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ABSTRACT Deep neural networks for graphs have emerged as a powerful tool for learning on complex
non-euclidean data, which is becoming increasingly common for a variety of different applications. Yet,
although their potential has been widely recognised in the machine learning community, graph learning
is largely unexplored for downstream tasks such as robotics applications. To fully unlock their potential,
hence, we propose a review of graph neural architectures from a robotics perspective. The paper covers
the fundamentals of graph-based models, including their architecture, training procedures, and applications.
It also discusses recent advancements and challenges that arise in applied settings, related for example to
the integration of perception, decision-making, and control. Finally, the paper provides an extensive review
of various robotic applications that benefit from learning on graph structures, such as bodies and contacts
modelling, robotic manipulation, action recognition, fleet motion planning, and many more. This survey
aims to provide readers with a thorough understanding of the capabilities and limitations of graph neural
architectures in robotics, and to highlight potential avenues for future research.

INDEX TERMS Graph neural networks, robotics, deep learning, human–machine interaction.

I. INTRODUCTION
Over the last few years, we observed an exponential growth
of deep learning methods for a variety of different data
modalities and applications. Thanks to its closeness to real
world applications, robotics represents the perfect ultimate
harbour where deep learning methods find their downstream
task.

Notable examples are the field of robot vision, and the
upcoming trend of foundational multi-modal models for
task and motion planning, where images are coupled with
other information sources such as text and audio. However,
in many practical cases, a mere representation of knowledge
through bi-dimensional pixels or temporal sequence of tokens
may not be sufficient to properly convey the information.
Three-dimensional visual data, functional and geometrical
relationships, and interaction between multiple agents and
objects - for example - require more complex and unstruc-
tured data representation (see Fig. 1). One popular approach
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to handle these cases is through graphs encoding, where
information is represented as an organised set of nodes and
edges, embedding relevant features of the task.

Noteworthy, very often we observe a significant delay
between when new methods are proposed in the machine
learning and computer vision communities, and their applica-
tion in robotics-oriented use-cases. Therefore, the purpose of
this survey is to lay down the current state of the art on graph
learning, with specific focus on their potential application
on robotic tasks, with the aim of collecting the available
knowledge at the moment, and showcase the potential of
graph theory and learning, to foster future developments of
intelligent machines able to learn on complex data structures.

A. LEARNING FROM UNSTRUCTURED DATA
Graph neural networks are powerful mathematical tools for
knowledge representation, able to encode structured and
unstructured information in a convenient fashion, through
nodes which model entities (objects, functional elements,
robots), and edges that encode their spatial, temporal or
functional relationship. Graphs are commonly used to model
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FIGURE 1. Schematics of the information representation encoded in the form of images, text and graphs. Although
being by far the most common data structures to train artificial neural architectures, images and ordered series of
tokens cannot handle unstructured data distribution. To address this challenge, graph structures constitute the
primary mathematical representation for an efficient and effective data representation.

a variety of different elements, such as molecules [1] for drug
discovery, physics simulations [2], scientific citations [3] or
social networks [4]. In computer vision, this architecture has
emerged as a promising tool to deal with data that lie on
irregular domains, such as point clouds [5], [6], to uncover
non-local similarities in the data [7], and video understanding
[8], [9].
Thanks to these promising results, Graph Neural Networks

(GNNs) have gained the attention of the robotic community,
being proposed as key technological solutions for more and
more new tasks and applications. As noticeable examples, it is
worthmentioning grasping andmanipulation, in which robots
are usually tasked to process as input three-dimensional
data, for which graphs can be used to provide an efficient
yet effective modelling tool. Another relevant scenario
is the use of graph architectures to capture and model
spatial and functional keypoints of environments or work-
spaces, allowing robots to better understand the environment
wherein, how to interact safely with objects and zones, and
how to plan meaningful tasks.

GNNs also lend themselves well to reinforcement learning,
as they can learn to predict future states based on current state
and action signals. In robotics, this brings the benefit that
GNNs can effectively plan robot actions sequences taking
into account current and future states to select the best
succession of action. In addition, GNNs can help robots learn
how to move and behave in more complex environments by
providing more detailed models of their surroundings. Deep
Reinforcement Learning (DRL) has been a resourceful tool
for improving decision-making tasks and control problems
in robot automation [10], [11], [12]. However, in many cases
DRL suffers of limited generalisation capability, with limits
a seamlessly adaptation to new scenarios, different than
the ones experienced at training time [13]. The ability to
generalise to novel scenarios it is of paramount importance
for many practical applications, and to shorten the distance
between sim-to-real simulations. To address this limitation,
several projects demonstrated significant benefits in the use

of GNNs for learning robust policies across scenarios [10],
[11], [12], benefiting from the intrinsic generalisation ability
of graphs encoding.

B. SURVEY METHODOLOGY
To ensure an high quality selection of papers for our survey,
we first employed Elsevier Scopus1 as search engine, using
as keywords deep learning, robotics, graph learning and graph
neural networks. This search yielded a first list of documents,
from which we then selected only the manuscript published
in journals with ranking Q2 or above on ScimagoJR2 for
Computer Science or Control and Systems Engineering and
indexed in Web of Science. For conferences papers, instead,
we referred to the CORE3 conferences ranking system, which
provides an assessment of the major conferences in the field,
excluding papers published in venues ranked B or below (i.e.
we keep only A* and A – the top 22%). We then refined the
bibliographic search by manually checking for other relevant
papers exploiting suggested similar publication in Google
Scholar (still matching the above constraints). This process
yielded the selection revised in this survey.

C. HOW TO NAVIGATE THIS SURVEY
This paper is organised as follows. In Section II, we provide
a concise review of the theoretical background behind graph
learning, with specific focus on different graph convolution
formulations. Following, we explore the use of GNNs in
robotics applications. First, in Section III we showcase the
application of GNNs in the context of single-agent settings.
With such definition we refer to cases where graphs are
used to model one single item, which encompasses three
main cases: modelling of objects (Section IIIa), modelling
of hands-objects interaction (section IIIb) and modelling of
human behaviour (Section IIIc). Then, Section IV discusses

1https://www.scopus.com
2https://www.scimagojr.com
3http://portal.core.edu.au/conf-ranks/

VOLUME 11, 2023 112665



F. Pistilli, G. Averta: Graph Learning in Robotics: A Survey

FIGURE 2. Undirected (left) and a directed (right) graph representation.
The neighbourhood of node 1 in highlighted through coloured edges in
both graphs. For the undirected graph, the neighbourhood is composed
by the nodes that are connected to node 1: node 2, node 3, node 4, node
5, node 6. Instead, for the directed one, the neighbourhood is composed
only by the nodes that have incoming edges to node 1: node 2, node 5,
node 6. It is worth mentioning that in some cases graphs may also have
edges starting and ending on the same node (self-loop), which may be
relevant for some graph convolution formalisation.

multi-agent settings, where graphs are used to model the
interaction between multiple items. The section is further
divided in Task and motion planning (Section IVa) and multi-
robot exploration and navigation (Section IVb). We also
provide a section where we discuss strengths and limitations
of current approaches including GNNs in their pipeline, and
finally a conclusion with a forecast of future perspectives. All
the parts are self-contained, allowing the curious reader to
directly refer to a specific section of interest.

