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ABSTRACT Ensuring the security of critical Industrial Internet of Things (IIoT) systems is of utmost
importance, with a primary focus on identifying cyber-attacks using IntrusionDetection Systems (IDS). Deep
learning (DL) techniques are frequently utilized in the anomaly detection components of IDSs. However,
these models often generate high false-positive rates, and their decision-making rationale remains opaque,
even to experts. Gaining insights into the reasons behind an IDS’s decision to block a specific packet can
aid cybersecurity professionals in assessing the system’s effectiveness and creating more cyber-resilient
solutions. In this paper, we offer an explainable ensemble DL-based IDS to improve the transparency and
robustness of DL-based IDSs in IIoT networks. The framework incorporates Shapley additive explanations
(SHAP) and Local comprehensible-independent Clarifications (LIME) methods to elucidate the decisions
made by DL-based IDSs, providing valuable insights to experts responsible for maintaining IIoT network
security and developing more cyber-resilient systems. The ToN_IoT dataset was used to evaluate the efficacy
of the suggested framework. As a baseline intrusion detection system, the extreme learning machines (ELM)
model was implemented and compared with other models. Experiments show the effectiveness of ensemble
learning to improve the results.

INDEX TERMS Explanation AI (XAI), intrusion detection systems (IDS), SHapley additive explanations
(SHAP), local comprehensible model-independent clarifications (LIME), ensemble learning, CNN.

I. INTRODUCTION
An emerging technology called the Industrial Internet of
Things (IIoT) is being connected more and more into our
daily lives [1], [2]. This technology is transforming cities
around the globe into smart cities, and a recent study
conducted in 2021 revealed a significant increase in the
quantity of IIoT-connected devices. Specifically, the number
of such devices was recorded at 8.6 billion in 2019, which
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rose to 9.76 billion in 2020 and reached 11.28 billion in
2021. The study also projected a substantial surge in the
coming years, estimating a staggering 29.42 billion IoT-
connected devices by 2030 [3]. By leveraging communication
technologies, IIoT aims to connect and deploy billions
of devices in order to support various applications across
different industries, such as agriculture [4], healthcare [5],
factories [6], and transportation [7]. The IIOT has the
potential to enhance productivity and efficiency through
smart, remote management. However, it also brings an
increased vulnerability to cyberattacks due to constant
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connectivity, data sharing, and the IIoT networks’ resource-
constrained design [8], [9]. Thus, it is essential to develop
different security mechanisms [10], [11], [12] to address a
variety of cyberattacks on the IIOT ranging from different
attacks. In this regard, IIoT networks may be protected
against a variety of attacks using intrusion detection systems
(IDS), which is a potential approach. In order to protect
systems and networks from malicious actions that can bypass
security boundaries, Intrusion Detection Systems (IDSs) are
frequently utilized as a supplementary layer of security [13].
IDSs are designed to monitor system and network events
for any suspicious activity and provide an early warning of
potential threats [14]. This proactive security approach helps
mitigate potential damages and minimize the impact of any
successful intrusion attempts. By providing an extra layer
of defense, IDSs are critical in ensuring the security and
integrity of systems and networks.

In addition to IDSs, alternative strategies and techniques
exist for enhancing IIoT systems’ security. Ullah et al.
introduced a novel approach to encrypting and digitally
authenticating data within a network of interconnected
devices, obviating the need for traditional certificates. This
technique leverages a specialized curve design to expedite
and fortify both encryption and authentication processes [15].
Conversely, Shahzad et al. unveiled an innovative mechanism
for verifying the legitimacy of devices within a sensor and
machine network, bypassing the reliance on passwords or cer-
tificates. This methodology employs a confidential key and a
randomized value to validate the devices’ identities [16].
The current IDSs for IIoT encounter limitations in anomaly

detection, with prevailing methods yielding unsatisfactory
outcomes. This deficiency often leads to elevated rates
of inaccurate results, compromised detection performance,
and substantial losses [17], [18], [19], [20], [21], [22].
These challenges underscore the pressing need for enhanced
anomaly detection techniques tailored to the intricate IIoT
environment.

Intelligent IDS that utilize artificial intelligence (AI) algo-
rithms are gaining popularity as an effective means of detect-
ing IIoT-related intrusions. Researchers have used a variety of
machine learning (ML) approaches in recent years to classify
network attacks without detailed knowledge of their specific
traits. Traditional ML approaches, however, struggle to offer
unique feature descriptors for attack detection due to their
limited model complexity. Lately, a significant advancement
inML has been achieved through the simulation of the human
brain using neural network structures, known as DLmethods.
These methods employ a deep-layered architecture to tackle
complex problems, including convolutional neural networks
(CNNs) [23]. By learning the distinctive characteristics of
each form of IIoT attack, DL-based IDSs can rapidly and
effectively identify and anticipate system intrusions. DL-
based IDSs offer a more effective and dependable method of
protecting IIoT networks by maximizing the detection rate of
IIoT-related intrusions [24]. DL models are often considered
black-box models, with decisions made by these models

provided to users without any explanations or interpretations
on how or why such decisions were made [25]. This lack
of transparency and interpretability means that users are
unable to understand or trust the decisions made by DL
models [26] and are unable to base their choices on the
results of DL models. To address these limitations, the
emerging paradigm of XAI provides a range of techniques
to interpret and understand predictions made by DL models
[27], [28]. By using XAI, cybersecurity experts can explain
the decisions made by DL models and make them more
interpretable [24]. As a result, professionals are better able
to trust and modify these models and, eventually, make more
informed judgments based on the models’ outputs [29]. This
research paper introduces a new framework that combines DL
architecture with XAI techniques for binary and multi-class
classification. Consequently, the following are the study’s
primary contributions:
□ Propose an innovative ensemble DL-based architecture

that uses three CNN models and an extreme learning
machines (ELM) model to secure IIoT networks.

