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ABSTRACT Accurate and efficient clustering of large-scale functional data is of utmost importance in the
era of big data. However, the current research falls short in fully considering the differentiability inherent
in functional data. To tackle this significant challenge, we propose a novel method, namely Dynamic and
Static Enhanced-BIRCH (DSE-BIRCH), which incorporates both the constant and derivate features to
simultaneously measure the static and dynamic distances between functional samples. To this end, a novel
matrix factorization-based approach is introduced to transform constant features, extracted through principal
component analysis, into derivative features. Subsequently, these two sets of features are fused to form
global clustering features with different weighting coefficients are assigned to each of them, reflecting
their respective importance. Finally, an enhanced BIRCH algorithm is employed to handle both static
and dynamic constraints, enabling hierarchical clustering from a more comprehensive perspective. The
mathematical definition of the algorithm is rigorously provided. The superior empirical performance of
our method on publicly available datasets and simulated datasets fully demonstrates its effective capture of
dynamic information and its capability to achieve accurate clustering on real-world data. Further experiments
involving noise and complexity attest to the algorithm’s robustness and efficiency, highlighting its broad
potential for applications in various complex scenarios involving large-scale functional data.

INDEX TERMS Functional data, clustering, BIRCH, dynamic and static information fusion.

I. INTRODUCTION
With the application of Internet of Things (IoT) technology
and the development of big data, an increasing amount of
discrete data with functional characteristics is being recorded
and stored. In statistics, these continuous, dynamic data with
functional characteristics are referred to as functional data.
The concept of functional data was first proposed by Ramsay
in 1982 [1], followed by a comprehensive exploration of its
properties [2]. Since the publication of Ramsay and Silver-
man’s monograph [3], functional data analysis has received
extensive attention and recognition. With ongoing research,
functional data has been widely utilized in various fields
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including medicine, biology, and finance. It encompasses the
analysis of variables such as rainfall over a specific time
period, stock trading prices in financial markets, and GDP
indices, among many others [4], [5], [6], [7], [8]. Currently,
research on functional data has become increasingly exten-
sive, particularly in the areas of principal component analysis,
regression analysis, clustering, and classification [9]. While
there have been numerous studies on principal component
analysis and regression analysis of functional data, research
on clustering and classification, especially efficient clustering
of large-scale high-dimensional functional data, still requires
further exploration. According to the representation of the
functional objects and the modeling approaches used, cluster-
ing methods for functional data can be categorized into four
types.
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Raw-data direct clustering is the most straightforward
method for clustering, where the original data is directly
used as discrete high-dimensional objects for analysis. Each
observation time is treated as a one-dimensional feature, and
conventional clustering methods are applied based on multi-
dimensional distance measures [10], [11], [12]. For example,
Boullé [11] proposed a method for functional data by mod-
eling the probability distribution of the number of discrete
observations falling into fixed-width intervals, thus avoiding
the problem of selecting basis function. However, this method
requires noise-free observations and uniform sampling at
the same time points for all functions in the function set.
Furthermore, discretizing functional data in this manner fails
to leverage the continuous differentiability advantages of
functional data.

Two-step tandem clustering involves fitting the discretely
observed data to selected basis functions, and then using the
fitted parameter coefficients as features for clustering [13],
[14], [15], [16], [17], [18]. For instance, Yamamoto [15]
proposed a method for clustering functional data in a
low-dimensional subspace based on principal component
analysis and k-means criterion, which enhances the applica-
bility and effectiveness of the two-step sequential clustering
framework. Zhang [18] proposed an adaptive weighted prin-
cipal component-based k-medoids clustering method that
combines adaptive weights and principal component analysis
to address the clustering of functional data. Although TSTC
adheres to the core principles of Functional Data Analysis
(FDA), it suffers from a disconnect between feature selection
and the clustering process, and the clustering results can be
influenced by the choice of basis functions.

Nonparametric clustering of functional data relies pri-
marily on derivative information extracted from the func-
tions or through bayes nonparametric methods to quantify
the similarity between curves [19], [20], [21], [22], [23],
[24], [25], [26]. Chiou and Li [19] proposed a clustering
method for longitudinal data, estimating the means and
covariances of the classes through non-parametric iterative
approaches, and subsequently predicting cluster membership
probabilities for the members. Fortuna et al. [24] utilized the
K-means algorithm and employed first and second derivatives
as semi-metric methods to measure the similarity between
functional data. Compared to clustering based solely on the
static features of functions (e.g., base function similarity),
these methods can more accurately differentiate the den-
sity relationships between functions by considering their
derivative characteristics. Although they provide clustering
information from multiple perspectives, the clustering results
are unstable or sensitive to the choice of derivative order, and
they fail to capture the hierarchical structure within the data.

In model-based clustering methods, the probability den-
sity of functional data is used to describe the distribution
characteristics, typically assuming that the expansion coef-
ficients of the basis functions follow a specific distribution
as random variables. An alternative method to estimate the

distribution of functional data is to use non-parametric kernel
density estimation based on principal components analysis.
This replaces the original probability density of the functions
with a kernel density estimate constructed from the principal
component scores [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37]. For example, Wu et al. [35] incorporated
non-parametric curve features and developed a probabilistic
model based on Bayesian criteria for functional data cluster-
ing. These methods integrate data dimensionality reduction
with the clustering process, performing both data reduction
and clustering analysis simultaneously. However, the clus-
tering results are highly sensitive to the initial parameter
values, leading to poor result stability. Additionally, due to
the complexity of the model itself, it is challenging to extract
hierarchical structural information from the data.

In summary, existing clustering methods for functional
data suffer from several limitations: 1. Most existing cluster-
ing algorithms do not fully consider the high-order differen-
tiability and fail to leverage its advantages. While algorithms
that utilize derivative features often exhibit sensitivity to the
choice of derivative order. 2. Many algorithms are sensitive
to parameter selection, leading to poor stability of cluster-
ing results. The robustness of the algorithms needs further
improvement. 3. The algorithms have high computational
complexity, making them less suitable for large-scale data
analysis. They struggle to scale effectively for big data analy-
sis. Therefore, there is a need to address these challenges and
develop new clustering methods for functional data that can
fully leverage the advantages of high-order differentiability,
improve result stability and robustness, and enhance scalabil-
ity for large-scale datasets.