II. PRELIMINARIES ON GRAPH NEURAL NETWORKS
In the last few years, learning on graph structures has
gained significant relevance in the community, thanks to
their intrinsic capability to easily process data lying on
irregular domains, such as three-dimensional point clouds,
spatio-temporal and functional relationships [14], [15],
[16], [17]. Similarly to what Convolutional Neural Networks
(CNNs) did for standard images, the community has devoted
significant effort in defining convolution-based aggregation
mechanisms for graph structures.

A graph convolution operation can be formulated over
two different domains, spectral or spatial. The first family
of methods [18], [19], [20], [21], [22] usually exploits
graph Fourier transform, eventually complemented with
polynomial approximations to reduce the computational
burden [20], [21]. Among these, it is worth mentioning
the Graph Convolutional Network (GCN) [21], which
demonstrated notable results for semi-supervised problems,
such as semi-supervised node or multi-class classification.
However, a critical limitation of this formulation is the
inability to generalise the learned filters, computed over the
spectrum of the graph Laplacian, to a variable graph structure.

The second class of approaches defines the graph-
convolution operation in the spatial domain. In this scenario,
the graph convolution is defined as a local, i.e. computed
over a neighbourhood, weighted aggregation of signals. Since
it is defined at the neighbourhood level, this formulation is
suitable for any type of signal that can be defined over a graph,

even with a variable graph structure. Several definitions
are present in the literature [5], [6], [24], [25], [26], [27],
[28], [29], [30]. These often differ on the computation of
the weights used in the aggregation. For example, many
formulations use scalar weights [24], [25], [27] or matrices
[6], [26], [28], [30] independent from the input data. On the
other side, [5] proposes edge-dependent matrices as weights,
providing an operation with more representational power.
For a compact overview, the reader could refer to Fig. 3 for
different graph convolution formulations and to Tab. 1 for a
comparison between implementations.

A. GRAPH SIGNAL THEORY BACKGROUNDS
Given a graph G = {V ,E}, we refer to V as the set of nodes,
with cardinality M = |V |, and E as the set of edges. Two
nodes, ni and nj are said to be connected only if there exists
an edge ei,j ∈ E between them. The graph is also undirected
if ei,j = ej,i, ∀ei,j ∈ E , otherwise the order of the indices
reflects the direction of the graph and in general ei,j ̸= ej,i.
Each node or edge can be associated with a feature vector,
Fv ∈ Rdv or Fe ∈ Rde . The neighbourhood of the ith node is
defined as N (i) = {j|ei,j ∈ E}, and corresponds to the set of
nodes directly connected to the ith node. In Fig. 2 it is reported
an example of an undirected and a directed graphs, where the
neighbourhood of a node is highlighted.

The connectivity of the graph can be represented through
the adjacency matrix A ∈ RM ,M , where element Ai,j = 1 if
exists the corresponding edge ei,j ∈ E , and zero otherwise.
Note that, if the graph is undirected, the corresponding
adjacency matrix is symmetric. From the connectivity matrix
it is possible to define the diagonal degree matrix D, where
the diagonal element di,i is equal to the sum of all the
edges, incoming and outgoing if in presence of a directed
graph, relative to the ith node. In some cases, edges could
be weighted by specific values wi,j, and the corresponding
element of the adjacency matrix becomes Ai,j = wi,j if
ei,j ∈ E , and zero otherwise.
Finally, it is worth recalling the definition - for undirected

graphs - of the Laplacian matrix L̂ = D − A, and of its
normalised formulation L = I − D−

1
2AD−

1
2 . Since the

normalised graph Laplacian is a semi-define positive matrix,
it can be decomposed as L = U3UT . Given a generic graph
signal f : V → R, which can be represented in vector form as
x ∈ RM where each element xi is the function evaluated in the
ith node, it is possible to define the graph Fourier transform
F of the signal x and its inverse F−1 as:

F(x) = x̂ = UT x =

M−1∑
i=0

xiui, (1)

F−1(x̂) = x = Ux =

M−1∑
i=0

x̂iui. (2)

The graph Fourier transform projects x into an orthonormal
space where the eigenvectors of the graph Laplacian matrix
are the basis of the new space. Thanks to their definition,
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FIGURE 3. Graph convolutional operations with different information sharing mechanism. MPNN [23] implements message
passing conditioned by edge attributes. GCN [21] is reported in its equivalent spatial formulation where it implements a simple
aggregation of the neighbouring nodes. With a similar operation, GAT [24] exploits self-attention to weight the contributions of the
nearest neighbours. Instead ECC [5] implements an edge-depended weighting function to weight the contribution of each node in
the neighbourhood. DGCNN [6] aggregate the information of the neighbourhood by means of learned edge features.

the graph Laplacian operators family captures the differences
between a signal at a node and its surroundings, and
specifically the graph Laplacian is often used as a measure
of signal smoothness. Using the graph Fourier transform, it is
possible to filter the signal either in the spectral or in the
spatial domain, and define a graph convolutional operation.

1) SPECTRAL GRAPH CONVOLUTIONS
In the spectral domain, the filtering operation corresponds to
a multiplication between the graph signal x ∈ RM and the
filter g ∈ RM :

x ∗G g = F−1(F(x) ⊙ F(g)) = U ((UT x) ⊙ (UT g)), (3)

where ⊙ is the Hadamard (element-wise) product.
Considering a filter in the form gθ = diag(UT g), the

spectral graph convolution can be simplified to:

x ∗G g = UgθU
T x. (4)

The distinct definitions of spectral graph convolution differs
for the choice of the filter gθ . Bruna et al. [18] proposes
a first repurpose of classic CNNs to the graph domain,
and introduces a spectral convolution where the graph
convolutional filter is modelled as a learnable diagonal matrix
gθ = 2 obtaining a simple yet effective formulation. Def-
ferrard et al. [20], instead, proposes an efficient formulation
approximating the filters as Chebyshev polynomials gθ =∑K−1

k=0 θkTk (L̃). Tk (L̃) is the Chebychev polynomial of order
k evaluated at the scaled Laplacian L̃ =

2L
λmax

− I and θ

is a learnable vector of length k . Recall that the Chebychev
polynomials are recursively defined as Tk (x) = 2xTk−1(x)−
Tk−2(x) with T0(x) = 1 and T1(x) = x. Given an input
signal x t at step t , the output signal x t+1 after the graph

convolution is:

x t+1
=

K−1∑
k=0

θkTk (L̃)x t . (5)

An interesting observation is that the filters are localised in a
spatial neighbourhood. Such formulation is further simplified
by Kipf and Welling [21], which proposes a first-order
approximation of the Chebychev polynomials and exploits
the normalised graph Laplacian build upon the adjacency
matrix with self-loop connections Â instead of the scaled
Laplacian:

x t+1
= α(I − L)x t , (6)

where α is a learnable scalar parameter. Such formulation
consists in simply taking a weighted aggregation of the
signals in the neighbourhood of each points with weights
proportional to the connectivity matrix.