□ Improve the intrusion detection performance for the IIoT
network by evaluating the proposed model using one
of the recent datasets, the TON_IoT dataset [30], and
overcoming the state-of-the-art IDS’s performance in
the same field in binary and multi-class classification.

□ Improve the interpretability of DL-based decisions by
providing explanations. The project utilizes two specific
techniques, namely Local Interpretable Model-agnostic
Explanations (LIME) [31] and SHapley Additive expla-
nations (SHAP) [32], in order to achieve this goal.
By effectively explaining the decision-making process
of the IDS, this project aims to enhance the transparency
and reliability of the cybersecurity model and ultimately
help prevent cyber threats.

The remainder of this paper is divided as follows. Section II
introduces an overview of the concepts and techniques used
in our research, including CNNs, ELM, ensemble methods,
and XAI. In Section III, we present a literature review of
related work in the field of ID, focusing on the use of these
techniques. Section III describes the methodology used in
our study, including details on the dataset, data preparation
techniques, and implementation of the five models (3 CNN
models, ELM, and Ensemble). Section IV presents and
analyzes the results obtained from the five models, including
accuracy, precision, recall, F1 score, and the application of
XAI methods (SHAP and LIME). In Section V, we provide
a summary of our key findings and discuss potential future
work that could build on our research. We conclude our paper
in Section VI.’’

II. BACKGROUND
This section provides an overview of the key concepts
and techniques employed in our research. Our study uti-
lizes CNNs, extreme learning machines (ELM), ensemble
methods, and XAI techniques to tackle the challenges at
hand.
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A. CONVOLUTION NEURAL NETWORK
An advanced kind of neural network architecture known
as a CNN is created especially for processing grid-like
data, such as images and time-series data. Convolution,
pooling, and fully connected layers make up the three basic
layers that make up the core architecture of a CNN [33].
By employing convolutional layers, CNNs can automatically
learn to extract relevant features from input data, reducing the
need for manual feature engineering [34]. This ability to learn
hierarchical feature representations has made CNNs popular
for various classification and pattern recognition tasks.

B. EXTREME LEARNING MACHINE (ELM)
ELM is a single-hidden-layer feedforward neural network
(SLFN) training algorithm that aims to overcome some
of the limitations of traditional gradient-based learning
methods, such as slow convergence and getting stuck in local
minima [35]. ELM offers a fast learning speed and good
generalization performance by randomly assigning input
weights and analytically determining the output weights.

C. ENSEMBLE LEARNING
Ensemble learning, a prominent research area in the data
mining field, addresses the challenges of complex data
types by unifying data fusion, modeling, and mining within
a single framework [36], [37], [38]. Ensemble methods
are considered the state-of-the-art solution for many ML
challenges, as they enhance the predictive performance of a
single model by trainingmultiple models and combining their
predictions [39], [40]. Initially, ensemble learning extracts
diverse features through various transformations and then
employs multiple learning algorithms to generate weak
predictive outcomes based on these features [41]. Ultimately,
the informative knowledge from these preliminary results is
fused to attain knowledge discovery and improved predictive
performance using adaptive voting schemes [36]. Ensemble
methods, which include bagging, boosting, and stacking,
are beneficial for reducing overfitting and increasing model
robustness [42].

D. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)
XAI is a field of study that focuses on developing algorithms
and techniques that enable AI models to provide human-
understandable explanations for their decisions and predic-
tions [39]. XAI aims to enhance transparency, accountability,
and trust in AI systems by allowing humans to understand
how the models arrived at their conclusions [29]. In the
context of Cybersecurity, XAI is crucial in detecting and
preventing cyber threats [43]. Cybersecurity experts use AI
models to analyze large volumes of data and identify potential
threats. However, the black-box nature of these models makes
it difficult to understand how they make decisions, leaving
experts unsure of how to respond to identified threats [44].
With XAI, cybersecurity experts can better understand the
reasoning behind the AI model’s predictions, enabling them

to make more informed decisions about how to respond to
cyber threats [29].

III. RELATED WORK
Many researchers have been interested in using ML and
DL methods for network security and attack detection.
Different algorithmswere used: XGBoost [45], Decision Tree
[43], random forest (RF) [46], and support vector machine
(SVM) [47]. [48] used three benchmark datasets, NSL-KDD,
CIC-IDS2018, and TON IoT, to offer a three-tiered DL-
based technique for identifying abnormal network intrusion
behaviors. The proposed framework combines K-means
clustering, GANomaly, and CNN techniques. An Ensemble-
based Network IDS with Bayesian CNN was implemented
and evaluated using the NSL-KDD and UNSW-NB15
datasets [49]. A hybrid CNN-based DL approach has been
proposed for classifying flow traffic as an attack or not [34].