To address the aforementioned clustering challenges, some
researchers have attempted to develop new clustering meth-
ods, such as using novel metrics to replace traditional
distance or similarity measures for improved clustering per-
formance [38], [39], [40], [41], [42], [43]. For example,
Sharma et al. [38] proposed an improved spectral clustering
algorithm based on S-divergence for customer churn predic-
tion and indicator clustering. They then presented clustering
algorithms leveraging Kullback-Leibler divergence and Jef-
freys divergence for uncertain data clustering, as well as an
efficient density peak clustering method with adaptive mixed
distances for detecting and diagnosing faults in mechanical
gearboxes [39], [40]. Albert-Smet et al. [41] put forward an
improved k-means algorithm with bootstrap Random Initial-
ization to find optimal initial seeds for functional data. And
some other studies have focused on enhancing the compu-
tational efficiency of large-scale data clustering algorithms.
Hu et al. [42] proposed a more efficient k-means clustering
approach, providing inspirational ideas for improving exist-
ing methods. While these algorithms successfully address
clustering challenges for discrete data, they do not consider
the temporal properties of time series data. Motivated by
the above approaches and given certain limitations of cur-
rent functional data clustering techniques, this paper aims to
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FIGURE 1. The framework of the proposed method in this paper. a, Method architecture, which consists of three main steps: Functional principal
component analysis (FPCA), dynamic-static similarity weighted measurement, and improved BIRCH clustering. b, comparison of static and dynamic
information in functional data. c, Key improvements of DSE-BIRCH. The left section represents the original BIRCH, where clustering is based solely on
constant features. In contrast, the improved BIRCH incorporates both constant and derivative features, enabling the construction of CF trees while
considering both static and dynamic constraints.

propose a clustering algorithm suitable for functional data
with continuous characteristic.

According to the literature review, the BIRCH (Bal-
anced Iterative Reducing and Clustering using Hierarchies)
algorithm [44] tackles the challenge of managing large-scale
clustering problems by incorporating explicit constraints on
time and memory. It capitalizes on the observation that
data points in the spatial domain frequently exhibit uneven
distribution, implying that not all data points hold equal
significance for clustering objectives. BIRCH significantly
reduces the size of the dataset, making it much smaller than
the original dataset. Studies [45], [46], [47] have shown that
the BIRCH algorithm exhibits strong scalability and demon-
strates notable efficiency advantages in clustering large-scale
data while producing accurate clustering results. Therefore,
based on the BIRCH algorithm, we propose a new approach
to integrating static and dynamic information for measuring
similarity in functional data clustering. Our goal is to develop
an efficient, accurate clustering method for functional data
that can uncover hierarchical structures.

To accurately distinguish the similarity and dissimilarity
between functions, relying solely on static distance based on
function values may not provide valuable information when

functions have similar values in certain intervals but signif-
icant differences in their derivatives, as shown in Fig. 1b.
Therefore, it is necessary to examine the dynamic shape
features of functions. In order to leverage the high-order
differentiability of functional data and address the issues
mentioned earlier, this paper proposes a method based on the
BIRCH algorithm that enhances the clustering of large-scale
functional data by combining dynamic and static infor-
mation. The architecture of our method is illustrated in
Fig. 1a and mainly consists of three steps: functional prin-
cipal component analysis (FPCA), similarity measurement
based on weighted dynamic and static distances, and hierar-
chical clustering leveraging an improved BIRCH algorithm.
Specifically, the method first employs FPCA to extract con-
stant features from functional data, which are subsequently
used to define the static similarity measure in the hierar-
chical clustering algorithm. When measuring the clustering
similarity based on dynamic information, conventional mul-
tivariate feature clusteringmethods cannot be directly applied
due to the involvement of distance calculations with non-
unit matrices. To address this issue, this study introduces
an additional matrix in conjunction with the original unit
matrix through matrix factorization, thereby transforming the
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problem into a conventional multivariate clustering prob-
lem. As shown in Fig. 1c, the importance of constant and
derivative features in clustering is balanced by setting opti-
mal weights and creating a joint constraint that integrates
static and dynamic similarity measurements. The improved
BIRCH clustering algorithm explores the internal hierarchi-
cal relationships of functional data, leading to accurate and
efficient clustering. To fulfill the requirements of functional
data clustering, our approach extends the maintenance of a
single clustering ball to the maintenance of two clustering
spheres by introducing new triplets. The proposed method
effectively compensates for the information loss in clustering
based solely on static information, significantly reduces the
complexity of the clustering algorithm, and enhances the
efficiency of processing large-scale data.

II. METHOD
A. FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS
Assuming that the function xi (t) represents square-integrable
data in a Hilbert space that has been centered, functional
principal component analysis (FPCA) seeks to identify a
set of orthogonal unit bases in the Hilbert space. The main
objective of FPCA is to capture maximum information from
the original data while achieving dimensionality reduction.

Suppose φ1 (t) , φ2 (t) , . . . .,φp (t) are sets of orthonormal
bases of L2 (T ), the original function can be expressed as a
linear combination of these bases, xi (t) =

∑P
p=1 ciPφp (t),

p = 1, 2, . . . ,P where ciP represents the score of the i-th
sample in the p-th dimension. The first principal component
in FPCA aims to find a function φ (t) that maximizes the
variance of the projection of xi (t) onto φ (t), while satisfying
the constraint that the norm of φ (t) is equal to 1.

The optimization problem for identifying the first principal
component can be formulated as follows:

max
∑n

i=1
c2i = max

1
n

∑n

i=1
(
∫
T

φ (t) xi (t)dt)2

s.t.
∫
T

φ2 (t)dt = 1 (1)

To solve for the weight function of the j-th principal
component, we need to satisfy the following optimization
condition:

max
1
n

∑n

i=1
(
∫
T

φk (t)xi(t)dt)2

s.t.
∫
T

φ2
p (t)dt = 1,∫

T
φk (t)φp (t) dt = 0,

k = 1, 2, . . . ,p− 1 (2)

Based on the Mercer theorem and the Karhunen-Loève
(K-L) transform principle, the function φ (t) satisfies the
characteristic equation [48]:∫

T
G (s, t)φ (s) = λφ (t) (3)

FIGURE 2. Reconstruction process of the Meat dataset. a, Raw curves
constructed from the raw data points of the Meat dataset. b, Smoothing
and denoising of the Meat dataset using B-spline basis functions. c,
Centering the functional data obtained in Fig. 2b. d, Reconstruction of the
centered functional data using the principal component bases.

where covariance function is G (s, t) =
1
n

∑n
i=1 xi (s) xi (t),

and the value of φ (t) can be directly obtained through numer-
ical integration.