Such models have the advantage of providing a formula-
tion for filters localised in the neighbourhood space, with
a limited number of learnable parameters and independent
from the graph size. Nevertheless, they are linked to a
fixed graph structure, given by the graph Laplacian, and
therefore are not able to generalise to other configurations.
Furthermore, they are not robust to perturbations that would
change the basis functions, and they require a computational
cost of O(N 2).

2) SPATIAL GRAPH CONVOLUTIONS
As discussed before, an alternative representation of the graph
convolution operation may be also formulated in the spatial
domain. The filtered signal xi at the ith node is computed as
the linear combination of the signal itself and its k-hop local
neighbourhood Nk (i). The k-hop neighbourhood of node i is
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TABLE 1. Comparison between different Graph Convolutional Neural Architectures. For each implementation, we report few core characteristics: the type
(spectral vs. spatial), how weights are computed, the availability of attributes for edges and a list of relevant papers where these have been used.

defined as the collection of nodes that have the shortest path
distance from the ith node less or equal to k. In this survey,
we assume the standard practice of considering the 1-hop
neighbourhood of a node - if not specified otherwise - and
N1(i) = N (i). Therefore, it is possible to define the spatial
graph filtering as:

x t+1
i = Wi,ix ti +

∑
j∈Nk (i)

Wi,jx tj , (7)

where the first part refers to the contribution of the ith node
itself, also called self-loop, and the second to the contribution
of the surroundings points. The spatial approach shares
similar principle ideas with propagation and message passing
of recurrent neural networks, since they both propagate and
exchange information within the neighbourhood structure.
One of the first message passing models is presented in [3],
where the signal function at node i is updated at each
time step t with the aggregation of the information, also
called messages, from each node j in its neighbourhood.
It implements an extension of previous recurrent graph neural
networks to more general scenarios, considering different
types of graphs. The proposed message passing mechanism
can be formulated as follow:

x t+1
i = u(Fv,i,

∑
j∈N (i)

m(x ti ,Fv,i,Fv,j,Fe,(i,j))), (8)

where m is the message passing function, u the update
function, Fv,i the feature vector associated to the ith node and
Fe,(i,j) the feature vector associated to the edge that connects
nodes i and j.

Over the years, several models based on message passing
have been developed [1], [23], [44], [45], where different
message passing and update functions are proposed. Among
the others, it is worth mentioning Gilmer et al. [23], which
proposes a generalmodel calledMessage PassingNeural Net-
work (MPNN), that implements a spatial graph convolution
bymeans ofmessage passing, where the information is shared
between nodes conditioned by the edge attribute. Instead,
the GatedGCN proposed in [40] includes a Gated Recurrent
Unit (GRU) [46] and the support for different edge types and

directions. Similarly, Monti et al. [25] presents a Gaussian
mixture model that exploits continuous edge attributes.

A spatial graph convolutional neural network can be
interpreted as a local weighted aggregation of points. Locality
reflects the computation performed only at neighbourhood
level, while weights are used to scale different contributions.
The aggregation function should keep the permutation
invariance to the node ordering, and therefore it is usually
a sum, mean or max function. In the literature, researchers
proposed several spatial graph convolutional formulations
which differ in one of the three main characteristics of
the function: computation of the neighbourhood, weighting
function and type of aggregation. GraphSAGE [26] proposes
to sub-sample the neighbours, aggregate their information
with the centre node and then project into the feature
space, promoting similar embedding in close nodes. Graph
attention networks (GAT) [24], instead, exploits a self-
attention mechanism to compute the weight for each neigh-
bours. Edge-Conditioned Convolution (ECC) [5] proposes
an edge-dependent convolution definition. In particular, the
neighbouring contributions are weighted by the output of a
multi-layer perceptron that takes as input the corresponding
edge labels, commonly defined as the difference between
the features associated to each neighbours and the centre
point. InsteadDynamicGraphCNN (DGCNN) [6] proposes a
novel formulation called EdgeConv to generate edge features
to describe the relationships between a centre point i and
its nearest neighbours. The edge features are defined as the
output of a multi-layer perceptron that takes as input the
features associated to each node j ∈ N (i) and the centre
node i and are directly aggregated together to obtain the new
feature vector of the centre node. Remarkably, DGCNN [6]
first introduces the concept of dynamic graph construction,
i.e. the edges and consequently the neighbourhood of
each node is updated after several graph convolutional
layers.

As we can observe from the previous description, one
important difference between graph convolution formulations
is the contribution of the neighbourhood: GraphSAGE [26]
considers each contribution equal, GCN [21] uses a fixed
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defined a-priori weight per neighbour, while ECC [5]
proposes edge dependent weighting contributions.

III. GNNS FOR SINGLE-AGENT SYSTEMS
In this survey, we refer to ‘‘Single-Agent Systems’’ either
when we review papers dealing with only one intelligent
system (single-robot or human), or passive bodies (objects
modelling). All the above scenarios share the common
principle of using graphs to encode or guide the action of a
single robot. For the sake of clarity, we further split the topic
in: i) modelling of bodies, where graphs are used to encode
the dynamic or kinematic behaviour of a passive object
(usually compliant, such as in [35] and [47]); ii) modelling
of robots interacting with objects, mostly for grasping and
manipulation purposes (e.g. [32]); iii) modelling of human
behaviour and human-centric environments (e.g. [9]).

A. MODELLING OF BODIES
When we interact with a compliant object, for instance
during grasping or manipulation, very likely it will suffer
a non-linear deformation which depends on the force and
torques applied by fingers and the external environment,
and on the dynamic behaviour of the body itself. However,
modelling how objects deform when subject to external
forces is an open problem, which poses several technical and
theoretical challenges, such as: i) the high dimensionality
of the configuration space, ii) the non-linear dynamics of
deformable materials, and iii) possible self-occlusion in
visual perception.

One promising approach relies on the discretisation of the
continuous body representation, through the identification
of a finite number of keypoints. The spatial and kinetic
relationship between keypoints can be easily represented
through edges connecting neighbouring keypoints. Such
graph encoding can be used to provide a compact, yet approx-
imated, representation of the body shape and, potentially, its
dynamic behaviour [2], [47]. Message passing between nodes
of a graph is a powerful tool able to learn useful spatio-
temporal information on the interaction between elemental
components of compliant bodies. Recently, learning control
policies from deformable objects keypoints has gained
attention [31], [47], [48], [49], [50], [51] thanks to their
effective low-dimensional alternative representation.

One of the first works going in this direction is proposed
in [47], where the authors move from the observation that
particle-based simulators [52] are widely used to model
complex dynamics, but very often imperfect because of a set
of approximations which does not scale well in real-world
scenarios. To tackle this problem, in [47] the authors proposed
to learn a particle-based simulator with a network able to
model the dynamic interaction between particles of an object
through a graph neural network. This approach comes with
the relevant benefit of being suitable for a wide range of
objects (rigid, soft and fluids), and demonstrated interesting
capabilities in inferring an inductive bias on the type of
particles, useful to quickly adapt to unknown environments.