A novel model by [50] evaluated two feature sets (NetFlow
and CICFlowMeter) across different network environments
and attacks. NetFlow demonstrates superior detection accu-
racy, enhanced by Shapley Additive explanations (SHAP)
for explaining ML model decisions and feature influence.
An explainable deep learning-based intrusion detection
framework was presented by [51] for improving transparency
and resiliency in IoT networks. The framework utilizes
Shapley additive explanations (SHAP) to interpret decisions
made by the deep learning-based IDS. Experimental results
using the ToN_IoT dataset demonstrate high performance
with 99.15% accuracy and 98.83% F1 score, showcasing its
effectiveness in protecting IoV networks against sophisti-
cated cyber-attacks.

A real-time deep neural network-based intrusion detec-
tion system was proposed using benchmark Netflow-based
datasets. It incorporates a packet capturing and detecting
algorithm for accurate attack detection, showcasing its
effectiveness [52]. Another recent model implemented by
[53] achieved good performance for the Internet of Medical
Things (IoMT).

The present study focuses on the interpretable aspect of
classification algorithms employed in IDS by utilizing an
ensemble model based on three CNN models. Ensemble
models are well-known for generating accurate results by
choosing the best outcome. However, our research prioritizes
accuracy and emphasizes the importance of interpretability in
IDS models. This approach allows for a better understanding
of the model’s reasoning and helps to identify any potential
issues or errors in the DL model. By combining accuracy and
interpretability in our approach, we aim to develop an IDS
model that is effective in detecting intrusions and transparent
and easily understandable for security professionals.

IV. METHODOLOGY
The methodology employed in this study aimed to develop a
robust IDS using the ToN-IoT dataset since it is considered
an IIoT dataset, one of the recent IIoT datasets, and has nine
types of attacks. Most state-of-the-art- IDSs are evaluated
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FIGURE 1. Proposed IIoT intrusion detection model architecture.

using non-recent datasets, which are limited in their ability
to address the latest attack categories. Alternative intrusion
detection systems (IDSs) were assessed using recent datasets
encompassing only a restricted range of attack types or
classifications. For instance, LATAM-DDOD-IOT focuses
solely on two categories: Denial of Service (DoS) and
Distributed Denial of Service (DDoS). On the other hand,
CIC IoT 2023 incorporates seven distinct attack categories.
Still, most instances within this dataset pertain to DDoS
and DoS attacks, leaving a comparatively lower number of
instances for other attack categories. Notably, the authors
of this evaluation did not clarify whether this dataset can
be categorized as IIoT data. The data preparation stage
involved normalizing and scaling the data using min-max
scaling to ensure all features were in the same range.
Five distinct models were employed in the creation of
the IDS. Three different CNN models were utilized, with
varying numbers of layers and nodes, to evaluate their
performance. An ensemble model was also developed, which
combined the three CNN models using a hard voting
mechanism. This approach allowed for the selection of the
most accurate prediction among the three CNN models.
Several metrics were computed to assess howwell the models
performed. Additionally, XAI methods such as SHAP and
LIME provided insights into the feature importance and the
decision-making process of the models. Model architecture is
shown in Figure 1.

A. DATASET PRE-PROCESSING
In our study, we leverage the TON-IoT dataset, which
consists of diverse data sources collected from an entire IIoT

FIGURE 2. Type distribution in TON_IoT attacks.

(Industrial Internet of Things) system. The dataset includes
telemetry information from connected devices, operating
system logs from both Linux and Windows systems, and
network traffic related to the IIoT system. This mixed data
was collected from a medium-sized IoT network developed
by the UNSW Canberra IoT Labs and the Cyber Range. The
ToN-IoT dataset is available through the ToN-IoT repository
[30] and is presented in CSV format with labeled columns
indicating either normal behavior or an attack, along with a
sub-category specifying the type of attack.

The TON-IoT network dataset identifies nine primary
categories of attacks targeting IoT networks, as explained in
Figure 2. These are as follows:
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□ Scanning: Attackers scan IoT systems to gather infor-
mation, such as available services and open ports,
to identify potential vulnerabilities and plan further
attacks.

□ DoS (Denial of Service): This attack aims to overwhelm
an IoT system with malicious requests, rendering its
services unavailable.

□ Injection: In this attack, the perpetrator attempts to
insert malicious data or software into an IoT system,
potentially disrupting its normal operation and control
mechanisms.

□ DDoS (Distributed Denial of Service): Similar to
DoS, but executed using a network of compromised
systems (botnets) to flood IoT resources with multiple
connections, exhausting the resources.

□ Password (Password Cracking Attack): Attackers use
various password-cracking techniques (e.g., dictionary
attacks or brute force) to bypass authentication methods
and gain control over IoT devices.

