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ABSTRACT Advances in electronic systems, wireless communication protocols, and intelligent devices
allowed the development of networks of mobile devices such as cars, drones, and robots. The field of mobile
ad hoc networks (MANETSs) comprises networks where the mobility of the devices is one of the fundamental
elements that characterise these networks. However, the node’s mobility leads to constant changes in the
network’s topology, representing a challenge to routing protocols designed for MANETSs. Although there
is effort from researchers to tackle the intricacies of routing protocols in MANETsS, there is still room for
improvement as new applications with challenging specifications continue to arise. This research enriches the
existing theoretical perspective by presenting an innovative method for optimising the routing performance
of the ad hoc on-demand distance vector (AODV) protocol. Grounded on multi-objective metaheuristics,
we aim to improve AODV'’s routing recovery performance concerning routing delay, energy consumption,
packet loss ratio, and route load metrics. To gauge the quality of our contribution, we compare its performance
to the standard AODYV, a mono-objective optimised AODV, and four other well-known routing protocols with
different routing approaches. The results indicate that the proposed solution was superior to the original
AODYV with average improvements of 56.0%, 59.3%, 48.1% and 0.7% on route load, routing delay, packet
loss ratio and energy consumption, respectively. It also presented competitive results compared to other

routing protocols.

INDEX TERMS AODYV, mobile ad-hoc networks, multi-objective optimizations, route recovery.

I. INTRODUCTION
Mobile ad hoc networks (MANETS) are self-configuring
wireless networks — that do not require a fixed or previously
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configured infrastructure — that allow devices (or nodes)
to form connections in a dynamic manner. These networks
have decentralised control and are composed of independent
mobile nodes communicating in a multi-hop scheme [1].
Among many types of MANETs [2], [3], [4], [5], we can
cite the flying ad hoc networks (FANETS) [6], [7]. FANETSs

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
116480 For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023


https://orcid.org/0000-0001-7869-7184
https://orcid.org/0000-0002-7071-379X
https://orcid.org/0000-0002-0679-6957
https://orcid.org/0000-0002-1278-4602
https://orcid.org/0000-0002-0924-5341
https://orcid.org/0000-0003-2770-8319

C. Santana et al.: Bio-Inspired Multi-Objective Algorithms

IEEE Access

has attracted attention due to increased applications related
to swarms of unnamed air vehicles (UAVs). Regardless of the
type, all MANETS face challenges related to mobility, quality
of service (QoS), energy, and routing [4], [5].

The mobility of MANET’s nodes represents an extra
challenge to [8] concerning the routing protocols. As the
network topology changes continuously due to the mobility
of the nodes, these routing protocols need mechanisms
to minimise the impact caused by the mobility of the
nodes on the routing process [9]. Furthermore, depending
on the application, the nodes’ movement does not con-
sider the possible communication issues (e.g., breaking an
active route), which adds more complexity to the routing
process.

In an attempt to overcome the problems of proactive
protocols, the reactive or on-demand protocols only maintain
information from active routes. The route discovery works
on demand [10]. When a node has to send data to a specific
destination, it broadcasts request packets if it does not have
an active route to that node [11].

Since no protocol has the best performance in all scenarios,
the routing protocol selection depends on the characteristics
of the application. Furthermore, as the node’s energy in
the network comes from limited energy sources such as
commercial batteries, there is also an energy limitation [12],
[13]. Since wireless communication is the primary consumer
of MANETS (i.e., energy used to send and receive data/route
packets) [14], an efficient routing protocol can reduce energy
consumption in the network.

Among the routing protocols designed for MANETS, the
ad hoc on-demand distance vector (AODV) is a reactive
protocol commonly used in MANETS [15], [16], [17].

The ad hoc on-demand distance vector (AODV) is a
simple flooding routing protocol. Due to these character-
istics, it significantly produces excessive redundant traffic
(i.e., broadcast storms), which overloads network resources
such as bandwidth and battery, especially in high-density
network environments, impacting network functionality and
increasing packet loss, end-to-end delay, latency, and low
throughput. [5].

Besides the advantages and drawbacks of reactive pro-
tocols, the AODV has positive and negative aspects. For
example, Pereira et al. [18] analysed the AODV local and
source repair mechanisms separately and observed that the
source repair exhibits better performance in most scenarios
when compared to the local repair. Moreover, a study
published in 2012 showed that AODV’s approach to selecting
the route repair mechanism could be improved by adding the
concept of node connectivity (i.e., the number of neighbours
from a node) [19].

Although the on-demand behaviour indirectly helps
AODV save energy by executing routing discovery and
route repair operations only when needed, this protocol is
not natively energy-aware nor has mechanisms designed
to prevent excessive energy consumption. In fact, in 2009,
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amodified energy-aware version of AODV proposed to select
routes that require less energy to deliver packets [20].

Another drawback commonly associated with the AODV
is that this protocol needs to adapt its behaviour to meet
the application’s specifications [19]. Thus, AODV cannot
be tuned to reduce energy consumption or maximise the
packet delivery ratio. However, it is worth mentioning that
this problem is not exclusive to AODV and is present in
several other routing protocols for MANETS.

As adopted in previous works [19], [21], the introduction
of node connectivity in the route repair process, coupled with
a few more parameters, enhanced the performance of the
AODV. These works employed a mono-objective algorithm
to optimise the routing performance of the AODV regarding
a single metric. This approach allows adapting the version
of AODV by selecting different QoS metrics. However,
as these works used mono-objective algorithms, they only
optimise the protocols regarding a single metric (i.e., they
cannot simultaneously minimise the routing delay and energy
consumption).

This study contributes to enhancing the prevailing the-
oretical framework by introducing a novel technique to
improve the routing efficiency of the AODV protocol.
The primary goal is boosting AODV’s routing recovery
performance by tuning four parameters (i.e., SWI1, SW2,
LW1, and LW2) responsible for controlling which route
recovery approach (e.g., local or source recovery) will
be employed in a particular route breakage scenario. Our
research further contributes to the existing body of knowledge
by exploring diverse approaches for integrating the notion
of node connectivity into the Ad Hoc On-Demand Distance
Vector (AOVD) protocol. In contrast to earlier methods
that extracted connectivity information from the simulation
platform and treated it separately from the routing process,
we investigate incorporating connectivity directly into the
routing process. This investigation is of great significance as
it unveils that various strategies for integrating connectivity
into AODV can potentially deteriorate its performance.

To assess the routing performance of the proposed
techniques against the original AODV and four other routing
protocols, we utilise multiple QoS metrics [22], [23] such
as normalised route delay (Delay), packet loss ratio (PLR),
normalised route load (NRL), and energy consumption
(EC). In this context, another contribution of our study
revolves around evaluating Quality of Service (QoS) metrics
that are apt for multi-objective optimisation. Our findings
demonstrate a discernible correlation among specific metrics,
implying that optimising one metric could indirectly lead to
the optimisation of others. Among the chosen metrics, it’s
worth noting that only energy consumption did not exhibit
a strong correlation with the rest.

Tackling the multi-objective optimisation of the four
parameters, we select the non-dominated sorting genetic
algorithm (NSGA-II), speed-constrained multi-objective par-
ticle swarm optimisation (SMPSO), and the strength Pareto
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evolutionary algorithm (SPEA2). We compare the proposed
solution against alternative routing protocols and prior mono-
objective methodologies. This comparative analysis enables
us to discern variations in performance among these tech-
niques, particularly in the context of multi-objective versus
mono-objective strategies. Lastly, the optimal weight set
derived from the optimisation process corroborates findings
from earlier studies, underscoring that, across most scenarios,
the source repair mechanism of AODV outperforms local
repair mechanisms.