The proposed interaction model takes inspiration from [53],
extending it to particle-based dynamics. Interestingly, the
authors introduce a dynamic graph construction, where nodes
are all the particles of an object, and edges - representing
the interaction between particles - are dynamically updated in
time to grant a trade-off between efficiency and effectiveness.
This is an interesting design choice which - compared to the
alternative fixed fully connected graph - has the advantages
of being more efficient and more effective. In real-world
physical systems, since not all the points would interact with
all the others, it is reasonable to assume a distance-based
neighbourhood, and they involve discontinuous functions that
can not be taken into account with a fixed graph construction.
They also introduce a message-passing mechanism [54]
which is object-type dependent, meaning that different rules
are applied for rigid bodies, deformable objects, and fluids.
The same dependencies are applied to the graph construction,
leading to different graphs for different types of objects.

Although particle-based approaches demonstrated inter-
esting results in terms of accuracy, in many cases they also
require a large number of particles to properly approximate
a realistic object, which may result in excessive computa-
tional cost, prohibitive for real-time scenarios. Alternative
solutions, which mitigate this issue, usually approximate the
overall complexity by focusing only on a strategic subset
of points, also known as keypoints, easy to detect and
sufficient to estimate the object dynamics. As an example,
G-DOOM [48] extracts keypoints from depth images via
unsupervised learning and uses such data as nodes of a graph.
A graph convolutional neural network is then used to capture
the underlying geometry and abstract interactions between
keypoints. They also introduce a recurrent structure in the
architecture to track keypoints over time, with the aim of
handling potential keypoints occlusions.

The findings discussed above suggest that keypoints-based
discretisation seems to be the right choice to enable a
low-latency simulation of soft bodies. However, being an
approximation of the real world, it is worth remarking that
this will also introduce a non-negligible discrepancy between
simulated and real-world data distribution (sim-to-real gap)
which, in some cases, may produce important deviations
from the simulated environment. To address this issue, [49]
applies GNNs in an offline-online framework in an attempt to
mitigate the sim-to-real gap, proving the capability of GNNs
to generalise well across data distribution and to fit global
models. In the context of a robot tasked to re-arrange the
shape of a compliant linear object (cable-like), the authors
proposed a two-stage learning process. In an offline phase,
a GNNs is used to learn the deformation dynamics of the
cable purely from simulated data. Then, in the online phase,
a linear residual model is learned to minimise the sim-
to-real gap between a simulated and the real cable. The
trained model is then used to constrain the dynamics of
a trust-region -based Model Predictive Controller (MPC)
[55], which computes the optimal robot motion for cable
rearrangement.
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Another challenge that may arise when using particle-
based models lies on the fact that these often require a
temporal consistency between particles. Focusing on the
modelling of elasto-plastic objects, in [50] the authors
propose to overcome this limitation by training a GNN to
model the object dynamics with distance-based supervision
between particle distribution, and to predict the deformation
of objects when subject to external wrenches (e.g. applied
by grippers). Interestingly, this representation can be applied
in many complex scenarios, such as goal-conditioned rear-
rangement tasks [31], [51], where graph-based architectures
can be used to directly learn manipulation policies from
keypoints, taking as input the keypoints of the current and
target state and learning to predict the optimal pick and
place set of actions to re-shape the object toward the target
configuration. More specifically, two initial sets of detected
keypoints are used as nodes of two graphs, encoding initial
and target configuration. These are then fed into a local-
GNN which implements self-attention operations within
each graph, and cross-attention operations across graphs,
to perform keypoint matching. These works provide evidence
that the use of graphs allows the method to efficiently model
the high-dimensional deformable configuration space and its
underlying complexity, nonlinearity, and uncertainty, which
are intrinsic in deformable object dynamics.

Particles and keypoints are often inferred from visual
representation, such as point clouds or mesh [50], images
[31], [51] and depth images [48]. Recently, directly using
mesh representations has gained attention as an alterna-
tive approach to model complex systems, especially for
deformable objects [35], [36], [56], [57]. Among the
others, it is worth discussing firstly MeshGraphNets [35],
a general framework able to learn the dynamics of a wide
range of systems, from cloths to fluids. In a nutshell, the
authors propose to encode the state of a mesh, obtained
in simulation, in a graph structure that includes mesh-
space nodes (i.e. nodes associated with the object) and
world-space nodes (i.e. nodes with extra edges representing
interaction with external objects and environment). The mesh
is processed through an Encode-Process-Decode architecture
where the encoder is responsible to build the graphmentioned
above, the processor performs message passing along mesh
edges and world edges to update nodes embeddings, and
the decoder finally computes nodes acceleration (which
iterated will produce motion). Interestingly, the authors
argue how message passing in mesh-space makes the
model learn the internal dynamics of the physical system,
while message passing in world-space captures external
dynamics such as contacts. Thanks to this graph-based
encoding, MeshGraphNets demonstrated notable capabili-
ties in learning resolution-independent dynamics, enabling
variable resolution at runtime, and even an adaptive change
of discretization during rollouts, opening to the interesting
possibility of allocating larger computational resources to

FIGURE 4. An example of graph used to model a soft end-effector. The
GNN is used to learn the dynamics of the system by tracking a selection
of keypoints on the robot body. Image taken from [58]. Copyright ©2021,
IEEE.

specific local regions where higher accuracy is needed
(e.g. corners or contact points).

In a similar fashion, but in the context of manipulation
planning, DefGraspNets [36] propose a multigraph to encode
the object mesh together with the gripper mesh, which is then
used to learn to predict the deformation of soft objects during
manipulation.

One of the main challenges that arise when learning
robotics tasks that imply interaction with deformable objects,
such as cloth manipulation, is the intrinsic difficulty in
retrieving the object connectivity, because of the large num-
ber of degrees of freedom and the self-occlusion conditions.
Graphs can be used to tackle this problem and extract directly
from visual data the connectivity of a cloth [56], [57].
These methods usually move from a graph built upon the
voxelization of an object point clouds, where each node of
the graph is the centroid of the corresponding voxel cell,
and nodes that are geometrically close to each other (but not
necessarily physically) are connected together. AGNNcan be
used to estimate whether each edge of the graph is also amesh
edge, meaning that it represents also a physical connection of
the cloth structure. Then, this visual connectivity graph can
be used to learn the model dynamics by means of a GNN that
estimates the acceleration of each particle (i.e. of each node).

Graphs can be used not only to model deformable objects
but also the robot itself. In general, human, humanoid or
animal bodies have a discrete graph structure, where nodes
are joints and edges their physical dependencies [37], [59].
NerveNet [37] builds a graph to represent the structure of the
agent, where nodes are different parts of the robot and edges
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are weighted proportionally to the distance between nodes,
and learns continuous agent’s control policy by means of a
graph neural network, using the implementation of [3]. The
state of each node is updated based on both the aggregated
message from its neighbourhood and its current state vector.
Such structure has several advantages, the resulting learned
policy is general and zero-shot transferable to new scenarios.

In [59], instead, the authors use a similar model where
visual observations are inserted as additional inputs, leading
to a graph that encodes both agent and environment status.
Both these works prove the importance of training a policy
that is aware of the kinematics of the robot. Particularly
challenging is the modelling of soft robots, due to their
complex continuous dynamics [60]. Related to this topic,
it is relevant to mention [58] (see Fig. 4) where the authors
demonstrate how building a graph upon keypoints to model
the agent, and using a graph neural architecture, may enable
themodel to learn to exploit the underlying physical structure.