□ XSS (Cross-Site Scripting): IoT applications’ web
servers can be vulnerable to malicious software like
XSS, which can compromise the authentication pro-
cesses and information used by IoT systems.

□ Ransomware: This sophisticated malware denies legit-
imate users access to devices or services, demanding
payment for the decryption key needed to regain access.
IoT applications and devices are attractive targets due to
their critical functions.

□ Backdoor: In this type of attack, backdoor malware
allows an attacker to gain unauthorized remote access
to compromised IIoT systems. The attacker can then
use these systems and botnets to launch DDoS
attacks.

□ MITM (Man-In-The-Middle): This common network
attack involves intercepting data flow within an IoT net-
work, allowing the attacker to steal sensitive information
or manipulate data transmission.

Data cleaning and preparation are crucial to ensure high
accuracy and expedite the learning process when employing
ML methods. This process typically involves removing
irrelevant features that could negatively impact performance,
converting non-numerical features, and addressing missing
values. Data preparation primarily consists of two stages: data
pre-processing and data normalization.

Data pre-processing: Initially, the’ label’ and’ type’
features are dropped from the dataset, as they will serve
as target variables in the approaches under consideration.
Categorical features with nominal values are converted to
numeric values to facilitate the application of ML methods.
Label encoding is applied to any remaining categorical
features in the dataset to maintain compatibility with the
chosen ML algorithms.

Network Data
Data Normalization: In some cases, certain features may

have significantly larger values than others, potentially
leading to biased model outcomes. Data normalization helps

to mitigate this issue by scaling features within a range
of [0, 1] without altering the overall data behavior. The
min-max normalization method is employed to scale feature
values within the [0, 1] range using the formula (1). This
approach ensures that features with smaller values are not
overshadowed by those with larger values, promoting a more
balanced analysis. After that, the dataset was divided into a
training set (80%) and a testing set (20%).

z = (z−MIN )
/
(MAX −MIN ) (1)

where z represents the value of an attribute, MIN refers to
the minimum value observed for that attribute, and MAX
represents the maximum value observed.

B. MODEL IMPLEMENTATION
We implemented five different models: three CNNs,
an Extreme Learning Machine (ELM), and an ensemble
model. For the ensemble model, we will combine the
predictions from the three CNN models to improve the
performance.

□ Convolution Neural Networks: For binary and multi-
class classification tasks, we developed and tested three
distinct CNN models in our research.

□ The first model (Figure 3), referred to as CNN 1,
is composed of a single 1D convolutional layer
featuring 32 filters, a kernel size of 2, and the
same padding applied to the input data. A ReLU
activation function, a max pooling layer with a pool
size of 2, reduces the input data’s spatial dimensions.
The network then employs a flattened layer, two fully
connected layers with 50 and 25 neurons (both with
ReLU activation), and an output layer with either
2 or 10 neurons, depending on the classification task.
A softmax activation function is used for binary or
multi-class classification.

□ The second model (Figure 4), CNN 2, begins with a 1D
convolutional input layer containing 64 filters, a kernel
size of 3, and ReLU activation applied to input data.
A 1D max pooling layer with a pool size of 2 follows.
The model then incorporates another 1D convolutional
layer with 128 filters, a kernel size of 3, and ReLU
activation, followed by another 1D max pooling layer
with a pool size of 2. After flattening the input data,
a fully connected layer with 64 neurons and ReLU
activation is utilized. The output layer consists of 2 or
10 neurons and a softmax activation function for binary
or multi-class classification.

□ Our third model (Figure 5), CNN 3, starts with a 1D
convolutional input layer featuring 32 filters, a kernel
size of 3, and ReLU activation applied to input data.
A 1D max pooling layer with a pool size of 2 is
incorporated, followed by another 1D convolutional
layer with 64 filters, a kernel size of 3, and ReLU
activation. Another 1D max pooling layer with a
pool size of 2 is employed, succeeded by a third 1D
convolutional layer with 128 filters, a kernel size of 3,
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FIGURE 3. CNN1 model architecture.

FIGURE 4. CNN2 model architecture.

and ReLU activation. A final 1D max pooling layer
with a pool size of 2 precedes the flattening layer.
The network features a fully connected layer with
128 neurons and ReLU activation, a dropout layer with
a rate of 0.5 to prevent overfitting during training,
and an output layer with either 2 or 10 neurons and
a softmax activation function for binary or multi-class
classification.

Each of the three CNN models mentioned follows a similar
architecture, including an input layer, convolutional layers,
pooling layers, flattened layers, fully connected layers, and
an output layer. However, the specific structure of each model
differs, with variations in the number of convolutional layers,
pooling layers, flattened layers, and dense layers. Please refer
to Figures 3, 4, and 5 for a visual representation of these
model structures. If we consider the input feature map of the
CNN as Mj, the convolution process can be represented as
follows:

Mj = ReLU (conv1D
(
Mj−1,Wj

)
+ bj) (2)

where Wj is the convolution kernel weight vector of the j
layer, ReLUis the activation function, and bj is the bias of the
j layer.