Taking the Meat dataset [49] as an example, we demon-
strated the process of utilizing FPCA for denoising and
reconstruction of the data, as illustrated in Fig. 2. The dataset
consists of 60 spectral curves categorized as chicken, pork,
and turkey. These spectral curves were obtained through
Attenuated Total Reflectance (ATR) sampling using Fourier
Transform Infrared spectra. Each spectral curve is truncated
within thewavenumber range of 1000 to 1800 cm−1, resulting
in 448 sampling points. Fig. 2 depicts the process of denois-
ing and reconstruction on the first two principal component
bases of the data. It can be observed that after denoising
and reconstruction, the selected first two principal component
bases effectively represent the function samples. The two
principal component bases account for accumulative contri-
bution variance of 94.7%, indicating their ability to explain a
significant portion of the data variability and their importance
as the most crucial components. Compared to the original
data, the denoised and reconstructed data using principal
component bases exhibit improved functional properties. The
noise has been effectively removed, resulting in smoother and
more regular reconstructed data. This enhanced representa-
tion of the data highlights the key features and provides better
insights into the underlying characteristics.

B. THE SIMILARITY MEASUREMENT FOR FUNCTIONAL
DATA CLUSTERING
After the function samples represented by the principal com-
ponent bases, the mean function can be expressed using the
following formula:

x0 (t) =
1
n

∑n

i=1

∑P

p=1
ciPφp (t) (4)
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At this point, the static distance between two function
samples can be represented as follows

d1
(
xi (t) , xj (t)

)
= (

∫
T

(
xi (t) − xj (t)

)2 dt) 12
=

(∫
T

(
cipφp (t) − cjpφp (t)

) (
cipφp (t) − cjpφp (t)

)T) 1
2

=

((
ci − cj

) ∫
T

φ (t)φ (t)T
(
ci − cj

)T) 1
2

(5)

where φ(t) = (φ1(t), . . . ,φp(t))T , ci=(ci1, ci2, . . . ,cip)T .
LetW =

∫
T φ(t)φ(t)T dt , then

W = IP×P (6)

d1(xi(t), xj(t)) = ((ci − cj)(ci − cj)T )
1
2 (7)

In this case, the static distance between function-based data
is transformed into the Euclidean distance between coeffi-
cient vectors. Similarly, we can define the dynamic similarity
measurement between two functional samples based on their
derivatives as follows:

d2
(
xi (t) , xj (t)

)
= (

∫
T

(
Dx i (t) − Dx j (t)

)2 dt) 12
=

(∫
T

(
cipφ′

p (t) − cjpφ′
p (t)

) (
cipφ′

p (t) − cjpφ′
p (t)

)T) 1
2

=

((
ci − cj

) ∫
T

φ′ (t)φ′ (t)T
(
ci − cj

)T) 1
2

(8)

where Dxi(t) and φ′
p(t) represent the firs-order derivative of

the functional data and the basis functions respectively.
LetW ′

=
∫
T φ′(t)φ′(t)T dt , then

d1(xi(t),xj(t)) = ((ci − cj)W ′(ci − cj)T )
1
2 (9)

Meng et al. [50] have demonstrated that this distance satis-
fies the metric properties of a spatial distance measure on the
function space L2(T ).

C. THE CLUSTERING FEATURE (CF) IN THE ORIGINAL
BIRCH
The CF triplet, which represents the clustering features, is the
most crucial building element of the algorithm. By utilizing
basic arithmetic operations to calculate the clustering fea-
tures, the complexity is reduced and the computational speed
is improved. The structure of CF is typically represented as a
triplet in the following form:

CF = (N ,LS, SS) (10)

where N represents the number of points in the cluster,
LS denotes the linear sum of the features for each sample,
and SS is the sum of squares for each feature dimension of

the data points. The calculation formulas for LS and SS are
as follows:

LS =

∑n

i=1
x⃗i (11)

SS =

∑n

i=1
x⃗2i (12)

The CF features possess the property of linearity additivity.
When merging two disjoint sub-clusters with CF features
CF1 = (N1,LS1, SS1) and CF2 = (N2,LS2, SS2), a new
cluster CF can be obtained that satisfies the additivity prop-
erty. Mathematically, the additivity property is expressed as
CF = CF1 + CF2 = (N1 + N2,LS1 + LS2, SS1 + SS2).
For a cluster containing n samples of p dimensions, the

calculation methods for cluster centroid x0, cluster radius R,
and cluster diameter D are as follows:

x0 =
1
n

n∑
i=1

xi (13)

R =

√∑n
i=1 (xi − x0)2

n
=

√
n ∗ SS − LS2

n2
(14)

D =

√√√√∑n
i=1

∑n
j=1

(
xi − xj

)2
n (n− 1)

=

√
2n ∗ SS − 2LS2

n (n− 1)
(15)

R represents the average distance from individual points
within the cluster to the cluster centroid, while D represents
the average pairwise distance between data points within the
cluster. The proof of Equation 14 is provided in the Appendix.
Given X = {x1, x2, x3, . . . ,xn1} ,Y = {y1, y2, y3, . . . ,yn2},
the distance D1 between two clusters, X and Y , can be calcu-
lated using the following formula:

D1 =

∑n1
i=1

∑n1+n2
j=n1+1

(
x⃗i − y⃗j

)2
n1n2


1
2

(16)

D. THE PRESENTATION OF CF FOR FUNCTIONAL DATA
When using the static distance d1 as a similarity measure
for clustering function samples, according to Equation 6,
the matrix W is the identity matrix. Based on Equation 7,
we can directly use the Euclidean distance between coeffi-
cient vectors, which represents the static distance between
constant features, to cluster the functional data. This approach
transforms functional data clustering into a conventional
multivariate feature clustering problem. In this case, the
representation of CF triplets remains consistent with the con-
ventional CF representation method.

However, when using the dynamic distance d2 as a sim-
ilarity measure, W ′ is a non-identity matrix, which implies
that generating the required CF triplets directly from the
coefficient vectors is not feasible. Since W ′ is a symmetric
matrix, we can perform a Cholesky decomposition of W ′ as
W ′

= KKT . In this case, Equation 9 can be transformed as
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follows:

d2
(
xi (t) , xj (t)

)
= (

(
ci − cj

)
W ′

(
ci − cj)T

) 1
2

= (
(
ci − cj

)
KKT (ci − cj)T )

1
2 (17)

Theorem 1. Assuming that CF1 is the static information tuple
generated from d1, represented as CF1=(N1,LS1, SS1), the
dynamic information triplet CF2 generated from d2 can be
expressed as CF2 = (N ,LSK,KSSKT ).
Proof. Let ci=(ci1, ci2, . . .cip) be the projection coeffi-

cients of functional data on the principal component bases,
and let c′i = ciK. Denote LS =

∑n
i=1 ci, SS =

∑n
i=1 c

2
i .