B. GRASPING AND MANIPULATION
One of the primary tasks that an intelligent robot should
be able to perform is to safely and effectively interact with
objects in its workspace. Indeed, many practical applications
require to move, manipulate and use a large variety of objects
and tools with different sizes and shapes.

The capability to firmly grasp an object, or to apply
controlled wrenches on it with the purpose of changing it
pose (manipulation) is one of the primary skills we envision in
home-integrated robotic devices. However, although at a first
glance this may seem as an easy problem, matching human
manipulation skills with modern manipulators is incredibly
challenging and a multifaceted problem [61].
The development of fully autonomous manipulation sys-

tems requires targeting at least three main issues: perception,
planning, and control. The first refers to the problem of
making the robot able to perceive and understand the
surrounding scene, identify where (and which) objects are
available in the workspace, and how the environment is
composed (e.g. static and dynamic obstacles). At this stage,
it is particularly important to endow the robot with the
capability to learn a representation of the environment and
of the objects, which can be used to inform the robot actions
for task execution.

Then, once the robot is aware of the scene and of the
objects that will be asked to grasp or manipulate, it will
be relevant to plan an accurate end-effector motion, which
requires the availability of models, usually probabilistic, that
predict object state changes when subject to robot actions.

Lastly, the planned trajectory will be executed with a
dedicated controller, which needs to be sufficiently robust to
account for disturbances in sensing and for errors in planning
and perception, yet at the same time adequately compliant to
avoid harsh interactions and damages.

Albeit being a research problem for decades [62], [63],
in robotic grasping and manipulation several problems are

FIGURE 5. Shadow Robot Dexterous robotic hand endowed with a BioTac
SP tactile sensors. Each sensor is represented as graph encoding the
continuous sensing surface. Image from [83]. Copyright ©2019, IEEE.

still open, such as learning to interact with objects in motion
or in clutter [64], [65], [66], manipulation of deformable
objects [67], [68], [69], [70], [71] - for which a proper
modelling is crucial as discussed in Sec. III-A - and human-
robot or multi-robot co-manipulation [72], [73], [74], [75].
In addition, when it comes to the deployment of these systems
in real-world settings, we may also encounter additional
issues: occluded objects due to cluttered scenes or partial
observability, novel objects, characterised by new shapes or
dimensions, or more sophisticated grasping strategies, for
example task-conditioned, where the goal is to select the
grasp pose and location depending on the task for which the
grasp is performed (i.e. grasping a knife will be executed
differently depending whether the robot will cut something,
or just handout the tool to someone).

In the last few years, learning for graphs has provided
interesting results in tackling many open problems in this
field. Graphs can efficiently model the environment and the
interaction between objects [76], [77], [154], [155], learn
semantic global information to build knowledge graphs [32],
[78], [79] or process unstructured data input [80], [81], [82].

Graph-based structures have been also profitably used to
encode spatial relations in complex scenes, where multiple
objects are present and/or the environment is only partially
observable [41], [77], [84], [85], [86], [87], [88], [89], [90].
Object-oriented scenes can be encoded in a graph where
nodes are objects and the edges reflect the relations between
them, providing a powerful and comprehensive representa-
tion of the environment. Notably, since graphs are invariant
to the number of nodes, such representation is invariant with
respect to the number of objects and therefore can be applied
to generic scenes with an arbitrary number of objects.

In real-world scenarios, it is quite common to have
cluttered scenes where it is required to perform grasping
minimising the probability to cause collisions. The majority
of methods usually solve this problem in two steps, first
predicting the grasping pose of an object, and then using a
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collision checking module to verify the safety and feasibility
of the planned graph [91], [92], [93], [94]. In many cases,
however, objects are processed independently from the
surrounding scene, and the spatial relationship between items
is usually disregarded when predicting the grasp pose, which
may lead to sub-optimal results and errors in the presence
of partial observation. Yet, several papers demonstrated how
building a graph of the objects in the scene enables the
exploitation of objects’ surroundings knowledge, useful to
directly predict effective and safe grasps [41], [85], [86].
Graph-based encoding showed also interesting features in
handling multiple instances of the same item. Assuming
to have several similar (or identical) samples of the same
object - e.g. in tool boxes, shop carts, or groceries shelves -
GNNs are able to capture and highlight the hidden correlation
between nodes, which may be exploited for instance to
select the most accessible sample of the desired object [85].
In a similar fashion, [84] tackled the problem of grasping
partially visible objects. A graph conv in this case is used
to uncover and explore non-observable parts of the scene,
and to aggregate information extracted from different regions,
to capture internal spatial relations and decide whether
the target object is already accessible or requires a non-
prehensile manipulation primitive (e.g. push) to rearrange
its pose.

A relevant topic worth discussing is also the analysis
of dynamic multi-object interactions. References [77], [86],
and [87] examine long-horizon planning task, where several
consequent actions are planned to achieve the desired goal.
Reference [86] proposes a graph neural network to learn
manipulation effects on multiple objects, and proves that the
relational inductive bias of this type of network is effective in
planning even on a very long time span. Similarly, [41] uses
the graph relations between objects to predict the grasping
order of multiple objects. In [77] long-term manipulation
tasks are seen as a sequence of spatial constraints and
objects relationship. The authors proposed to represent the
environment state as a graph, where each node encodes
features associated with objects and their goals (i.e. target
positions). A graph-based architecture is then trained to select
the next object to move, where to place it, and predict a
task-specific action. Interestingly, they also propose an expert
demonstration cast as a graph, named GNNExplainer. Their
work suggests that graphs are good to encode the knowledge
hidden in the examples provided in supervision and not
encoded in the problem. This powerful representation of
the environment, able to capture spatial dependencies, can
be exploited in other more uncommon tasks, as done by
[88] where the goal was to learn how to place objects in
a scene following user’s preferences. Similarly, graphs can
also be used to model the interaction between objects and the
robot in the context of bi-manual robotic manipulation [76].
In this work, the authors introduce a two-level framework
composed of a decomposition of the multi-modal dynamics
into primitives, and a primitive dynamics model where graph

recurrent neural networks are used to capture interactions
between objects and the robot arms. In particular, with the
graph they model the interaction between different parts of
the robot and the manipulated objects. In this case, graph
representation helps to improve the performance of the model
in several simulated bi-manual robotic manipulation tasks,
showing interesting capabilities in increasing training speed
and overall accuracy.

So far we mostly discussed a selection of methods where
graphs demonstrated to be convenient tools for modelling
environment-level spatial relations between objects and
robots. Interestingly, the same spatial representation problem
can be casted to a smaller scale, and model the relationship
between fingers and fingertips contacts during grasping (see
e.g. Fig. 5). Many works, indeed, propose to leverage tactile
sensing for the assessment of grasp stability or to foster
effective in-hand manipulation [95], [96], [97], [98], [99].
However, although in most cases these sensing strategies
leverage cameras to measure sensing surface deformations,
their output cannot be easily processed by standard con-
volutional architectures, because of the complex non-linear
relationship between different sensing units. Notably, these
issues are discussed and addressed for example in [83] for
tactile sensor state estimation (single sensing unit) and in
[100] for multi-finger pose estimation (multiple sensing unit).
The construction of the graph from tactile sensors of [83] is
reported in Fig. 5 as an example.