The remainder of this paper is organised as follows:
Section II presents a brief classification on the main routing
protocols; Section III presents a list of related work,
Section IV explains the fundamental theoretical aspects
behind this work, and Section VI describes the experimental
setup and discusses the computational results. Next, Sec-
tion VII discusses the main advantages and limitations of the
proposed approach. Lastly, the conclusions are presented in
Section VIII.

Il. ROUTING PROTOCOLS CLASSIFICATION

We can divide routing protocols for mobile ad hoc networks
into three classes based on their modes of operation:
proactive, reactive, and hybrid protocols [24]. Proactive
protocols periodically monitor the network to detect changes
(e.g., new routes and route breaks) and use tables to store
routing information for all or a group of nodes in the
network. This strategy’s main advantage is reducing the time
needed to create or repair routes. Furthermore, since the
nodes have updated routing information, they can promptly
reconstruct/create routing paths. However, the number of
tables and the amount of stored data can increase the
memory consumption in the nodes. Besides, periodic network
monitoring may flood it with routing packets, reduce the
bandwidth available for the traffic of data packets, and
increase packet loss risk.

In an attempt to overcome the problems of proactive
protocols, the reactive or on-demand protocols only maintain
information from active routes. The route discovery works
on demand [10]. When a node has to send data to a specific
destination, it broadcasts request packets if it does not have
an active route to that node [11].

If a node receives the route request and has a busy way
to the requested destination, it sends a reply packet with
the solicited path to the source node. Otherwise, it forwards
the route request packet to its neighbours. This process
continues until a route is found, the destination is reached,
or a predefined timeout is exceeded.

At MANETS reactive protocols, the nodes are flexible,
which leads to frequent route failures and route rediscov-
ery necessity, falling into a trade-off where broadcasting
increases the reachability of the route request messages to
the destinations in sparse networks. Still, on the other hand,
rebroadcasting causes excessive redundant packets across
high-density networks that significantly decrease network
performance [5].
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Compared to proactive protocols, reactive protocols store
routing information with less memory. However, the time
required to create routes is high due to the need to discover the
desired way - instead of just searching in the routing tables.

Lastly, hybrid protocols combine the main characteristics
of reactive and proactive protocols. They often operate by
dividing the network into groups or zones. The routing occurs
proactively inside each group while they behave reactively
outside the groups [25].

This strategy aims to cluster together nodes that are close
to each other or communicate more often. Because the
frequency of communication between nodes from different
groups is low, a reactive routing approach can be used without
significantly impacting the protocol’s overall performance.
One of the hybrid protocols’ most significant challenges is
dividing the nodes into groups [5].

As mentioned, for the routing protocols designed for
MANETS, thead hoc on-demand distance vector (AODV) is
a reactive protocol commonly used in MANETS and focus of
investigation.

Ill. IMPROVEMENTS ON THE AODV’s ROUTING
RECOVERY MECHANISM

This section presents a set of related works which aims
to improve the route recovery mechanism of the AODV
regarding a collection of quality of service (QoS) metrics.
Some results tackled this issue by proposing new route
recovery, while others focused on improving the original
strategy. For example, the AODV-BR [26] and AODV-
ABR [27] variants improve the AODV recovery strategy by
supplying multiple backup routes to replace broken paths.
However, this approach may need to be more efficient in a
dense environment [28].

To overcome the drawback of the AODV-BR and AODV-
ABR, Jeon et al. proposed the implicit backup routing-
AODV (IBR-AODV) [28]. Their method employs local
recovery of routes for reliability and reduces the number of
control messages for efficiency. It implicitly conducts a route
recovery process considering the mobility of a backup node.
The results indicate the superiority of the IBR-AODV to the
others regarding the number of link failures, data delivery
ratio, message overhead, and end-to-end delay.

Similarly to the IBR-AODYV, the bidirectional route repair
method (BRRM-AODV) also claims to improve the route
recovery speed [29]. This approach is bidirectional since
when an old route disconnects, the source and destination
start the route discovery simultaneously to shorten the
disconnection duration. Moreover, this version features a
density-based method for minimising the hop count in the
repaired route and improving the successful probability of
repairing the path. The simulation results indicate that the
proposed method can reduce the route construction time by
more than 20% and reduce the failure probability of route
reconstruction by almost 50% compared with the AODV
routing protocol. This method can also eliminate from 10% to
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20% of the nodes participating in relaying protocol messages
during the route discovery procedure.

Another extension of the AODV protocol was proposed by
Castellanos et al. and claimed to provide a better mechanism
to detect the link failures in a route and reestablish the
connections considering the conditions of QoS that have been
established during the route discovery phase [30]. Adaptive
QoS-Aware AODV (AQA-AODV) claims improvements in
packet delay, number of link failures, and connection setup
latency compared with protocols like AODV.

Another approach for optimising the performance of rout-
ing protocols for MANETS is using bio-inspired optimises.
Pereira et al. [19] introduced node connectivity to the
AODV and employed the particle swarm optimisation (PSO)
algorithm to select parameters. The idea was to use the
PSO to find the best AODV route repair mechanism values.
The results achieved by their proposal were superior to the
standard AODV in most of the scenarios considered. More
details on this approach are presented in Section I'V-A.

In 2017, Santana et al. [21] extended the work of
Pereira et al. [19] by comparing the performance of the PSO
to another swarm-based optimiser: the artificial bee colony
algorithm (ABC). They concluded that the optimisation of
the AODV with the PSO and ABC achieved superior results
than the standard AODV. However, there were no statistical
differences between the results achieved by the PSO and
ABC.

Unlike Santana et al., Maleki et al. uses optimizers to select
whether a local or a source repair will be conducted when a
route is broken [31]. In this version, GA-AODY, a genetic
algorithm (GA), is the optimiser employed to find the best
decision strategy based on the routing overhead, average end-
to-end delay, and packet delivery ratio metrics. A similar
approach was presented in 2020 by KN et al. [32]. In their
process, particle swarm optimisation was applied to optimise
the route recovery strategy of the AODV in a wireless sensor
network to improve the packet delivery ratio and decrease
routing overhead.

Despite all the advances in this field, there is still room
for improvement. Furthermore, based on the no-free-lunch
theorem for optimisation, we know that no solution based on
optimizers can have the best performance in all scenarios.
Hence, new and improved approaches can be proposed to
meet the demands of specific applications.

IV. THEORETICAL BACKGROUND

A. AODV ROUTING PROTOCOL

The ad hoc on-demand distance vector (AODV) is a
well-known reactive routing protocol with multi-hop and
dynamic communication between mobile nodes [33], [34].
As a reactive protocol, the AODV works on demand to
establish, recover and update routes. Moreover, to reduce the
traffic of unnecessary routing packets in the network, the
AODV only maintains active ways that avoid repair routes
that are not in use or may never be used [35].
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FIGURE 1. An example of MANET is where the UAVs represent nodes, and
an active route connecting a source to a target node comprises the nodes
connected by the grey and green lines. Note that the node described as
“breakpoint” indicates a node that will cause the route to break.
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FIGURE 2. Same network of Figure IV-A but with the breakpoint node
and its connections removed. Also, the predecessor node to the
breakpoint is highlighted.