According to Equation 17, we have:

d2
(
xi (t) , xj (t)

)
=

(
ciK − cjK

) ((
ci − cj

)
K

)T
=

(
c′i − cj′

) (
c′i − c′j

)T
(18)

This indicates that, similarly, function-based clustering
using the d2 distance measure can be transformed into a
multivariate feature clustering based on the Euclidean dis-
tance. The information can be stored in CF triplets in a
consistent manner. The original feature, represented by ci,
is transformed into the new feature ciK . In this case, CF2 is
obtained as CF2 = (N ,LSK,KSSKT ).

E. IMPROVED BIRCH WITH FUSION OF DYNAMIC AND
STATIC INFORMATION
Intuitively, for functional data, conventional constant features
reflect the static characteristics of the data, while derivative
features capture the dynamic information from a different
perspective. Dynamic information is crucial for functional
data as it reveals the fundamental functional traits. In some
cases, functions with approximately similar values in certain
intervals may not provide valuable information to distinguish
their differences. Therefore, relying solely on static distance
based on functions may struggle to accurately differenti-
ate the similarity and dissimilarity between functions. It is
necessary to consider the dynamic shape features of func-
tions, such as the velocity and acceleration of the derivative
function. Incorporating supplementary dynamic information
helps achieve more effective clustering.

By considering both constant and derivative information,
the static distance d1 and dynamic distance d2 can be merged
through a weighting parameter that balances their impor-
tance. This leads to the definition of a global distance:

d = d1 + α×d2 (19)

where α is the weight coefficient for the global distance
measure. Let CF1 and CF2 be the CF vectors for the constant
and derivative features, respectively. This global distance
metric enables a comprehensive assessment of the similarity
between functions. It can be represented as:

CF = (CF1,CF2)

= (N ,LS1, SS1,LS2, SS2)

=

(
N ,LS, SS,LSK,KSSKT

)
(20)

FIGURE 3. The workflow of the DSE-BIRCH algorithm.

Given the relative magnitudes of constant and derivative
quantities, the cluster sphere radius thresholds are defined
as T1 and T2, respectively. The specific workflow of the
DSE-BIRCH algorithm is illustrated in Fig. 3. DSE-BIRCH
differs from the conventional BIRCH algorithm by concur-
rently maintaining spheres for both constant and derivative
features. Supposing the two spheres are denoted as R1 and
R2 to represent the respective radii. During the insertion of a
new sample point, it will be placed in a leaf node if and only
if R1 < T1 & R2 < T2 hold true.
Before constructing a CF tree, three parameters need to be

defined in advance.
(1) The branch balance factor β, indicates the maximum

permissible number of child nodes for every internal node,
guaranteeing that the branching of internal nodes does not
exceed this factor.

(2) The leaf balance factor λ, denotes the maximum capac-
ity of each leaf node to CF.

(3) The threshold T , represents the maximum allowed
sample radius or diameter for each CF within a leaf node.

It should be noted that the branch balance factor and
the leaf balance factor can be set to the same value.
The DSE-BIRCH algorithm is summarized in Algorithm 1.
It operates on a matrix X , which contains m func-
tional data samples of p dimensional principal components
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Algorithm 1 Dynamic and Static Enhanced BIRCH Clustering Algorithm for Functional Data
Input:Data matrix X of size m×n, number of clusters K , branching factor B, thresholds T1 and T2, and weighting coefficient α
Procedure:
1: Functional data processing

a. Functional principal component analysis
b. Compute the projections of the functional data onto the principal components to obtain C1
c. Compute the inner product W of the derivative of the basis functions, solving the equation KKT

= W, obtaining matrix
K and the dynamic feature C2=C1K

2: Initialize a CF tree with a single node
3: for i = 0, 1, 2, . . . do

a. Compute the static and dynamic d1, d2 for sample i based on corresponding features
b. Measure the distance d = d1 + α ∗ d2, and find the leaf CF node closest to the new sample
c. Insert the sample and check if it satisfies R1 < T1&R2 < T2. If true, update all CF triplets along the path and end the

insertion. Otherwise, proceed to step d
d. Check if the current leaf node has fewer CF nodes than B. If true, create a new CF node and place the new sample.

Otherwise, proceed to step e
e. Split the leaf node into two new leaf nodes, selecting the two CF nodes that are farthest apart as the initial CF nodes for

the new leaf nodes
f. Update all CF triplets along the path as CF=(n,LS1, SS1,LS2, SS2)

4: end for
5: All samples have been scanned, and the CF tree construction is complete.
Output:Cluster Centroids = {ct1, ct2, . . . , ctm for the m samples and the classification results Clusters = {cl1, cl2, . . . , clm}

projection coefficients. The algorithm takes several input
parameters, including the maximum number of clusters K ,
the weighting coefficient α, and the radius thresholds T1
and T2, the branching factor β = λ = B. During the
clustering process, the CF tree is constructed through iter-
ative updates by sequentially scanning the dataset. Finally,
the algorithm outputs the cluster partitioning results for m
samples asClusters = {cl1, cl2, . . . ,clm}, where each sample
is assigned to a specific cluster represented by cli.
Additionally, the algorithm provides the centroids of

each sample’s corresponding cluster as Centroids =

{ct1, ct2, . . . , ctm}. In our experiments, different hyper-
parameter ranges are considered:

α ∈

{
10−5, 10−4, . . . ,104, 105

}
,

T2∈ {1, 10, 100,T1 = 0.2,B = 20.

The optimal hyperparameter settings may vary depending
on the dataset. Notice that different values of α uniquely
characterize the differences in importance between constant
and derivative information across different datasets.

F. ALGORITHM COMPLEXITY ANALYSIS
Unlike most iterative clustering algorithms such as KMeans
that require multiple iterations until convergence, the BIRCH
clustering algorithm stands out by constructing the CF tree
and completing the clustering process with just a single scan
of the dataset. In this article, the primary motivation behind
proposing DSE-BIRCH for clustering functional data is to
harness the time complexity advantage of BIRCH, enabling
fast and efficient clustering of large-scale functional data.

Typically, the time complexity of KMeans is given by:

O(k ∗ n ∗ i ∗ d)

where k represents the number of data points in the dataset,
n denotes the size of the dataset, d signifies the number
of iterations required for convergence, and d indicates the
dimensionality of the data. Typically, the number of iterations
in an algorithm is linearly related to the size of the dataset,
which means that the variables i and n are of the same order.
Therefore, the time complexity of the KMeans algorithm can
be simplified as:

O(k∗n∗d)

In the case of the BIRCH algorithm, the data is compressed
and clustered by the CF tree, leading to a significant reduction
in the algorithm’s time complexity to O(nlogn), where n
represents the size of the dataset.