The convolutional layer captures various features from
the previous data Mj−1 using different window values and
convolution kernels. By applying the same convolution
kernel, the weights and bias are shared. This significantly
reduces the number of parameters in the overall neural
network. The pooling layer performs sampling on the feature
map obtained from the convolutional layer based on various
sampling rules. If Mj represents the input to the pooling
layer and Mj+1 represents the output of the pooling layer.
All models use the maximum pooling technique with varying
pool sizes. The maximum pooling operation can be described
as follows:

Mj+1 = max (Mj, poolsize) (3)

Next is the flattening layer: The flattening layer in the
network plays a crucial role in converting the output of
convolutional and pooling layers into a single, elongated
feature vector. The input data is transformed by collapsing
its spatial dimensions into the channel dimension to achieve
this flattening process. Specifically, if the input consists of
M feature maps, each with a dimension of Fin × Fin, the
flattened output, Fout, is obtained by multiplying the input
dimensions by the number of maps as described in the
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FIGURE 5. CNN3 model architecture.

following formula:

Fout = M ∗ Fin ∗ Fin (4)

Fully connected (FC) layers with the ReLU function are
layers in which all the inputs from one layer are connected to
every activation unit in the next layer. Their main role is to
aggregate the high-level features extracted by the preceding
layers (such as convolutional and pooling layers) into a
condensed representation of low-level features. The classifier
in the network’s output layer utilizes this compressed
representation of features to generate class probabilities and
carry out classification tasks.

The output layer of the neural network employs the
softmax function to predict the correct classification for
each sample record in the IoT attacks dataset. This module
performs two types of classification: binary classification,
which determines whether the sample is normal or anomaly,
and multi-class classification, which assigns one of several
attack types (Backdoor, DoS, DDoS, Injection, MITM,
Scanning, Ransomware, Password, XSS) to the sample. The
softmax function ensures that the predicted probabilities
for each class sum up to 1, allowing for a meaningful
classification decision to be made.

The final layer of the neural network is a softmax layer,
having the same number of nodes as the output layer. Its
purpose is to normalize the output and convert it into a
probability distribution across the classes. Softmax assigns
numerical probability values to each class at the output
layer, ensuring that these probabilities add up to 1.0, thus
conforming to a valid probability distribution. This allows us
to interpret the output as the likelihood of the input belonging
to each class. The softmax function σ is defined as follows:

σ (x)i =
exi∑K
K=1 e

xk
for i = 1, 2, 3, . . . ,K (5)

The models are compiled using the Adam optimizer and
sparse categorical cross-entropy as the loss function, with
accuracy as the evaluation metric. By testing these three
models, we aimed to explore the trade-offs between model
complexity and performance in our classification tasks.

2) Ensemble model: In addition to the individual CNN
models, we also implement an ensemble model that combines
the predictions of the three CNNs. The ensemble model
is constructed using the Voting-Classifier method from the
sci-kit-learn library, which aggregates the outcomes of the
three CNNmodels through hard voting. The ensemble model
combines the strengths of the individual models, potentially
leading to improved classification performance compared to
each CNN model separately.

Hard voting is an approach used in classification problems,
where an ensemble of classifiers is created, and each classifier
predicts a given input. The final prediction is determined
by a majority vote of the individual classifiers’ predictions.
In other words, the class that receives the most votes from
the classifiers becomes the final predicted class. Equation 6
explains the hard voting technique.

y = modeC1{(x) ,C2 (x) ,C3 (x)} (6)

where y is the final predicted class, C1 is the output class of
CNN1, C2 is the output class of CNN2, and C3 is the output
class of CNN3.

3) ExtremeLearningMachine:We also implement an ELM
model for binary and multi-class classification in our study.
For Binary classification, the ELM model is initialized with
an input layer corresponding to the number of input features
and an output layer with a single output neuron. Following
this, we add two hidden layers to the ELM model, each with
1000 neurons: The first layer consists of 1000 neurons with
a sigmoid activation function, and the second layer contains
1000 neurons with a hyperbolic tangent (tanh) activation
function. For multi-class classification, the ELM model is
initialized with an input layer corresponding to the number
of input features, an output layer with a single output neuron,
and a batch size of 100 for training. The classification
parameter is set to’’ multi-class’’ to handle multiple attack
types.

C. MODEL EXPLAINABLE
Two techniques, Shapley Additive explanations (SHAP) and
Local Interpretable Model-Agnostic Explanations (LIME),
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were implemented to enhance transparency and comprehen-
sibility in decision-making. SHAP assesses the influence
of individual features on the model’s predictions, providing
insights at a feature level. Conversely, LIME constructs
surrogate models that approximate the behavior of the
underlyingmodel in the vicinity of a specific instance, aiming
to explain individual predictions.

1) SHARPLY ADDITIVE EXPLANATION (SHARP)
SHAP is a well-established, comprehensive framework for
interpreting various models. It explains the predictions for
a specific instance by calculating each feature’s impact on
the final decision, whether positive or negative. Unlike linear
models, SHAP is applicable to any model or classifier.
Instead of concentrating just on local interpretations, SHAP
considers global interpretations by averaging each feature
independently and adding up the input values of the features.
The explanation for an instance x using SHAP is derived as
follows:

g (s) = v0 +

∑N

i=1
visi (7)

where g is the explanation model, N is the maximum size of
the feature vector, νi is the Shapley value for the feature I, s is
the simplified features (coalition factor), and s ϵ {0,1}N, the
1 in smeans the features in the new data are the same as those
of the original data, while the 0 means the features in the new
data are different from those of the original data.