When a node needs to send information and does not have
an active route to a destination node, it starts a route discovery
process. The route discovery process begins with the initial
node (source) broadcasting a route request packet (RREQ) to
all nodes under its communication range (i.e., neighbours).
If any neighbour that received the RREQ packet has a valid
route, it replies to the RREQ with the desired path [18].
Otherwise, the route request packet is broadcasted by the
neighbours that do not have the way expected. This process
continues until a route is found or a time limit is exceeded.

Besides creating a new route, route repair is another
essential procedure to maintain the information flow between
the nodes in the network. The AODV uses two mechanisms to
repair broken paths called source and local repairs. Consider
the network configuration depicted in Figure IV-A, in which
the UAVs represent the nodes, and the grey and green lines
indicate an active route that connects the source to the target
node. Also, consider that the node’s movement described as
a “breakpoint” will break the way.

When the breakage is detected by the predecessor node
(Figure 2), it decides if it will attempt a local repair or inform
the source node that the route is no longer valid and a source
repair should be performed.

The predecessor node decides if it will try the local
repair based on the number of hops between the source
and the predecessor node (packetForward) and the number
of hops between the predecessor node and the destination
node (predecessorHopCount). A local repair is made if the
predecessor-target path is shorter than the source-predecessor
path (i.e., packetForward > predecessorHopCount). Other-
wise, a route error packet (RERR) is sent to the source node
to start the source repair. In the example of Figure 2, we have

116483



IEEE Access

C. Santana et al.: Bio-Inspired Multi-Objective Algorithms

Source = bl
@ / \T Repaired

\\ Piece Target

ks ks ff\ﬁ

FIGURE 3. Example of a possible outcome to the repair process on the
scenario described by Figure 2. Note that the new part of the repaired
route is highlighted in green.

packetForward = 3 and predecessorHopCount = 2, which
means that a local repair would be attempted, and a possible
outcome is presented in Figure 3.

When a local repair is selected, the predecessor node
uses the route discovery process to find a new route to
the target. During this process, data packets are buffered
in the predecessor node, and if no valid path is found, all
the buffered data is dropped, and it propagates a route error
packet (RERR) to inform the source node that the route is no
longer valid. Note that a failure in the local repair process
generates a significant data loss and increases the routing
delay since the time to create a new route will equal the time
to perform the local and source repair. Moreover, this also
can impact the energy consumption of the nodes. Researchers
have proposed modifications to the decision process to avoid
the performance issues caused by selecting the route repair
mechanism. One of the approaches used to minimise these
issues was presented by Pereira et al. [19]. The idea behind
this method is explained in the next section.

1) IMPROVING THE AODV ROUTE REPAIR SCHEME

A study from 2009 showed that the different route repair
options on the AODV could produce different results
depending on the scenario analysed [18]. In other words, the
selection between local and source repair can impact the over-
all performance of the AODV. In this sense, Pereira et al. [19]
proposed an approach to improve the AODV by modifying
the route repair decision process. This approach has the
assumption that more connected nodes are more likely to
find feasible new routes than less connected nodes. Besides
packetForward and predecessorHopCount, the connectivity
can be defined as the number of neighbours or nodes under
the communication range (Figure 4), and the connectivity of
the source and target nodes are also considered to choose the
route repair mechanism.

Furthermore, they proposed using weights to adjust the
importance of terms considered to select the route repair.
These weights were introduced to represent the impact of
the connectivity, packetForward, and predecessorHopCount
vary according to the characteristics of the networks (e.g.,
number and velocity of nodes) and the environment’s features
(e.g., size and presence of obstacles).

Algorithm 1 summarises the modified route repair decision
process. The source node weights (SW1 and SW2) controls,
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FIGURE 4. lllustration of a route breakage scenario where we can see
that the set of neighbours of a node is composed of all the nodes under
its communication range (dashed green circles). In this example, the
connectivity of the source node is three, while the connectivity of the
predecessor is six.

respectively, the importance of the number of hops between
the source and the predecessor node and the connectivity of
the source (sourceConnectivity). In the same way, LW 1 and
LW?2 are the weights of the number of hops between the
predecessor and the destination node and the predecessor
node’s connectivity (predecessorConnectivity).

Pereira et al. [19] used the PSO to find their previous
work’s best local and source weight values. However, this
approach is limited to optimising the AODV concerning a
single metric. Since the routing problem in MANETS is
naturally multi-objective (i.e., reducing energy consumption
while keeping the routing delay low), we propose to use
multi-objective algorithms to optimise the routing perfor-
mance of the AODV considering multiple QoS metrics.

Algorithm 1 Modified Route Repair Decision Scheme
1: source = (SWI - sourceHopCount) + (SW2 - sourceCon-
nectivity);
2: local = (LWI - predecessorHopCount) + (LW2 - prede-
cessorConnectivity);
if (source < local); then
Local Repair;
end if
if (source > local); then
Source Repair;
end if

® NN AW

B. MULTI-OBJECTIVE OPTIMISATION AND PARETO
DOMINANCE

In mono-objective optimisation problems, the goal, in gen-
eral, is to find the maximal or minimal value of a
predetermined cost function [36], [37]. In contrast, multi-
objective optimisation (MOO) aims to optimise a set of
conflicting objective functions simultaneously [38], [39].
It means that a candidate solution has to satisfy the posed
constraints and give a reasonable value to all objective
functions simultaneously according to a predefined rule (in
our case, the dominance concept). The optimisation methods
usually determine a group of solutions named Pareto optimal,
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FIGURE 5. Example of Pareto Front for the minimisation a problem with
two conflicting objective functions. The blue circles and the triangles are,
respectively, the non-dominated and dominated solutions. The set
composed of all circles if the the Pareto front.

and inside this set, we store non-dominated solutions. A non-
dominated solution can be viewed as a solution that can only
strictly improve one of its objectives without worsening at
least one of the remaining ones [40], [41]. A multi-objective
problem can be defined as follows [40], [42]:

Min F(x) = [£i (%), 2%, . - -, fu(®)],

subject to (x) = (x1, x2,...x,) € Q C N,

where x € N”" is the vector containing the n decisions
variables, 2 is the set of the feasible decision vectors which
a group of constraints determines, F is the vector containing
all the mono-objective functions f;,(x) and m = 2|3 is the
number of objective functions which have to be optimised at
the same time.

Mathematically, a solution x = (x1,x2,...,x,) € R"
are non-dominated if there is no solution vector z =
(21,22, .. +,2n) € N such that f(z) < f(x) and at least one
f(@) < f(x). Similarly, we say that x dominates z (X < z)
if and only if two conditions are satisfied (in minimisation
problems):

HVVvie(,2,...,n),x <z

iydied,2,...,n),x <z

Solutions are incomparable if distinct solutions cannot
dominate each other. In this case, all non-dominated solutions
belong to the Pareto optimal set, nominated in the space of
objectives as Pareto front [39]. Figure 5 depicts an example
of a Pareto front set for a given problem where the goal is to
minimise two conflicting objectives.

As illustrated in Figure 5, The circles represent the non-
dominated elements, the triangles are the dominated ones,
and the set composed of all the circles is the Pareto front for
that specific problem. In this example, the C is dominated by
A and B (A and B dominates C). However, since a; is better
than b, but a; is not better than by, we say that A and B are
incomparable.