An insightful application of graphs in the context of robotic
grasping and manipulation is the creation of a knowledge
graph [32], [78], [79], [101], [102], [103], [104], [105], where
semantic knowledge and its internal relations are organised in
an efficient and powerful way.

This structure is able to capture the semantic knowledge
about objects, tasks, agents, actions, and regions present in the
training environments, and potentially to generalise to novel
scenarios, types of objects, shapes, and tasks. Large-scale
knowledge graphs such as RoboBrain [102] and RoboCSE
[103] propose general frameworks able to extract abstract
semantics concepts that can be generalised and take into
account the uncertainty of real-world scenarios. Such struc-
ture can be exploited for sophisticated robot manipulation,
such as for task-oriented grasping first proposed in [32],
where the authors present a framework, named GCNGrasp,
where a knowledge graph that encodes objects, tasks and
object hierarchies from WordNet [106] is exploited to decide
whether a test grasp pose is suitable for the desired task on
that specific object (see Fig. 6). The classification is done by
adding the query grasp pose node on the knowledge graph
and by performing few graph convolution layers. Instead,
[78] builds a graph, called RoboKG, with all the available
information of the objects, such as material and components,
of the tasks, and of the manipulation characteristics, such as
type of gripper and exerted force. RoboKG is then used to
infer which gripper to use, which part of the object to grasp,
and the amount of force required.
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FIGURE 6. Overview of the method proposed by [32] for task-oriented grasping. It is interesting to observe the utilisation of the knowledge graph to
infer information about the query grasp pose. Image redrawn from [32].

Graphs can also be used to encode the functional
relationships between grasping strategies, providing a way
to contaminate classes representation and to generalise to
novel grasping skills. In [79] the authors propose to generate
human-inspired grasping strategies depending on objects
shapes, claiming that the object shape provide a good
affordance for the grasping type, e.g. a cup would be more
likely pickedwith a cylindrical grasping, while a pencil would
require a precision pinch grasp. One of the main problems
of this representation is the unbalanced dataset, as some
strategies are much more rare than others. To overcome this
issue, a knowledge graph, built with the knowledge of a
kinematic relationship between classes, is used to transfer
information between nodes and improve prototypes of long-
tail classes.

In robot manipulation, and especially grasping, it is
more and more popular to exploit 3D input data, since the
depth information is important to a proper grasp prediction.
However, handling 3D data representation such as point
clouds is significantly harder than common RGB images,
since they lie on non-Euclidean domains, and classic neural
network architectures - such CNNs or MLPs - are not
effective or even applicable. Graph neural networks have
emerged as efficient methods to deal with unstructured data,
as demonstrated by a wide literature proposing graph-based
architectures to process point clouds [5], [6], [81]. Graph
representation of 3D data has already been used in robotics
with a straightforward implementation of standard GNNs.
In [80] the authors propose a method to improve task-
dependent grasping by finding the object category from a
given ontology. The authors pose an interesting assumption
on the fact that objects with similar shapes would be grasped
in a similar way for similar tasks. Thanks to the representation
of each 3D object as a graph, where nodes are points and
edges are weighted by the changes of the surface, graph
kernels are used to compare the similarity between objects,
with the purpose of fostering knowledge sharing between
objects of similar shape.

C. HUMAN ACTION RECOGNITION
Human action recognition, tracking, and forecasting are
rapidly becoming a key enabling factor for a variety

of robotics applications, ranging from technology-enabled
healthcare, all the way to assistive robotics and human-
machine interaction and cooperation. As an example, it is
worth mentioning gesture recognition, where the robot
is tasked to detect and interpret human hand and arm
movements, to favour a natural interaction [107]. This can
be used in a wide variety of different ways, for example,
a robot in a healthcare facility could be able to recognise
specific hand gestures made by patients or doctors, and
therefore trigger specific reactions, e.g. fetch tools or program
actions [108]. Human gesture understanding can be also
used to feed learning-by-demonstration or imitation learning
pipelines [109], [110], [111], with the goal of transferring
human skills to manipulators, making them able for example
to fold a towel [112], paint a piece of furniture or manipulate
kitchen items [113].
Beyond making robots more and more autonomous for

daily living tasks, an open and - in some cases - more
challenging problem is to enable a safe physical interaction
with the environment and the humans [114], [115]. In this
case, human action recognition becomes even more crucial,
because the robot may benefit from understanding whether
people in its surrounding will walk or move their limbs
in specific portions of the workspace, to either avoid
contacts or trigger consequent support actions (e.g. pass
a tool or co-manipulate an object) [116], [117], [118].
Of note, understanding human behaviour, and eventually
being able to react consequently, may have a significant
effect on the anthropomorphism and accountability of
the machine, which proved to be a key factor for the
increased acceptability and trustworthy of machines in our
daily life [119].

The use of graph neural networks for human motion
modelling has a longstanding tradition, especially for body
keypoints estimation [120], [121], [122], [123]. Several
surveys have been proposed to summarise the state of the
art of deep learning methods for skeleton-based human pose
reconstruction (as for example [124]), and therefore will
be here omitted to preserve the robotics-oriented focus of
this paper and to leave more space to the modelling of
complex human behaviour when interacting with objects and
the surrounding environment.

VOLUME 11, 2023 112673



F. Pistilli, G. Averta: Graph Learning in Robotics: A Survey

FIGURE 7. Topological graph of activity-centric zones. Image from [9].
Copyright ©2020, IEEE.

Human behaviour is an intricate and multifaceted phe-
nomenon, strongly affected by individual personality traits,
past experiences, cultural background, and social influence,
which are interleaved in a unique and unpredictable way.
These aspects play a role even in controlled scenarios, e.g.
during a meal preparation we may choose different steps
order depending on our habits. To master this complexity,
graphs appear to be a valid choice, thanks to the possibility
to represent in a compact fashion the functional or semantic
relationship between knowledge entities encoded in nodes.
Under the domain of vision-based systems, which represents
the primary sensing modality for this kind of application,
graphs can be used to model structured information such as
zones of an environment (the sink, the oven and the fridge
in a kitchen, the desk, the armchair and the window in an
office), or contacts between hands and objects [125], [126].
This line of research has been particularly fostered by the
release of large unstructured datasets, among which it is
worth mentioning Kinetics [127] and Charades [8] for third-
person videos, and Epic Kitchens [128], Ego-4D [129], and
Assembly101 [130] for egocentric vision.

One notable example is [9], where the authors discuss
the feasibility to detect relevant zones in a domestic
environment from egocentric videos (activity-centric zones)
and encode them in a graph structure where new zones
explored are sequentially added to the graph. Interestingly,
such topological representation of environmental key zones,
reported for reader’s convenience in Fig. 7, intrinsically
embeds information on which actions may take place in
specific zones (i.e. if the camera is looking at a sink, the
user will likely wash something), while edges capture spatial
relationships between different zones, depending on how
people navigate between them. Topological graphs like the
one proposed in [9] demonstrate an interesting capability to
support deep learning models for action forecasting, where
the graph is used to encode a series of zones visited during
a complex action (e.g. the user is first at the sink, and
then move to the cutting board) to predict the next activity
(e.g. cut something). Interestingly, this source of knowledge
could be pivotal to enable a more natural and efficient
learning of human skills with minimum motor impairment,

opening interesting perspectives for imitation learning -based
strategies to transfer human action skills to manipulators,
or to inform a robot of the next human action, for contact
avoidance and cooperation.