During the construction process of the CF tree in DSE-
BIRCH, the time complexity increases due to the calculation
of distance measures for both constant and derivative features
separately. This results in a doubling of the time overhead
compared to BIRCH. However, despite this additional over-
head, the time complexity of both DSE-BIRCH and BIRCH
algorithms remains within the same order, ensuring that their
overall time complexities remain unchanged as:

O(n log n)

III. RESULT
This section commences with a concise introduction to
clustering evaluation metrics, providing a foundation for
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assessing the performance of clustering algorithms. Sub-
sequently, the effectiveness of the DSE-BIRCH algorithm
is evaluated by comparing it with the original KMeans
and BIRCH algorithms on publicly available datasets. This
comparison is aimed to validate the superiority of the
DSE-BIRCH algorithm in terms of clustering quality and
accuracy. Furthermore, the generalizability and robustness of
the DSE-BIRCH algorithm are thoroughly examined through
simulated experiments, using various synthetic datasets to
assess its performance under diverse scenarios. Additionally,
noise-injection experiments are conducted to investigate the
algorithm’s resilience against noisy data. Lastly, an in-depth
analysis of the time complexity of the DSE-BIRCH algorithm
is presented. This analysis sheds light on the algorithm’s
computational efficiency and scalability, providing valuable
insights into its practical applicability for large-scale datasets.

A. CLUSTERING EVALUATION METRICS
Several commonly used clustering evaluation metrics are
employed to assess the performance of the algorithm from
multiple perspectives in our experiment. One of these met-
rics is the Rand Index (RI), which evaluates the consistency
between the clustering results and a reference standard by
measuring the allocation of samples to clusters. The Rand
Index provides a value between 0 and 1, where a higher
value indicates a higher degree of consistency between the
clustering results and the reference standard. RI is defined as
follows:

RI =
a+ b
c2n

(21)

where a is the number of correctly classified pairs, b is the
number of incorrectly classified pairs, and c2n represents the
total number of samples pairs.

Similar to the RI, Purity also measures the consistency
between the clustering results obtained by the algorithm and
a reference standard in terms of sample allocation to clusters.
Purity is defined as follows:

Purity =
1
N

∑K

k=1

k
max | ck

j=1
∩tj | (22)

where N is the total number of samples, K is the number of
clusters, ck represents the sample set within each cluster, and
tj represents the sample set within each true class j.

The Davies-Bouldin Index (DB Index) measures the bal-
ance between the compactness and separation of clusters
obtained by a clustering algorithm. It quantifies the average
similarity between each cluster and its most similar cluster
while considering the distances between their respective cen-
troids. The DB index takes values in the range [0, ∞), where
a lower value indicates better clustering performance. It is
defined as follows

DB Index =
1
n

∑n

i=1
max
j̸=i

{
si + sj
dij

}
(23)

where n is the number of clusters, si represents the average
distance between each sample in cluster i and its centroid,

FIGURE 4. The curves of the four functional datasets. a-d are the curves
of Arrowhead, ECG200, Fungi and SonyAIBORobotSurface2 dataset,
respectively.

and dij represents the distance between the centroids of clus-
ters i and j.

The Silhouette Coefficient (SC) measures the similarity
and dissimilarity of a sample with its cluster compared to
other clusters. The Silhouette Coefficient takes values in the
range of [1, -1], where a higher value indicates a better
clustering result. It is defined as follows:

SC =
1
N

∑N

i=1

b (i) − a (i)
max {a (i) , b (i)}

(24)

where N is the total number of samples, ai denotes the
average distance between sample i and other samples within
its cluster, and bi represents the minimum average distance
between sample i and all samples in other clusters.

B. EVALUATION ON PUBLIC DATASETS
In this study, a total of 10 time series datasets were selected
from the UCR2018 Archive database [17] (available at
www.cs.ucr.edu/∼eamonn/time_series_data_2018/).
These datasets were specifically chosen to encompass a

wide range of real-life scenarios and were collected from
diverse domains such as sensors, spectrum analyzers, images,
and electrocardiograms. Table 1 presents a concise overview
of these datasets. The inclusion of datasets from different
domains ensures evaluating the algorithm’s performance in
handling various types of time series data, thus demonstrating
its versatility and applicability across different real-world
applications.

In Fig. 4, the time series plots of four datasets, namely
ArrowHead, ECG200, Fungi, and SonyAIBORobotSurface2,
are showcased. These plots provide a visual representation of
the temporal patterns and distinctive features present in the
respective datasets.

To examine the necessity and effectiveness of the design
elements proposed in this study, we conducted ablation stud-
ies on the public datasets. Specifically, using the control
variable method, we constructed the following baseline meth-
ods as control groups to assess the impact of introducing
derivative features and the different approaches to incorporat-
ing them: KMeans-const, KMeans-comb, BIRCH-const, and
BIRCH-comb. The methods with ‘‘const’’ as a suffix indicate
the use of only constant features, while ‘‘comb’’ indicates that
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TABLE 1. A summary of the 10 series datasets.

TABLE 2. Clustering performance evaluation of different algorithms on
the FaceFour dataset of 10 replicates.

themethod incorporates both constant and derivative features.
Regarding the approach to introducing derivative features, the
baselinemethods employed a simple weighted concatenation,
where the constant features C1 and derivative features C2 are
merged into the feature vector:

C = C1|αC2

where α is the weight coefficient. ‘‘|’’ denotes the sequential
concatenation of features along the feature dimension.

For each control groups, we randomly shuffled the train
dataset with 10 different random seeds then conducted
10 repeated experiments. We reported the mean and standard
deviation of the four performance evaluation metrics. The
clustering results of the proposed DSE-BIRCH algorithm and
the baseline algorithms on the 10 time series datasets can
be found in Table 2 to Table 5, as well as in the Appendix
Tables 13-18. The DSE-BIRCH algorithm outperforms the
baseline algorithms in terms of various evaluation metrics,
demonstrating its superior clustering capabilities. Higher val-
ues of the RI and Purity indicate better consistency between

TABLE 3. Clustering performance evaluation of different algorithms on
the ECG5000 dataset of 10 replicates.

TABLE 4. Clustering performance evaluation of different algorithms on
the SonyAIBORobotSurface2 dataset of 10 replicates.

the clustering labels generated by DSE-BIRCH and the true
labels. A lower DB Index suggests a higher ratio of com-
pactness (intra-cluster distance) to separability (inter-cluster
distance) in the clustering. Moreover, a higher Silhouette
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TABLE 5. Clustering performance evaluation of different algorithms on
the Fungi dataset of 10 replicates.