The multi-objective optimisation algorithms were designed
to find answers in the Pareto front. They employ the
Pareto dominance as a criterion for fitness assignment in
multi-objective problems [43].
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C. SELECTED OPTIMISATION ALGORITHMS

This section describes the multi-objective optimisation algo-
rithms (MOA) addressed in this work: NSGA-II, SPEA?2,
and SMPSO. Generally, a good MOA must find a set
of non-dominated solutions regarding all solutions and
approximate as best as possible to the genuine Pareto front
(PF). It has two goals: i) the non-dominated solutions
obtained should be as close as possible to the true PF,
and ii) the solutions should be as diverse as possible. The
NSGA-II, SPEA2, and SMPSO use different strategies to
accomplish these goals [44].

1) NSGA-II

Multi-objective evolutionary algorithms (MOEA) are a
prominent class of optimisation methods to deal with mono
and multi-objective problems using evolutionary mechanisms
[45]. Undoubtedly the NSGA-II (Non-dominated Sorting
Genetic Algorithm) [46] and the SPEA2 (Strength Pareto
Evolutionary Algorithm) [47] are the most well-known and
used MOEAs in recent literature [40], [48].

The NSGA-II presents two important operations: assigning
a non-domination rank and calculating the crowding distance
[46]. In the first case, a non-dominated sorting process must
be performed, in which non-dominated fronts (groups) Fy,
k = 1,...,n; are created. For k = 1, the solutions are all
non-dominated among each other. In F are the chromosomes
dominated just by the individuals in /7, and so on. In F},, are
the fully dominated solutions. Therefore, each individual x;
in F} is assigned a non-domination rank value i,4,x = k [43].

The next step is to calculate the crowding distance of the
population, front by front. This action intends to estimate
the density of solutions in the same front F}. The lower the
domination rank, the better the resolution. In this case, the
algorithm drives to the actual Pareto front. It is essential to
favour solutions with smaller crowding distances to ensure a
good spread of solutions that may cover the entire PF [40],
[46]. Diversity in population is mandatory [39], [42], [46].

Based on these premises, the NSGA-II is initiated ran-
domly, generating a population (Xgp) of N individuals (chro-
mosomes) X;. Then, they are assigned the non-domination
rank, and the crowding distance is calculated [39].

First, we choose the individuals (parents) of the current
population (X;) using the binary tournament with the re-
position method. The selections are made based on higher
fitness or higher crowding distance. Then, we repeat the
process until all the N individuals are chosen.

The next step is to perform the crossover operation, and
in this step, we use the crossover probability parameter (p.).
We sort r € [0, 1] for each pair of parents previously selected.
If r > pc, two new individuals are created. If r < p. the
crossover does not occur, and the parents are retained in the
offspring (X’;). Then, we apply the mutation procedure with
probability p,, to all individuals of the offspring.

The algorithm then combines the parents (X;) and the
offspring (X';), generating a population of 2N individuals
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that is sorted after the calculation of the non-dominated
fronts and the crowding distances. Lastly, we select for the
next generation the best half of individuals. We present the
Algorithm 2 to summarise the process.

Algorithm 2 NSGA-II Pseudocode
1: Initialise the parameters;
2: Generate the initial population randomly using a uniform
distribution;
: Evaluate the fitness of the whole population;
: Calculate Fy and the crowding distance of each agent;
: while a termination criterion is not met do
Select the parent chromosomes from the population
using a binary tournament;
7. Apply the crossover to parents, forming the new
population;
Execute the mutation to each new chromosome;
9:  Evaluate the new individuals;
10:  Combine the current population with new individuals;

g\LII-lkUJ

11:  Calculate all Fy groups and the crowding distance;

12:  Select the best 50% of the population to generate the
new population;

13: end while

14: return Best Pareto found;

2) SMPSO
Since the introduction of the Particle Swarm Optimization
Algorithm (PSO) by Kennedy and Eberhart in 1995 [49],
it became the most famous swarm-based optimisation
algorithm to deal with mono-objective problems [50], [51],
[52], [53].

In this sense, several proposals for PSO-based algorithms
to deal with multi-objective tasks are also in the literature.
Undoubtedly, the most known recommendations are the
multi-objective PSO (MOPSO), introduced by Moore and
Chapman [54], and the speed-constrained multi-objective
particle swarm optimization (SMPSO), from Nebro et al.
[55]. In addition, many other proposals adding improvements
to the methods mentioned earlier are available, as discussed in
Reyes et al. [56]. In this work, we chose the standard version
of the SMPSO because it is a state-of-art proposal yet.

In PSO-based algorithms, the potential solutions are called
particles, and a population (set of particles) is named Swarm.
Two basic equations need to be updated at each iteration. The
first is the position th? of each particlep = 1,2...,P at
iteration ¢, calculated according to Equation 1.

t+1 ot t+1
X, =X, + A\ ()
where v;“ is the particle’s velocity updated according to
Equation 2

VI’)+1 = xlwv,; + c1r1 ® (pbest,; —x,;)
+ cor2 ® (ghest!, — X;d)] )
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where w is the inertia weight, ry and r; are random vector
generated uniformly in the interval [0,1] for each variable
d (dimension), c1 and ¢, are the cognitive and social rates,
respectively; pbest[id is the best position found along the
iterations by particle p (the best individual experience or the
situation that led to the best performance index) and gbest;, J
is the best position found by a predefined neighbour (the best
collective experience). A main modification in the SMPSO
is using a constriction coefficient x to limit the speed of
the particles, proposed by Clerk and Kennedy [57]. Classical
approaches, as the MOPSO adopts upper and lower limits to
the actual velocity. The x coefficient is calculated as follows:

2

X = , 3
2—9 Vo2 —4p
where
ci+c ifei4+cp>4
= . )
1 ifci +cp <4.

The new velocity update calculation is done using Equa-
tion 5

V1t,+l =X [a)V;;d + 1 ry ® (pbeSt;yd - X;;d)
+ cor2 ® (gbest!, — X;;d)]' ®)

Besides, the accumulated velocity of each variable d for
each particle is constricted according Equation 4:

8d ifVIt7 4 > 0d

1 et
Vpd = —84 lfvpd < =64 (6)
1 .
Vnd otherwise,
_ O™ nax min
where §g = —4——4—, V7" and v;;"" are the upper and lower

limits of the velocity in terms of the variable d.

In summary, the velocities of the swarm are calculated
by Equation2 and then multiplied by the constriction factor
of Equation 3. Finally, the result is constrained using the
expression defined in Equation 6.

Another essential step in the SMPSO algorithm applies
the turbulence operator based on a mutation [45]. We adopt
the polynomial mutation operator described by Deb and Deb
[41], applying it in 15% of the variables, considering all the
swarm (p x d variables). The new particle formed x;’;"”t,
which substitutes the old one, is modified in the dimension
d according to Equation 7.

ot _ | Xpa +EGpq = %) ifr <05
r X, 4ol —xU) ifr > 0.5,

(N

where p and d are, respectively the numbers of individuals
in the swarm and the number of variables, r is a number
randomly generated according to the uniform distribution
within the interval [0,1], x5 and x§ are the lower and upper
bounds of variable d, respectively, and ¢ is calculated as
follow:

(o { Qr) T — 1 ifr <05 .