With a similar yet different purpose, graphs represent
convenient mathematical structures to model human-object
interactions. As an example, in [33] and [34] the authors
propose a graph to encode contacts between hands and
objects. The nodes state contains the information of which
object is in contact with the two hands in the current and
future time-spans, with the purpose of anticipating future
actions of the user. A complex activity is then represented
by a sequence of nodes, where edges represent temporal
relationships (before/after) providing temporal context to the
action recognition neural architecture.

In [131], the authors tackle the problem of visual imitation,
meaning the ability of an agent to learn skills by observing
and imitating a human demonstrator. Learning from complex
and unstructured human behaviours requires a fine-grained
understanding of the demonstrator’s visual scene and of how
it changes over time, which is addressed in [131] through the
definition of hierarchical graph video representations, named
Visual Entity Graphs (VEGs). The general idea is to encode
human behaviour through a set of nodes representing visual
entities - such as objects or hands - tracked in space and
time, and connected through edges encoding their relative 3D
spatial arrangement. Such structured representation enables a
more fine-grained understanding of the activity, the key visual
entities in the scene, and their spatial arrangement in the
demonstrator’s and imitator’s environments. This encoding
enables the agent to better understand the visual scene and
changes over time, which is essential for successful visual
imitation. The graph structure also allows for more efficient
computation of visual similarity between the demonstrator’s
and imitator’s environments, which is maximised through the
imitator’s actions to result in a correct transfer of skills.

Of relevance for this topic is also [132], where the authors
address the challenges of estimating from videos the three-
dimensional poses of hand and grasped objects in real-time
during manipulation tasks. In this case, the graph encodes the
spatial relationship between hand joints and object corners,
and can dynamically adjust its structure depending on the
input data, allowing the model to handle different hand-object
configurations. Interestingly, the authors demonstrated that
GNNs can make the difference in both refining the estimation
of 2D keypoints, and also in converting them into their final
3D representation, also enabling on-line processing of visual
streams.

IV. GNNS FOR MULTI-AGENT SYSTEMS
In multi-agent systems, an effective coordination and com-
munication between robots is of paramount importance to
enable a fruitful cooperation, which is clearly critical for
several downstream tasks. Traditionally, this problem has
been addressed by exploiting centralised approaches, where
all the intelligence and computation complexity is centralised
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on a common controller node, which collects information
from the environment, plan and then communicate single
actions to each robot to fulfil the desired task. Such an
approach has the strong benefit of having a central control
system able to reason on the current (and past) status of the
whole set of agents and the surrounding environment, thus
requiring only little computation on the device side for action
execution. However, this approach has a low fault tolerance:
if even a single agent fails, all the actions of the robots need
to be recomputed. Centralised solutions also badly scale with
the increase of agents, and for difficult tasks it even requires
additional per-robot computation [133].

To address these issues, recently many researchers devoted
their attention to decentralised approaches, where each agent
learns its set of actions according to environmental data and
shared information from other agents. In this configuration,
each robot has to deal with limited observability due to
the range of the sensors, each robot can only see a partial
portion of the environment and can communicate with the
nearest agents. GNNs offer generalized and flexible structural
representations of the elements in multi-robot systems, and
have been recently widely used in decentralised approaches
to adress several tasks.

The utilisation of GNNs can change according to the
information that are encoded in the graph. Many notable
works [43], [134], [135], [136], [137], [138], [139], [140],
[141], [142], [143] focus the attention on the communication
between robots, a crucial aspect for task andmotion planning,
and exploit graph encoding to efficiently model inter-agents
relationships. Usually, graph neural networks are used to
learn a communication graph, which is then exploited for
example to directly support the agents in making decisions,
or to foster multi-agent reinforcement learning frameworks in
policy learning.

On the other hand, several methods propose to encode the
information related to the environment topology, in the form
ofwaypoints or point-of-interest [10], [11], [39], [144], [145],
[146]. Works as [10], [11], and [39] focus on the spatio-
temporal relationship between entities in the environment to
build a graph, and use GNNs to learn environmental features
for the robot. Other methods [144], [145], instead, propose
a more comprehensive topological representation where both
robots and environments are directly encoded in the graph.
In particular, [144] is the first work that introduces a shared
agent-entity graph in the context of multi-agent learning.
Both environments entities and agents are encoded as nodes
in the graph, and the edges reflect the communication links,
which can be assumed to be always available (fully connected
graph) or constrained by some sort of maximum distance
range (i.e. edge exists only if the distance between nodes
is below a given threshold). The communication inside the
graph is performed in two steps: first, each agent computes its
state embedding and aggregates the environment information
with an attention mechanism [147], then, an inter-agent

communication is performed to share local information along
the team members.

Generally speaking, graphs provide several desirable
advantages for multi-robot systems: i) invariance to the
number of agents/points of interest ii) invariance to the
permutation of the agents iii) suitability to learn policies for
Multi Agent Reinforcement Learning (MARL) and imitation
learning iv) policies learned on small systems are transferable
to systems with a larger amount of agents. In the following,
we will showcase how these benefits have been exploited
for two relevant multi-robot scenarios: task and motion
planning, where a fleet of robots move coordinately in an
environment and cooperates to accomplish one or more
activities; exploration and navigation, where agents are
tasked to explore an unknown environment.

A. TASK AND MOTION PLANNING
Graph structure is a natural way to describe decentralised
logic. This implementation provides a way to plan multi-
vehicle trajectories with performances similar to centralised
approaches but in a decentralised manner, with a massive
reduction of problem complexity and communication burden.
In multi-robot path planning, the goal is to find collision-free
paths to bring each agent in the team from a starting position
to the target one.

The task can be particularly challenging when the agents
have constraints in terms of range of observability and
communication, quite common in real-world applications.
Communication between agents is always crucial in multi-
robot systems, and to fulfil this task it is particularly important
to decide which information to share, when, and how, so that
each agent is able to take effective decisions. To address
this problem, [148] proposes to mix a convolutional neural
network and a graph convolutional neural network to extract
visual features from local observations of each agent, and
to exchange such information within the team respectively.
The graph neural network is structured as in [38], where each
agent is a node and the edges are communication connections
determined by a distance threshold. Such joint configuration
helps the network to identify the relevant information to share
with the team, in order to efficiently perform path planning.
The work is later extended in [42], and an attention-like
mechanism [24] is inserted in the graph neural network to
model the intra-robot communication, where the weights on
edges between nodes are proportional to the importance of the
received message. A similar structure is exploited by [149],
where an history of past paths is stored within the graph
neural network to perform motion planning.