Coefficient reflects that data points within the same cluster
are closer to each other and farther away from data points
in other clusters. These metrics collectively demonstrate the
effectiveness of the DSE-BIRCH algorithm from different
perspectives.

The inclusion of derivative information improves the
clustering performance on the 10 datasets, indicating the
necessity of incorporating derivative features for cluster-
ing function-based data. For instance, on the Fungi dataset,
simply combining the dynamic features with the static
information resulted in a 1.62% mean improvement in RI
for KMeans and a 2.72% mean improvement for BIRCH,
with the values increasing from 0.8646 and 0.8550 to
0.8789 and 0.8789, respectively. The Silhouette Coefficients
for both algorithms increased from 0.1901 and 0.3081 to
0.3245 and0.3429, respectively, exhibiting mean improve-
ments of 62.1% and 11.3%.When the static and dynamic fea-
tures are fused using the weighted combination approach in
DSE-BIRCH and the global clustering hypersphere is main-
tained through the dual constraints, DSE-BIRCH achieves
further significant mean improvements of 7.7% in SC, sur-
passing the results of the best baseline methods with values
of 0.3429. For more experimental results, please refer to
Tables 2-5 and the Appendix.

However, as shown on the majority of the comparative
results, it is worth noting that simply weighted concatenation
of derivative features and constant features may not nec-
essarily improve the clustering performance (as shown in
the Appendix). The effective fusion of derivative informa-
tion is crucial for achieving more accurate clustering results.
Compared to simple weighted concatenation, DSE-BIRCH
iteratively maintains separate spheres for constant and deriva-
tive features, thereby preserving their individual properties
while integrating their similarities.

The above results of 10 replicates characterize the mag-
nitude of the performance improvements enabled by the
effective derivate information incorporation on our model.
To further investigate the significant level of the differ-
ences between our propose model and the baseline models,

we conducted three statical hypothesis tests. Specifically,
Wilcoxon’s Signed-Rank Test is utilized to compare whether
there is a significant difference in the medians of two paired
performances from the proposed model and a baseline model.
And the paired t-test is used to compare whether there is a
significant difference in the means of paired performances.
Furthermore, the one-tailed test is used to test whether the
performance metrics of DSE-BIRCH are significantly better
than the baseline models. We compared our model and the
ablated models in pairs, resulting in four groups denoted as
G1 to G4. We used the Rand Index and Silhouette Coefficient
from the 10 replicates as paired samples, respectively. Their
respective comparison results are summarized in Table 6
and Table 7. The results show that our proposed model
exhibits p_values < 0.05 in nearly all of the four comparison
groups under the three statistical tests, indicating statistically
significant differences between the full model and ablated
models. Specifically, the statistics from Wilcoxon’s Signed-
Rank Test and paired T-test suggest significant performance
differences between our proposed model and the ablated
models, while the one-sided tests further indicate these sig-
nificant differences are advantages of our model. Together,
these statistical tests better characterize the significance of
the performance improvements enabled by our approach.

In summary, the 10 repeated random experiments and sta-
tistical hypothesis testing jointly indicated that our proposed
model demonstrates significantly superior performance over
the baselinemodels, highlighting the advantages of ourmodel
and reflecting the efficacy of our innovations and model
design.

To provide a more intuitive visualization of the clustering
results, the data points in the clustering results were presented
as scatter plots, where different colors represent different
clusters. Fig. 5a presents the clustering results of the Fungi
dataset after performing FPCA and retaining two principal
components. The x and y axes represent the two dimensions
of the constant features. On the other hand, Fig. 5b dis-
plays the clustering results of the SonyAIBORobotSurface2
dataset after performing FPCA and retaining ten principal
components. The three dimensions of the coordinate axes
were obtained by reducing the constant features using T-SNE.
From these figures, it can be observed that there is a high con-
sistency between the predicted clusters and the true clusters,
indicating that the clustering results align well with the true
distribution.

C. SIMULATION EXPERIMENTS
To further validate the advantages of the fusion approach in
the DSE-BIRCH algorithm compared to the simple weighted
concatenation approach, this section conducts simulation
experiments using three synthetic datasets from the UCR
Archive 2018 database: BME, SyntheticControl, and UMD.
The time series curves of the UMD dataset in the training set
are shown in Fig. 6.

The control groups for this experiment are DSE-BIRCH,
KMeans-comb, and BIRCH-comb. The experimental results
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TABLE 6. Statistical tests on rand index of 10 replicates.

TABLE 7. Statistical tests on silhouette coefficient of 10 replicates.

FIGURE 5. Visualization of clustering results on the fungi and
SONYAIBOROBOTSURFACE2 datasets.

of the three algorithms are shown in Table 8. Taking the
BME dataset as an example, DSE-BIRCH outperforms the

FIGURE 6. The time series curves of the UMD synthetic dataset.

two baseline models with a lead of 31.9% and 32.4% in terms
of RI, and achieves improvements of 40.2% and 63.8% in
terms of SC. The outstanding performance of DSE-BIRCH
on the three synthetic datasets demonstrates its superior abil-
ity to integrate derivative information, further confirming
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TABLE 8. Clustering results of combining constant and derivative
information on synthetic time series datasets.

FIGURE 7. Time series curves of the arrowHead training dataset before
and after noise addition. a, Raw curve. b, Curve after adding Gaussian
noise. c, Curve after adding uniform noise.

its effectiveness in incorporating and utilizing derivative
information.

D. ROBUSTNESS ANALYSIS WITH NOISE ADDITION
To investigate the robustness of the DSE-BIRCH algorithm,
two types of noise, Gaussian noise and uniform noise, were
introduced to the 10 datasets used in the evaluation section.
In our experiment, Gaussian noise was generated from a
Gaussian distribution with a mean of 0 and a standard devi-
ation of 0.01, while uniform noise was generated from a
uniform distribution with values ranging from -1 to 1. The
noisy data was obtained by adding these noises to the orig-
inal data. Taking the ArrowHead dataset as an example, the
time series curves of the ArrowHead dataset before and after
adding noises are shown in Fig. 7.
The experimental results are shown in Fig. 8. It can

be observed that after adding Gaussian noise and uniform
noise, the metrics RI and Purity only slightly decrease
overall, while the changes in DB Index and SC are rela-
tively small. In absolute terms, higher values of RI, Purity,
and SC, and lower values of DB Index, indicate high con-
sistency between the predicted clusters and the true clusters,

with compact within-cluster structure and well-separated
between-cluster structure. The experimental results demon-
strate that the addition of noise did not significantly affect
the clustering performance of the DSE-BIRCH algorithm.
The DSE-BIRCH algorithm exhibits good robustness, main-
taining high clustering quality even in the presence of noise,
suggesting its wide applicability in real-life scenarios.