1 — Q@ — )T ifr > 05
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where 7, € [20,100] is a user-defined index parameter.

The last step of the SMPSO is to define an external archive,
or leaders archive, with size S < P composed of the non-
dominated solutions. If the library becomes full or, in other
words, if there are more than S non-dominated solutions, the
crowding distance is used to select the particles that remain.
Algorithm 3 summarises the description of the SMPSO.

Algorithm 3 SMPSO Pseudocode
1: Initialise all particle’s positions randomly using a uni-
form distribution;
2: Initialise the particle’s velocity and set their best-known
position as their initial position;
3: Evaluate the fitness of the swarm;
4: Initialise the leaders’ archive with the non-dominated

vectors;

5. Set as the position of the particle which has the best
fitness;

6: while a termination criterion is not met do

7. for each particlei =1,..., N do

: Calculate the particle’s velocity and then update its
position;

9: Apply the mutation/turbulence operator;

10: Update particle’s fitness;

11: if f (x;) < pbest; then

12: Update the particle’s best-known position;

13: end if

14: if f(x,) < gbest then

15: Update the swarm’s best-known position;

16: end if

17: Update the leaders’ archive;

18:  end for

19: end while
20: return The leaders archive;

3) SPEA2

The second version of the strength pareto evolutionary algo-
rithm (SPEA2) is a multi-objective evolutionary algorithm,
such as the NSGA-II. Zitzler et al. [47] introduced SPEA2.
The method has gained much attention in the last decade and
is considered efficient in many applications [40], [58].

The SPEA2 presents three critical features which differ it
from the NSGA-II [41], [47]:

i) it utilises a fitness assignment mechanism for each
individual;

ii) simultaneous maintenance of two populations, the first
composed of individuals who perform the search process
and an external archive to store the non-dominated solutions
found during the search process;

iii) the density of the neighbourhood of each drives the
search.

Besides, the strength of Pareto is essential once it presents
how close the solutions are to the first rank, as defined in
NSGA-II.
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The goal of the SPEA2 is to obtain orderly distributed
Pareto solutions by managing the external archive. Also,
it presents a few configuration parameters and relatively fast
convergence.

The steps to implement the SPEA2 are described as
follows. Again, consider X; the population at iteration ¢.
Here, define A; as the external archive containing up to N,
chromosomes.

The initialisation randomly generates the initial population
Xp and an empty archive Ag. Then, we calculate the fitness
of each individual.

Before discussing the steps in the algorithm’s main loop,
it is necessary to define some variables to allow the fitness
assignment. The first is the strength Pareto S; of each
chromosome i, calculated according to Equation 9.

Si=>_5 ©)
>)
where Ny; is the number of solutions dominated by x;, j =
1,..., Ny is the index of the individual that x; dominates
considering X; UA;. The strength is the number of individuals
that x; dominates in the current iteration ¢.
Following, the raw fitness R; of the individual i is

Ri=)S (10)
i<l
in which Ny, is the number of solutions that dominates
Xi, | = 1,..., Ngom, 1s the index of the individuals which
dominates x; in X; U A;. The raw fitness is the sum of the
strength of the individuals which dominates x; in the current
iteration 7. The higher the R;, the worse is X;.
Then, the chromosome’s density is estimated using the
K-nearest neighbour method, using Equation 11.

1
Gik+1

i = (11)
where O’ik is the distance to the k-th nearest neighbour in the
objective space. The insertion of this variable tends to lead
the algorithm to explore sparsely populated regions.

Finally, the fitness of x; is calculated by Equation 12.

Fi =R;+ D; (12)

Therefore, the objective function of the SPEA2 is to
minimise fitness. Observing that R; intends to approximate
the PF and D; brings diversity in the objective space.

The external archive A; is updated by inserting non-
dominated solutions. This process must consider that the
number of keys is constant and equals N,. If the current
number of individuals in iteration ¢ is less than N,, the archive
is completed using the best-dominated solutions regarding
fitness. Otherwise, the exceed chromosomes are eliminated,
considering those with a shorter distance to their k nearest
neighbours.

The selection, crossover, and mutation operations are the
same as NSGA-II, described in Section IV-C1. The compiled
process of the SPEA?2 is in Algorithm 4.
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Algorithm 4 SPEA?2 Pseudocode
1: Initialise the population size (N), external archive size N,
and stop criteria;
2: Generate the initial population of chromosomes ran-
domly using a uniform distribution;

3: Produce an empty external archive;
4: Evaluate the fitness of each individual in the population;
5: while a stop criterion is not reached do
6:  Find the non-dominated items in the external archive;
7. if Number of non-dominated elements > N, then
8: Calculate the crowding distance of the non-
dominated set;
9: Keep the best N, non-dominated elements in the
external archive;
10:  else
11: Fill the archive until it becomes full using best-
dominated vectors;
12. endif

13:  Select the parent chromosomes in the population using
a binary tournament;

14:  Execute the crossover operator to parents, forming the
new population;

15 Perform the mutation to each chromosome in the
generated individuals;

16:  Evaluate all the new individuals;

17:  Combine the current population with the new chromo-
somes;

18: end while

19: return The set of non-dominated vectors in the external

archive

V. PROPOSED SOLUTION

Based on the methodology proposed by Pereira et al. [19],
we summarise our solution’s architecture in the diagram
depicted in Figure 6. The first step of the proposed solution
consists of using a multi-objective algorithm to generate
possible values for the parameters that represent the weights
of the source repair (i.e., SW1 and SW2) and local repair
(i.e., LW1 and LW2). Next, to access the quality of the
values generated, we employed the NS2 platform to simulate
the AODV protocol within the connectivity framework,
incorporating the weight values derived from the multi-
objective algorithm. Following this, a script was employed
to parse the output files from each simulation, extracting
the pertinent metrics such as Delay, packet loss ratio (PLR),
network route load (NRL), and energy consumption (EC).
These metrics were then fed back into the multi-objective
algorithm, measuring the quality (fitness) of the generated
solution. This iterative process continues until the stop criteria
of the metaheuristic are met.

A real-value strategy was used for all optimizers to encode
the solutions. The mutation and crossover operators used
actual codification for the evolutionary-based algorithms.
Each population element has a candidate solution represented
by a four-dimensional array. In this array, each dimension
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corresponds to one of the parameters to be optimised (e.g.,
SW1, SW2, LWI1, and LW2). We fixed the search space
for all dimensions as [-1, 1] based on previous works and
experiments [19], [21].

No additional modification was required to the optimizers
to ensure that different optimisation techniques could easily
replace them in future experiments. All the problem-specific
dependencies were modeled in the objective function class.
In the jMetal framework [59], this class poses all the problem
attributes such as the number of dimensions, search space
range, and fitness function). When the optimizers generate
a solution and need to evaluate its quality, they will call
the objective function class, passing the solution array as an
argument. Inside the function, a new NS2 simulation setup
with be created using the values for SW1, SW2, LW1, and
LW?2 generated by the optimiser.

Next, the NS2 simulation will be executed using the
specifications described in Section VI and the values
generated by the optimiser. Once the simulation finishes, the
output files are processed using a script that evaluates the
QoS metrics’ value (e.g., routing delay, energy consumption,
packet loss, ratio, and route load). These values are sent
back to the optimiser as the solution’s fitness (i.e., quality) is
produced. This process is repeated for all candidate solutions
generated/updated during optimisation until the stop criteria
are met.