The Shapley value represents the contribution of each fea-
ture to the model’s prediction, with higher values indicating
a larger contribution. To identify the most important features,
we can use the importance factor equation:

IF j =

∑n

i=1
|vj (xi) | (8)

where n is the total number of instances in the dataset, and IFj
represents the average absolute value of the Shapley value for
feature j.

By computing IFj for all features, we can identify the most
influential features in the model’s predictions.

D. LOCAL COMPREHENSIBLE MODEL INDEPENDENT
CLARIFICATION (LIME)
LIME aims to create an understandable model utilizing
an easily understood representation while maintaining local
fidelity to the original classifier. Given an instance with its
original representation, x ∈ Rd , and an explanation model,
gϵG, where G represents a set of visually expressible, inter-
pretable models (e.g., a linear model), LIME’s explanation
can be determined as follows:

ϕ (x) argmin
g∈G

= [L (f , g, ωx) + � (g)] (9)

where ϕ (x) The interpretation model, f is the classification
model, ωx is a similarity metric between the original and new
instances (with higher values signifying greater similarity),
L is the loss function that gauges the closeness of the

predictions between the explanation and original models, and
�(g) measures the complexity of model g.

LIME aims to develop a model that is both locally
focused and interpretable by minimizing the function L(f, g,
ωx)+�(g), where f is the original model, g is the locally
derived interpretation model, and ωx is a weight vector
for instance x. The regularization term �(g) helps prevent
overfitting the interpretation model.

After minimizing the objective function, LIME explains
a specific instance using the locally derived interpretation
model ϕ (x). The interpretation model ϕ (x) is designed to be
simple and transparent, making it easier for humans to under-
stand the reasoning behind a particular prediction. By using
a locally focused and interpretable model, LIME provides
insights into the decision-making process of complexmodels.

V. MODEL TRAINING AND EVALUATION
Section IV-Amentions that the TON-IoT dataset is stored in a
CSV file format. Initially, we split the dataset into two parts:
training and testing. 80% of the data is allocated for training
and evaluating the chosen ML methods, while the remaining
20% is reserved for testing the models with unseen data.
The 80-20 split, as recommended in [54], is considered the
optimal ratio to prevent overfitting, where amodelmemorizes
the data instead of learning from it. The suggested framework
examines the use of explanation approaches to determine the
most instructive elements and look at how they affect the
predictions made by the final model.

To evaluate the effectiveness of our CNN-based IDS
models trained on the ToN_IoT dataset, we employ four
widely recognized metrics: Accuracy, Precision, Recall, and
F1-score. To compare the outcomes of our IDS model with
the Ground Truth, we employ terms such as True Positive
(TP), True Negative (TN), False Positive (FP), and False
Negative (FN). These metrics and terminologies allow us to
measure the model’s performance and evaluate its ability to
classify instances and distinguish between different classes
correctly.
□ Accuracy (ACC) is a metric utilized to assess the overall

performance of a model. It is determined by calculating
the ratio of correct predictions to the total number
of predictions made. In the binary classification IDS
model context, ACC is computed based on the counts
of true positives, false positives, true negatives, and
false negatives. This metric indicates how accurately
the model can classify instances and make correct
predictions.

Acc =
TP+ TN

TP+ FP+ TN + FN
(10)

□ Precision (P) is a metric used to evaluate the perfor-
mance of our IDS system. Specifically, it measures
the ratio of correctly predicted attack instances to the
number of instances classified as attacks. This can be
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TABLE 1. Binary classification results.

mathematically represented as follows:

P =
TP

TP+ FP
(11)

□ Recall (R): also known as sensitivity or true positive
rate, is a metric used to evaluate the performance of
our IDS system. It measures the ratio of correctly
predicted attack instances to the total number of actual
attack instances. Mathematically, it can be expressed as
follows:

R =
TP

TP+ FN
(12)

□ The F1 score is a metric that combines both precision
and recall to provide an overall measure of the model’s
performance. It is calculated as the harmonic mean of
precision and recall. Mathematically, it can be expressed
as follows:

F1score = 2 ∗
P ∗ R
P+ R

(13)

In our experiments, we used Google Colab, a collaborative
Jupyter notebook environment, to conduct deep learning
research. We employed Keras (version 2.12.0), an open-
source Python deep learning library that runs on top
of Google’s open-source data flow software [55], and
TensorFlow [56] (version 2.12.0), as a backend engine.
The available RAM for our experiments in the Google
Colab environment was 13.62 GB. This setup provided a
robust and accessible platform for implementing and testing
our models. It comprises the two methods, LIME and
SHAP.