E. ALGORITHM COMPLEXITY EXPERIMENT
To explore the computational efficiency of the DSE-BIRCH
algorithm under different experimental scenarios, we con-
ducted controlled experiments in this subsection. Initially,
we constructed a high-dimensional function-based dataset
comprising 7000 samples. By applying FPCA, we retained
2 to 10 principal components, yielding corresponding con-
stant features C1 and derivative features C2. Subsequently,
using the controlled variables method, we measured the
algorithm’s computational time under two experimental
setups: (1) fixed feature dimensions and varying sample sizes
(Setup 1), and (2) fixed sample sizes and varying feature
dimensions (Setup 2).

In Setup 1, we held the feature dimensions con-
stant at 10 and systematically increased the sample sizes
from 1000 to 7000, repeating the experiment for 5 rounds.
The average time with standard deviation as the confidence
interval is shown in Fig. 9a. It can be observed that the
algorithm based on BIRCH had significantly lower com-
putational time cost compared to the algorithm based on
KMeans, and the DSE-BIRCH algorithm had approximately
twice the computational time of the BIRCH-comb base-
line. Moving to Setup 2, we maintained the sample size
at 7000 while linearly increasing the feature dimensions
from 2 to 10, repeating the experiment five times. Fig. 9b
reveals a similar trend to Fig. 9a, underscoring the compu-
tational efficiency of the DSE-BIRCH algorithm. Although
the computational time of DSE-BIRCH is an integer multiple
of the two baseline algorithms based on BIRCH, it remains
significantly smaller than that of the baseline method relying
on KMeans.

The experimental findings highlight the DSE-BIRCH
algorithm’s effective trade-off between clustering accu-
racy and computational cost. Despite incurring a compu-
tational time twice that of the BIRCH-comb baseline, the
DSE-BIRCH algorithm exhibits substantial improvements
in clustering performance compared to the KMeans-based
baseline method. Moreover, it demonstrates efficiency
and scalability when handling large-scale datasets, ensur-
ing accurate clustering. These results establish the prac-
tical feasibility and effectiveness of the DSE-BIRCH
algorithm.

F. EMPIRICAL APPLICATION ANALYSIS
To further verify the practicality and generalizability of
the DSE-BIRCH algorithm, we conducted experiments on
three real-world datasets of three different scales. Specif-
ically, a dataset with a small number of records but a
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FIGURE 8. Evaluation of DSE-BIRCH clustering performance before and after noise addition. a-d are the comparisons of evaluation results for
metrics RI, Purity, DB Index, and SC, respectively.

FIGURE 9. The variation of computational cost for DSE-BIRCH clustering concerning changes in the scale of dataset
samples and feature dimensions. a, Comparison of computational cost for different dataset scales across five
algorithms. b, Comparison of computational cost for different dimensions across five algorithms.

large number of attributes, a dataset with a small number
of attributes but a large number of records, and a dataset
with a large number of records and a large number
of attributes are collected from standard UCI reposi-
tory (https://archive.ics.uci.edu/datasets). Correspondingly,
the three datasets are Musk (Version 1) [51], Online Shop-
pers Purchasing Intention [52], and Multiple Features. The
summary information for the three is presented in Table 9.
Specifically, the Musk dataset describes a set of 92 molecules
of which 47 are judged by human experts to be musks and
the remaining 45 molecules are judged to be non-musks.
The goal is to learn to predict whether new molecules will

TABLE 9. Summary of the three real-world datasets.

be musks or non-musks. The Online Shoppers Purchasing
Intention dataset contains 12330 sessions over time. And the
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TABLE 10. Clustering performance comparison on the musk dataset of
10 replicates.

TABLE 11. Clustering performance comparison on the online shoppers
purchasing intention dataset of 10 replicates.

TABLE 12. Clustering performance comparison on the multiple features
dataset of 10 replicates.

Multiple Features dataset consists of features of handwritten
numerals extracted from a collection of Dutch utility maps.
The clustering experiments on the three datasets are con-
ducted 10 times with 10 random seeds. The comparative
performance of our proposed model and the baseline mod-
els on the three datasets are demonstrated in Table 10-12,
respectively. DSE-BIRCH consistently outperformed the

baseline models with significant advantages, demonstrating
its generalizability in complicated application scenarios and
its broad applicability in the real world.

IV. CONCLUSION AND DISCUSSION
In the era of big data, the application of functional data in
various fields such as medicine, biology, and finance has
gained significant traction. However, clustering algorithms
specifically designed for large-scale functional data remain
a research challenge. Many existing methods in this field
tend to overlook the dynamic information present in func-
tional data and primarily rely on conventional static features,
failing to fully exploit the continuous and differentiable char-
acteristics of functional data. Additionally, investigating the
integration of static and dynamic information in a com-
plementary manner is also an important research question.
Addressing these issues, this study proposes DSE-BIRCH,
which aims to integrate both static and dynamic informa-
tion and establish a comprehensive measure of similarity.
The DSE-BIRCH algorithm takes into account the similarity
between functions from both static and dynamic perspec-
tives, thereby enabling a more comprehensive utilization of
the inherent characteristics of functional data. The algorithm
first performs principal component analysis on the func-
tional data to extract the static features, which are then
transformed into dynamic features using our newly proposed
matrix factorization-based method. By integrating these two
types of features, a global feature is obtained, and static
and dynamic similarity measures are defined based on these
features. The importance of these features in clustering is bal-
anced by assigning weights to the global similarity measure.
Building upon an improved BIRCH algorithm, DSE-BIRCH
performs hierarchical clustering, leveraging the algorithm’s
capacity to capture hierarchical information and handle
large-scale datasets. As a result, DSE-BIRCH effectively
captures the hierarchical structure within high-dimensional
functional data and enables efficient clustering of large
datasets.

The fundamental differences between DSE-BRICH from
the other similar algorithms are uniformity, simplicity, effi-
ciency, and theoretical basis. We ingeniously implemented
the simultaneous measurement of static and dynamic dis-
tance metrics in a unified framework through a novel matrix
decomposition approach, while in other methods the two are
separated. This makes the heterogeneity between the con-
stant and derivative features constructed by our algorithm
lower, thus enabling better integration and performance when
fusing them. Additionally, the unified framework makes our
algorithm more concise, meaning stronger robustness and
better generalization.