Before performing the experiments with the multi-
objective algorithms, we first needed to modify the AODV
to account for the connectivity information in the new
route repair decision mechanism. Instead of adding the
connectivity as part of the routing process, previous works
retrieved it from the simulation platform. This study is
essential since different strategies to include connectivity
into the AODV can worsen its performance, as illustrated in
Table 1.

To include the connectivity information we considered the
following possible approaches:

« Create new packets for request/reply node connectiv-
ity (AODV-C1): We create two packets for requesting
and replying with the connectivity information. When
a route breakage is detected, the predecessor node
will unicast packets to its neighbours requesting their
connectivity information. It will wait for the replies
and then proceed with the recovery decision. The
advantage of this approach is to avoid flooding the
network with packets since they are only used when
needed. Nevertheless, its main drawback might be
the increase in the repair time, as the connectivity
information will be requested during the routing repair
process. Additionally, we have the routing overhead of
introducing two new types of packets circulating in the
network and impacting the NRL metric.

o Include the connectivity information in the data
packets (AODV-C2): The idea here is to avoid increas-
ing the number of routing packets in the network by
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FIGURE 6. Representation of the proposed solution.

including the connectivity information in the structure
of the regular data packets. This strategy’s benefit
is continuously updating the connectivity information
of active nodes in the network. Besides, because the
predecessor node will have all the necessary information
to start the repair process, we expect the repair time to
be the same as the AODV in the worst-case scenario.
Nonetheless, the downside is that the nodes will need to
store their neighbours’ information, which may increase
the memory usage in the nodes.

« Modify the HELLO and RREQ packets to include
the connectivity information (AODV-C3): This last
approach incorporates using existing packages to
include connectivity information. However, since the
flow of HELLO and route request packets occur less
often than the data packets, we expect to reduce the
impact of this modification on the AODV performance.
We modified the structure of these packets to add a
field to send the nodes’ connectivity. When a node
receives these packets, it retrieves and stores/updates
its neighbour connectivity information. The principal
disadvantage is that the information will be updated less
regularly than in the AODV-C2 approach.

We conducted experiments to assess the performance of
the AODV-C1, AODV-C2, and AODV-C3, and the results are
presented in Table 1. As we can see in Table 1, the AODV-C3
approach was the one that achieved the best results among
the tested option. The better performance of the AODV-C3
approach might be because it does not introduce any extra
route load with new routing packets as the AODV-C1. Also,
because the Hello/RREQ packets circulate less often than the
data packets, we believe that the impact of the AODV-C3 is
also minimised compared to the AODV-C2. Hence, it was
selected as the version used in the experiments with the multi-
objective algorithms.

It is worth mentioning that, in another scenario where
no modifications were introduced to the route recovery
process, all of the proposed changes would harm the
performance of the AODV. For example, introducing new
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TABLE 1. Performance comparison considering the mean values of the
mono-objective algorithms and the standard AODV.

Algorithm ST‘::‘H‘ZI?;:;‘)‘ Delay NRL PLR

AODV  ~130.000 2968 6741 0496
AODV-C1  ~ 130000 2132 31.590 0.842
AODV-C2  ~150.000 3.898 15200 0.695
AODV-C3  ~130.000 1425 631 0417

packets will increase the routing overhead, and including
further information on existing packets results in worse delay
time and NRL. However, the results presented in Table 1
compare the standard AODV to a PSO-optimised AODV,
which already modifies the route recovery strategy. For this
reason, we can see that some of the proposed approaches
present superior results to the standard AODV.

VI. EXPERIMENTS AND RESULTS

In this section, we detail the experiments and results.
Subsection VI-A explains the decisions regarding the char-
acteristics of the simulated environment, its limitations,
and the simulation configurations. Then, Subsection VI-B
describes the metrics utilised to evaluate the algorithms.
Finally, in Subsection VI-C, we analyse the results.

A. SIMULATION SETUP

The computational simulations were run in an Intel Xeon
3.1 GHz computer with 16 GB RAM and 1TB, running a
Ubuntu 15.10 64-bit operating system. The algorithms were
implemented in Java programming language using the jMetal
Framework [59]. We noticed that it was necessary to develop
a script in Bash to communicate the Java code with the
network simulation platform.

The simulation platform was network simulator 2 (NS2)
[60] version 2.35. The NS2 is a robust and well-known tool
that implements several routing protocols, including AODV.
Using this platform, we implemented the modifications on
the AODV to include the new parameters for route recovery
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TABLE 2. Configuration of the NSGA-II, SPEA2 and SMPSO. Where NV =
Number of Variables, pm = Mutation probability and pc = Crossover
Probability.

Parameter NSGA-II SMPSO SPEA2
Population Size 100 100 100
Archive Size - 100 100
. Polynomial Polynomial Polynomial
Mutation pm=10/NV  pm=10/NV  pm=1.0/NV

Selection Binary Tournaments -
Simulated Binary

pc=0.9

Binary Tournaments
Simulated Binary

Crossover pc =09

decisions (SW1, SW2, LWI1, and LW2), modifying the
structure of the packets and the route repair mechanism.

Also, using the NS2, we modeled a network with
50 nodes with a maximum speed of 20 m/s. The environment
dimensions were set to 1500 by 300 meters, and the duration
of each simulation was 900 seconds with a pause time of
30 seconds (Sleep mode). The medium access (MAC) and
the physical (PHY) layers follow the IEEE 802.11 at a bit
rate of 2 Mbits/s, a transmission range of 250m, and the
propagation model used was a two-ray ground.

The user datagram protocol (UDP) was used with a CDR
traffic pattern for the traffic model. There are 30 traffic
sources transmitting packets of 512 bytes at a rate of 4 packets
per second. Both data and routing packets are buffered in a
queue that holds at most 50 packages until the MAC layer
can transmit them.

The energy model defines the initial energy of each node
as 1000 Joules. Besides, the energy consumed during sleep
mode is ImW per second, the energy consumed to transmit
packets was defined as 1.65W, and the energy used to receive
packages equals 1.1W.

Table 2 shows the values for the parameters used during
the experiments regarding the metaheuristics configuration.
All the algorithms were executed 30 times, the stop criteria
adopted was 20.000 fitness evaluations, and the search space
for the four parameters (SW1, SW2, LW1, and LW2) was
[-1, 1].

The values adopted in the simulations for the network
simulator and the algorithms were based on previous works
by [21] and [55] and validated experiments. With the earlier
experiments, we verified that those values were sufficient
to achieve satisfactory results. We highlight that increasing
or decreasing those values does not necessarily imply better
results. The multi-objective algorithms’ fitness function (fit)
is defined in Equation 13.

Minimise fit(x) = (NRL(x), EC(x)) (13)

where NRL and EC are, respectively, the normalised route
load, and the energy consumption and they are calculated
using Equation 16 and Equation 17 respectively.