A. BINARY CLASSIFICATION RESULTS
Our study focused on developing and testing ML models on
the TON-IoT dataset to classify different types of network
traffic, including normal and malicious traffic. The’ label’

feature was used as the target variable during training and
evaluation. To quantitatively evaluate the performance of
the candidate ML methods, we measured various metrics
such as accuracy, error rate, recall, precision, and F-score.
Additionally, sensitivity and specificity were calculated for
each model. Table 1 and Fig 6, 7, and 8 show that all
models achieved high accuracy rates, with Ensemble having
the highest accuracy rate of 99.69% and ELM having the
lowest accuracy rate of 98.77%. The CNN models achieved
higher accuracy rates than the ELM model. CNN 2 and
Ensemble achieved 100% precision, while CNN 1, CNN 3,
and ELM had precision rates of 99.5%, 99.52%, and 98.5%,
respectively. CNN 1 and Ensemble achieved 100% recall
rates. CNN 2, CNN 3, and ELM have a recall rate of 99.62%,
99.41%, and 99%, respectively. CNN 2 and ensemble models
have the highest F-S rate of 100%, and ELM has the lowest
F-S rate of 98.5%. All models achieved high sensitivity and
specificity rates, with Ensemble having the highest rates of
100% and 99.68%, respectively.

The TON-IoT dataset was analyzed using the SHAP
method for the CNN 2 binary classification task. The results
are displayed in Fig. 9. Local explanations of the CNN 2 DL-
based IDS using LIME on the TON-IoT dataset are presented
in Fig. 9. LIME was applied to provide insights into how the
model makes predictions for individual instances within the
dataset.

B. MULTI-CLASS CLASSIFICATION RESULTS
Next, we train and evaluate our models using the’ type’
feature as the target variable. This approach will enable us to
better understand the specific aspects of IoT network traffic
associated with each category.

When comparing the results, we can see that all models
achieved high accuracy rates, with Ensemble having the
highest accuracy rate of 99.63% and ELM having the lowest
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FIGURE 6. Performance comparison between the proposed models for
binary classification.

FIGURE 7. Performance comparison between the ensemble model and
the current models for Binary classification.

accuracy rate of 88.23%. The ensemble has the highest
precision rate of 99.8%, and ELM has the lowest precision
rate of 74.7%. CNN 1 achieved the highest recall rate of 99%,
followed by CNN 3 and Ensemble, with recall rates of 99%
and 99.2%, respectively. CNN 2 and ELM had lower recall
rates of 98.7% and 78.8%, respectively. We can also see that
all models, except for ELM, achieved high F-score rates, with
Ensemble having the highest F-score rate of 99.5%. ELM
had a lower F-score rate of 71.7%. In addition, all models
achieved high sensitivity and specificity rates, with Ensemble
having the highest sensitivity rate of 99.18% and the highest
specificity rate of 99.92%. All results are explained in Table 2
and illustrated in Fig. 11, 12, and 13.

Using the SHAP method, the TON-IoT dataset was
analyzed for multi-class classification of the CNN 2 DL-
based IDS, and the results are shown in Fig. 14. Local
explanations of the CNN 2 DL-based IDS using LIME on the

FIGURE 8. Error detection rate for the proposed models for binary
classification.

FIGURE 9. Feature importance scores using SHAP techniques for binary
classification.

TON-IoT dataset are presented in Fig. 15. LIME was applied
to provide insights into how the model makes predictions for
individual instances within the dataset.

VI. DISCUSSION
Performance of CNN Models: The CNN models (CNN-1,
CNN-2, and CNN-3) performed remarkably well across
multiple performance metrics, including accuracy, precision,
recall, F-Score, error rate, sensitivity, and specificity. These
models consistently achieved accuracy above 99% and
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TABLE 2. Multi-class classification results.

FIGURE 10. Feature importance scores using LIME technique for binary
classification.

demonstrated balanced precision and recall scores, indicating
their ability to classify positive and negative instances
correctly. The low error rates suggest that these models
made a few incorrect predictions, further highlighting their
effectiveness.

Ensemble Model: The Ensemble model achieved the
highest accuracy among the listed models, reaching an
impressive 99.69% for binary classification and 99.63%
for Multi-class classification. This indicates that combining
the predictions of multiple models resulted in improved
performance. The model exhibited perfect precision, recall,
and F-Score, showcasing its ability to classify instances
accurately. The sensitivity and specificity scores were also
high, suggesting effective identification of positive and
negative instances.

FIGURE 11. Feature importance scores using SHAP techniques for
multi-class classification.

In binary classification, The (DFF) model achieved an
accuracy of 94.74%, which is comparatively lower than
the other models. However, limited information is available
regarding its performance, as additional performance metrics
are not provided. However, in multi-class classicization, the
DIDS model achieved a lower accuracy and demonstrated
lower precision, recall, and F-Score values. This suggests a
relatively weaker classification performance compared to the
other models.

Based on the insights derived from Fig. 9 for the binary
classification, the SHAP results emphasize the significance
of certain features with notable scores. These include the
destination port number (dst port), which plays a crucial role
in identifying specific applications or services operating on
a device, and the source IP address (src ip), which aids in
locating the device and detecting any suspicious or malicious
network activity. Furthermore, the timestamp (ts) associated
with the network packet emerged as a key feature, enabling
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FIGURE 12. Feature importance scores using SHAP techniques for
multi-class classification.

