. The y-axis represents
the cumulative reward value. When the algorithm finally
converges, the cumulative reward value will converge to a
fixed value, referred to as the convergence reward value.
A higher convergence reward value indicates a higher service
combination quality closer to the optimal value. The x-axis
represents the number of time segments. The earlier the
cumulative reward value converges, the faster the algorithm
converges, which means that the steeper the curve, the faster
the convergence speed, and the flatter the curve, the slower
the convergence speed.

The experiment result of the candidate service number
being 1000 is shown in Figure 6(a). The cumulative reward
value of ZSG-IRL-DSC converges at approximately 61,
that of Multi-Q-DSC converges at approximately 68, and
that of Q-DSC converges at approximately 63. In terms
of convergence time, ZSG-IRL-DSC converges in approx-
imately 4100 time segments, Multi-Q-DSC converges in
approximately 4500 time segments, and Q-DSC converges in
approximately 5400 time segments. The experiment results
show that the convergence reward value of ZSG-IRL-DSC is
the lowest, but the convergence speed is the fastest. ZSG-IRL-
DSC approaches the convergence reward value of Q-DSC,
and the convergence time of ZSG-IRL-DSC is reduced by
8.9% compared to Multi-Q-DSC with the maximum conver-
gence reward value.

The experimental results obtained in Figure 6(a) can be
attributed to several factors. Firstly, inverse reinforcement
learning is particularly well-suited for the dynamic web ser-
vice composition problem due to its ability to learn from
expert experience data. This allows the system to leverage
the knowledge and decision-making processes of human
experts when generating the reward function and optimal
strategy. The use of IRL enables the system to capture
complex patterns and preferences present in the expert expe-
rience dataset, leading to effective and efficient service
composition. However, it is acknowledged that traditional
IRL methods may suffer from limitations in terms of accu-
racy. The inherent uncertainty and variability of web service
quality of service (QoS) data can pose challenges when cal-
culating the reward function. To overcome this limitation,
an improved IRL approach ZSG-IRL-DSC was employed
in the experiments. This approach aimed to approximate

FIGURE 6. Scalability comparison for different numbers of candidate
services.

the results of Q-learning, a well-established reinforcement
learning algorithm known for its accuracy. By enhancing the
IRL methodology, the system was able to achieve results that
were close in performance to Q-learning while maintaining
faster convergence.

The experimental results shown in Figures 6 (b), (c),
and (d) demonstrate that as the number of candidate services
increases, it has an impact on the performance of the algo-
rithms. The Q-DSC algorithm converges at approximately
6400 time steps with a cumulative convergent reward of
around 65, when the number of candidate services is 2000.
The Multi-Q-DSC algorithm converges at approximately
5300 time steps with a cumulative convergent reward of
around 71 under the same condition. The ZSG-IRL-SCR
algorithm converges at approximately 4900 time steps with
a cumulative convergent reward of around 62. When the
number of candidate services is 3000, Q-DSC converges at
approximately 7100 time steps with a cumulative convergent
reward of about 64, Multi-Q-DSC converges at approxi-
mately 6600 time steps with a cumulative convergent reward
of about 70, and ZSG-IRL-DSC converges at approximately
5700 time steps with a cumulative convergent reward of
about 62. When the number of candidate services is 4000,
Q-DSC converges at approximately 8300 time steps with
a cumulative convergent reward of about 62, Multi-Q-DSC
converges at approximately 7500 time steps with a cumu-
lative convergent reward of about 71, and ZSG-IRL-DSC
converges at approximately 6300 time steps with a cumula-
tive convergent reward of about 59. These results indicate that
the size of the candidate service set affects the performance of
the algorithms. With an increase in the number of candidate
services, the convergence speed of the algorithms decreases,
while the cumulative convergent reward does not show a clear
upward trend.
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2) THE CONVERGENCE TIME FOR DIFFERENT
NUMBERS OF STATE NODES
In this experiment, the number of candidate services for
each service class was set to 1000, and the number of
state nodes was set to 100, 200, 300, and 400, respec-
tively. The running times of the algorithms to obtain the
optimal strategy are shown in Figure 7. As the number of
state nodes increases, the running time of all three meth-
ods increases to varying degrees. ZSG-IRL-DSC performs
the best, followed by Multi-Q-DSC. When the number of
state nodes is set to 400, the running time of Q-DSC is
approximately 27.8 minutes, that of Multi-Q-DSC is about
22.4 minutes, and ZSG-IRL-DSC only needs 16.1 minutes to
converge.

The experimental results demonstrate that the convergence
cumulative return of ZSG-IRL-DSC is close to that of Q-DSC
and it performs better than Multi-Q-DSC and Q-DSC in
terms of convergence speed. This means that ZSG-IRL-
DSC can effectively reduce the running time while obtaining
a cumulative return value that is superior to the expert’s
strategy.

FIGURE 7. Convergence time for different numbers of states.

VII. CONCLUSION
In this paper, a dynamic service composition method based
on ZSG-IRL is proposed. To achieve this, we introduce a
service composition framework based on inverse reinforce-
ment learning, along with a Markov Decision Process (MDP)
service composition model, and present methods for com-
puting state values and optimal strategies within this model.
Additionally, we develop an inverse reinforcement learning
algorithm based on a combination of the zero-sum game and
inverse reinforcement learning concepts to find the optimal
strategy for MDP-SCM. Experimental results demonstrate
that our proposed dynamic service composition method
not only achieves better-than-expert optimal strategies but
also reduces the time required for service composition re-
planning. Furthermore, this method effectively addresses the

problem of increasing numbers of candidate services and
state nodes.

In our future work, we plan to use large-scale service
composition execution records from the Internet, along with
client context information, to predict the service composition
environment’s status and Web service QoS information, and
to develop high-quality service composition solutions that
can improve the quality of service composition and success
rate of service composition execution.
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