The mono-objective algorithms (ABC and PSO) were
simulated using the same architecture as the multi-objective
(Figure 6). The only difference is that the mono-objective
algorithms used only the NRL as their fitness function in a
minimisation process.
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Besides the AODV, we selected the following protocols
to compare the performance of the proposed approach with
other proactive and reactive routing protocols in the literature:
ad hoc on-demand multiple path distance vector (AOMDV)
[61], destination sequenced distance vector (DSDV) [62],
dynamic source routing (DSR) [63], and optimised link state
routing protocol (OLSR) [64]. The AOMDV was selected
as a more recent version of the AODV featuring a multiple
path discovery capability, allowing it to use the backup
route instead of the route recovery when a route is no
longer valid. The DSR was selected for being an alternative
reactive protocol to the AODV. It has a different route
recovery strategy that only allows local repairs. On the
other hand, the DSDV and OLSR were selected to represent
distinct proactive routing protocols for MANETS. These four
routing protocols were also simulated on the NS2 platform
in the same scenario, energy model, and node network
characteristics as the AODV but without optimisation.

B. PERFORMANCE METRICS
The performance of the routing protocols was assessed using
the following metrics:

1) Normalised route delay (RD or Delay): is defined as
the average time it takes for data packets to arrive at
the destination node divided by the number of active
connections in the network. The Delay is calculated
using Equation 14.

pp
> ArriveTime—SendTime
Delay = =~ . (14

> NumberOfConnections
i=1

where ArriveTime, and SendTime are, respectively,
the time when the packet arrived in the destination
node, and the time when the packed left the source
node, NumberOfConnections is the number of active
connections in the network, N is the number of nodes,
and DP is the number of data packets received.

2) Packet loss ratio (PLR): measures the fraction of the
data packets that were not delivered to the destination
as presented and can be calculated by applying
Equation 15.

ReceivedDataPackets

PLR = , (15)
DataPackets

where ReceivedDataPackets and DataPackets are the
numbers of data packets received and sent in the
network.

3) Normalised route load (NRL): is the number of
routing packets (RoutingPackets) sent divided by the
number of data packets (DataPackets) sent during the
simulation (Equation 16):

RoutingPackets

NRL = ————— 16
DataPackets (16)
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4) Energy consumption (EC): is the average energy
spent by the node from the beginning to the end of the
simulation (Equation 17).

N
> (InitalEnergy; — FinalEnergy;)

EC = =! . a7
N a7

where N is the number of nodes in the network,
InitalEnergy; is the initial energy on the node i, and
FinalEnergy; is the energy left on the node i at the end
of the simulation.

Our goal is to minimise all the values for these four metrics.
Furthermore, when dealing with multi-objective algorithms,
it is necessary to work with conflicting objectives. As shown
in Figure 7, the correlation analysis of the selected metrics
reveals that NRL, RD, and PLR are positively correlated,
and there is no conflicting relationship between them. On the
other hand, the correlation between the energy consumed and
the other metrics is not high, and, in some cases, we can
see a slight negative correlation. For these reasons, Energy
Consumption was selected as one of the objectives to be
optimised. The Route Delay, NRL, and PLR metrics could
be used for the second objective instead of the NRL without
changing the final results. Since the goal is to minimise the
selected metrics to achieve better results, the algorithms were
implemented considering the minimisation of the objectives.

C. RESULTS
We found that NSGA-II, SMPSO, and SPEA2 presented a
similar Pareto front while minimising energy consumption
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and normalised route load. Figure 8 A depicts the Pareto front
achieved by the three metaheuristics. It is possible to observe
that all algorithms found few solutions: four solutions found
by NSGA-II and three obtained by SMPSO and SPEA2.
Although the NSGA-II was able to get some superior answers
regarding the SMPSO and SPEA?2, the Pareto front of these
two algorithms dominates the one found by NSGA-II.

Concerning the absolute variation of the metrics values,
the PLR values variation is higher than the EC variation.
This variation may occur because reducing the energy
consumption is more complex than reducing the packet loss
ratio. Given that the NRL measures the balance between the
packets and data packets sent during the simulation and that
the number of transmitted data packets is fixed, only the
amount of routing packets can be reduced to minimise the
NLR.

The algorithms must work on the routing repair process
to reduce the routing packet traffic since it is the only one
that interferes with routing packets and can be modified in the
simulations. As shown in Figure 8 B, all metaheuristics tend
to give higher weight to SW1 and SW2, which are responsible
for the source route repair. As a result, the source repair
tends to be executed more often than the local repair. This
behaviour confirms the results of Pereira et al. [65], in which
the source repair achieved better results than local repair in a
network with a similar configuration to the one used in this
work.

Table 3 shows that the NSGA-II, SMPSO, and SPEA2
found the same set of best values for the parameters.
Furthermore, the achieved values also gave more weight to
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FIGURE 8. Characteristics of the solutions found by the multi-objective algorithms.
Panel A shows Pareto Front achieved by the NSGA-II, SMPSO and SPEA2, while panel
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source repair (SW1 and SW2) weight is higher than the local repair (LW1 and LW2).

TABLE 3. Optimum values for A, B, C and D found by each algorithm,
considering the best value as the one which presents the best balance
between the normalised route load and the energy consumption.

Algorithm Swi SW2 LW1 LWw2
NSGA-II 03782 -0.5895 -0.1362  -0.1362
SMPSO 03782 -0.5895 -0.1362 -0.1362
SPEA2 03782 -0.5895 -0.1362 -0.1362

the terms responsible for the source repair, validating that
source repair presents better performance than local repair for
the network scenario described in this paper.

In the NRL minimisation, the algorithm only reduces
traffic or routing packets. However, reducing the traffic of
data and routing packets is necessary to minimise the EC.
This behaviour occurs because the network traffic is the
primary energy consumption responsibility. Hence, the num-
ber of packages sent during the simulation does not change.
Therefore, only the traffic and the re-transmission/reception
of routing packets can be modified to minimise the EC.

A feasible strategy to minimise the EC is to reduce
the network traffic by reducing the average network path
length. In the context of the problem tackled in this
work, since we are only dealing with route recovery, this
reduction can be achieved by prioritising the reconstruction
of shorter routes. The idea behind the strategy is that by
reducing the length of the reconstructed paths, the overall
number of packets received and re-transmitted will decrease.
A direct consequence of this approach is reducing the Route
Delay observed in part of the results. For this reason, the
algorithms adopted a strategy that uses the average path
length minimisation strategy in association with another
method to minimise energy consumption.

However, the strategy to force the packet loss is also
penalised once it harms the NRL, which is another objective
function to be minimised. Loose/drop packets may indicate
route break or failure in the route repair process. In both cases,
the NRL will increase. Hence, a new repair operation will be
needed, and these operations require the use of route packets.
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TABLE 4. Mean Values and the Standard Deviation of the results achieved
by the standard AODV, other routing protocols, and the association of
AODV with multi and mono objective bio-inspired algorithms.

Algorithm NRL Delay PLR EC
AODV 67417 29684 04962  1.9801
(0.0000)  (0.0000)  (0.0000)  (0.0000)
15700 08711 03309  2.0000
ALORILDNY (0.0000)  (0.0000)  (0.0000)  (0.0000)
DSDY 32134 0.0260 03848  2.0000
(0.0000)  (0.0000)  (0.0000)  (0.0000)
DSR 33.0000  1.8187 03333 2.0000
0.0000)  (0.0000) (0.0000)  (0.0000)
OLSR 09563 07338 04279  2.0000
(0.0000)  (0.0000)  (0.0000)  (0.0000)
35185 14720 03001  1.9653
AODV +NSGA-IL 19506 (0.9911)  (0.0143)  (0.0131)
31211 12889 02667  1.9630
AODV+SMPSO  ('oog1y (0.9915)  (0.0128)  (0.0157)
22500 08633 02058  1.9660
AODV +SPEA2 6777y (0.3999) (0.0493) (0.0178)
20027 07044 0.1950  1.9950
AODV +ABC 4050y  (03235) (0.0403) (0.0043)
21868 06083 01881  1.9710
AODV+PSO  ('re15)  (02100) (0.0319)  (0.0140)

Consequently, the best solution is the one that has the
best balance between energy consumption and the NRL.
We assume that the selected solution can minimise the NRL
without compromising the node’s energy in the network. As a
result, the three algorithms found the best solution, and the
values are NRL = 1.8612, PLR = 17.7074, RD = 0.6591,
and EC = 1.9678. Table 4 presents the mean and the
Standard Deviation of the results achieved by the Algorithms.