One challenge trend of research in multi-robot systems is
the scalability to large numbers of agents, mostly because
of the increasing communication burden. Graph neural
networks offer a good solution to this issue, because they
canmitigate the computation cost by aggregating information
locally and not throughout the entire system. Interestingly,
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FIGURE 8. Example of a communication graph used to learn policies to produce a desired behaviour. Redrawn from [150].

a few works also demonstrated the feasibility to learn over
a small number of agents a general model, which can be
seamlessly extended to larger fleets [150], [151], [152]. Such
works introduce Graph Policy Gradients, an algorithm that
exploits graph neural networks to learn policies for the robots.
A GNN is trained in the classic configuration for multi-robot
systems, where each node is an agent and the edges connect
team members that are within a threshold distance. Such a
network can then be applied to several problems such as
formation flying and path planning (see e.g. Fig. 8). The paper
also discusses the scalability of GNNs in this framework
toward an arbitrary number of robots, showing interesting
perspectives in terms of limitation of computational cost and
ability to transfer the learned policy to larger fleers in zero-
shot, remarkably training on systems with cardinality from as
little as three robots all the way up to a hundred.

A task that shares some similarities with path planning
is to learn scheduling policies, which consists of coordinate
agents programmed to complete tasks in predefined times
and locations. To overcome similar issues of path planning,
namely the difficulty to scale to large systems and lack
of generality, GNNs have been investigated as a way to
address them in RoboGNN [43], where the authors propose
a graph attention -based model able to solve simple temporal
network-based scheduling problems.

B. EXPLORATION AND NAVIGATION
In multi-robot exploration, a team of robots needs to explore
an unknown environment and additionally visit several
regions of interest. In such a scenario, it is particularly
important the communication and cooperation between
agents to efficiently cover the exploration ground, and avoid
conflicts or repeated explorations. Furthermore, in order to
successfully fulfil the task, a key aspect is to define the spatial
relationship between robots and regions of interest and extract
environmental information. Graph neural networks provide
a promising tool to efficiently regulate the communication
between agents and aggregate topological information from
the environment.

In section IV, we reviewed several approaches that build a
communication graph for multi-robot systems coordination,
which can be also applied for exploration tasks [43], [134],

[135], [136], [137], [138], [139], [140], [141], [142]. Some
of these works, instead, are specifically designed for the
task of exploration, such as [142] where the authors tackle
the task of coverage control, with the aim of predicting
the distribution of a set of robots in a region such
that the likelihood to spot events of interest is maximised.
Of relevance is also [138], where the communication graph
between several agents and a data sink is used to prevent data
loss and allow robots to explore the environment efficiently
in the presence of intermittent connectivity, for instance in
space exploration.

It is also relevant to mention a line of research where
graphs are used to model together both the environment
and the agents therein. For the sake of completeness,
we first introduce some relevant works which target this
problem for single-robot exploration. In [10], [11], and [39]
the authors propose an exploration graph to predict the
next action [39], further extended with the addition of deep
reinforcement learning to learn robot policies [10], [11].
The model provides a general representation of the SLAM-
dependent robot state and environment, creating a spatio-
temporal graph where robot state, landmarks, and frontiers
are encoded as nodes, and a graph neural network is
used to extract meaningful features from the environment.
Topological graphs can be also used to model an entire
environment, such as in [153], where the graph is used to
model an indoor space for mobile robot exploration. The
idea of processing environmental information is then later
extended also to multi-robot exploration [12], [145], [146].
In [12], the authors propose to segment the exploration
environment into the graph domain. To do this, the map
is divided into regions and each of them is mapped into
a node of the graph, while edges between nodes represent
spatial distance. Based on the topological graph, a graph-
based reinforcement learning algorithm is applied to learn
how to assign exploration targets to each robot. Instead,
in [145] and [146] the authors introduce the use of a spatial
graph, where both map locations and agents are represented
as nodes, and the connectivity encodes the set of allowed
moves. In particular, [146] uses behaviour cloning to train a
GNN controller to imitate the expert solution. Such a model
can be easily generalised to scenarios with a larger map and
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more agents. The usage of a GNN allows to easily choose
the range in which the exchange of information may happen,
by just varying the receptive field of the network.

In [145], Zhang et al. propose a coarse-to-fine exploration
framework based on graph neural networks. Depending on
the type of exploration, different regions of the environment
may have different degree of relevance. As an example,
for coarse exploration, the boundary is probably the most
relevant zone where to focus, while for a fine inspection,
looking to closer regions could be more informative. Graph
neural networks can easily reflect such necessity giving more
or less importance to features coming from different parts of
the graph.

V. STRENGTHS AND LIMITATIONS OF
CURRENT LITERATURE
Moving from our analysis of the literature, we believe that
it is relevant to mention how graph-based representations
opened interesting research perspectives, such as for the
modelling of functional, spatial, or temporal relationships
between passive or active elements (between robots, objects,
and zones of an environment). Interestingly, in the last few
years, we observed an exponential increase in the adoption
of this learning method for robotics applications, which at
the moment is consolidated as one of the most prominent,
together with images, for complex tasks.

For the field to progress to a higher maturity phase,
however, we strongly believe that some aspects still deserve
additional work. First, the analysis we performed strongly
motivates and foster a more extensive and informed use
of graphs as a convenient tool to represent unstructured
information and enable learning on complex data structures.
Yet, in many cases, graph learning is used in a naive fashion,
albeit specific applications may benefit from advanced graph
neural architectures formalisation such as attention based
(see Fig. 3). One of the purposes of this survey is to
bridge this gap by collecting and providing a cheat sheet
on the most advanced graph learning theory for the robotics
community.

VI. CONCLUSION AND FUTURE PERSPECTIVES
The main goal of this paper is to showcase a comprehensive
overview on the use of neural networks for graphs in robotics
applications. Indeed, in the last decade, roboticists highly
benefited from the advancement of techniques and methods
defined in the machine learning community, serving as one of
the preferred test benches for deep learning. However, often
practical robotics use-cases deal with complex and unstruc-
tured data, such as three-dimensional data (point clouds),
functional and temporal relationships between elements, etc.
To unlock the potential of machine and deep learning for
these applications, it is crucial to make models able to
process unstructured data representation, for which graph
encoding seems to be the preferable approach. We revised
and categorised more than 100 papers on the topic, trying
to identify the major trends of research in robotics in which

graph encoding and learning play a crucial role in enabling
novel tasks and making efficient the learning process.

Our literature review suggests that graph learning can
enable a plethora of novel tasks, ranging from action
recognition and forecasting, to space representation all the
way to soft-bodies modelling. Interestingly, the number of
novel applications is increasing with time, and we hope that
our effort of collecting and revising the major contributions
to the topic may provide a boost to the research on robotics-
enabled novel and more complex tasks.

Finally, we also believe that the robotics community may
not only serve as a test bench for machine learning, but
could also contribute actively to the development of the
field. Realistic problems coming from the robotics field
could provide insights, constraints, and guidelines to foster
novel learning andmodelling scheme for researchers working
on the foundation of graph learning. For this reason, this
survey is also addressed to machine learning scientists,
delivering a complete overview of the major challenges that
the robotics community is currently addressing, with the
hope of providing interesting research hints to bridge the gap
between theory and application.
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