Experimental results on the public and synthetic datasets
demonstrate that DSE-BIRCH significantly outperforms
baseline methods in terms of multiple evaluation metrics.
By fully leveraging the differentiability of functional data,
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DSE-BIRCH achieves superior clustering accuracy, effi-
ciency, and granularity compared to existing methods.
Moreover, the robustness of DSE-BIRCH against noise
interference is demonstrated through a noise experiment.
The algorithm maintains high clustering quality even in the
presence of noise, making it highly applicable in real-world
scenarios. Furthermore, complexity experiments highlight
the favorable trade-off between time complexity and clus-
tering accuracy achieved by DSE-BIRCH, showcasing its
practical feasibility and effectiveness in clustering large-scale
functional data. The empirical study on the three real-world
datasets demonstrates the generalizability of DSE-BIRCH
in complicated application scenarios and its broad appli-
cability in the real world. The superior performance of
the model on these datasets of varying scales demonstrates
the adaptability of our algorithm across different applica-
tion scenarios. Thanks to the lower time complexity of
the BIRCH, our algorithm can be effectively extended to
large-scale functional data clustering scenarios. We hope
that our method can inspire more researchers to explore
clustering studies that fully exploit the inherent character-
istics of functional data. To facilitate further research, our
code is publicly available at https://github.com/SallyLi0606/
DSE-BIRCH.

Although this study focuses on first-order derivatives as
the derivative information, future research directions include
exploring higher-order derivatives and effectively integrating
them into the clustering process. Additionally, further inves-
tigation into non-empirical methods for accurate weighting
fusion of constant and derivative features, such as determin-
ing the optimal weighting coefficient, would contribute to
enhancing the performance of the DSE-BIRCH algorithm.
While this study verifies that fusing dynamic and static
information can enhance clustering performance, and further
shows the value of higher order derivative data for func-
tional data clustering, it remains unclear if adding more
higher order derivative information will continue improving
results, and how many orders of derivatives are optimal.
Further investigation is still needed to determine the impact
of including increasing orders of derivatives on cluster-
ing performance. In addition, the method proposed in this
study primarily addresses the fusion of dynamic and static
information for univariate functional data, and does not
consider the fusion approach for multivariate functional
data. As future work, principal component analysis on mul-
tivariate functional data could be incorporated to extend
the application of DSE-BIRCH to multivariate functional
data clustering.

APPENDIX A
RROOF OF THEOREM
Theorem 2. R =

√∑n
i=1 (xi−x0)2

n =

√
NSS−LS2

N 2

Proof. Assuming xi=(xi1, xi2, . . . ,xiq), if a cluster contains
n samples and its centroid is denoted as x0, then it follows that

TABLE 13. Clustering performance evaluation of different algorithms on
the arrowHead dataset of 10 replicates.

R =

√∑n
i=1 (xi−x0)2

n . The proof is as follows:

n∑
i=1

(xi − x0)2

=

n∑
i=1

(xi1 − x01)2 + (xi2 − x02)2 + . . . +
(
xip − x0p

)2
=

n∑
i=1

(
x2i1 + nx2o1 − 2nxi1x01

)
+

n∑
i=1

(
x2i2 + nx2o2 − 2nxi1x02

)
+ . . . +

n∑
i=1

(
x2ip + nx2op − 2nxi1x0p

)
=

n∑
i=1

(
x2i1 + nx2o1

)
+

n∑
i=1

(
x2i2 + nx2o2

)
+

n∑
i=1

(
x2ip + nx2op

)
=

n∑
i=1

(
x2i1 + x2i2 + . . . + x2ip

)
− n

n∑
i=1

(
x201 + x202 + . . . + x20p

)
= SS − nxoxTo

= SS −
LS2

n

APPENDIX B
EXPERIMENT RESULT
See Tables 13–18.

APPENDIX C
PROOF OF CONVERGENCE
BIRCH is a heuristic aggregation-based algorithm that deter-
mines merging by iteratively computing ‘‘clustering feature
distances’’ without an objective function. Since the iteration
process of the BIRCH algorithm is a non-convex optimization
problem and does not yield a global optimum, its convergence
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TABLE 14. Clustering performance evaluation of different algorithms on
the beef dataset of 10 replicates.

TABLE 15. Clustering performance evaluation of different algorithms on
the ECG200 dataset of 10 replicates.

TABLE 16. Clustering performance evaluation of different algorithms on
the herring dataset of 10 replicates.

cannot be rigorously proven [53]. The original BIRCH
paper [54] and numerous subsequent improvement papers,
such as [47], did not provide a strict convergence proof. Our
algorithm, DSE-BIRCH, as an enhanced version of BIRCH,
improves the clustering feature distance measure to make
it suitable for functional data. Similarly, it is a heuristic
algorithm. Although we cannot provide a rigorous mathemat-
ical proof of the convergence of the DSE-BIRCH algorithm,

TABLE 17. Clustering performance evaluation of different algorithms on
the SemgHandGenderCh2 dataset of 10 replicates.

TABLE 18. Clustering performance evaluation of different algorithms on
the strawberry dataset of 10 replicates.

we can demonstrate that it can complete clustering within a
finite number of iterations and converge to a local optimal
solution:

Let nbe the initial number of sample data points.
1. Initially, each data point is treated as a cluster, resulting

in m = n clusters.
2. DSE-BIRCH incrementally constructs the CF tree.

At each step, under the constraints of both static and dynamic
distance measures, a new data point is assigned to the most
suitable sub-cluster. Each leaf node can contain a maximum
of L clusters, where L is a predefined threshold.

3. The maximum number of non-leaf nodes is n/L, based
on rounding down.

4. The sum of clusters of non-leaf nodes per layer is upper
bounded by B, where B is a preset threshold.

5. From root to leaf, the height of the CF Tree is upper
bounded by h = ⌈logB(n/L)⌉, which is a constant.

6. In each merge iteration, the number of clusters decreases
by 1 or remains the same.

7. After at most m−1iterations, the number of clusters at
root reaches 1.

8. Therefore, the maximum number of iterations for the
entire CF tree construction and clustering merge is upper
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bounded by O(m). Since m = n is the sample size, the upper
bound on the number of iterations is also a constant, denoted
as N .
9. Each merge greedily improves the current clustering

density of samples.
10. After N greedy merge iterations, the sample distribu-

tion tends to stabilize.
11. When iterations can no longer improve clustering,

i.e., reduce the entropy of sample distribution, DSE-BIRCH
is considered converged. The sample distribution reaches a
locally stable state.

Through the analysis of controlling the tree height and
node size during the construction process, it can be proven
that the number of iterations for DSE-BIRCH clustering is
upper-bounded by the number of samples n, ensuring clus-
tering is completed within a finite number of times and
converges to a locally optimal solution. The above is only an
intuitive description of the convergence of algorithms based
on heuristic aggregation, and more rigorous mathematical
proofs are still needed through further exploration.
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