As seen in Table 4, the results obtained by the algorithms
in association with AODV were better than the standard
AODYV in all analysed metrics. Furthermore, applying the
Wilcoxon test with a significance level of 5% confirmed that
the results of the three algorithms are indeed different from
the AODV. Moreover, compared to reactive and proactive
routing protocols concerning energy consumption and packet
loss ratio, the proposed methodology overcame other routing
protocols used in this study. However, our proposal overcame
the DSR protocol regarding the NRL and Delay.
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The OLSR produced superior results than the other
protocols regarding NRL; this might be because this protocol
has mechanisms to prevent redundant packets in the network.
However, the drawback of this behaviour is to increase the
risk of losing information, and as can be seen in Table 4, they
had the second-worst performance regarding the PLR metric.

Concerning Delay, the DSDV protocol had the best result.
This result can be because the proactive routing strategy
helps maintain the updated routing tables, reducing the time
required to send the packets. However, the proactive approach
in this protocol led to an increase in the NRL and the EC.

Nonetheless, there is no statistical difference between
them. Therefore, the similarity between the results can
indicate that the algorithms may get trapped in local minimal,
or the three multi-objective algorithms could find the best
solution regarding NRL and EC.

When comparing the results of the multi-objective pro-
posals with mono-objective algorithms (PSO and ABC) as
reported in previous studies [21], regarding better results of
NRL, the MOAs could still find a slightly better solution
(Table 4). However, there is no statistical distinction between
them when we apply the Wilcoxon test with 95% confidence
interval (population of 30 elements of each algorithm).

In Table 4, it is possible to observe that the Energy
Consumption of the solutions found by the multi-objective
algorithms was slightly higher than the mono-objective
values. It may be related to the fact that when the Packet
Loss is reduced, the number of packets re-transmitted and
received increases. Since the packet traffic is the primary
component for the energy consumption in the network,
it causes the elevation of EC. It is worth mentioning that the
energy consumption increase was mainly due to the traffic of
data packets. Hence, the number of routing packets (NRL)
decreased.

Lastly, concerning the convergence of the algorithms,
we observed in previous experiments that the definition of
the stop criteria as 20.000 fitness evaluations was enough
to allow all t three multi-objective algorithms to converge.
The convergence happened even before the 20.000 fitness
evaluations mark in most of the executions. The fast
convergence can suggest that this problem is multimodal,
and the algorithms get trapped in sub-optimum solutions.
This hypothesis is further supported by the discrepancies
between the solutions found by the NSGA-II and the other
two algorithms. Because the NSGA-II were equally good
or dominated by the other optimizers’ answers, it could not
improve them even after several iterations.

VII. DISCUSSION

The proposed methodology offers two fundamental benefits
compared to the conventional AODV and analogous tech-
niques documented in the literature. Firstly, it demonstrates
enhanced flexibility while simultaneously maintaining com-
patibility with AODV-compatible devices. Diverse routing
behaviours might be required depending on the specific
attributes of the problem at hand. For example, different
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routing approaches might be needed depending on the
network size, battery capacity, node velocity, and environ-
mental dimensions. Given that our solution’s optimisation
phase considers these intricacies (i.e., the simulated routing
scenario should capture these characteristics), it permits
a more bespoke routing approach than conventional rigid
methods.

The second benefit of our proposal pertains to implementa-
tion procedures and computational costs. The multi-objective
optimisations can be conducted offline in a dedicated
computer, removing the requirement of more robust hardware
on the nodes. The only requirement is that the simulated envi-
ronment mirrors real-world conditions. After achieving the
optimal parameter values with the simulations, a customised
version of the AODV featuring these determined values
can be deployed as the routing protocol within MANETS’
nodes. This attribute extends the compatibility of our solution
to virtually any device capable of employing the standard
AODV. Our solution retains retro-compatibility and does not
impose substantial supplementary computational burdens,
mitigating the potential rise in energy consumption among
the nodes.

Our proposed solution also presents some trade-offs
connected mainly to the modelling and simulation process
and the nature of multi-objective optimisation. As mentioned,
our approach optimises the route recovery of the AODV to
suit the characteristics of the environment best. In this case,
the simulated scenario must capture the main features of the
actual conditions to ensure an optimal performance. Hence,
better modelling can positively affect the implementation of
the proposed solution.

Another drawback is related to the simulation process,
which can be done offline on a computer with more robust
hardware but requires hours to reach the optimal value.
Because the simulation setup involves different programs
(e.g., Python scripts, Java implementation of the multi-
objective algorithms, and NS2 simulator), the interconnectiv-
ity between these components and the information exchange
can be time-consuming.

Multi-objective optimisation is a more complex process
than the mono-objective one, but the improvements achieved
in one of the metrics can be slightly inferior compared to the
mono-objective. For example, we can see in Table 4 that the
mono-objective algorithms overall were able to find better
NRL results than the multi-objective one. However, looking
at the overall results, the multi-objective solutions reached
better results than the mono-objective ones — a better trade-off
between the reduction in the NRL and energy consumption
simultaneously.

VIil. CONCLUSION

Mobile ad hoc networks are a field with several real-world
applications varying from intelligent devices to swarm
robotics. Regardless of the application, the section of the
appropriate routing protocol is a critical step to achieving ade-
quate performance. This study introduces a multi-objective
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optimisation approach for AODV, a widely employed routing
protocol in MANETSs. Through the optimisation of param-
eters governing the weight factors associated with source
repair (SW1 and SW2) and local repair (LW1 and LW2)
within the route repair decision process, we successfully
enhance the protocol’s overall performance across all desig-
nated metrics.

Another contribution of our work concerns the assessment
of QoS metrics suitable for multi-objective optimisation.
We show that there is a correlation between some of these
metrics. Hence, the optimisation of one would result in
the indirect optimisation of the others. From the metrics
selected, only the energy consumption was not strongly
correlated with the others. Moreover, comparing the pro-
posed solution with other routing protocols and previous
mono-objective approaches under the same environmental
setup is also a novelty. This comparison allowed us to
see these methods’ performance differences, particularly
between the multi-objective and mono-objective methods.
Lastly, the set of best weights found by the optimisers
supports the results of previous works, indicating that in most
scenarios, the source repair mechanism of the AODV is more
effective than the local repairs.

As a future direction of this research, we intend to compare
the proposed approach with other reactive routing protocols,
such as DSR and TORA, or even proactive and hybrid
routing protocols for future work. Furthermore, we can
further investigate how the velocity of the nodes, number of
nodes, traffic intensity, and size of the environment impact
the performance of the algorithms.
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