FIGURE 13. Feature importance scores using SHAP techniques for
multi-class classification.

the examination of network traffic patterns, identification of
anomalies or attacks, and the correlation of events across
multiple systems.

The LIME diagram analysis reveals that certain fea-
tures significantly impact the prediction. So, for the
binary classification and from Fig. 9, we can extract that
instances with ‘‘ts’’ values between 0.04 and 0.87 have
a positive impact on the prediction, while instances with
‘‘weird_addl’’ values less than or equal to 0.00 have
a negative impact. Features such as ‘‘ssl_established,’’
‘‘dns_rcode,’’ ‘‘http_method,’’ ‘‘http_response_body_len,’’
‘‘dns_query,’’ ‘‘http_uri,’’ ‘‘dns_rejected,’’ ‘‘weird_notice,’’
‘‘http_status_code,’’ ‘‘dns_RD,’’ ‘‘dst_ip,’’ ‘‘ssl_cipher,’’
and ‘‘http_trans_depth’’ have values that indicate a posi-
tive impact. Conversely, instances with ‘‘dst_port’’ values
greater than 0.14 and features like ‘‘http_resp_mime_types,’’

FIGURE 14. Feature importance scores using SHAP techniques for
multi-class classification.

FIGURE 15. Feature importance scores using LIME technique for
multi-class classification.

‘‘http_user_agent,’’ ‘‘missed_bytes,’’ and ‘‘src_ip’’ have
values suggesting a negative impact. Understanding the
specific values associated with these features helps interpret
the model’s predictions and make informed decisions based
on their contributions.

Based on the analysis of Fig. 14 for multi-class clas-
sification, the SHAP results reveal significant features for
prediction. One notable feature with a high score is ‘‘conn-
state,’’ which informs about the current connection state
between network devices. This feature holds value in identi-
fying anomalies and potential security threats. Additionally,
the ‘‘ts’’ feature, representing the timestamp of network
packets, is deemed necessary. It plays a crucial role in
detecting patterns and attacks and establishing correlations
among events across multiple systems.
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Then from fig 15 explains the results of LIME for multi-
class classification; features such as ‘‘http_response_body_
len,’’ ‘‘http_user_agent,’’ ‘‘weird_add!,’’ ‘‘ssl_version,’’
‘‘weird_name,’’ ‘‘weird_notice,’’ ‘‘http_method,’’
‘‘0.29< dst_ip <= 0.29,’’ ‘‘Conn_state,’’ ‘‘http_version,’’
‘‘ssl_resumed,’’ ‘‘dns_query,’’ ‘‘http_trans_depth,’’
‘‘http_status_code,’’ and ‘‘ssl_issuer’’ have values indicating
a positive impact on the prediction. These features are
associated with the color green and positioned to the
right. Conversely, features like ‘‘dns_rcode,’’ ‘‘dnts_RD,’’
‘‘service,’’ ‘‘ts> 0.91,’’ and ‘‘dnsAA’’ have values suggesting
a negative impact, represented by the color red and positioned
to the left. Understanding the specific values associated with
these features aids in interpreting the model’s predictions and
making informed decisions based on their contributions.

VII. CONCLUSION AND FUTURE WORK
This research introduces an inclusive and efficient framework
for an IDS explicitly designed for the intricate context of IIoT
networks. The methodology employs the meticulous utiliza-
tion of the ToN-IoT dataset, which encompasses a wide range
of real-world IIoT scenarios, effectively addressing the ever-
evolving challenges presented by numerous types of attacks.
The core strength of this approach lies in its intelligent fusion
of advanced techniques. By harnessing the capabilities of
CNN models combined with a novel ensemble strategy, the
system achieves accuracy rates exceeding 99%. This outcome
underscores the system’s exceptional capacity to distin-
guish between normal and anomalous network behaviors,
thus showcasing its robustness and effectiveness. Beyond
its predictive capabilities, the methodology significantly
enhances transparency and interpretability by incorporating
eXplainable AI (XAI) techniques. The strategic integration of
SHAP and LIME empowers stakeholders to comprehend the
decision-making process and the significance of individual
features. This transparency fosters trust and facilitates
ongoing improvement of the system’s performance and
adaptability. Furthermore, this study addresses a significant
gap in the field by utilizing a contemporary dataset, the
ToN-IoT dataset, which covers a broad spectrum of attacks
and mirrors the evolving landscape of IIoT. Departing
from conventional datasets equips the methodology with
enhanced potential to counter emerging threats and novel
attack methods. Looking ahead, refining model architecture,
exploring diverse CNN setups, and incorporating industry
insights could enhance accuracy. Advanced techniques like
autoencoders and real-time monitoring hold potential against
sophisticated attacks. Enhanced interpretability through fea-
ture selection, testing in varied IIoT environments, and
blending CNNs with other methods could improve model
understanding. Advancements in XAI methods aid non-
technical users in grasping model decisions. To stay effective,
continuous dataset updates and collaborative research efforts
are essential. Alternative ensemble models such as soft voting
or stacking and XAI methods such as LRP or CAM offer

deeper insights. This ensures the proposed IDS evolves to
secure evolving IIoT networks.
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